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Preface 

Our purpose is to present a comprehensive overview of the theory of the 
MarkofF and Lagrange spectra. The origins of the subject lie in two papers 
of A. Markoff from 1897-1880. Developments after that time were sporadic 
until the last twenty years or so, when there has been a resurgence of interest 
in the spectra. 

We first give an account of all of the older work and then move on to the 
recent developments. Many of our proofs are new and we have corrected 
various errors in the literature. We are only concerned with the MarkofF 
and Lagrange spectra themselves; there is hardly any mention of the diverse 
analogous spectra which have been defined in various contexts. 

The list of references is intended to be thorough but not encyclopedic. In 
the text, references are identified by the author's name followed by the year 
in square brackets. Works in the same year are distinguished by a, b , . . . ; for 
example, Perron [1921b]. 

We want to thank Richard Bumby and Harvey Cohn for helpful conver­
sations and correspondence on various parts of this work. 

Thomas W. Cusick 
Mary E. Flahive 



APPENDIX 1 

Alternative Definitions of the Spectra 

In Chapter 1 the Markoff spectrum M and the Lagrange spectrum L were 
defined as follows: Given an indefinite binary quadratic form 

(1) f(x, y) = ax2 + bxy + cy2 

with real coefficients and positive discriminant d(f) = b2 - 4ac, we define 
the minimum m(f) by 

m(f) = inf\f(x,y)\, 

where the infimum is taken over all pairs of integers x, y not both zero. We 
define M to be the set of all values of \Jd(f)/m(f). 

For any real number a, we define //(a) by 

(2) Ma)"1 =limsup|tf(#a-/?)|, 
q—>-oo 

where p and q are arbitrary integers. We define L to be the set of all values 
of //(a). 

For any doubly infinite sequence of positive integers A = . . . , <z_7,..., <z_ \, 
ao, a\,...,ai(,... we define 

^i(A) = [a/,0/+i,...] + [O,0/_i,fl/_2,...] for each integer /. 

We further define L(A) = limsup A, (,4), where the limsup is taken over all 
integers /'. It is easy to see that the set L is the set of all values of L(A). 
Indeed, we suppose 

(3) a = [6o,&i,*2,..-]. 

By a well-known theorem on continued fractions (see Theorem 11 in Perron 
[1929, p. 45]), the inequality \q(qa - p)\ < \ implies that p/q must equal 
one of the convergents 

PnlQn = [bo,by,...,bn], Yi = 0, 1, 2, . . . , 

of a. Therefore, in the limsup in (2) we may assume that p = pn and q = q„ 
for some n. From equation (7) in Perron [1929, p. 43] we have the formula 

(4) Wn{QnOt-Pn)\ = ([bn+\, bn+2, . . . ] + [0, b„, bn- ,, . . . , b\ ])_1 . 
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86 ALTERNATIVE DEFINITIONS OF THE SPECTRA 

For any doubly infinite sequence A, either L(A) = limsup/_^00/l/(^) or 
L(A) = limsup^.ooXi(A). In the former case we define a = \a§,a\,ai,..\ 
and in the latter case we define a = [ao,a~\>ci-i, • • • ]• In either case (4) im­
plies that jit(a) = L(^4), so L contains all values of L(A). We next suppose we 
are given a real number a which has the continued fraction expansion given 
in (3). If we define the symmetric doubly infinite sequence A by 

A = . . . ,b2,bi,bo,bi9b2,... , 

then L(A) = ju(a) follows from (4). Thus, the set of all values of L(A) 
contains L. 

Defining M(A) = supAj(A), where the supremum is taken over all integers 
/, Markoff [1879] proved that the Markoff spectrum M is the set of all values 
of M(A). The following is a summary, without proofs, of what is used from 
the classical reduction theory of indefinite binary quadratic forms. More 
detailed accounts can be found in various textbooks, for example Chapter 
VII in Dickson [1929, pp. 99-111]. 

An indefinite binary quadratic form (1) is said to be reduced if 

0 < yfd{f) -b< 2\a\ < y/d{f) + b, ac < 0. 
Equivalently, if for d = d(f) we let 

-b + y/d A -b-Vd 
r = — - and s = — -

2a 2a 
denote the roots of ax2 + bx + c = 0, then the form (1) is reduced if 

\r\ < 1, \s\ > 1, rs < 0. 
THEOREM 1. There are only a finite number of reduced forms (1) with in­

teger coefficients and given discriminant d > 0. 

The set of reduced quadratic forms of a fixed discriminant d can be par­
titioned into one or more chains, as follows: We define, for any integer /', 

(5) f(x,y) = (-lyatx2 + btxy - {-\)lciy\ 

where each discriminant d{f) = d and <z/, &,- are positive real numbers. There 
is a unique integer C[ such that the substitution x = Y, y — -X + C[Y takes 
the reduced form f to the (equivalent) reduced form f+\. (We recall that 
two forms are said to be equivalent if we can obtain one from the other by a 
substitution of the form x = rX+sY, y = tX + uY with ru-st = ±1.) In this 
manner a chain . . . , / _ i, fo, f , . . . of equivalent reduced forms is obtained. 

THEOREM 2. Any two equivalent reduced indefinite binary quadratic forms 
of the same discriminant belong to the same chain. 

Because of Theorem 1, the chains are periodic if the forms have inte­
ger coefficients. Defining gj = (-l) 'c/, w,- = (\fd + bi)/2ai+\, and Vj = 
(Vd - bj)/2at+\9 then gt > 0, u{ > 1, 0 < vt < 1 and we have W/ = gt + uj+v 
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v~{ = gi-\ +V(-\. Therefore, the continued fraction expansions of w,- and vt 
are 

Ui = [gi, ft+i, . . . ], Vt = [0, gi-ugi-2, . . • ]. 

Furthermore, we have 

(6) m + vt = \fdjaM = [gi, gi+u... ] + [0, gi-ugi-2, • •. ]. 

The form (1) is said to represent the real number a properly if there exist 
relatively prime integers xo, yo such that f(xo,yo) — ot. The following classi­
cal theorem of Lagrange connects the coefficients of members of a chain of 
reduced forms equivalent to f(x,y) with the value of m(f). 

THEOREM 3. If the forms in (5) form a chain of reduced quadratic forms 
with discriminant d > 0, then the absolute value of each number less than 
\fdjl which is represented properly by a form in the chain is an element 
of the set { ẑ: integer /}.Moreover, if f(x,y) is any form of the chain, then 
M(f) = inf/ at, where the infimum is taken over all integers i. 

From (6) and Theorem 3 it follows that M is the set of all values of M(A). 



APPENDIX 2 

Facts about Continuants 

For any positive integers a\, a2,...9an the continuant K(a\9a2,...,an) is 
defined to be the denominator of the continued fraction [0,aua2,...,an]\ 
that is, 

K{ax) = au 

K(aua2) = a{a2 + 1, 
K(ai,a2,az) = ala2a3 + al + a3 , . . . , 
K(aua2,...9an) = anK(ai,...,an-i) + K{a{,.. .,an-2) for n > 3. 

These continuants are also sometimes called Euler polynomials. 
Any continuant K(a\,a2,...9an) is clearly the sum of certain products of 

integers from the set {a\,...,an}. Euler gave the following simple rule for 
determining which products occur: First take the product of the integers 
a\,...,an. Then take every product that is obtained from omitting any pair 
of adjacent integers. Then take every product that is obtained from omitting 
any two separate pairs of adjacent integers. Proceed in this way until no 
more pairs can be omitted. If n is even, the empty product (equal to one) 
obtained by omitting all of the integers is included at the end. In this way 
the set of all products in the continuant K(a\,. ..,an) is obtained. This rule 
of Euler is easily proved by induction on the above recursion relation for 
K(aua2,...,an). 

From Euler's rule it follows at once that the value of a continuant is un­
changed if its integers are written in the reverse order; that is, 

K(a{, a2,...,an) = K(an, an„ x,..., a{). 

Therefore, we also have the recursion relation 

K(ai,a2,...9an) = a{K{a2,... ,a„) + K(a3,... 9an) for n > 3. 

This can easily be extended to the more general formula 

K{au...9an) = K(au...,am)K(am+u^^an)+K{au..^am-i)K{am+2,...,an)9 

for 1 < m < n. 
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APPENDIX 3 

Pell Equations and Automorphs 
of Indefinite Quadratic Forms 

A linear transformation 

(1) x = aX + /2Y, y = yX + SY, 

with integer coefficients and determinant ad- fiy = 1, which leaves a quadra­
tic form 

(2) f(x, y) = ax2 + bxy + cy2 

unaltered, is called an automorph of f(x,y). If the indefinite form f(x,y) has 
integer coefficients and is primitive (i.e., the coefficients have no common fac­
tor other than ±1), then the following theorem shows that every automorph 
of f{x9y) is associated with a solution of the Pell equation r2 - ds2 = 4, for 
d = b2 - 4ac. 

THEOREM 1. If the indefinite binary quadratic form (2) has integer coef­
ficients and is primitive, then the transformation in (1) is an automorph of 
f(x,y) if and only if 

(3) a = (r - bs)/2, /? = -cs, y = as, 6 = (r + bs)/2, 

where r, s is an integer solution of 

(4) r2 -ds2 = 4, d = b2- 4ac. 

PROOF. If the transformation in (1) is an automorph of f(x,y) and f 
denotes either of the roots of f(x, 1) = 0, then 

<? = (a£ + 0)/(rt; + <S); 

that is, 
y^2 + (S - a)£ - p = 0. 

The coefficients in the left-hand side of the last equation must be proportional 
to those of f(x9y), say 

(5) y = as, S-a = bs, f$ = -cs. 
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Also, since f(x9y) is primitive, s must be an integer. Defining the integer r 
by 

(6) r = a + d 

and combining (5) and (6), we obtain 

r2 = (S - a)2 + 4ad = b2s2 + 4(1 - acs2) = 4 + ds2, 

where the second equality follows from 

ad = fiy + 1 = -acs2 + 1, 

and the last equality gives (4). This proves the "only i f part of the theorem. 
To prove the converse, we observe that if f(x,y) is transformed by (1) into 

AX2+BXY + CY2, then A = aa2 + bay+cy2, B = 2aaP + b(aS + Py) + 2cyd, 
C = aji2+bf}d+c82. If we substitute the equations in (3) into these equations 
on A, B, C and then use (4), we obtain A = a, B = b, C = c. Thus, (1) and 
(3) define an automorph, and this completes the proof of the theorem. 

If the form f(x,y) in Theorem 1 is reduced (see, for example, either Ap­
pendix 1 or Dickson [1929, pp. 100-102]), then the following theorem shows 
that we can obtain an automorph by looking at the continued fraction expan­
sion of one of the roots of f(x, 1) = 0. 

THEOREM 2. Suppose the indefinite binary quadratic form (2) has integer 
coefficients with a > 0 and is primitive and reduced. Let £ and rj with 0 < £ < 1 
and r] < - 1 denote the roots of f(x9 1) = 0. Let the completely periodic 
continued fraction expansion of £ be given by £ = [0, £i,#2> •••>#*]* where 
n is taken to be even and a\9a2,...,an is the shortest period. Let Pj/qj = 
[a\,a2,...,aj] for all j — 1,2,... denote the convergents to 1 /£. If we define 

(7) a = #„_i, fi = q», y=pn-u S=Pn, 

then the determinant of the transformation in (1) is aS - fly = 1 and is an 
automorph off(x,y). Moreover, this automorph satisfies (3), where r, s is the 
least positive solution of (4). 

PROOF. Since { = [09a\9a29...9an9^~l]9 by the theory of continued frac­
tions we have 

<T ! = {PnZ~X +Pn-\)/{qn^~X +Qn-\)\ 

using (7), y£2 + (S-a)£-fi = 0. Thus, the form yx2 + (S-a)xy-Py2 = Ohas 
integer coefficients which are multiples of the coefficients of f(x9y). Since n 
is even, we have 

ad - Py =pnqn-\ -Pn-\Qn = 1, 
so the transformation in (1) is an automorph of f{x9y). By Theorem 1, the 
equations in (3) hold for some integer solution r, s of (4). Since this integer 
solution is associated with the shortest even period of {, it follows from the 
theory of Pell equations that r, s must be the least positive solution of (4). 



References 

Beardon, A. F., Lehner, J. and Sheingorn, M. [1986], Closed geodesies on 
a Riemann surface with application to the Markoff spectrum, Trans. Amer. 
Math. Soc. 295 (1986), 635-647. 

Berstein, A. A. [1970], On necessary and sufficient conditions for the oc­
currence of Markoff spectrum points in the Lagrange spectrum, Dokl. Akad. 
Nauk SSSR 191 (1970), 971-973; English transl., Soviet Math. Dokl. 11 
(1970), 463-466. 

[1973a], On the relation between the Lagrange and Markoff spectra, 
Chapter II in Teorija cisel (Number Theory), Kalininskii Gosudarstvennyi 
Universitet, Moscow, 1973, 16-49. 

[1973b], On the structure of the Markoff spectrum, Chapter III in 
Teorija cisel (Number Theory), Kalininskii Gosudarstvennyi Universitet, 
Moscow, 1973, 50-78. 

Borosh, I. [1975], More numerical evidence on the uniqueness of Markov 
numbers, BIT 15 (1975), 351-357. 

Bumby, R. T. [1973], The Markov spectrum, Proceedings of the Confer­
ence on Diophantine approximation and its Applications (Washington, 1972) 
(Charles Osgood, ed.), Academic Press, 1973, 25-58. 

[1976], Structure of the Markoff spectrum below \f\2, Acta Arith. 29 
(1976), 299-307. 

[1982], Hausdorff dimensions of Cantor sets, J. Reine Angew. Math. 
331 (1982), 192-206. 

[1985], Hausdorff dimension of sets arising in number theory, Number 
Theory (CUNY, 1983-84), Lecture Notes in Math., vol. 1135, Springer-
Verlag, 1985, 1-8. 

Cassels, J. W. S. [1949], The Markoff chain, Ann. of Math. (2) 50 (1949), 
676-685. 

[1957], An introduction to Diophantine approximation, Cambridge 
Univ. Press, 1957. 

[1959], An introduction to the geometry of numbers, Springer-Verlag, 
Berlin, 1959. 

93 



94 REFERENCES 

Cohn, Harvey [1955], Approach to Markoff's minimal forms through mod­
ular functions, Ann. of Math. (2) 61 (1955), 1-12. 

[1971], Representation of Markoff's binary quadratic forms by geode­
sies on a perforated torus, Acta Arith. 18 (1971), 125-136. 

[1972], Markoffforms and primitive words, Math. Ann. 196 (1972), 
8-22. 

[1978], Minimal geodesies of Fricke's torus-covering, in Proceedings 
of the Conference on Riemann Surfaces and Related Topics (Stony Brook, 
1978) (Irwin Kra and Bernard Maskit, eds.), Ann. Math. Studies, no. 97, 
Princeton Univ. Press, Princeton, N.J., 1981, 73-85. 

[1979], Growth types of Fibonacci and Markoff, Fibonacci Quart. 17 
(1979), 178-183. 

Cusick, T. W. [1974], The largest gaps in the lower Markoff spectrum, Duke 
Math. J. 41 (1974), 453-463. 

[1975], The connection between the Lagrange and Markoff spectra, 
Duke Math. J. 42 (1975), 507-517. 

[1987], Endpoints of gaps in the Markoff spectrum, Monatsh. Math. 
103(1987), 85-91. 

Cusick, T. W. and Lee, R. A. [1971], Sums of sets of continued fractions, 
Proc. Amer. Math. Soc. 30 (1971), 241-246. 

Davis, C. S. [1950], The minimum of an indefinite binary quadratic form, 
Quart. J. Math. Oxford (2) 1 (1950), 241-242. 

Davis, Nancy and Kinney, J. R. [1973], Quadratic irrationals in the lower 
Lagrange spectrum, Canad. J. Math. 25 (1973), 578-584. 

Delone, B. N. and Vinogradov, A. M. [1959], Uber den Zusammenhang 
zwischen den Lagrangeschen Klassen der Irrationalitaten mit begrenzten Teil-
nennern undden Markoffschen Klassen der extremen Formen, Leonhard Euler 
zum 250 Geburtstag, Akademie Verlag, Berlin, 1959, 101-108. 

Dickson, Leonard Eugene [1929], Introduction to the theory of numbers 
(1957 reprint of 1929 first edition), Chapter XI, Dover, New York, 175-180. 

[1930], Studies in the theory of numbers, (1957 reprint of 1930 first 
edition), Chelsea, New York. 

Dietz, Bernhard [1983], On the gaps of the Markoff spectrum, Monatsh. 
Math. 96 (1983), 265-267. 

[1985], On the gaps of the Lagrange spectrum, Acta Arith. 45 (1985), 
59-64. 

Fay, Arpad [ 1956], On Markoff's numbers, Mat. Lapok 7(1956), 262-270. 
(Hungarian) 

Ford, L. R. [1917], A geometrical proof of a theorem of Hurwitz, Proc. 
Edinburgh Math. Soc. 35 (1917), 59-65. 

[1938], Fractions, Amer. Math. Monthly 45 (1938), 586-601. 
Forder, H. G. [1963], A simple proof of a result on diophantine approxima­

tion, Math. Gaz. 47 (1963), 237-238. 



REFERENCES 95 

Freiman, G. A. [1968], Noncoincidence of the Markoff and Lagrange spec­
tra, Mat. Zametki 3 (1968), 195-200; English transl., Math. Notes 3 (1968), 
125-128. 

[1973a], Noncoincidence of the spectra of Markoff and Lagrange, 
Chapter I in Teorija cisel (Number Theory), Kalininskii Gosudarstvennyi 
Universitet, Moscow, 1973, 10-15. 

[1973b], On the beginning of Hall's ray, Chapter V in Teorija cisel 
(Number Theory), Kalininskii Gosudarstvennyi Universitet, Moscow, 1973, 
87-113. 

[1975], Diophantine approximation and geometry of numbers {The 
Markoff spectrum), Kalininskii Gosudarstvennyi Universitet, Moscow, 1975. 

Frieman, G. A. and Judin, A. A. [1966], On the Markoff spectrum, Litovsk. 
Mat. Sbornik 6 (1966), 443-447. 

Fricke, R. [1896], Uber die Theorie der automorphen Modulgruppen, Gott. 
Nach. (1896), 91-101. 

Frobenius, G. [1913], Uber die Markoffschen Zahlen, Preuss. Akad. Wiss. 
Sitzungsber., 1913, 458-487, or Ges. Abh., vol. Ill, Springer-Verlag, Berlin, 
1968, 598-627. 

Gbur (now Flahive), Mary E. [1976], On the lower Markov spectrum, 
Monatsh. Math. 81 (1976), 95-107. 

[1977a], The Markoff spectrum and minima of indefinite binary quad­
ratic forms, Proc. Amer. Math. Soc. 63 (1977), 17-22. 

[1977b], Accumulation points of the Lagrange and Markov spectra, 
Monatsh. Math. 84 (1977), 91-108. 

Good, I. J. [1941], The fractional dimension theory of continued fractions, 
Proc. Cambridge Philos. Soc. 37 (1941), 199-228. 

Haas, A. [1986], Diophantine approximation on hyperbolic Riemann sur­
faces, Acta Math. 156 (1986), 33-82. 

and Series, C. [1986], The Hurwitz constant and Diophantine approx­
imation on Hecke groups, J. London Math. Soc. (2) 34 (1986), 219-234. 

Hall, Jr., Marshall [1947], On the sum and product of continued fractions, 
Ann. of Math. (2) 48 (1947), 966-993. 

[1971], The Markoff spectrum, Acta Arith. 18 (1971), 387-399. 
Heawood, P. J. [1922], The classification of rational approximations, Proc. 

London Math. Soc. (2) 20 (1922), 233-250. 
Hightower, Collin J. [1970], The minima of indefinite binary quadratic 

forms, J. Number Theory 2 (1970), 364-378. 
Hurwitz, A. [1891], Uber die angendherte Darstellung der Irrationalzahlen 

durch rationale Bruche, Math. Ann. 39 (1891), 279-284. 
[1907], Uber eine Aufgabe der unbestimmten Analysis, Arch. Math. 

Phys. (3) 11 (1907), 185-196, or Mathematische Werke, vol. II, Birkhauser-
Verlag, Basel, 1933 and 1963, 410-421. 

Jackson, T. H. [1972], Note on the minimum of an indefinite binary quad­
ratic form, J. London Math. Soc. (2) 5 (1972), 209-214. 



96 REFERENCES 

Kinney, J. R. and Pitcher, T. S. [1969], On the lower range of Perron's 
modular function, Canad. J. Math. 21 (1969), 808-816. 

Klein, F. [1890], Vorlesungen tiber die theorie der elliptischen Modulfunc-
tionen, vol. 1, Teubner, Liepzig, 1890. 

Kogonija, P. G. [1966], Certain questions of rational approximation, Trudy 
Tbilis. Gos. Univ. 117 (1966), 45-62. 

Koksma, J. F. [1936], Diophantische approximationen, Springer-Verlag, 
Berlin, 1936. 

Korkine, A. and Zolotareff, G. [1873], Sur les formes quadratiques, Math. 
Ann. 6(1873), 366-389. 

Lehner, J. [1952], A Diophantine property of the Fuchsian groups, Pacific 
J. Math. 2(1952), 327-333. 

[1964], Discontinuous groups and automorphic functions, Math. Sur­
veys, no. 8, Chapter X, Amer. Math. Soc, Providence, R.I., 1964, 321-336. 

Macbeath, A. M. [1947], The minimum of an indefinite binary quadratic 
form, J. London Math. Soc. 22 (1947), 261-262. 

[1951], A new sequence of minima in the geometry of numbers, Proc. 
Cambridge Philos. Soc. 47 (1951), 266-273. 

Markoff, A. [1879], Sur les formes quadratiques binaires indefinies, Math. 
Ann. 15(1879), 381-406. 

[1880], Sur les formes quadratiques binaires indefinies. II, Math. Ann. 
17(1880), 379-399. 

[1882], Sur une question de Jean Bernoulli, Math. Ann. 19 (1882), 
27-36. 

Nicholls, Peter J. [1978], Diophantine approximation via the modular 
group, J. London Math. Soc. (2) 17 (1978), 11-17. 

Ollerenshaw, Kathleen [1948], On the minima of indefinite quadratic forms, 
J. London Math. Soc. 23 (1948), 148-153. 

Oppenheim, A. [1932], The lower bounds of indefinite Hermitian quadratic 
forms, Quart. J. Math. Oxford (1) 3 (1932), 10-14. 

Pall, Gordon [1948], The minimum of a real, indefinite, binary quadratic 
form, Math. Mag. 21 (1948), 255. 

Pavlova, G. V. and Freiman, G. A. [1973], On the part of the Markoff 
spectrum with measure zero, Chapter IV in Teorija cisel (Number Theory), 
Kalininskii Gosudarstvennyi Universitet, Moscow, 1973, 79-86. 

Perron, Oskar [1921a], Uber die Approximation irrationaler Zahlen durch 
rationale, S.-B. Heidelberg Akad. Wiss., Abh. 4, 1921, 17pp. 

[1921b], Uber die Approximation irrationaler Zahlen durch rationale. 
II, S.-B. Heidelberg Akad. Wiss., Abh. 8, 1921, 12 pp. 

[1929], Die Lehre von den Kettenbruchen, Chelsea, New York. 
Rankin, R. A. [1957], Diophantine approximation and horocyclic groups, 

Canad. J. Math. 9 (1957), 277-290. 
Remak, R. [1924], Uber indefinite bindre quadratische Minimalformen, 

Math. Ann. 92 (1924), 155-182. 



REFERENCES 97 

[1925], Uber die geometrische Darstellung der indefiniten binaren 
quadratischen Minimalformen, Jahrsber. Deutsch. Math.-Verein. 33 (1925), 
228-245. 

Rogers, C. A. [1970], Hausdorff measures, Cambridge Univ. Press, 1970. 
Rosenberger, Gerhard [1976], The uniqueness of the Markoff numbers, 

Math. Comp. 30 (1976), 361-365. 
Schecker, Hanno [1977], Uber die Menge der Zahleny die als Minima 

quadratischer Formen auftreten, J. Number Theory 9 (1977), 121-141. 
Schmidt, Asmus L. [1976], Minimum of quadratic forms with respect to 

Fuchsian groups. I, J. Reine Angew. Math. 286/287 (1976), 341-368. 
[1977], Minimum of quadratic forms with respect to Fuchsian groups. 

II, J. Reine Angew. Math. 292 (1977), 109-114. 
Schur, I. [ 1913], Zur Theorie der indefiniten binaren quadratischen Formen, 

S.-B. Preuss. Akad. Wiss., Phys.-Math. Kl., 1913, 212-231, or Ges. Abh., 
vol. II, Springer-Verlag, Berlin, 1973, 24-43. 

Series, C. [1985], The modular surface and continued fractions, J. London 
Math. Soc. (2) 31 (1985), 69-80. 

[1986], Geometrical Markov coding of geodesies on surfaces of constant 
negative curvature, Ergod. Th. and Dynam. Sys. 6 (1986), 601-625. 

Tornheim, L. [1955], Asymmetric minima of quadratic forms and asym­
metric Diophantine approximation, Duke Math. J. 22 (1955), 287-294. 

Vinogradov, A., Delone, B. and Fuks, D. [1958], Rational approximations 
to irrational numbers with bounded partial quotients, Dokl. Akad. Nauk SSSR 
118(1958), 862-865. 

Wright, E. M. [1964], Approximation of irrationals by rationals, Math. 
Gaz. 48(1964), 288-289. 

Zagier, Don [1982], On the number of Markoff numbers below a given 
bound, Math. Comp. 39 (1982), 709-723. 




