The Classification of the Finite Simple Groups, Number 6

Daniel Gorenstein
Richard Lyons
Ronald Solomon

American Mathematical Society
The Classification
of the Finite Simple Groups,
Number 6

Part IV: The Special Odd Case

Daniel Gorenstein
Richard Lyons
Ronald Solomon
Editorial Board
Jerry L. Bona
Peter S. Landweber, Chair
Michael G. Eastwood
Michael P. Loss
J. T. Stafford

The authors gratefully acknowledge the support of the National Science Foundation
grants DMS0070801 and DMS0400533.

2000 Mathematics Subject Classification. Primary 20D06, 20D08; Secondary 20D05,
20E32, 20G40.

ABSTRACT. The Special Odd Case of the proof of the classification of finite simple groups is given,
as outlined in the first number of this series.

For additional information and updates on this book, visit
www.ams.org/bookpages/surv-40.6

Library of Congress Cataloging-in-Publication Data
ISBN 0-8218-2777-4 (number 6)
ISBN 0-8218-2776-6 (number 5)
ISBN 0-8218-1379-X (number 4)
ISBN 0-8218-1391-3 (number 3)
ISBN 0-8218-1390-5 (number 2)
The first volume was catalogued as follows:
Gorenstein, Daniel.
The classification of the finite simple groups / Daniel Gorenstein, Richard Lyons, Ronald
Solomon.
p. cm. (Mathematical surveys and monographs; v. 40, number 1–)
Includes bibliographical references and index.
ISBN 0-8218-0334-1 [number 1]
IV. Series: Mathematical surveys and monographs; no. 40, pt. 1– .
QA177.G67 1994
512'.2–dc20 94-23001
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

© 2005 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 10 09 08 07 06 05
To the memory of
Walter Feit (1930–2004)
and
Leonard D. Solomon (1916–2000)
Contents

Preface ix

PART IV: THE SPECIAL ODD CASE

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Introduction to the Special Odd Case</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1. The Goals: Theorems C_2 and C_3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2. Theorems C_2 and C_2^*</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3. General Comments on the Proof of Theorem C_2^*</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4. Theorem C_3 and Its Proof</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>General Lemmas</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1. The Bender/Glaubermaan Method</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2. p-Groups and Coprime Action</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3. Transfer and Fusion</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>4. 2-Components and 2-Groups</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>5. Pumpups and 2-Terminality</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>6. Terminality</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>7. Semirigidity</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>8. Preuniqueness Subgroups</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>9. Signalizer Functors and Balance</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>10. Ordinary Character Theory</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>11. Modular Character Theory</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>12. BN-Pairs</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>13. Number Theory</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>14. Miscellaneous</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Theorem C_2^*: Stage 1</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>2. The 2-Rank 2 Case: Alperin's Theorem</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>3. Theorem 2: 2-Terminal 2-Components of 2-Rank 1</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>4. The Fusion of z and Structure of Q</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>5. Involuntary f-Automorphisms</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>6. Elimination of f-Automorphisms</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>7. Theorem 3: The Nonfused Case</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>8. Theorem 3: The Fused Case</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>9. Theorem 4: 2-Terminal 2-Components of 2-Rank ≥ 2</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>10. The $O'N$ Case</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>11. Theorem 5</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>12. Groups of 2-Rank 3</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>13. 2-Groups of Type M_{12}</td>
<td>99</td>
</tr>
</tbody>
</table>
14. The Proof of Theorem 6

Chapter 4. Theorem C₂*: Stage 2

1. Introduction
2. The Structure of Involution Centralizers
3. Other K-Subgroups of G
4. Odd Order Signalizers
5. An Equivariant K^∞-Theorem
6. Theorem 1: Uniqueness Properties of M
7. Theorem 1: The Case $m_2(S) \geq 3$
8. Theorem 1: The Case $m_2(S) = 2$
9. Theorems 2 and 3: Normalizers of z-Invariant Subgroups of $O_p(M)$
10. Theorem 2: $\{2, p\}$-Uniqueness Properties of M
11. Theorem 2: Reduction to the Ly Case
12. Theorem 2: The Ly Case
13. Theorem 3: The 2-Rank 2 Case
14. The Identification of $L_3(q)$
15. Reduction to $L_3(q)$-Levi Form
16. The $L_3(q)$-Levi Form Case
17. Theorems 4 and 5: The Structure of M
18. Theorems 4 and 5: Uniqueness Properties of M
19. The Strong B-Property
20. Theorem 6

Chapter 5. Theorem C₂*: Stage 3

1. Introduction
2. Theorem 1: The Embedding of F
3. Character Theory for the Dihedral Case
4. Coherence
5. The Case $|S| \geq 8$
6. Theorem BG_2: The Case $|S| \geq 8$
7. Character Theory for the Case $|S| = 4$
8. Elimination of the Extruded Case
9. The Identification of A_7
10. The Identification of $L_2(7)$ and A_6
11. Reduction to the Brauer-Suzuki-Wall Case
12. The Identification of $L_2(q)$
13. Theorem 3: The Case $M = QS$
14. Theorem 3: The Structure of C
15. Theorem 3: The Final Contradiction
16. Theorem 4: Local Analysis
17. Regularity and $|G|$: Stage 1
18. Regularity: The Case $B \neq 1$
19. Regularity: The Case $Q = 1$
20. $G \approx U_3(q)$

Chapter 6. Theorem C₂*: Stage 4

1. Introduction
2. Theorem 1: Field Automorphisms
3. The Characteristic of K
4. $G \cong 2G_2(q)$
5. Theorem 2: The Weyl Group
6. Theorem 2: The Torally Singular Case
7. Theorem 2: The Case $q = 3^n > 9$
8. Theorem 2: The Case $q = 9$
9. Theorem 3: The Structure of a Sylow p-Subgroup of G
10. The (B, N)-Pair Structure of G
11. The Commutator Relations
12. The Action of K_1H
13. The Isomorphism Type of G

Chapter 7. Theorem \mathcal{C}_2: Stage 5
1. Introduction
2. Theorem Sp: 2-Local Structure
3. The p-Locals of G
4. The Identification of $P\text{Sp}_4(q)$
5. $SL_4^{\pm}(q)$-Amalgams
6. Theorem LU: Local Structure
7. Theorem LU: The General Case
8. Theorem LU: The $L_4(5)$ Case

Chapter 8. Theorem \mathcal{C}_3: Stage 1
1. Introduction
2. Theorem 1
3. Theorems 2 and 3
4. Terminally Unbalancing Triples
5. Theorem 4: Balance with Respect to Elements of $\mathcal{E}_*(G)$
6. Theorem 5: $\mathcal{L}_2(G) \subseteq \mathcal{C}_2$
7. Theorem 5
8. Theorem 6
9. Theorem 7

Chapter 9. Theorem \mathcal{C}_3: Stages 2 and 3
1. Introduction
2. Theorem 1: The $L_3(4)$ Case
3. Theorem 1: The $L_2(q)$, A_7 Cases
4. Fusion in the A_n Cases
5. Theorem 2: Elements of $\mathcal{V}_2^*(G)$
6. The Level of Balance
7. Signalizer Functors
8. The L-Preuniqueness of M
9. Theorems 3 and 4: Reductions
10. The $L_3(4)$ Case
11. $G \cong A_n$
12. Theorem \mathcal{C}_3: Stage 3

Chapter 10. IV_X: Preliminary Properties of X-Groups
1. The Groups $L_2(q)$ and A_7
2. The Groups $L_3(4)$ and $U_3(4)$
3. Product Structures
CONTENTS

4. Other Groups of Lie Type ... 471
5. Alternating Groups and Some Sporadic Groups 477
6. Generation of \mathcal{X}-Groups 480
7. Pumpups ... 484
8. 2-Signalizers and p-Stability .. 494
9. K-Groups with Prescribed Local Subgroups 509
10. Signalizers and Balance .. 512
11. Representations ... 515

Background References ... 519
Expository References .. 521
Glossary .. 523
Index .. 527
Preface

This volume contains the proofs of Theorems \mathcal{C}_2 and \mathcal{C}_3, as stated in the first volume of this series [I$_2$].

Theorems \mathcal{C}_2 and \mathcal{C}_3 constitute the classification of finite simple groups G of special odd type. This condition requires that no 2-component K of an involution centralizer of G is of generic type in the sense that $K/O_2^+(K) \in S_2$, but G is not of restricted even type. The latter condition is rather technical, but primarily it entails that either G has 2-rank 2 or, for some 2-component K of an involution centralizer of G, $K/Z^*(K) \cong L_2(q)$ for some odd q or $K/O_2^+(K)$ is a member of a small finite set of additional quasisimple groups. In fact, we prove a strengthened version of Theorem \mathcal{C}_2, which we call Theorem \mathcal{C}_2^*, in which the ban on 2-components of generic type is relaxed. Theorem \mathcal{C}_2^* permits us to classify all \mathcal{K}-proper simple groups G having a 2-Thin Configuration in the sense of [III$_1$; 2.1]. This extension is an essential ingredient in the proof of Theorem \mathcal{C}_7, the classification of groups of generic type (begun in the previous volume and to be completed in the next volume). The simple groups arising as conclusions to our theorems are the finite simple groups of Lie type in odd characteristic of BN rank 1 or 2 (with some exceptions) together with $L_4(q)$, $(q$ odd, $q \equiv 1$ (mod 8)), A_n, $n \in \{7,9,10,11\}$, and the five sporadic groups M_{11}, M_{12}, Mc, Ly and $O'N$.

The special odd condition represents our measure of smallness for simple groups which are not of even type. Other measures have been used in the past, namely 2-rank, normal 2-rank or sectional 2-rank. Indeed, our list of conclusions differs little from the conclusions of the Sectional 2-Rank 4 Theorem of Gorenstein and Harada [GH1]. The Gorenstein-Harada Memoir depends on a long list of prior results. Some of these likewise form part of our Background Results, most notably the Feit-Thompson Theorem [FT1] on the solvability of groups of odd order, and the body of results yielding recognition theorems for the split (B,N)-pairs of rank 1. Others have been incorporated into our proof of Theorem \mathcal{C}_2, notably the classification of finite simple groups of 2-rank 2 by Gorenstein-Walter [GW1], Alperin-Brauer-Gorenstein [ABG1] and Lyons [L1] and much of the classification of finite simple groups with an abelian Sylow 2-subgroup by Walter [Wa1], together with involution centralizer recognition theorems for finite simple groups of Lie type in odd characteristic of BN-rank 2 by Brauer [Br5], Fong and W. J. Wong [FW1], [Fo1].

The classification of finite simple groups of 2-rank at most 2 by Brauer and Suzuki [BrSu1], Feit and Thompson, Gorenstein and Walter, Alperin and Brauer and Gorenstein, and Lyons was a major accomplishment of the 1960’s. During the late 1960’s, the Signalizer Functor Method was developed, primarily by Gorenstein and Walter, and with particular emphasis on the prime 2. The importance of 2-connectivity for this method (cf. [L$_G$; Section 22]) again focussed attention on
the dichotomy between groups \(G \) in which a Sylow 2-subgroup \(S \) has a normal abelian subgroup of rank 3 \((\text{SCN}_3(2) \neq \emptyset)\) and those having no such subgroup \((\text{SCN}_3(2) = \emptyset)\). This dichotomy had already proved critical in the Odd Order paper and in Thompson’s \(N \)-Group paper \([T2]\), and it seemed essential to classify simple groups with \(\text{SCN}_3(2) = \emptyset \) before the Signalizer Functor Method could proceed smoothly. However, the so-called “Scan-3 empty” condition is poorly behaved with respect to subgroups and quotient groups. An inductive condition was needed and this was provided when MacWilliams proved \([\text{MacW1}]\) that if \(S \) is a 2-group with \(\text{SCN}_3(S) = \emptyset \), then every section of \(S \) has 2-rank at most 4. This condition, denoted sectional 2-rank at most 4, clearly inherits to all sections of \(S \), and Gorenstein and Harada provided a classification of all finite simple groups having a Sylow 2-subgroup of sectional 2-rank at most 4 in the sizable memoir \([\text{GH1}]\).

In spite of the serious technical difficulties associated with the use of the Signalizer Functor Method in groups \(G \) of small 2-rank, Gorenstein-Harada and others, in a series of papers leading up to their memoir, managed to apply signalizer functor methods in an ad hoc manner to yield precise involution centralizers for the simple groups of sectional 2-rank 4, after which the characterization theorems of Fong-Wong \([FW1], [Fo1]\) and others could be invoked. This is not the approach we take. Instead we employ the so-called Bender Method (cf. \([\text{IG}; \text{ Section 19}]\)), when feasible.

The Bender Method originated in Bender’s revision \([\text{Be2}]\) of Walter’s classification of simple groups with an abelian Sylow 2-subgroup, though it was foreshadowed in Bender’s revision of the Feit-Thompson Uniqueness Theorem \([\text{Be6}]\). This method was extended by Goldschmidt in his classification of groups with a strongly closed abelian Sylow 2-subgroup \([\text{Go5}]\). It was also employed by Bender and Glauberman in their revision \([\text{Be5}]\), \([\text{BeG12}]\) of the Gorenstein-Walter classification of simple groups with a dihedral Sylow 2-subgroup. This work inspired the third author of this memoir to undertake, beginning in 1980, an analogous revision of the Alperin-Brauer-Gorenstein classification of simple groups with a semidihedral or wreathed Sylow 2-subgroup. We are indebted to Bob Gilman for several valuable conversations in the early stages of this work, and to Michael Aschbacher, who provided a local argument treating the case in which \(G \) contains a weakly 2-embedded \(p \)-local subgroup for some odd prime \(p \). In the end, we have not used Aschbacher’s argument, choosing instead to reuse a modular character-theoretic argument of Richard Brauer, since we were in any case unable to avoid Brauer’s results at other points in the analysis.

Beginning in 1982, the authors undertook to extend the Bender Method to as much of the Special Odd Case signalizer analysis as possible. This led to the subdivision of the Special Odd Case into two subcases:

1. \(G \) is of \(\mathcal{L} \mathcal{B}_2 \)-type, or
2. \(G \) is of \(\mathcal{L} \mathcal{T}_2 \)-type,

the former to be handled by the Bender Method (hence the \(\mathcal{B} \)) and the latter by the Signalizer Functor Method. It is not clear that the ideal subdivision was chosen. Again, the definitions are technical, but, roughly speaking, \(G \) is of \(\mathcal{L} \mathcal{B}_2 \)-type if either \(G \) has 2-rank at most 3 or some 2-component \(K \) of an involution centralizer satisfies \(K/O_2(K) \cong \text{SL}_2(q) \), for some odd \(q \). (Of course \(G \) is of special odd type.) We are indebted to Richard Foote for the suggestion that 2-fusion arguments of Aschbacher could be adapted to the \(\mathcal{L} \mathcal{B}_2 \)-type case and could lead quickly to tight
control over the structure of $O^2(C_G(z))/O^2(C_G(z))$ for some 2-central involution z. This suggestion is indeed implemented in the proof of Theorem PU$_5$ in [I13], and the analysis is completed in Chapter 3 of this volume, incorporating also some arguments of Harada.

At this point the stage is set for the Bender Method. A technical difficulty not encountered by Bender in [Be2] or [Be5] arises from the failure of p-stability and hence the impossibility of invoking Glauberman’s ZJ-Theorem. This problem was confronted originally by Alperin, Brauer and Gorenstein, who conceived an “Extended ZJ-Theorem” tailored to the Semidihedral Theorem. Our approach is inspired by Goldschmidt’s elegant method [Go5] of applying the ZJ-Theorem, not to a Sylow p-subgroup of G but to a maximal A-invariant p-subgroup of G, where A is a strongly closed abelian 2-subgroup of G. We likewise prove an equivariant ZJ-Theorem, applied to an element of $W^*_G(T, p)$ for a suitably chosen 2-subgroup T of G, though in fact it is more convenient in general to use Glauberman’s K^∞-subgroup in place of $Z(J(P))$.

By our use of the Bender Method, we achieve a more uniform treatment of the Signalizer Analysis, in which only the 2-rank 2 case stands out as presenting serious additional difficulties. The reduction in the dihedral case to the hypotheses of our background recognition theorem for $L_2(q)$ follows rather slavishly the work of Bender and Glauberman in [Be5], [Be9], and [BeGl2]. The identifications of A_7 and M_{11}, however, use arguments of S. K. Wong, which appeared first in [SW1].

The remainder of the proof of Theorem C$_2$, for the identification of $^2G_2(q)$, $G_2(q)$, $^3D_4(q)$ and $PSp_4(q)$, follows fairly closely the original arguments of Walter [Wa3] and Enguehard [E1] for the Ree groups, and Fong-Wong ([FW1], [Fo1]) for the BN-rank 2 groups. We do achieve some simplifications of the Fong-Wong argument in the $G_2(q)$ case. In particular, we are indebted to Korchagina [Ko1] for a short argument crucial to the identification of $G_2(9)$. The final identification of $L_4(q)$ and $U_4(q)$ is made not through their BN-structure but by use of a Curtis-Tits-Phan presentation.

Theorem C$_3$ treats the case in which G is of Special Odd Type, but not of L_2-type. In particular, G has 2-rank at least 4 and some involution centralizer has a 2-component K with $K/O_{2^r}(K)\cong A_7$ or $L_2(q)$, q odd, or a covering group of $L_3(4)$ with center of exponent 1 or 2. The only groups arising in this case are A_9, A_{10} and A_{11}. Historically this case was treated in work of Gilman-Solomon [GiS1], Griess-Solomon [GrS1], Foote [Fo03], Harris-Solomon [HrS1] and Harris [Hr1], [Hr2]. The principal difficulties to be overcome in this case are to establish that K may be chosen to be 2-terminal and to apply the Signalizer Functor Method when $m_2(C_G(K)/O_{2^r}(K)) \leq 2$. The former difficulty was handled in the Gilman-Solomon paper and we proceed similarly, achieving their result and somewhat more in Stage 1 of our proof. Importantly, we also establish that we may assume $m_2(C_G(K)/O_{2^r}(K)) \geq 2$, thereby bypassing the delicate fusion analysis in the work of Harris and Harris-Solomon.

Finally, we arrive at the cases treated by Foote and Griess-Solomon. They used Solomon’s Maximal 2-Component Theorem [S1] along with results and methods of Goldschmidt and Gorenstein-Harada. We instead, in Stage 2, follow a signalizer approach more in the spirit of our proof of Theorem C$_7$ in [I13]. Stage 3 provides the final identification of A_n for $9 \leq n \leq 11$.

We continue the notational conventions established in Volume 2 of this series $[I_G]$. We refer to the chapters of the current volume as $[IV_i]$, $1 \leq i \leq 9$, and $[IV_K]$, the tenth chapter, our collection of X-group lemmas. As in previous volumes, the chapter $[IV_K]$ is used in all the main chapters and logically precedes them.

As noted above, our work has benefitted immensely over the decades of its germination from the advice and encouragement of many friends. The inspired work of Bender, Glauberman and Goldschmidt is the strong framework on which much of the proof of Theorem C_2 is constructed, along with the brilliant 2-fusion analyses of Harada. Valuable conversations and collaborations with many colleagues have contributed greatly to the final product. In addition to those already mentioned, Bob Gilman, Richard Foote, S. K. Wong, Inna Korchagina, and Michael Aschbacher, we offer thanks to Curt Bennett, Ralf Gramlich, Koichiro Harada, Corneliu Hoffman and Sergei Shpectorov.

We gratefully acknowledge many years of support by the National Science Foundation. Much of this work was achieved during numerous visits by the third author to Rutgers University, most notably from January 1983 to June 1984. At all times, he has appreciated the university’s generosity and cherished the warm hospitality of the faculty, whom he regards as a second family.

Little did the third author suspect in 1980 that work begun at the time his eldest son was born would not see the light of day until that son was 24 years old. It took the vision and coercive power of Danny Gorenstein during the decade 1982–92 to inflate a modest exercise into a major endeavor. Most of this volume is the fruit of a close collaborative effort of the three authors throughout much of the 1980’s, with help from our friends, as noted above. In particular, Danny’s inspiration and energy is evident throughout this volume, and we miss him as much as ever.

As we were putting the finishing touches on this volume, we were shocked and saddened to learn of the death of Walter Feit. When one thinks of Walter’s contributions to the Classification Theorem, of course one thinks first of the pioneering Odd Order Paper of Feit and Thompson, which changed the entire landscape of the subject. But, especially in the context of this volume, it should be remembered that Walter was one of the architects of the classification of Zassenhaus groups, historically the first step toward the classification of split BN pairs of rank 1. Also the Feit-Higman Theorem on finite generalized n-gons has a significant bearing on the classification of split BN pairs of rank 2. All this is true. But Walter’s impact on the authors of this volume is far deeper and more personal. Much of Danny Gorenstein’s zest for finite simple groups was acquired during a pivotal year spent at Cornell University in Walter’s company. And the second author, as a Gibbs instructor, and the third author, as a graduate student, gained so much from Walter and the little group theory paradise – shared with David Goldschmidt and Leonard Scott – which he created in New Haven in the years 1969–1972. Walter loved life, loved mathematics, loved good food and good company. To be with him was to see his eyes twinkle and to share those joys.

Richard Lyons and Ronald Solomon
July, 2004
Background References

NOTE. The chapters of the current number are referenced as [IV$_1$], [IV$_2$], . . . , [IV$_9$] and [IV$_K$]=[IV$_{10}$].

The previous numbers of this series are referenced as follows.

NOTE. The full list of Background References appears in the first book of this series. The list below contains all Background References to which we refer in this book. The numbering of the Background and the Expository References is consistent with that in the earlier books.

[FT1] W. Feit and J. G. Thompson, Solvability of groups of odd order (Chapter V, and the supporting material from Chapters II and III only), Pacific J. Math. 13 (1963), 775–1029.

Note. The following reference is cited for a few facts from elementary number theory. It is thus to be added as Background References, but strictly limited to these citations.

Expository References

[Fo1] P. Fong, A characterization of the finite simple groups $\text{PSp}(4, q)$, $G_2(q)$, $D_4^2(q)$, II, Nagoya Math. J. 39 (1970), 30–79.

Glossary

<table>
<thead>
<tr>
<th>PAGE</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>\mathcal{B}_2, \mathcal{B}_2-group</td>
</tr>
<tr>
<td>196</td>
<td>$\mathcal{B}(X)$</td>
</tr>
<tr>
<td>203</td>
<td>$\mathcal{B}_0(X)$</td>
</tr>
<tr>
<td>424</td>
<td>$\mathcal{B}(T)$</td>
</tr>
<tr>
<td>3,35,350</td>
<td>$C(x, K)$</td>
</tr>
<tr>
<td>350</td>
<td>$C_H(x, K)$</td>
</tr>
<tr>
<td>3</td>
<td>\mathfrak{e}_2-group</td>
</tr>
<tr>
<td>13</td>
<td>$\mathcal{E}_2^X(X)$</td>
</tr>
<tr>
<td>13</td>
<td>$\mathcal{E}_2^Y(X)$</td>
</tr>
<tr>
<td>3</td>
<td>$\mathcal{F}M9$</td>
</tr>
<tr>
<td>13</td>
<td>$F_v(X)$</td>
</tr>
<tr>
<td>395</td>
<td>$\mathcal{F}(x, y, K)$</td>
</tr>
<tr>
<td>395</td>
<td>$\mathcal{F}_U(G)$, $\mathcal{F}_U^*(G)$</td>
</tr>
<tr>
<td>1</td>
<td>$G \cong G^*$</td>
</tr>
<tr>
<td>389</td>
<td>$G \cong A_n$</td>
</tr>
<tr>
<td>275</td>
<td>$G \cong^3 D_4(q)$</td>
</tr>
<tr>
<td>274</td>
<td>$G \cong G_2(q)$</td>
</tr>
<tr>
<td>274</td>
<td>$G \cong^2 G_2(q)$</td>
</tr>
<tr>
<td>8</td>
<td>$G \cong L_2(q)$</td>
</tr>
<tr>
<td>3</td>
<td>\mathcal{G}_2</td>
</tr>
<tr>
<td>188</td>
<td>$\text{Irr}(X)$</td>
</tr>
<tr>
<td>3</td>
<td>$\mathcal{T}_2(X)$</td>
</tr>
<tr>
<td>13,350</td>
<td>$\mathcal{T}_2^*(G)$</td>
</tr>
<tr>
<td>3,350</td>
<td>$\mathcal{T}L_2(G)$</td>
</tr>
<tr>
<td>13,35,350</td>
<td>$\mathcal{T}L_2^*(G)$</td>
</tr>
<tr>
<td>40</td>
<td>\mathfrak{d}, \mathfrak{d}_d, \mathfrak{d}_v</td>
</tr>
<tr>
<td>14</td>
<td>$K_i(P)$, $K_i(P)$</td>
</tr>
<tr>
<td>14</td>
<td>$K^\infty(P)$, $K^\infty(P)$</td>
</tr>
<tr>
<td>14</td>
<td>$K^\infty(P)$, $K^\infty(P)$</td>
</tr>
<tr>
<td>14</td>
<td>$K^(P; Q)$, $K^(P; Q)$</td>
</tr>
<tr>
<td>2,61</td>
<td>$\mathcal{K}^{(2)}$</td>
</tr>
<tr>
<td>61</td>
<td>$\mathcal{K}^{(2)*}$</td>
</tr>
<tr>
<td>3</td>
<td>$\mathcal{L}_2(G)$</td>
</tr>
<tr>
<td>350</td>
<td>$\mathcal{L}_2^*(G)$</td>
</tr>
<tr>
<td>3</td>
<td>$\mathcal{L}B_2$-type</td>
</tr>
<tr>
<td>61</td>
<td>$\mathcal{L}B_2^*$-type</td>
</tr>
<tr>
<td>9,349,389</td>
<td>$\mathcal{L}T_2^0$-type</td>
</tr>
</tbody>
</table>
188 Λ_μ
188 λ_μ
13, 127 $M \leadsto N$
13 $m_p(X)$
32 $m_p(X, Y)$
32 $m'_p(X, Y)$
105 $\mathcal{M}(z)$
188 μ^X
3, 35, 350 $N(x, K)$
127 $\mathcal{N}(F)$
135 $\mathcal{N}(R)$
160 $\mathcal{P}(M)$
13 $\pi(H)$
130 $Q(P)$
189 $r(\Lambda_\mu)$
144, 150, 160 $\mathcal{R}_p(M)$
150, 160 $\mathcal{R}'(M), \mathcal{R}''(M)$
144 $\mathcal{R}'(H)$
123 $SU_2^*(5)$
414 $\delta(X), \delta_n(X)$
424 $\delta_n(R, D)$
3 $\mathcal{T}_2, \mathcal{T}_2$-group
9, 389 $\mathcal{U}_2, \mathcal{U}_2(G)$
409 \mathcal{U}_2^3-group
390 $\mathcal{V}_2^3(G)$
390 $\mathcal{V}_2^4(G)$
424 $\mathcal{V}_2^4*(G)$
169 \mathcal{X}
170 X_d, X_D
106 2-central G^*-type
106 2-maximal G^*-type mod cores
5, 35 2-terminal component
61 2-terminal G^*-type
351, 389 2-terminal \mathcal{U}_2-triple
4 $4_iL_3(4)$
413 $\frac{5}{2}$-obstruction
57 BN-pair, split BN-pair, saturated BN-pair
57 building
33 clean quasisimple group
190 coherent set of characters
39 component, optirigid, semirigid, superrigid, terminal
37 component, terminal
196 conformal character
412 connected 2-group
62 f-automorphism
294 four-group of i-invariant type
1, 2 group of even type, restricted even type
1, 2 group of small odd type, special odd type
GLOSSARY

351 half 2-central involution
57 H-root group
298 involution of i-invariant type
33 involution split, stable relative to L
10,350 locally unbalancing triple
32 p-rank additive quasisimple group
10 preuniqueness subgroup
35 pumpup, diagonal, trivial, vertical
37 pumpup, unbalancing
252 regular simple group
10,38 semirigidity
63 strongly classical involution
296 torally nonsingular (singular) group
296 torally singular element
296 torally singular with respect to (U, H)
10,36 unbalancing triple
58 Zsigmondy prime divisor
Index

Alperin, J. L. 6
Alperin-Brauer-Gorenstein 7, 8
amalgam
\[SL_4(q) \text{-amalgams} \] 333
Aschbacher, M. 7
Background Results 1
balanced group 4
Bender, H. 7, 13, 123
Bender-Glauberman Method 13
Bender Method 7, 13
Bennett, C. 9, 333
BN-pair 8, 57
saturated BN-pair 57
split BN-pair 57
Brauer, R. 51
Burnside, W. 26
centralizer of involution pattern 1, 11
Clifford, A. H. 17
component
Gilman maximal 409
optirigid in \(L \) 39
semirigid in \(L \) 39
superrigid in \(L \) 39
terminal 37
2-terminal 5, 35
Corollary 2-Thin 6
Das, K. 9
Feit, W. 48, 247
Fong, P. and Wong, W. J. 8
Frobenius, F. G. 59
Generic Case 5
Goldschmidt, D. M. 127
Gorenstein, D. and Walter, J. H. 10
Gramlich, R. 9, 333
group
of even type 1
of restricted even type 2
of \(L_3(q) \)-Levi form 160
of \(L_2 \)-special type 3
of $\mathcal{L}\mathcal{B}_2$-type 3
of $\mathcal{L}\mathcal{B}_2^*$-type 61
of $\mathcal{L}\mathcal{T}_2^*$-type 9
of small odd type 1
of special odd type 2
of 3-local Mc form 160
of 2-central G^*-type 106
of 2-maximal G^*-type mod cores 106
of 2-terminal G^*-type 61
order formula 8
with a 2-thin configuration 5
Harada, K. 6, 10
Identification
of $^2G_2(3^n)$ 8
of $L_3(q)$ 8
of $L_3^+(q)$ 9
of M_{12}, Mc, Ly and $O'N$ 8
Korchagina, I. 8
MacWilliams, A. 22
Phan, K. W. 8
pumpups
diagonal 35
trivial 35
unbalancing 37
vertical 35
Schur, I. 27
Shpectorov, S. 9, 333
Signalizer functor method 4, 391
signalizer functors 424
nontrivial 413
Sylow, L. 1
Theorems
Bender’s Maximal Subgroup Theorem 7, 14
Curtis-Tits Theorem 8, 333
Equivariant K^{∞}-Theorem 123
Fermat’s Two Squares Theorem 58
Glauberman’s K^{∞}-Theorem 7, 16
Krull-Remak-Schmidt Theorem 59
Theorems BG_1 and BG_2 194
Theorem C_2 2
Theorem C_2^* 5
Theorem $C_2 \cup C_3$ 1
Theorem $C_{2,3}$ 2
Theorem C_3 9
Theorem C_7 6
Theorem SE 10
Theorem SU 4
Theorem SUS 4
2-Component Uniqueness Theorem 11
Zsigmondy’s Theorem 58
Thompson Order Formula 328
2-Thin Configuration 105
Walter, J. H. 8
Titles in This Series

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Publication Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homotopy limit functors on model categories and homotopical categories</td>
<td>William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith</td>
<td>2004</td>
</tr>
<tr>
<td>The classification of quasithin groups II. Main theorems</td>
<td>Michael Aschbacher and Stephen D. Smith</td>
<td>2004</td>
</tr>
<tr>
<td>The classification of quasithin groups I. Structure of strongly quasithin K-groups</td>
<td>Michael Aschbacher and Stephen D. Smith</td>
<td>2004</td>
</tr>
<tr>
<td>The Ricci flow: An introduction</td>
<td>Bennett Chow and Dan Knopf</td>
<td>2004</td>
</tr>
<tr>
<td>Arithmetic and analytic theories of quadratic forms and Clifford groups</td>
<td>Goro Shimura</td>
<td>2004</td>
</tr>
<tr>
<td>Topology of closed one-forms</td>
<td>Michael Farber</td>
<td>2004</td>
</tr>
<tr>
<td>Representations of algebraic groups</td>
<td>Jens Carsten Jantzen</td>
<td>2003</td>
</tr>
<tr>
<td>Absolute CM-periods</td>
<td>Hiroyuki Yoshida</td>
<td>2003</td>
</tr>
<tr>
<td>Locally solid Riesz spaces with applications to economics, second edition</td>
<td>Charalambos D. Aliprantis and Owen Burkinshaw</td>
<td>2003</td>
</tr>
<tr>
<td>Lusternik-Schnirelmann category</td>
<td>Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré,</td>
<td>2003</td>
</tr>
<tr>
<td>Spatial deterministic epidemics</td>
<td>Linda Rass and John Radcliffe</td>
<td>2003</td>
</tr>
<tr>
<td>Bergman spaces</td>
<td>Peter Duren and Alexander Schuster</td>
<td>2004</td>
</tr>
<tr>
<td>Model categories and their localizations</td>
<td>Philip S. Hirschhorn</td>
<td>2003</td>
</tr>
<tr>
<td>Moment maps, cobordisms, and Hamiltonian group actions</td>
<td>Victor Guillemin, Viktor Ginzburg, and Yael Karshon</td>
<td>2002</td>
</tr>
<tr>
<td>Applied Picard-Lefschetz theory</td>
<td>V. A. Vassiliev</td>
<td>2002</td>
</tr>
<tr>
<td>Operads in algebra, topology and physics</td>
<td>Martin Markl, Steve Shnider, and Jim Stasheff</td>
<td>2002</td>
</tr>
<tr>
<td>Ergodic theory via joinings</td>
<td>Eli Glasner</td>
<td>2003</td>
</tr>
<tr>
<td>Bergman spaces</td>
<td>Peter Duren and Alexander Schuster</td>
<td>2004</td>
</tr>
<tr>
<td>Model operators and systems</td>
<td>Victor Guillemin, Viktor Ginzburg, and Yael Karshon</td>
<td>2002</td>
</tr>
<tr>
<td>Hardy, Hankel, and Toeplitz</td>
<td>V. A. Vassiliev</td>
<td>2002</td>
</tr>
<tr>
<td>A tour of subriemannian geometries, their geodesics and applications</td>
<td>Richard Montgomery</td>
<td>2002</td>
</tr>
<tr>
<td>Multiparticle quantum scattering in constant magnetic fields</td>
<td>Christian Gérard and Izabella Laba</td>
<td>2002</td>
</tr>
<tr>
<td>The concentration of measure phenomenon</td>
<td>Michel Ledoux</td>
<td>2001</td>
</tr>
<tr>
<td>Vertex algebras and algebraic curves, second edition</td>
<td>Edward Frenkel and David Ben-Zvi</td>
<td>2004</td>
</tr>
<tr>
<td>Stable groups</td>
<td>Bruno Poizat</td>
<td>2001</td>
</tr>
<tr>
<td>Number theoretic density and logical limit laws</td>
<td>Stanley N. Burris</td>
<td>2001</td>
</tr>
<tr>
<td>Spectral problems associated with corner singularities of solutions to elliptic equations</td>
<td>V. A. Kozlov, V. G. Maz'ya, and J. Rossmann</td>
<td>2001</td>
</tr>
<tr>
<td>Modules over non-Noetherian domains</td>
<td>László Fuchs and Luigi Salce</td>
<td>2001</td>
</tr>
<tr>
<td>Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions</td>
<td>Sigurdur Helgason</td>
<td>2000</td>
</tr>
<tr>
<td>Arithmeticity in the theory of automorphic forms</td>
<td>Goro Shimura</td>
<td>2000</td>
</tr>
</tbody>
</table>
81 **Michael E. Taylor**, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000
80 **Lindsay N. Childs**, Taming wild extensions: Hopf algebras and local Galois module theory, 2000
79 **Joseph A. Cima and William T. Ross**, The backward shift on the Hardy space, 2000
78 **Boris A. Kupershmidt**, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000
77 **Fumio Hiai and Dénes Petz**, The semicircle law, free random variables and entropy, 2000
76 **Frederick P. Gardiner and Nikola Lakic**, Quasiconformal Teichmüller theory, 2000
75 **Greg Hjorth**, Classification and orbit equivalence relations, 2000
74 **Daniel W. Stroock**, An introduction to the analysis of paths on a Riemannian manifold, 2000
72 **Gerald Teschl**, Jacobi operators and completely integrable nonlinear lattices, 1999
71 **Lajos Pukánszky**, Characters of connected Lie groups, 1999
70 **Carmen Chicone and Yuri Latushkin**, Evolution semigroups in dynamical systems and differential equations, 1999
69 **C. T. C. Wall** (A. A. Ranicki, Editor), Surgery on compact manifolds, second edition, 1999
68 **David A. Cox and Sheldon Katz**, Mirror symmetry and algebraic geometry, 1999
67 **A. Borel and N. Wallach**, Continuous cohomology, discrete subgroups, and representations of reductive groups, second edition, 2000
66 **Yu. Ilyashenko and Weigu Li**, Nonlocal bifurcations, 1999
65 **Carl Faith**, Rings and things and a fine array of twentieth century associative algebra, 1999
64 **Rene A. Carmona and Boris Rozovskii**, Editors, Stochastic partial differential equations: Six perspectives, 1999
63 **Mark Hovey**, Model categories, 1999
62 **Vladimir I. Bogachev**, Gaussian measures, 1998
61 **W. Norrie Everitt and Lawrence Markus**, Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, 1999
60 **Iain Raeburn and Dana P. Williams**, Morita equivalence and continuous-trace C^*-algebras, 1998
59 **Paul Howard and Jean E. Rubin**, Consequences of the axiom of choice, 1998
57 **Marc Levine**, Mixed motives, 1998
54 **Casper Goffman, Togo Nishiura, and Daniel Waterman**, Homeomorphisms in analysis, 1997
53 **Andreas Kriegl and Peter W. Michor**, The convenient setting of global analysis, 1997

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.