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Introduction 

Model categories and their homotopy categories 

A model category is Quillen's axiomatization of a place in which you can "do 
homotopy theory" [52]. Homotopy theory often involves treating homotopic maps 
as though they were the same map, but a homotopy relation on maps is not the 
starting point for abstract homotopy theory. Instead, homotopy theory comes from 
choosing a class of maps, called weak equivalences, and studying the passage to 
the homotopy category, which is the category obtained by localizing with respect 
to the weak equivalences, i.e., by making the weak equivalences into isomorphisms 
(see Definition 8.3.2). A model category is a category together with a class of 
maps called weak equivalences plus two other classes of maps (called cofibrations 
and fibrations) satisfying five axioms (see Definition 7.1.3). The cofibrations and 
fibrations of a model category allow for lifting and extending maps as needed to 
study the passage to the homotopy category. 

The homotopy category of a model category. Homotopy theory origi­
nated in the category of topological spaces, which has unusually good technical 
properties. In this category, the homotopy relation on the set of maps between two 
objects is always an equivalence relation, and composition of homotopy classes is 
well defined. In the classical homotopy theory of topological spaces, the passage 
to the homotopy category was often described as "replacing maps with homotopy 
classes of maps". Most work was with CW-complexes, though, and whenever a 
construction led to a space that was not a CW-complex the space was replaced by 
a weakly equivalent one that was. Thus, weakly equivalent spaces were recognized 
as somehow "equivalent", even if that equivalence was never made explicit. If in­
stead of starting with a homotopy relation we explicitly cause weak equivalences 
to become isomorphisms, then homotopic maps do become the same map (see 
Lemma 8.3.4) and in addition a cell complex weakly equivalent to a space becomes 
isomorphic to that space, which would not be true if we were simply replacing maps 
with homotopy classes of maps. 

In most model categories, the homotopy relation does not have the good prop­
erties that it has in the category of topological spaces unless you restrict yourself 
to the subcategory of cofibrant-fibrant objects (see Definition 7.1.5). There are ac­
tually two different homotopy relations on the set of maps between two objects X 
and Y: Left homotopy, defined using cylinder objects for X, and right homotopy, 
defined using path objects for Y (see Definition 7.3.2). For arbitrary objects X 
and Y these are different relations, and neither of them is an equivalence relation. 
However, for cofibrant-fibrant objects, the two homotopy relations are the same, 
they are equivalence relations, and composition of homotopy classes is well defined 
(see Theorem 7.4.9 and Theorem 7.5.5). Every object of a model category is weakly 

ix 
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equivalent to a cofibrant-fibrant object, and we could thus define a "homotopy cat­
egory of cofibrant-fibrant objects" by taking the cofibrant-fibrant objects of the 
model category as our objects and homotopy classes of maps as our morphisms. 
Since a map between cofibrant-fibrant objects is a weak equivalence if and only if it 
is a homotopy equivalence (see Theorem 7.5.10 and Theorem 7.8.5), this would send 
weak equivalences to isomorphisms, and we define the classical homotopy category 
of a model category in exactly this way (see Definition 7.5.8). 

The classical homotopy category is inadequate, though, because most work 
in homotopy theory requires constructions that create objects that may not be 
cofibrant-fibrant, even if we start out with only cofibrant-fibrant objects. Thus, we 
need a "homotopy category" containing all of the objects of the model category. 
We define the Quillen homotopy category of a model category to be the localization 
of the category with respect to the class of weak equivalences (see Definition 8.3.2). 
For the class of weak equivalences of a model category, this always exists (see 
Remark 8.3.3 and Theorem 8.3.5). Thus, the Quillen homotopy category of a model 
category contains all of the objects of the model category. The classical homotopy 
category is a subcategory of the Quillen homotopy category, and the inclusion of 
the classical homotopy category in the Quillen homotopy category is an equivalence 
of categories (see Theorem 8.3.9). We refer to the Quillen homotopy category as 
simply the homotopy category. 

Homotopy function complexes. Homotopy theory involves the construc­
tion of more than just a homotopy category. Dwyer and Kan [31, 32, 33] construct 
the simplicial localization of a category with respect to a class of weak equivalences 
as the derived functor of the functor that constructs the homotopy category. This 
is a simplicial category, i.e., a category enriched over simplicial sets, and so for each 
pair of objects there is a simplicial set that is the "function complex" of maps be­
tween the objects. These function complexes capture the "higher order structure" 
of the homotopy theory, and taking the set of components of the function com­
plex of maps between two objects yields the set of maps in the homotopy category 
between those objects. 

Dwyer and Kan show that if you start with a model category, then simplicial sets 
weakly equivalent to those function complexes can be constructed using cosimplicial 
or simplicial resolutions (see Definition 16.1.2) in the model category. We present a 
self-contained development of these homotopy function complexes (see Chapter 17). 
Constructing homotopy function complexes requires making an arbitrary choice of 
resolutions, but we show that the category of possible choices has a contractible 
classifying space (see Theorem 17.5.28), and so there is a distinguished homotopy 
class of homotopy equivalences between the homotopy function complexes resulting 
from different choices (see Theorem 17.5.29 and Theorem 17.5.30). 

Homotopy theory in model categories. Part 2 of this book studies model 
categories and techniques of homotopy theory in model categories. Part 2 is in­
tended as a reference, and it logically precedes Part 1. We cover quite a bit of 
ground, but the topics discussed in Part 2 are only those that are needed for the 
discussion of localization in Part 1, fleshed out to give a reasonably complete de­
velopment. We begin Part 2 with the definition of a model category and with the 
basic results that are by now standard (see, e.g., [52, 54, 14, 35]), but we give 
complete arguments in an attempt to make this accessible to the novice. For a 
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more complete description of the contents of Part 2, see the summary on page 103 
and the introductions to the individual chapters. For a description of Part 1, which 
discusses localizing model category structures, see below, as well as the summary 
on page 3. 

Prerequisites. The category of simplicial sets plays a central role in the homo­
topy theory of a model category, even for model categories unrelated to simplicial 
sets. This is because a homotopy function complex between objects in a model 
category is a simplicial set (see Chapter 17). Thus, we assume that the reader has 
some familiarity with the homotopy theory of simplicial sets. For readers without 
the necessary background, we recommend the works by Curtis [18], Goerss and 
Jardine [39], and May [49]. 

Localizing model category structures 

Localizing a model category with respect to a class of maps does not mean 
making the maps into isomorphisms; instead, it means making the images of those 
maps in the homotopy category into isomorphisms (see Definition 3.1.1). Since the 
image of a map in the homotopy category is an isomorphism if and only if the 
map is a weak equivalence (see Theorem 8.3.10), localizing a model category with 
respect to a class of maps means making maps into weak equivalences. 

Localized model category structures originated in Bousfield's work on local­
ization with respect to homology ([8]). Given a homology theory /i*, Bousfield 
established a model category structure on the category of simplicial sets in which 
the weak equivalences were the maps that induced isomorphisms of all homology 
groups. A space (i.e., a simplicial set) W was defined to be local with respect 
to h* if it was a Kan complex such that every map / : X —> Y that induced 
isomorphisms /*: h*X w h*Y of homology groups also induced an isomorphism 
/* : 7r(Y, W) ~ TT(X, W) of the sets of homotopy classes of maps to W. In Bous­
field's model category structure, a space was fibrant if and only if it was local with 
respect to /i*. 

The problem that led to Bousfield's model category structure was that of con­
structing a localization functor for a homology theory. That is, given a homology 
theory /i*, the problem was to define for each space X a local space L/^X and a 
natural homology equivalence X —> L/^X. There had been a number of partial 
solutions to this problem (perhaps the most complete being that of Bousfield and 
Kan [14]), but each of these was valid only for some special class of spaces, and 
only for certain homology theories. In [8], Bousfield constructed a functorial /i*-
localization for an arbitrary homology theory /i* and for every simplicial set. In 
Bousfield's model category structure, a fibrant approximation to a space (i.e., a 
weak equivalence from a space to a fibrant space) was exactly a localization of that 
space with respect to h*. 

Some years later, Bousfield [9, 10, 11 , 12] and Dror Farjoun [20, 22, 24] 
independently considered the notion of localizing spaces with respect to an arbitrary 
map, with a definition of "local" slightly different from that used in [8]: Given a 
map of spaces / : A —> B, a space W was defined to be f-local if / induced a weak 
equivalence of mapping spaces /* : Map(5, W) = Map(^4, W) (rather than just a 
bijection on components, i.e., an isomorphism of the sets of homotopy classes of 
maps), and a map g: X —> Y was defined to be an f-local equivalence if for every f-
local space W the induced map of mapping spaces g* : Map(Y, W) —• Map(X, W) 
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was a weak equivalence. An /-localization of a space X was then an /-local space 
LfX together with an /-local equivalence X —> LfX. Bousfield and Dror Farjoun 
constructed /-localization functors for an arbitrary map / of spaces. 

Given a map / : A —> B of spaces, we construct in Chapters 1 and 2 an / -
local model category structure on the category of spaces. That is, we construct a 
model category structure on the category of spaces in which the weak equivalences 
are the /-local equivalences, and in which an /-localization functor is a fibrant 
approximation functor for the /-local model category. In Chapter 4 we extend 
this to establish 5-local model category structures for an arbitrary set S of maps 
in a left proper (see Definition 13.1.1) cellular model category (see page xiii and 
Chapter 12). 

Constructing the localized model category structure. Once we've es­
tablished the localized model category structure, a localization of an object in the 
category will be exactly a fibrant approximation to that object in the localized 
model category, but it turns out that we must first define a natural localization of 
every object in order to establish the localized model category structure. The rea­
son for this is that we use the localization functor to identify the local equivalences: 
A map is a local equivalence if and only if its localization is a weak equivalence (see 
Theorem 3.2.18). 

The model categories with which we work are all cofibrantly generated model 
categories (see Definition 11.1.2). That is, there is a set / of cofibrations and a set 
J of trivial cofibrations such that 

• a map is a trivial fibration if and only if it has the right lifting property 
with respect to every element of / , 

• a map is a fibration if and only if it has the right lifting property with 
respect to every element of J, and 

• both of the sets / and J permit the small object argument (see Defini­
tion 10.5.15). 

For example, in the category Top of (unpointed) topological spaces (see Nota­
tion 1.1.4), we can take for i" the set of inclusions S n _ 1 —> D n for n > 0 and for J 
the set of inclusions |A[n, k]\ —> |A[n]| for n > 0 and 0 < k < n. The left Bousfield 
localization LjTop of Top with respect to a map / in Top (see Definition 3.3.1) 
will have the same class of cofibrations as the standard model category structure 
on Top, and so the set I of generating cofibrations for Top can serve as a set of gen­
erating cofibrations for L/Top. The difficulty lies in finding a set Jf of generating 
trivial cofibrations for L/Top. 

A first thought might be to let Jf be the collection of all cofibrations that are 
/-local equivalences, since the fibrations of L/Top are defined to be the maps with 
the right lifting property with respect to all such maps, but then Jf would not be 
a set. The problem is to find a subcollection Jf of the class of all cofibrations that 
are /-local equivalences such that 

• a map has the right lifting property with respect to every element of Jf if 
and only if it has the right lifting property with respect to every cofibration 
that is an /-local equivalence, and 

• the collection Jf forms a set. 

That is the problem that is solved by the Bousfield-Smith cardinality argument. 
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The Bousfield-Smith cardinality argument. Every map in Top has a cofi-
brant approximation (see Definition 8.1.22) that is moreover an inclusion of cell 
complexes (see Definition 10.7.1 and Proposition 11.2.8). Since Top is left proper 
(see Definition 13.1.1), this implies that for a map to have the right lifting property 
with respect to all cofibrations that are /-local equivalences, it is sufficient that it 
have the right lifting property with respect to all inclusions of cell complexes that 
are /-local equivalences (see Proposition 13.2.1). 

If we choose a fixed cardinal 7, then the collection of homeomorphism classes 
of cell complexes of size no larger than 7 forms a set. The cardinality argument 
shows that there exists a cardinal 7 such that a map has the right lifting property 
with respect to all inclusions of cell complexes that are /-local equivalences if and 
only if it has the right lifting property with respect to all such inclusions between 
cell complexes of size no larger than 7. Thus, we can take as our set Jf a set of 
representatives of the isomorphism classes of such "small enough" inclusions of cell 
complexes. 

Our localization functor L/ is defined by choosing a set of inclusions of cell 
complexes A{/} and then attaching the codomains of the elements of A{/} to a 
space by all possible maps from the domains of the elements of A{/}, and then 
repeating this an infinite number of times (see Section 1.3). In order to make the 
cardinality argument, we need to find a cardinal 7 such that 

(1) if X is a cell complex, then every subcomplex of its localization LfX of 
size at most 7 is contained in the localization of a subcomplex of X of size 
at most 7, and 

(2) if X is a cell complex of size at most 7, then LfX is also of size at most 
7-

We are able to do this because 
(1) every map from a closed cell to a cell complex factors through a finite 

subcomplex of the cell complex (see Corollary 10.7.7), and 
(2) given two cell complexes, there is an upper bound on the cardinal of the 

set of continuous maps between them, and this upper bound depends only 
on the size of the cell complexes 

(see Section 2.3). 

Cellular model categories. Suppose now that M is a cofibrantly generated 
model category and that we wish to localize M with respect to a set S of maps in 
M (see Definition 3.3.1). If J is a set of generating cofibrations for M, then 

• we define a relative cell complex to be a map built by repeatedly attach­
ing codomains of elements of / along maps of their domains (see Defini­
tion 10.5.8), 

• we define a cell complex to be the codomain of a relative cell complex 
whose domain is the initial object of M, and 

• we define an inclusion of cell complexes to be a relative cell complex whose 
domain is a cell complex. 

(If M = Top, the category of topological spaces, our set / of generating cofibrations 
is the set of inclusions S n _ 1 —> D n for n > 0, and so a cell complex is a space built by 
repeatedly attaching disks along maps of their boundary spheres.) In such a model 
category, every map has a cofibrant approximation (see Definition 8.1.22) that is an 
inclusion of cell complexes (see Proposition 11.2.8). Thus, if we assume that M is 
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left proper (see Definition 13.1.1), then for a map to have the right lifting property 
with respect to all cofibrations that are S-local equivalences, it is sufficient that it 
have the right lifting property with respect to all inclusions of cell complexes that 
are S-local equivalences (see Proposition 13.2.1). In order to make the cardinality 
argument, though, we need to assume that maps between cell complexes in M are 
sufficiently well behaved; this leads us to the definition of a cellular model category 
(see Definition 12.1.1). 

A cellular model category is a cofibrantly generated model category with addi­
tional properties that ensure that 

• the intersection of a pair of subcomplexes (see Definition 12.2.5) of a cell 
complex exists (see Theorem 12.2.6), 

• there is a cardinal a (called the size of the cells of M; see Definition 12.3.3) 
such that if X is a cell complex of size r, then any map from X to a 
cell complex factors through a subcomplex of size at most O~T (see Theo­
rem 12.3.1), and 

• if X is a cell complex, then there is a cardinal n such that if Y is a cell 
complex of size v (y > 2), then the set M(X, Y) has cardinal at most v^ 
(see Proposition 12.5.1). 

Fortunately, these properties follow from a rather minimal set of conditions on the 
model category M (see Definition 12.1.1), satisfied by almost all model categories 
that come up in practice. 

Left localization and right localization. There are two types of morphisms 
of model categories: Left Quillen functors and right Quillen functors (see Defini­
tion 8.5.2). The localizations that we have been discussing are all left localizations, 
because the functor from the original model category to the localized model cate­
gory is a left Quillen functor that is initial among left Quillen functors whose total 
left derived functor takes the images of the designated maps into isomorphisms in 
the homotopy category (see Definition 3.1.1). There is an analogous notion of right 
localization. 

Given a CW-complex A, Dror Farjoun [20, 21 , 23, 24] defines a map of 
topological spaces / : X —> Y to be an A-cellular equivalence if the induced map 
of function spaces /* : Map(A, X) —> Map(A, Y) is a weak equivalence. He also 
defines the class of A-cellular spaces to be the smallest class of cofibrant spaces that 
contains A and is closed under weak equivalences and homotopy colimits. We show 
in Theorem 5.1.1 and Theorem 5.1.6 that this is an example of a right localization, 
i.e., that there is a model category structure in which the weak equivalences are 
the A-cellular equivalences and in which the cofibrant objects are the A-cellular 
spaces. In fact, we do this for an arbitrary right proper cellular model category 
(see Theorem 5.1.1 and Theorem 5.1.6). 

The situation here is not as satisfying as it is for left localizations, though. 
The left localizations that we construct for left proper cellular model categories 
are again left proper cellular model categories (see Theorem 4.1.1), but the right 
localizations that we construct for right proper cellular model categories need not 
even be cofibrantly generated if not every object of the model category is fibrant. 
However, if every object is fibrant, then a right localization will again be right 
proper cellular with every object fibrant; see Theorem 5.1.1. 
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boundary of, 298, 298 
on the set 5 , 220 

on an object, 221 
free simplicial group, 272 
full class of horns, 73 
full set of horns, 85 
function complex, 6, 6, 159, 170, see also 

simplicial mapping space 
and homotopy colimit, 382 
and homotopy limit, 382 
as a functor, 160 
as sets of maps, 162 
pointed versus unpointed, 32 

function space, 6, see also function complex 
and simplicial mapping space 

functor 
and cofibrant approximations, 143 
and fibrant approximations, 143 
and homotopic maps, 130, 147 
augmented, 139, 139-140, 264 
coaugmented, 139, 139-140, 264 
cofinal, 256-258 
constant, 260 
extending to a simplicial functor, 179-183 
initial, 256, 257 
inverting weak equivalences, 147 
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left cofinal, 256, 257 
opposite, 228 
over X, 263 
right cofinal, 256, 257 
simplicial, 75-76, 179 
taking maps to weak equivalences, 130, 

143 
terminal, 256, 257 
under X, 263 

functor category, 263-266 
functorial change of homotopy function com­

plex map, 360 
functorial cofibrant approximation, 140, 140-

142 
category of, 267, 267 
existence, 141 
homotopy idempotent, 140 
map of, 141 
uniqueness, 267 

functorial cosimplicial frame 
existence, 339 
on a map, 340 
uniqueness, 339 

functorial cosimplicial resolution, 319 
existence, 319 
uniqueness, 321 

functorial factorization 
colocal, 87, 88 
existence, 200 

functorial fibrant approximation, 140, 140-
142 

category of, 267, 267 
existence, 141 
homotopy idempotent, 140 
map of, 141 
uniqueness, 267 

functorial fibrant cofibrant approximation, 
148 

functorial homotopy function complex, 360, 
360-362 

uniqueness, 361 
functorial homotopy function complexes 

category of, 361 
contractible classifying space, 361 
homotopy equivalences, 361 

functorial left homotopy function complex, 
357, 357-358 

category of, 357 
contractible classifying space, 358 
existence, 357 
homotopy equivalence of, 361 
uniqueness, 358 

functorial left to two-sided change of homo­
topy function complex map, 360 

functorial localization, 21-22 
functorial right homotopy function complex, 

358, 358-359 
category of, 358 

contractible classifying space, 358 
existence, 358 
homotopy equivalence of, 361 
uniqueness, 359 

functorial right to two-sided change of ho­
motopy function complex map, 360 

functorial simplicial frame 
existence, 339 
on a map, 340 
uniqueness, 339 

functorial simplicial resolution, 319 
existence, 319 
uniqueness, 321 

functorial two-sided homotopy function com­
plex, 359 ,359 

category of, 359 
contractible classifying space, 359 
existence, 359 
homotopy equivalences, 361 
uniqueness, 359 

functors 
naturally weakly equivalent, 134 

fundamental group, 241 

7-compact, 206, 215 
generalized interval, 170, 172 

and simplicial homotopy, 171 
exponentiate to, 174 
simplicially contractible, 174 
tensor with, 174 

generating cofibrations, 81, 89, 210, 231 
generating trivial cofibrations, 78, 81, 89, 

210, 231 
and relative cell complexes, 213 

generator 
of a free cell complex, 272 

geometric realization, 7, 15-16, 24-29, 158, 
324 

and coends, 402 
and diagram categories, 225 
and finite limits, 242 
and homotopy colimits, 402 
and homotopy fibers, 250 
and homotopy limits, 402 
and the realization of a simplicial simpli­

cial set, 402 

half properness, 239 
Hausdorff, 5, 134 
higher universe, 258, 263 
HLEP, see also homotopy lifting extension 

theorem 
HLET, see also homotopy lifting extension 

theorem 
HoM, 147, 147-155 

existence, 148, 149 
hocolim, see also homotopy colimit 
holim, see also homotopy limit 
horn 
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of functors, 386, 386-394, 407, see also 
end 
adjointness, 388, 410 

homology 
localization, xi 
with local coefficients, 241 

and weak equivalences, 241 
homotopic, 115 
homotopic maps, 130, 148, 156 

inducing homotopic maps of homotopy func­
tion complexes, 363-365 

homotopic maps of classifying spaces, 259-
260 

homotopically constant bisimplicial set, 315 
homotopy, 115-128 

and Bousfield localization, 68 
and cancellation, 124 
and cofibrant approximations, 146 
and fibrant approximations, 146 
and homotopy fibers, 250 
and homotopy pullbacks, 246 
and relative homotopy, 127 
and weak equivalence, 130 
equivalence relation, 119-122 
left, 115, 174 
left versus right, 122 
of homotopies, 131 
over an object, 99, 127, 126-128 
relative, 127 
restriction of, 237 
right, 115, 174 
simplicial, 99, 171, 174 
under an object, 127, 126-128 
using any cylinder object, 122 
using any path object, 122 

homotopy category, 147 
classical, 123, 123-125, 150 

equivalent to Quillen, 151 
existence, 148 
Quillen, 147, 147-151 

equivalent to classical, 151 
existence, 149 

homotopy classes of maps, xi, 122-123, 148, 
149, 151, 156-158, 240 

and Bousfield localization, 69 
and cylinder objects, 365 
and detecting equivalences, 69 
and homotopy equivalences, 125 
and homotopy function complexes, 365-

366 
and path objects, 365 
and Quillen functors, 157 
and weak equivalences, 133 
and weak equivalences of homotopy func­

tion complexes, 366 
composition, 122-123, 148, 150 

well defined, 123 
isomorphism 

and factorizations of maps, 119 
induced by a weak equivalence, 130 

homotopy cofiber square, 67, 68, 252, 252 
homotopy colimit, 50, 84, 90, 91, 380, 380-

382, 406 
and cofibrations, 394 
and function complex, 382 
and geometric realization, 402 
and homotopy function complex, 415 
and homotopy right cofinal, 420-422 
and induced diagrams, 407, 419 
and left Quillen functors, 415 
and maps of simplicial sets, 428 
and terminal objects, 420 
and total singular complex, 402 
as a coend, 387, 409 
cofibrant, 394, 414 
duality with homotopy limit, 382, 415 
homotopy invariance, 394, 414 
natural map to the colimit, 387, 409 
of a bisimplicial set 

weakly equivalent to the diagonal, 398 
of a diagram indexed by the opposite of a 

category of simplices, 400 
of a Reedy diagram 

alternate construction, 394 
of a simplicial object 

weakly equivalent to the realization, 397, 
398, 426 

of colocal objects, 90 
of contractible pointed spaces, 399 
of induced diagrams, 420 
pointed or unpointed, 398-400 
weakly equivalent to colimit, 401, 427, 428 

homotopy direct limit, 383, see also homo­
topy colimit 

homotopy equivalence, 131-133, 148 
and relative homotopy, 127 
and weak equivalence, 132 
detecting, 125 
determined by a zig-zag, 262, 262 
is a weak equivalence, 133 
of functorial homotopy function complexes, 

361 
over an object, 127 
simplicial, 171 
under an object, 127 
unique, 262 

homotopy extension property, 118 
homotopy factorization 

and factorization, 118 
homotopy fiber, 95-98, 249, 249-250 

alternate constructions, 250 
and fiber, 249 
and geometric realization, 250 
and homotopic maps, 250 
and homotopy pullback, 249 
and path components, 250 
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and total singular complex, 250 
decomposing, 96 

homotopy fiber square, 67, 68, 247, 247-249 
of homotopy function complexes, 368 

homotopy function complex, 48, 354, 354— 
357 

and detecting weak equivalences, 366, 367 
and homotopic maps, 363-365 
and homotopy classes of maps, 365—366 
and homotopy colimits, 415 
and homotopy fiber squares, 368 
and Quillen functors, 357 
contractible classifying space, 356 
fibrant, 354 
functorial, 360, 360-362 
homotopy limit, 415 
induced weak equivalence, 362 
left, 349, 349-350 

fibrant, 349 
one-sided from two-sided, 354 
right, 350, 350-352 

fibrant, 351 
functorial, 358 

two-sided, 352, 352-353 
fibrant, 352 
functorial, 359 

uniqueness, 357 
weak equivalence of 

and lifting maps, 366 
homotopy function space, see also homotopy 

function complex 
homotopy groups, 241 
homotopy idempotent, 140, 140 
homotopy initial, 418, see also homotopy 

left cofinal 
homotopy invariance, 332, 334, 336, 337 

of coends, 424, 425 
of ends, 424, 425 
of homotopy colimits, 414 
of homotopy limits, 414 
of homotopy pullbacks, 245 
of homotopy pushouts, 251 
of realizations of simplicial objects, 426 
of simplicial mapping spaces, 164, 165 
of the total object of a cosimplicial object, 

426 
homotopy inverse limit, 383, see also homo­

topy limit 
homotopy left cofinal, 418, 418-423 

and homotopy limits, 420-422 
and left cofinal, 418 
and limits, 418 

homotopy left lifting property, 167, 167-170 
and left properness, 244 
and pushouts, 169 
and retracts, 169 
and the pushout corner map, 168 
closure under transfinite composition, 193 

homotopy lifting extension theorem, 161, 331-
337, 389, 411 

and homotopy orthogonal maps, 369 
bisimplicial, 334 
equivalent conditions, 166 
left, 331 
one-sided, 331 
partial, 328, 329 
Reedy diagram, 391, 423 
right, 331 
two-sided, 336 

homotopy lifting property, 118, 167, 167— 
170 

and deformation retracts, 175 
and lifting, 167, 169 
and properness, 244 
and retracts, 169 
and the pullback corner map, 168 
and the pushout corner map, 168 
and uniqueness of factorizations, 175 
and uniqueness of lifts, 175 
and weak equivalence of function complexes, 

168 
characterization of cofibrations, 167 
characterization of fibrations, 167 
characterization of trivial cofibrations, 167 
characterization of trivial fibrations, 167 
in terms of lifting, 168 

homotopy lifting-extension pair, 167 
and lifting-extension pair, 167 

homotopy limit, 382, 382-385, 406 
ad an end, 387 
alternative definitions, 383 
and fibrations, 394 
and function complex, 382 
and geometric realization, 402 
and homotopy left cofinal, 420-422 
and homotopy pullbacks, 244, 416-418 
and induced diagrams, 407, 419 
and initial objects, 420 
and right Quillen functors, 415 
and the total singular complex, 402 
as a space of maps, 385 
as an end, 409 
duality with homotopy colimit, 382, 415 
fibrant, 394, 414 
homotopy invariance, 394, 414 
natural map from the limit, 387, 409 
of a cosimplicial object 

weakly equivalent to the total object, 
397, 398, 426 

of a cosimplicial space 
weakly equivalent to the total space, 397, 

398 
of a diagram indexed by a category of sim-

plices, 400 
of a Reedy diagram 

alternate construction, 394 



440 INDEX 

of homotopy function complexes, 415 
of induced diagrams, 420 
of mapping complexes, 90 
pointed versus unpointed, 398 
weakly equivalent to limit, 427, 428 
weakly equivalent to the homotopy pull-

back, 417 
homotopy mapping space, see also homo­

topy function complex 
homotopy orthogonal, 90 

partial two out of three, 373 
homotopy orthogonal maps, 82, 368, 367-

375 
and lifting, 371 
and lifting-extension pairs, 372 
and properness, 374 
and resolutions, 373 
and retracts, 370 
and weak equivalences of homotopy func­

tion complexes, 370 
characterizing, 369 
detecting weak equivalences, 372 
homotopy invariance, 370 
homotopy lifting extension theorem, 369 

homotopy pullback, 244, 244-250 
alternative constructions, 246 
and homotopic maps, 246 
and homotopy limits, 244, 416-418 
and weak equivalences, 244, 245 
homotopy invariance, 245 
weakly equivalent to the homotopy limit, 

417 
homotopy pushout, 250, 250-252 

homotopy invariance, 251 
homotopy right cofinal, 418, 418-423 

and colimits, 418 
and homotopy colimits, 420-422 
and right cofinal, 418 

homotopy right lifting property, 20, 90, 167, 
167-170 

and pullbacks, 169 
and retracts, 169 
and right properness, 244 
and the pullback corner map, 168 

homotopy terminal, 418, see also homotopy 
right cofinal 

homotopy uniqueness 
of factorizations, 128 
of lifts, 128 

horizontal simplicial object, 334, 333-336 
matching object of, 334 

horns, 17, 16-17, 19, 60, 60-61 
and local equivalences, 73 
and Quillen functors, 61 
augmented set, 73, 85 
augmented set of, 17, 73, 86 
full class, 73 
full set, 85 

on A, 17 
on / , 17 
on K, 85 

/-cell complex, 197 
J-cofibrant, 196 
7-cofibration, 81, 196, 196-201 

and relative /-cell complexes, 197, 200 
regular, 197 

/-injective, 81, 196, 196-201 
idempotent, 140 
inclusion of a subcomplex, 210, 212 
inclusion of cell complexes, 10, 81, 197 
inclusion of free cell complexes, 223 
inclusion of /-cell complexes, 197 
induced diagram, 218 

and homotopy colimits, 407, 419 
and homotopy limits, 407, 419 

induced map 
of homotopy function complexes, 362-363 
of left homotopy function complexes, 363 
of right homotopy function complexes, 363 
of two-sided homotopy function complexes, 

363 
induced map of homotopy function complexes, 

362 
induced map of left homotopy function com­

plexes, 362 
induced map of right homotopy function com­

plexes, 362 
induced map of two-sided homotopy func­

tion complexes, 362 
induction 

on the degree of an object in a Reedy cat­
egory, 290 

transfinite, 41, 237 
initial, 418 
initial functor, 256, 257, see also left cofinal 

functor 
initial object 

and contractible classifying space, 260 
and homotopy limits, 420 
and natural transformations, 260 

initial subcategory, 256 
injective, 20, 20-21, 36, 74, 81, 196, 196-

201 
and diagram categories, 223 
and Kan fibration, 197 
and overeategories, 197 
and trivial fibrations, 197 

interior 
of a cell, 37 

internal mapping space, 7, 383, 384 
interpolating sequences, 190, 190-191 
intersection of subcomplexes, 40, 233, 233-

234 
and localization, 77 
pullback square, 233 



INDEX 441 

inverse left homotopy, 121 
inverse right homotopy, 121 
inverse subcategory, 278 
inverting 

a map in the homotopy category, 47-50 
Isaksen, D., 395 
isomorphism 

of colimits, 257 
of limits, 257 

iterated coface operator, 306 

joke, pointless, 51 

K-cellular object, 84, 84 
K-colocal, 50, see also A-colocal and colocal 

cofibration, 84, 86 
sufficient conditions, 87 

cofibrations, 87-89 
equivalence, 50 
equivalences, 85-87 
fibration, 84 
model category 

cellular model category, 86 
model category structure, 83 
object, 84 

and tensor product, 90 
characterization, 89 

objects, 90-91 
weak equivalence, 84 

K-colocal Whitehead theorem, 55 
Kan extension, 151, 151-153, 229, 228-230, 

282 
and adjointness, 229 
and Quillen functors, 230 

Kan fibration 
and injectives, 197 

Kan, D. M., x, 161, 209, 213, 214, 243, 264, 
277, 347, 376, 397 

K-small, 194, 200, 212 
K>small relative to / , 198 
Kenny Brown's lemma, 129 

A{A}-cofibration, 20 
A{A}-injective, 20 
A{/}-injective, 20, 21 
A{/}-cell, 37 
A{/}-cell complex, 19 
A{/}-cofibration, 20, 22 
A{/}-injective, 20, 21 
A(K)-ce\l complex, 85, 90 
A(if)-cofibration, 85 
A(K)-injective, 85, 85, 86 

characterization, 85 
AS-injective, 74 
A-sequence, 13, 17, 18, 38, 39, 45, 54, 76, 79, 

90, 188, 188-193, 201, 216, 375, 376 
and retracts, 200 
cofibrant approximation, 377 

composition, 202 
in a subclass of maps, 188 
interpolating, 190, 190-191 
map of, 200, 203 
of A-sequences, 190 
reindexed, 189 

latching category, 284, 284-287, 310 
and Reedy cofibrant diagrams, 289 
filtration, 290 
opposite, 284 

latching map, 284 
of a cosimplicial object, 325 
relative, 288, 289-292 

trivial cofibration, 292 
latching object, 284, 284-287, 333 

and cosimplicial frames, 345 
cofibrant, 291 
of a bisimplicial set, 305 
of a cosimplicial object, 325 
of a cosimplicial simplicial set, 307 
of a diagram of mapping spaces, 391 
of a simplicial object, 285 

left adjoint, 153-158 
to the matching object, 297-300 

left Bousfield localization, 57, 57-69 
and fibrations, 58, 62 
and left localization, 63 
and left properness, 66 
existence, 71 

left cofinal, 285, 418 
functor, 256, 256-258 
subcategory, 256 

left derived functor, 47, 151, 151-153, 156 
existence, 151 
total, 152, 155, 158 

and cofibrant approximation, 155 
existence, 157 

left homotopic maps, 130, 147 
inducing homotopic maps of homotopy func­

tion complexes, 364 
left homotopy, 115, 115-128, 174 

and cofibrant approximations, 146 
and cylinder objects, 121 
and fibrant approximations, 146 
and fibrant objects, 116 
and homotopy, 122 
and homotopy fibers, 250 
and homotopy pullbacks, 246 
and right homotopy, 121-123 
and trivial fibrations, 123 
composition of, 120 
equivalence relation, 121 
inverse, 121 
over an object, 127, 126-128 
preserving, 117, 156, 157 
under an object, 127, 126-128 

left homotopy classes of maps, 119, 122 
induced maps, 123 
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isomorphism of, 123 
left homotopy function complex, 349, 349-

350 
category of, 350 
fibrant, 349 
functorial, 357, 357-358 
uniqueness, 350 

left homotopy lifting extension theorem, 331 
left homotopy orthogonal, 368 

and pushouts, 372, 374 
and the pushout corner map, 373 
partial two out of three, 373 

left Kan extension, 151, 151-153, 229, 228-
230, 282 

and adjointness, 229 
and Quillen functors, 230 

left lifting property, 20, 110, 197 
and cofibrant approximation, 243 
and colimits, 193 
and left properness, 243 
and local equivalence, 53 
and pushouts, 113 
and retracts, 112 
and transfinite composition, 193-194 
closure, 193 

left localization, 47, 47-69 
Bousfield, 57 

left proper, 43, 78, 239, 239-252 
and cofibrant approximations, 252 
and homotopy left lifting property, 244 
and left Bousfield localization, 66 
and left lifting property, 243 
and local equivalence, 54-55 
simplicial sets, 240 
SS*, 240 
SS, 240 
sufficient condition, 240 

left Quillen equivalence, 157, 157-158 
left Quillen functor, 47-50, 153, 153-158 

and coends, 410, 414 
and cosimplicial frames, 341 
and cosimplicial resolutions, 49, 323-324 
and cylinder objects, 156 
and homotopy colimits, 415 
and horns, 61 
existence of total left derived functor, 155 
preserving weak equivalences between cofi­

brant objects, 154 
left resolving pair, 356 
left to two-sided change of homotopy func­

tion complex map, 355 
functorial, 360 

lift 
unique up to homotopy, 128 

lifting, 193 
and adjoints, 114 
and homotopy lifting, 169 
and retracts, 112 

and simplicial homotopy, 175 
and transfinite composition, 193—194 
axiom, 109 
uniqueness, 175 

lifting model category structures, 214, 224 
lifting-extension pair, 110 

and adjoints, 114 
and homotopy lifting-extension pair, 167 
and homotopy orthogonal maps, 372 

limit 
and corealizations, 327 
and homotopy left cofinal, 418 
and weak equivalences, 311 
as a right Quillen functor, 310 
as an end, 387, 409 
of a diagram of simplicial mapping spaces, 

164 
of a tower of weak equivalences, 311 
of induced diagram, 257 
of Reedy fibrant diagrams, 310 
preserving objectwise weak equivalences, 

310 
limit axiom, 109 
limit ordinal, 189 
local, see also /-local, C-local, and S'-local 
local coefficient homology, 241 

and weak equivalences, 241 
local equivalence, 11-14, 48, 52-55 

and colimits, 53 
and left lifting property, 53 
and left properness, 54—55 
and pushouts, 54, 65 
and retracts, 53 
and tensor products, 54 
and transfinite composition, 54 
and weak equivalences, 49, 56 
detecting, 75 
recognizing, 21 
two out of three, 52 

local fibrant objects 
and local objects, 65 

local fibration, 66-68 
and local objects, 63 
detecting, 62, 63 

local object, 48, 51-52 
and fibrant objects, 65 
and horns, 73 
and injectives, 73 
and lifting, 74 
and local fibrations, 63 
and Quillen functors, 49, 51 
and weak equivalences, 52 
detecting, 61, 73-75 

local space, 14-15 
path components of, 33 
recognizing, 21 

local Whitehead theorem, 55 
localization, 11, 19, 47-69, 75 
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and cofibrant approximation, 49 
and cofibrations, 22 
and fibrant approximation, 49 
and geometric realization, 24-29 
and homotopy classes, 56, 69 
and Quillen equivalences, 64 
and Quillen pairs, 64 
and total singular complex, 24-29 
Bousfield, 57, 57-69 
cofibrant, 11, 21, 55, 75 
comparing, 10, 23, 24 
continuous, 29-31 
existence, 21, 71, 147 
fiberwise, 93, 93-99 

pointed, 94 
uniqueness, 99 

functor, 21-22, 76-78 
simplicial, 75-76 
uniqueness, 27-29 

homology, xi 
left, 47 
natural presentation, 40 
of a category, 147 
of a cell complex, 79 
of acolimit, 41, 43, 77, 79 
of a A-sequence, 77 
of a map, 55, 56 
of a subcomplex, 44, 76-78 
of an intersection, 41, 77, 80 
of an object, 55, 56 

existence, 75 
pointed versus unpointed, 31-34 
right, 47 
simplicial, 29-31 
uniqueness, 48 
universal mapping property, 47 
with respect to weak equivalences, 147 

localizing the fiber, 95-98 

map 
of homotopy function complexes, 355 
of left homotopy function complexes, 349 

as a map in an undercategory, 349 
weak equivalence, 350 

from a free cell complex, 275 
left to two-sided change of homotopy func­

tion complex, 354 
of cofibrant approximations, 138, 138-139 

uniqueness, 139 
of cofibrant fibrant approximations to a 

map, 144 
of cosimplicial resolutions, 320 

existence, 320 
weak equivalence, 320 

of diagrams, 217 
objectwise weak equivalence, 218 

of fibrant approximations, 138, 138-139 
uniqueness, 139 

of fibrant cofibrant approximations to a 
map, 144 

of free diagrams, 219-222 
of functorial cofibrant approximations, 141 
of functorial fibrant approximations, 141 
of functorial homotopy function complexes, 

360 
of functorial left homotopy function com­

plexes, 357 
of functorial right homotopy function com­

plexes, 358 
of functorial two-sided homotopy function 

complexes, 359 
of homotopy function complexes 

induced, 362, 363 
induced by homotopic maps, 363-365 
weak equivalence, 356 

of A-sequences, 200, 203 
of left homotopy function complexes 

induced, 362, 363 
of right homotopy function complexes, 351 

as a map in an undercategory, 351 
induced, 362, 363 
weak equivalence, 351 

of simplicial resolutions, 320 
existence, 320 
weak equivalence, 320 

of two-sided homotopy function complexes, 
352, 352-353 
induced, 362, 363 
weak equivalence, 353 

right to two-sided change of homotopy func­
tion complex map, 354 

map(X,Y) , 354 
mapping complex 

as a functor, 160 
mapping cylinder 

as a homotopy colimit, 381 
mapping object 

from a bisimplicial set to a simplicial set, 
313 

mapping path space, 416 
as a homotopy limit, 382 

mapping space, 6, see also function complex 
adjointness, 7 
and realization, 8 
between diagrams in a simplicial model 

category, 226 
between diagrams of spaces, 384 
from a Reedy diagram to an object, 314 
internal, 7, 383, 384 
simplicial, 6, 8, 159, 384 

weak equivalence of, 7 
space of maps, 385 

matching category, 284, 284-287, 310 
and Reedy fibrant diagrams, 289 
opposite, 284 

matching map, 284 



444 INDEX 

of a simplicial object, 325 
relative, 288, 289-292 

trivial fibration, 292 
matching object, 284, 284-287 

and pullbacks, 334 
and simplicial frames, 345 
fibrant, 291 
in a diagram of diagrams, 333 
left adjoint, 297-300 
of a cosimplicial object, 285 
of a diagram of mapping spaces, 391 
of a horizontal simplicial object, 334 
of a simplicial object, 325 
of a vertical simplicial object, 334 
right adjoint to boundary of a free dia­

gram, 299 
matching space, 285 
maximal augmentation, 306, 306, 307, 308 

and cofibrant cosimplicial simplicial sets, 
308 

model category, 109 
and overeategories, 126 
and undercategories, 126 
cellular, 71, 83, 231, 231-237, 302-303 

cofibrant object, 234 
compactness, 234-235 
existence of factorizations, 235 
recognizing, 232 
smallness, 235-236 

closed, 109, 112 
cofibrantly generated, 210, 209-230 

and Reedy category, 296-302 
not a cellular model category, 232 
recognizing, 213 

fiberwise, 95 
framed, 341, 341-342, 409-410 

homotopy colimit, 406 
homotopy limit, 406 

K-colocal, 83 
left proper, 239, 239-252 
of diagrams 

in a cofibrantly generated model cate­
gory, 224 

in a simplicial model category, 226 
opposite of, 110 
product of, 110 
proper, 239, 239-252 
Reedy, 288, 277-315 
right proper, 239, 239-252 
S-local, 71 
simplicial, 75-76, 161, 159-183 

and Reedy categories, 289 
model category structure 

lifting, 214, 224 
monomorphism, 216 

and compactness, 207 
and subcomplexes, 203-204 
effective, 208, 208, 213, 231 

and equalizers, 208 
and monomorphisms, 208 
of sets, 208 

in a cofibrantly generated model category, 
213 

natural cosimplicial frame, 406, 408, 409 
natural cylinder object, 79, 80, 237 

size of, 237 
natural localization, 19 
natural map 

to a bisimplicial set from its zero-th de­
gree, 312 

natural simplicial frame, 406, 408, 409 
natural transformation 

and homotopic maps of classifying spaces, 
260 

naturally weakly equivalent, 134 
nerve, 254, see also classifying space 
non-coface, 306 

characterizing, 307 
nondegenerate generator 

of a free cell complex, 272 
nondegenerate simplex 

characterizing, 304 

object 
colocal, 48 
local, 48 

objectwise cofibrant, 218 
objectwise cofibration, 218 
objectwise fibrant, 218 
objectwise fibration, 218, 224 
objectwise weak equivalence, 218, 224 
one-sided homotopy lifting extension theo­

rem, 331 
opposite, 228 

of a Reedy category, 278 
opposite model category, 110 
opposite of undercategory 

isomorphic to overeategory, 270, 271 
orderings, 186 
ordinal, 186, 186-187, 205, 206 

limit, 189 
presentation, 38, 202, 202 

overcategory, 95, 99, 125, 125-128, 226, 226-
229, 284 

and model category structures, 126 
classifying space of, 255, 256 

and free diagrams, 421 
as a homotopy colimit, 421 

contractible classifying space, 270 
diagram of, 269, 269-271 

cofibrant approximation to the constant 
diagram at a point, 273 

Reedy cofibrant, 297 
Reedy cofibrant approximation to the 

constant diagram at a point, 297 
in a cellular model category, 232 
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in a functor category, 263 
induced functor, 126 
isomorphic to opposite of undercategory, 

270, 271 
opposite, 228 

partially ordered set, 186 
path component, 33 
path object, 115, 115-122, 131, 146, 240 

and cofibrant approximations, 144 
and fibrant approximations, 144 
and homotopy classes, 365 
and right Quillen functors, 156 
and simplicial resolutions, 319 
and trivial cofibrations, 116 
composition of, 119 
in a simplicial model category, 172 
projections, 117 

periodic, 8 
permits the small object argument, 198, 200, 

224 
point, 249 
pointed 

/-local, 31-34 
function complex, 31, 32 

pointed equivalence, 31 
pointed /-local, 31 
pointed localization, 31 
pointless joke, 51 
Postnikov approximation, 22-24 
preorder, 80 
preordered set, 186 

as a category, 186 
presentation, 272 

natural, 39 
of a cell complex, 38, 201 
of a relative cell complex, 38, 39, 201 

presentation ordinal, 38, 41-43, 77, 202, 202, 
205, 206, 216 

presented 
cell complex, 202, 233 
/-cell complex, 202 
relative cell complex, 202 
relative I-cell complex, 202 

preserving 
left homotopy, 117 
right homotopy, 117 
weak equivalences, 129 

product 
of cardinals, 187 
of categories 

classifying space, 259 
of cofibrantly generated model categories, 

211 
of Reedy categories, 278, 294-296, 333 
of simplicial mapping spaces, 164 

product model category, 110 
proper, 43, 239, 239-252 

category of diagrams in a cofibrantly gen­
erated model category, 242 

category of simplicial sets, 242 
category of topological spaces, 242 
half, 239 
left, 78 

properness 
and Bousfield localization, 65-68 
and cofibrant approximations, 252, 377 
and fibrant approximations, 247 
and homotopy lifting, 244 
and homotopy orthogonal maps, 374 
and lifting, 243 
and Reedy categories, 289 
and sequential colimits, 376 

pullback, 112, 112-114 
and colocal equivalences, 65 
and fibrant approximation, 247 
and fibrations, 113 
and homotopy orthogonal maps, 372 
and trivial fibrations, 113 
and weak equivalences of homotopy func­

tion complexes, 373 
as a homotopy limit, 428 
homotopy, 244, 244-250 

alternative constructions, 246 
and weak equivalences, 244, 245 
homotopy invariance, 245 

of a weak equivalence, 239 
preserving weak equivalences, 311 

pullback corner map, 161, 165, 167 
adjointness, 165 
and homotopy right lifting property, 168 
and right lifting property, 165 
and the homotopy lifting extension theo­

rem, 166 
and the homotopy lifting property, 168 
fibration, 166 
of corealizations, 333 
Reedy diagram, 424 

pushout, 112, 112-114 
and cofibrations, 113, 114 
and homotopy orthogonal maps, 372 
and local equivalences, 54, 65 
and total singular complex, 251 
and trivial cofibrations, 113 
and weak equivalences of homotopy func­

tion complexes, 373 
as a homotopy colimit, 428 
as a Reedy category, 311 
homotopy, 250, 250-252 

homotopy invariance, 251 
of a weak equivalence, 239 
preserving weak equivalences, 311 

pushout corner map, 165 
adjointness, 165 
and homotopy left lifting property, 168 
and left lifting property, 165 
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and the homotopy lifting extension theo­
rem, 166 

and the homotopy lifting property, 168 
and weak equivalence of simplicial map­

ping spaces, 166 
cofibration, 166 
of realizations, 333 
Reedy diagram, 424 

Quillen equivalence, 64, 157, 157-158, 297 
and Reedy model category structure, 294 
extending to diagram categories, 225 

Quillen functor, 153, 153-158, 323, 324, 414, 
415 

and cofibrant approximations, 49 
and colocal objects, 49 
and fibrant approximations, 49 
and frames, 341 
and homotopy function complexes, 357 
and local objects, 49 
and Reedy model category structure, 294 
existence of total derived functor, 155 
left, 47 
preserving weak equivalences, 154 
right, 47 

Quillen functors, see also Quillen pair 
and Kan extensions, 230 
and Reedy cofibrant diagrams, 294 
and Reedy fibrant diagrams, 294 

Quillen homotopy category, 147, 147-151 
equivalent to classical homotopy category, 

151 
existence, 148, 149 

Quillen pair, 48-50, 58, 64, 153, 153-158, 
214 

and localization, 51 
and resolutions, 323-324 
extending to diagram categories, 225 
preserving weak equivalences, 154 

Quillen, D. G., 108, 135, 423 

realization, 324, 324-326 
and adjointness, 326-331 
and cofibrations, 327 
and colimits, 327 
and mapping space, 8 
in a simplicial model category, 338 
of a bisimplicial set, 312, 312-315 

isomorphic to the diagonal, 313 
of a simplicial object, 395, 426 

cofibrant, 396, 426 
homotopy invariance, 396, 426 
weakly equivalent to the homotopy co-

limit, 397, 398, 426 
of a simplicial simplicial set 

and geometric realization, 402 
pushout corner map, 333 

recognizing free cell complexes, 271, 273 
Reedy category, 278, 278-281 

and Quillen functors, 294 
diagram indexed by, 281-288 

extending over a filtration, 283 
filtration of, 281-284, 287-288 
opposite of, 278 
product of, 278, 294-296 
product of Reedy categories, 333 
with cofibrant constants, 309, 308-312, 

427 
and Quillen functors, 310 
and weak equivalences, 310 
characterizing, 309, 310 

with fibrant constants, 309, 308-312, 427 
and Quillen functors, 310 
and weak equivalences, 310 
characterizing, 309, 310 

Reedy cofibrant diagram, 291, 297, 326, 401 
and homotopy function complexes, 425 
and Quillen functors, 294 
colimit of, 310, 427 

Reedy cofibration, 288, 291, 297 
and realizations, 325 

Reedy cosimplicial frame, 343, 343-345, 423 
contractible classifying space, 344 
existence, 344 
uniqueness, 344 

Reedy diagram, 391-394 
coend 

cofibrant, 393 
homotopy invariance, 393 
pushout corner map, 392 

end 
fibrant, 393 
homotopy invariance, 393 
pullback corner map, 392 

homotopy colimit 
alternate construction, 394 

homotopy lifting extension theorem, 391, 
423 

homotopy limit 
alternate construction, 394 

of diagrams 
matching object, 333 

pullback corner map, 424 
pushout corner map, 424 

Reedy fibrant diagram, 291, 326 
and Quillen functors, 294 
bisimplicial set, 335 
limit of, 310, 427 

Reedy fibration, 288, 291, 297 
and corealizations, 325 
of bisimplicial sets, 336 
of simplicial resolutions, 334 

Reedy frame, 343, 343-345 
Reedy framed diagram category, 345 
Reedy model category, 288, 277-315 

and cellular model categories, 302-303 
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and cofibrantly generated model categories, 
296-302 
compared, 296-297 

and properness, 289 
cofibrantly generated, 300-302 
Quillen equivalent to cofibrantly generated 

model category structure, 297 
Reedy model category structure, 288-293 
Reedy simplicial frame, 343, 343-345, 423 

contractible classifying space, 344 
existence, 344 
uniqueness, 344 

Reedy trivial cofibration, 289-292 
Reedy trivial fibration, 289-292 
Reedy weak equivalence, 288 
Reedy, C. L., 114, 239 
regular cardinal, 18, 42, 44, 75, 76, 187, 187, 

191, 195, 198, 200, 201, 207, 212, 237 
and smallness, 194 
and transfinite composition, 191 

regular cofibration, 197, 197-201 
regular /-cofibration, 197, 197-201 
reindex, 189, 189 
relative cell complex, 19, 19-20, 74, 74-75, 

85, 85, 89, 197, 197-201, 210 
and cofibrations, 197, 201 
and monomorphism, 213 
of topological spaces, 204 
presentation of, 38, 39, 201 
presented, 202 

subcomplex of, 202 
set of cells, 202 
subcomplex, 38, 203 

relative CW-complex, 204 
relative free cell complex, 223 

and cofibrations, 223 
and Reedy cofibration, 297 

relative /-cell complex, 197, 197-201 
and /-cofibrations, 197 
and retracts, 198 

relative A{/}-cell complex, 19, 20-22 
relative A(K)-cel\ complex, 85, 85, 86 
relative AS-cell complex, 74, 74, 74-75 
relative latching map, 288, 289-292 

and lifting, 291 
trivial cofibration, 291, 292 

relative matching map, 288, 289-292 
and lifting, 291 
trivial fibration, 292 

resolution, 318-323, 338 
and localization, 61 
cosimplicial, 318 

functorial, 319 
functorial, 339 
of a map, 321, 321-322, 339 
of a simplicial set, 335 
simplicial, 318 

functorial, 319 

two-sided constructions, 335 
uniqueness, 320-321 

resolving pair, 356 
left, 356 
right, 356 
two-sided, 356 

restriction of a homotopy, 237 
retract, 9, 12, 22, 89, 108, 200, 211 

and cardinals, 188 
and colocal equivalences, 53 
and compactness, 206, 215 
and homotopy orthogonal maps, 370 
and local equivalences, 53 
and small object factorization, 199 
and smallness, 194 
as a homotopy colimit, 428 
of a cell complex, 212 
of a A-sequence, 200 
of a relative /-cell complex, 198 
of an effective monomorphism, 208 

retract argument, 73, 87, 89, 110, 169, 200 
retract axiom, 109 
right adjoint, 153-158 
right Bousfield localization, 57, 57-69, 8 3 -

91 
and cofibrations, 58, 62 
and right localization, 63 
and right properness, 66 
existence, 83 

right cofinal, 186-187, 285, 418 
and colimits, 186 
functor, 256, 256-258 
A-sequence, 190 
subcategory, 256 
subset, 186 

right derived functor, 47, 151, 151-153, 156 
existence, 151 
total, 152, 155, 158 

and fibrant approximation, 155 
existence, 157 

right homotopic maps, 130, 147 
inducing homotopic maps of homotopy func­

tion complexes, 364 
right homotopy, 115, 115-128, 174 

and cofibrant approximations, 146 
and cofibrant objects, 116 
and fibrant approximations, 146 
and homotopy, 122 
and homotopy fibers, 250 
and homotopy pullbacks, 246 
and left homotopy, 121-123 
and path objects, 121 
and trivial cofibrations, 123 
composition of, 120 
equivalence relation, 121 
inverse, 121 
over an object, 127, 126-128 
preserving, 117, 156, 157 
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under an object, 127, 126-128 
right homotopy classes of maps, 119, 122 

induced maps, 123 
isomorphism of, 123 

right homotopy function complex, 350, 350-
352 

category of, 351 
fibrant, 351 
functorial, 358, 358-359 
uniqueness, 352 

right homotopy lifting extension theorem, 331 
right homotopy orthogonal, 368 

and pullbacks, 372, 374 
and the pullback corner map, 373 
partial two out of three, 373 

right Kan extension, 151, 151-153, 282 
right lifting property, 20, 110, 196 

and colocal equivalence, 53 
and fibrant approximation, 243 
and pullbacks, 113 
and retracts, 112 
and right properness, 243 

right localization, 47, 47-69 
Bousfield, 57 

right proper, 239, 239-252, 416 
and homotopy right lifting property, 244 
sufficient condition, 240 
Top*, 240 
Top, 240 
topological spaces, 240 

right properness 
and fibrant approximations, 247 
and right Bousfield localization, 66 
and right lifting property, 243 

right Quillen equivalence, 157, 157-158 
right Quillen functor, 47-50, 153, 153-158 

and cohorns, 61 
and ends, 410, 414 
and homotopy limits, 415 
and path objects, 156 
and simplicial frames, 341 
and simplicial resolutions, 323—324 
existence of total right derived functor, 

155 
preserving weak equivalences between fi­

brant objects, 154 
right resolving pair, 356 
right to two-sided change of homotopy func­

tion complex map, 355 
functorial, 360 

5-colocal, see also X-colocal and colocal 
5-colocal equivalence, 48, 49 
5-colocal object, 48, 49 
5-local, 65, see also /-local, C-local, and lo­

cal 
5-local cofibration, 72 
5-local equivalence, 48, 49 

detecting, 69 
5-local fibration, 72 
5-local model category structure, 71 
5-local object, 48, 49 
5-local weak equivalence, 72 
5-local Whitehead theorem, 55 
5-localization, 75 

cofibrant, 75 
functor, 76-78 

saturation, 151 
self dual, 110 
sequence 

as a Reedy diagram, 311 
sequential colimits, 376-378 
set of representatives, 46 
set of cells 

of a cell complex, 202 
of a relative cell complex, 202 

set of elements of 5 fiberwise over Z, 95 
set of maps 

bounding the size, 236 
bounding the size of, 236 

set of representatives, 236 
simplicial model category, 37 
simplicial category, 159, 159-161 
simplicial frame, 337, 337-341, 408 

and right Quillen functors, 341 
and simplicial resolutions, 338 
category of 

contractible classifying space, 341 
functorial 

existence, 339 
on a map, 340 
uniqueness, 339 

natural, 406, 408, 409 
on a diagram, 342, 342-345 

uniqueness, 343 
on a map, 339, 340, 411 
on a matching object, 345 
Reedy, 343-345, 423 

contractible classifying space, 344 
existence, 344 
uniqueness, 344 

standard, 338 
uniqueness, 341 

simplicial frame on a diagram 
category of 

contractible classifying space, 342 
simplicial functor, 75-76, 179, 179-183 

colimit of, 183 
extending a functor, 181 

simplicial homotopy, 99, 170, 171, 170-177 
and components of the simplicial mapping 

space, 170 
and composition, 170 
and generalized intervals, 171 
and homotopic maps of simplicial map­

ping spaces, 176 
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and homotopy pullbacks, 246 
and left homotopy, 174 
and right homotopy, 174 
and the homotopy category, 172 
induced by simplicial homotopy of maps 

of simplicial sets, 173 
simplicial homotopy classes of maps, 14 

and simplicial homotopy equivalences, 177 
and weak equivalences, 171 
isomorphism of, 171, 172 

simplicial homotopy equivalence, 14, 171, 
176 

and equivalence of simplicial mapping spaces, 
176 

and isomorphisms of simplicial homotopy 
classes, 177 

and weak equivalence, 173 
detecting, 177 
induced by simplicial homotopy equiva­

lence of simplicial sets, 173 
simplicial indexing category, 278, 279, 309 
simplicial localization functor, 29-31, 75-76 
simplicial mapping space, 6, 8, 159, 384, 

see also function complex and homo­
topy function complex 

as a functor, 160 
as sets of maps, 162 
fibration, 164 
from a colimit, 164 
from a coproduct, 164 
homotopy invariance, 164, 165 
to a limit, 164 
weak equivalence of, 7 

simplicial model category, 75-76, 161, 159-
183, 338, 340, 341, 349, 351 

and colimits, 164 
and coproducts, 164 
and Reedy categories, 289 
cosimplicial frame on, 338 
diagrams 

mapping space, 226 
diagrams in, 225-226 

model category structure, 226 
fibration of simplicial mapping spaces, 164 
resolutions, 318, 319 
simplices of space of maps, 162 
simplicial frame on, 338 
trivial fibration of simplicial mapping spaces, 

164 
weak equivalence of simplicial mapping spaces, 

165, 176-177 
simplicial object, 279 

Bousfield-Kan map from the homotopy co-
limit to the realization, 397 

category of, 318 
constant, 318 
horizontal, 334, 333-336 
iterated degeneracy operator in, 304 

latching object, 285 
matching map of, 325 
matching object of, 325 
partial homotopy lifting extension theo­

rem, 328, 329 
realization, 395, 426 

cofibrant, 396, 426 
homotopy invariance, 396, 426 

realization weakly equivalent to the homo­
topy colimit, 397, 426 

Reedy model category structure, 289 
vertical, 334, 333-336 

simplicial resolution, 318, 323, 318-323, 338, 
350, 352 

and fibrant approximation, 319 
and path objects, 319 
and right Quillen functors, 323-324 
and simplicial frames, 338 
category of, 320 
contractible classifying space, 320 
existence, 322 
functorial, 319 

existence, 319 
uniqueness, 321 

in a simplicial model category, 318, 319 
map of, 320 

existence, 320 
weak equivalence, 320 

of a map, 321, 321-322 
recognizing, 323 
uniqueness, 320-321 

simplicial set, 6, 135 
and smallness, 194 
and topological spaces, 7, 24-29 
as a homotopy colimit, 400 
as a simplicial category, 161 
as a simplicial model category, 162 
category of 

proper, 242 
cofibrantly generated, 211 
colimit of its diagram of simplices, 280 
compactness, 206, 215 
decomposing via a map, 401, 428 
diagram of, 271-275 
inclusion of 

as a transfmite composition, 191 
left proper, 240 
map of 

decomposing, 428 
pointed 

as a simplicial model category, 162 
weakly equivalent to the classifying space 

of its category of simplices, 401 
simplicial simplicial set, 303-305, see also 

bisimplicial set 
Simpson, C , 232 
singular functor, 7 
size, 79-81, 216 



450 INDEX 

of a cell complex, 43, 46, 202 
and factorization, 236 

of a natural cylinder object, 237 
of a relative cell complex, 202 
of a subcomplex, 43-45, 206 
of the cells, 80, 234, 236 

skeleton, 38 
of a cell complex, 202 
of a relative cell complex, 202 

small, 75, 76, 212 
relative to D, 194 
relative to / , 198 

small category, 264 
small enough, 42, 78, 79 
small object, 194 
small object argument, 17-19, 21, 29-30, 198, 

196-201 
permits, 198, 224 

small object factorization, 199, 198-201 
and retracts, 199 

small subcategory, 258 
small subcomplex, 216 
smallness, 194, 194-196, 231 

and colimits, 195 
and compactness, 207 
and relative cell complexes, 198 
and retracts, 194 
and sets of objects, 194 
and simplicial sets, 194 
and transfinite compositions, 196 
in a cofibrantly generated model category, 

212 
in cellular model categories, 235-236 
relative to cofibrations, 201 
simplicial set, 194 
topological spaces, 194 

Smith, J. H., xiii, 42, 73, 78 
space, 6, 5-6 

cell complex 
compact subset of, 205 

compactness, 215 
notation, 6, 135 
pointed or unpointed, 398-400 
relative cell complex, 204 

space of maps 
between mapping spaces, 385 

Spc ( #) , 8 
of a simplicial set, 8 

SS(*) 
proper, 242 

standard cosimplicial frame, 338, 338, 343 
standard framing, 341 
standard simplex, 279 

as a classifying space, 254 
boundary, 298 
deformation retraction to a point, 173 
simplicially contractible, 173 
weak equivalences, 174 

standard simplicial frame, 338, 338, 343 
strict simplicial homotopy, 170 
strong deformation retract, 45, 77, 127, 131 
subcategory 

small, 258 
subcomplex, 201-204, 216 

and factorizations, 235 
and fibrant approximation, 77 
and monomorphism, 203-204 
constructing, 39, 203 
determined by its set of cells, 203, 232 
finite, 206 
generated by a cell, 40 
in Top()|t) 

finite, 206 
intersection of, 40 
localization of, 76-78 
of a presented cell complex, 202 
of a presented relative cell complex, 202 
of a relative cell complex, 38, 38-42 

natural presentation, 39 
of the localization, 40-42 
size of, 206 
small, 43, 216 

subcomplexes 
in a cellular model category, 232-234 
intersection, 233, 233-234 

Succ, 187, 237 
successor cardinal, 187, 187 

tensor 
with a set, 221, 221 
with a simplicial set, 221, 225, 324-326 

and colimits, 163 
and local equivalence, 54 
associativity, 162 
eofibration, 166 
left adjoint to exponentiation, 161 

tensor product 
and pushouts, 191-193 
and transfinite composition, 191-193 
of functors, 386, 386-394, 407, see also 

coend 
adjointness, 388 
and adjointness, 410 

tensor with a simplicial set, 324 
terminal, 186-187 

subset, 186 
terminal functor, 256, 257, see also right 

cofinal functor 
terminal object 

and contractible classifying space, 260 
and homotopy colimits, 420 
and natural transformations, 260 

terminal subcategory, 256 
Theorem A, 422 
Top(*} 

proper, 242 
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weak equivalence in, 241 
topological space, 5, 5, 6, 135, 204-206, 241-

242 
and simplicial sets, 7, 24-29 
and smallness, 194 
as a simplicial model category, 163 
category of 

proper, 242 
cell complex, 204 
cofibrantly generated, 211 
compactness, 206, 215 
pointed 

as a simplicial model category, 163 
relative cell complex, 204 

compact subset of, 205 
right proper, 240 
weak equivalence, 241 

total derived functor, 49, 152-153 
adjoint ness, 157 
and localization, 51 

total left derived functor, 47, 49, 152, 152-
153, 155 

and cofibrant approximation, 155 
existence, 153, 155, 157 

total object, 426 
of a cosimplicial object, 395 

total object of a cosimplicial object 
fibrant, 396, 426 
homotopy invariance, 396, 426 
weakly equivalent to the homotopy limit, 

397, 398, 426 
total right derived functor, 47, 49, 152, 152-

153, 155 
and fibrant approximation, 155 
existence, 153, 155, 157 

total singular complex, 7, 15-16, 24-29, 158 
and diagram categories, 225 
and ends, 402 
and homotopy colimit, 402 
and homotopy fiber, 250 
and homotopy limit, 402 
and pushouts, 251 
and total space of a cosimplicial space, 402 

total space of a cosimplicial space, 395 
and total singular complex, 402 
fibrant, 396 
homotopy invariance, 396 
weakly equivalent to the homotopy limit, 

397, 398 
totally ordered set, 53, 186, 193, 194 

well ordered subset, 187 
transfinite composition, 13, 17-20, 98, 188, 

188-193, 198, 204, 272 
and coproducts, 189, 191 
and homotopy left lifting property, 193 
and inclusion of simplicial sets, 191 
and lifting, 193-194 
and local equivalence, 54 

and regular cardinals, 191 
and simplicial model categories, 191-193 
and smallness, 196 
identifying, 189 
of transfinite compositions, 190, 191 

transfinite induction, 41-43, 77, 90, 193, 216, 
237, 375 

trivial cofibration, 109 
and coproducts, 111 
and A-sequences, 193 
and lifting, 111 
and pushouts, 113 
characterization of, 111 
closure under transfinite composition, 193 
generating, 210 
in a cofibrantly generated model category, 

211 
in a simplicial model category 

characterizing, 167 
preserving, 115, 153 
Reedy, 289-292 

trivial fibration, 109 
and injectives, 197 
and lifting, 111 
and products, 111 
and pullbacks, 113 
characterization of, 111 
in a cofibrantly generated model category, 

211 
in a simplicial model category 

characterizing, 167 
preserving, 115, 153 
Reedy, 289-292 

two out of three, 109 
for colocal equivalences, 52 
for local equivalences, 52 
partial, 373 

two-sided homotopy function complex, 352, 
352-353 

fibrant, 352 
functorial, 359, 359 

two-sided homotopy function complexes 
category of, 353, 353 
uniqueness, 353 

two-sided homotopy lifting extension theo­
rem, 336 

two-sided resolving pair, 356 

under-over-category, 126 
undercategory, 125, 125-128, 227, 226-228, 

284, 349, 351-355 
and model category structures, 126 
classifying space of, 255, 256 
classifying space of opposite of 

and free diagrams, 421 
as a homotopy colimit, 421 

contractible classifying space, 269 
diagram of, 268, 269, 401 
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Reedy cofibrant, 297 
diagram of opposites, 268 
diagram of opposites of, 268-269 

cofibrant approximation to the constant 
diagram at a point, 273 

Reedy cofibrant approximation to the 
constant diagram at a point, 297 

induced functor, 126 
opposite, 227, 228 

isomorphic to overcategory, 270, 271 
opposite of 

diagram of, 271 
underlying space 

of a category, 383 
uniform compactness, 234 
uniqueness 

of cofibrant approximations, 266, 267 
of fiberwise localization, 99 
of fibrant approximations, 266, 267 
of functorial cofibrant approximations, 267 
of functorial fibrant approximations, 267 
of functorial homotopy function complexes, 

361 
of functors over X, 265 
of functors under X , 265 
of homotopy equivalences, 262 

universal cover, 241 
universal mapping property of localization, 

47 
universe, 258, 263, 264 
unpointed 

equivalence, 31 
/-local, 31, 31-34 
function complex, 31, 32 
localization, 31 
spaces 

and colocalization, 51 

vertical simplicial object, 334, 333-336 
matching object of, 334 

weak equivalence, 109, 129-130, 132, 174 
and colimits, 376 
and existence of maps, 130 
and homotopy, 130 
and homotopy equivalence, 124 
and homotopy function complexes, 366, 

367 
and homotopy orthogonal maps, 372 
and homotopy pullbacks, 244, 245 
and induced map of simplicial mapping 

space, 178, 179 
and local equivalences, 49, 56 
and simplicial homotopy classes of maps, 

171 
between cofibrant-fibrant objects, 124 
characterizing, 111 
detecting, 133, 177-179, 366, 367, 374 

via homotopy orthogonal maps, 372 

equivalence relation generated by, 133 
if and only if an isomorphism in the ho­

motopy category, 151 
induces a weak equivalence of homotopy 

function complexes, 363 
induces isomorphism of homotopy classes, 

130 
localizing, 147 
natural, 134 
objectwise, 224 
of classifying spaces, 423 
of cofibrant objects, 172 
of colimits, 311 
of fibrant objects, 172 
of function complexes, 8, 16-17 

and homotopy lifting, 168 
of homotopy function complexes, 362 

and homotopy classes of maps, 366 
and homotopy orthogonal maps, 370 
and lifting maps, 366 
and pullbacks, 373 
and pushouts, 373 

of limits, 311 
of realizations of bisimplicial sets, 315 
of simplicial mapping space 

independent of cofibrant approximation, 
178 

independent of fibrant approximation, 
178 

of simplicial mapping spaces, 176-177 
and the pullback corner map, 166 
and the pushout corner map, 166 

of topological spaces, 241 
and attaching a cell, 241 
characterizing, 241 

preservation by limits and colimits, 310 
preservation by pushouts and pullbacks, 

311 
preserving, 129 
pullback of, 239 
pushout of, 239 
resolution is a weak equivalence, 322 

weak Hausdorff, 5, 134 
weakly equivalent, 134 

naturally, 134 
well ordered 

subset of a totally ordered set, 187 
well ordered set, 186, 189 
well pointed, 398 
Whitehead theorem, 124 

colocal, 55 
local, 14, 55 

Yoneda lemma, 219, 221 

zig-zag, 133 
and edge path groupoid, 261 
composition of, 261 
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determining a homotopy equivalence, 262, 
262 

equivalent, 260 
essentially unique, 261, 265-267, 321, 339, 

341, 343, 344, 350, 352, 353, 357-359, 
361, 390, 393, 398, 412, 425 
and contractible classifying spaces, 261 

Zorn's lemma, 46, 80, 205 
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