Random Walk Intersections
Large Deviations and Related Topics

Xia Chen

American Mathematical Society
Random Walk Intersections

Large Deviations and Related Topics
Random Walk Intersections
Large Deviations and Related Topics

Xia Chen
This work was supported in part by NSF Grant DMS-0704024

For additional information and updates on this book, visit www.ams.org/bookpages/surv-157

Library of Congress Cataloging-in-Publication Data
Chen, Xia, 1956-.
Random walk intersections : large deviations and related topics / Xia Chen.
p. cm.—(Mathematical surveys and monographs ; v. 157)
Includes bibliographical references and index.
1. Random walks (Mathematics) 2. Large deviations. I. Title.
QA274.73.C44 2009
519.2'82–dc22 2009026903

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2010 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10
To the memory of my great grandmother Ding, Louyi
Contents

Preface ix

Chapter 1. Basics on large deviations 1
 1.1. Gärtner-Ellis theorem 1
 1.2. LDP for non-negative random variables 8
 1.3. LDP by sub-additivity 19
 1.4. Notes and comments 22

Chapter 2. Brownian intersection local times 25
 2.1. Introduction 25
 2.2. Mutual intersection local time 27
 2.3. Self-intersection local time 42
 2.4. Renormalization 48
 2.5. Notes and comments 53

Chapter 3. Mutual intersection: large deviations 59
 3.1. High moment asymptotics 59
 3.2. High moment of $\alpha([0, \tau_1] \times \cdots \times [0, \tau_p])$ 67
 3.3. Large deviation for $\alpha([0,1]^p)$ 77
 3.4. Notes and comments 84

Chapter 4. Self-intersection: large deviations 91
 4.1. Feynman-Kac formula 91
 4.2. One-dimensional case 102
 4.3. Two-dimensional case 111
 4.4. Applications to LIL 121
 4.5. Notes and comments 126

Chapter 5. Intersections on lattices: weak convergence 133
 5.1. Preliminary on random walks 133
 5.2. Intersection in 1-dimension 139
 5.3. Mutual intersection in sub-critical dimensions 145
 5.4. Self-intersection in dimension two 160
 5.5. Intersection in high dimensions 164
 5.6. Notes and comments 171

Chapter 6. Inequalities and integrabilities 177
 6.1. Multinomial inequalities 177
 6.2. Integrability of I_n and J_n 187
 6.3. Integrability of Q_n and R_n in low dimensions 191
 6.4. Integrability of Q_n and R_n in high dimensions 198
CONTENTS

6.5. Notes and comments 204

Chapter 7. Independent random walks: large deviations 207
 7.1. Feynman-Kac minorations 207
 7.2. Moderate deviations in sub-critical dimensions 222
 7.3. Laws of the iterated logarithm 226
 7.4. What do we expect in critical dimensions? 230
 7.5. Large deviations in super-critical dimensions 231
 7.6. Notes and comments 247

Chapter 8. Single random walk: large deviations 253
 8.1. Self-intersection in one dimension 253
 8.2. Self-intersection in $d = 2$ 257
 8.3. LDP of Gaussian tail in $d = 3$ 264
 8.4. LDP of non-Gaussian tail in $d = 3$ 270
 8.5. LDP for renormalized range in $d = 2, 3$ 278
 8.6. Laws of the iterated logarithm 287
 8.7. What do we expect in $d \geq 4$? 289
 8.8. Notes and comments 291

Appendix 297
 A. Green’s function 297
 B. Fourier transformation 299
 C. Constant $\kappa(d, p)$ and related variations 303
 D. Regularity of stochastic processes 309
 E. Self-adjoint operators 313

Bibliography 321

List of General Notations 329

Index 331
Preface

This book aims to provide a systematic account for some recent progress on the large deviations arising from the area of sample path intersections, including calculation of the tail probabilities of the intersection local times, the ranges and the intersections of the ranges of random walks and Brownian motions. The phrase “related topics” appearing in the title of the book mainly refers to the weak law and the law of the iterated logarithm for these models. The former is the reason for certain forms of large deviations known as moderate deviations; while the latter appears as an application of the moderate deviations.

Quantities measuring the amount of self-intersection of a random walk, or of mutual intersection of several independent random walks have been studied intensively for more than twenty years; see e.g. [57], [59], [124], [125], [116], [22], [131], [86], [135][136], [17], [90], [11], [10], [114]. This research is often motivated by the role that these quantities play in renormalization group methods for quantum field theory (see e.g. [78], [51], [52], [64]); our understanding of polymer models (see e.g. [134], [19], [96], [98] [162], [165], [166], [167], [63], [106], [21], [94], [93]); or the analysis of stochastic processes in random environments (see e.g. [107], [111], [43], [44] [82], [95], [4], [42] [79], [83]).

Sample path intersection is also an important subject within the probability field. It has been known ([48], [138], [50]) that sample path intersections have a deep link to the problems of cover times and thick points through tree-encoding techniques. In addition, it is impossible to write a book on sample path intersection without mentioning the influential work led by Lawler, Schramm and Werner ([118], [119], [120], [117]) on the famous intersection exponent problem and on other Brownian sample path properties in connection to the Stochastic Loewner Evolution, which counts as one of the most exciting developments made in the fields of probability in recent years.

Contrary to the behavior patterns investigated by Lawler, Schramm and Werner, where the sample paths avoid each other and are loop-free, most of this book is concerned with the probability that the random walks and Brownian motions intersect each other or themselves with extreme intensity. When these probabilities decay at exponential rates, the problem falls into the category of large deviations. In recent years, there has been some substantial input about the new tools and new ideas for this subject. The list includes the method of high moment asymptotics, sub-additivity created by moment inequality, and the probability in Banach space combined with the Feynman-Kac formula. Correspondent to the progress in methodology, established theorems have been accumulated into a rather complete
picture of this field. These developments make it desirable to write a monograph on this subject which has not been adequately exposed in a systematic way.

This book was developed from the lecture notes of a year-long graduate course at the University of Tennessee. Making it accessible to non-experts with only basic knowledge of stochastic processes and functional analysis has been one of my guidelines in writing it. To make it reasonably self-contained, I added Chapter 1 for the general theory of large deviations. Most of the theorems listed in this chapter are not always easy to find in literature. In addition, a few exercises are included in the “Notes and comments” section in each chapter, an effort to promote active reading. Some of them appear as extensions of, or alternative solutions to the main theorems addressed in the chapter. Others are not very closely related to the main results on the topic, such as the exercises concerning small ball probabilities, but are linked to our context by sharing similar ideas and treatments. The challenging exercises are marked with the word “hard”. The mainspring of the book does not logically depend on the results claimed in the exercises. Consequently, skipping any exercise does not compromise understanding the book.

The topics and results included in the book do reflect my taste and my involvement on the subject. The “Notes and comments” section at the end of each chapter is part of the effort to counterbalance the resulted partiality. Some relevant works not included in the other sections may appear here. In spite of that, I would like to apologize in advance for any possible inaccuracy of historic perspective appearing in the book.

In the process of investigating the subject and writing the book, I benefitted from the help of several people. It is my great pleasure to acknowledge the contributions, which appear throughout the whole book, made by my collaborators R. Bass, W. Li, P. M"orters and J. Rosen in the course of several year's collaboration. I would like to express my special thanks to D. Khoshnevisan, from whom I learned for the first time the story about intersection local times. I thank A. Dembo, J. Denzler, A. Dorogovtsev, B. Duplantier, X. B. Feng, S. Kwapien, J. Rosinski, A. Freire, J-F. Le Gall, D. S. Wu, M. Yor for discussion, information, and encouragement. I appreciate the comments from the students who attended a course based on a preliminary version of this book, Z. Li, J. Grieves and F. Xing in particular, whose comments and suggestions resulted in a considerable reduction of errors. I am grateful to M. Saum for his support in resolving the difficulties I encountered in using latex.

I would like to thank the National Science Foundation for the support I received over the years and also the Department of Mathematics and Department of Statistics of Standford University for their hospitality during my sabbatical leave in Fall, 2007. A substantial part of the manuscript was written during my visit at Standford. Last and most importantly, I wish to express my gratitude to my family, Lin, Amy and Roger, for their unconditional support.
Bibliography

324 BIBLIOGRAPHY

List of General Notations

$(\Omega, \mathcal{A}, \mathbb{P})$ a complete probability space
$1_A(\cdot)$ indicator on A
Δ Laplacian operator
$\delta_x(\cdot)$ Dirac function at x
\emptyset empty set
$\lambda \cdot x$ inner product between $\lambda, x \in \mathbb{R}^d$
$\langle \cdot, \cdot \rangle$ inner product in Hilbert space
∇ gradient operator
\mathbb{R}, \mathbb{R}^d real line, d-dimensional Euclidean space
\mathbb{R}^+ set of all non-negative numbers
Σ_m group of the permutations on $\{1, \cdots, m\}$
$\hat{f}(\lambda)$ Fourier transform of $f(x)$
\mathbb{Z}, \mathbb{Z}^d set of integers, d-dimensional lattice space
\mathbb{Z}^+ set of all non-negative integers
$C(T)$ space of real continuous functions on T
$C(T, \mathbb{R}^d)$ space of continuous functions on T taking values in \mathbb{R}^d
$L^p(\mathbb{Z}^d)$ space of all p-square summable functions on \mathbb{Z}^d
$W^{1,2}(\mathbb{R}^d)$ space of the functions f such that $f, \nabla f \in L^2(\mathbb{R}^d)$
$\mathcal{F}_d, \mathcal{F}$ subspace of $W^{1,2}(\mathbb{R}^d)$ with $|f|_2 = 1, \mathcal{F} = \mathcal{F}_1$
$L^p(\mathbb{R}^d)$ space of all p-square Lebesgue-integrable functions on \mathbb{R}^d
$L^p(E, \mathcal{E}, \pi)$ space of all p-square integrable functions on (E, \mathcal{E}, π)
a.s. almost surely
additive functional of random walk, 178, 284
adjoint operator, 314
aperiodic random walk, 134
Arzelà-Ascoli theorem, 311
Bessel identity, 299
Bessel-Clifford function of the second kind, 297
beta function, 307
Borel-Cantelli lemma, 82
extended Borel-Cantelli lemma, 82
Brownian motion, 25
Cameron-Martin formula, 127
Chapman-Kolmogorov equation, 172
Chung’s law of the iterated logarithm, 132
compound Poisson process, 292
convolution, 28, 300, 301
Cramér’s large deviation principle, 6
critical dimensions, 145
densely defined linear operator, 314
Dirac function, 25, 28
Dirichlet form, 95
Donsker-Varadhan’s large deviations, 128
entropy condition, 310
entropy method, 309
equicontinuity, 311
essential smoothness on \(\mathbb{R}^+ \), 11
essentially smooth function, 2
exponential moment generating function, 12
exponential Tauberian theorem, 24
exponential tightness, 7
Fenchel-Legendre transform, 2
Feynman-Kac formula, 91, 93
first entry formula, 137
Fourier inversion, 299, 300
Fourier transform, 299, 302
Fourier transformation, 95
Friedrichs’ extension theorem, 94, 315
Gärtner-Ellis theorem on large deviations, 5
Gagliardo-Nirenberg inequality, 77, 86
good rate function, 2
Green’s function, 27, 297
— of random walk, 235, 236
partial — of random walk, 135
ground state solution, 86, 131
high moment asymptotics, 59, 86
hitting time, 137, 152
i.i.d. sequence, 6
increment functional of random walk, 178
infinitesimal generator, 93, 94
intersection local time, 25
\(p \)-multiple self —, 46
— of random walks, 177
double self —, 160
mutual —, 26, 27, 36
mutual — of random walks, 133, 144, 145, 187
renormalized \(p \)-multiple self—, 58, 132
renormalized self —, 48, 53, 111, 161, 177, 257
self —, 26
self — of random walk, 133
intersection of independent ranges, 133, 145, 177, 187
isometric linear operator, 299
Kolmogorov’s continuity theorem, 35, 310, 313
Lévy process, 251
Lagrange multiplier, 305, 307
large deviation principle (LDP), 5
law of the iterated logarithm (LIL), 81, 121
— for Brownian motions, 83
Le Gall’s moment identity, 33
local time, 36, 37, 102, 139, 152
logarithmic moment generating function, 1, 24
lower semi-continuity, 2
Markov process, 56

Index
irreducible —, 84
symmetric —, 85
transition probability of —, 56
Minkowski functional, 8
moderate deviation, 222, 248
modification of stochastic processes, 35
continuous modification, 35, 52
modified Bessel equation, 297
multinomial inequality, 181
non-negative operator, 93, 98
occupation measure, 36
Orlicz norm, 309
Orlicz space, 309
Parseval identity, 299, 301, 302
period of random walk, 134
periodic function, 134, 301, 302
Plancherel-Parseval theorem, 54, 302
Poisson process, 22
polymer models, 111
positively balanced set, 8
probability of no return, 138
projection operator, 315
Prokhorov criterion, 310
Radon measure, 44
random walk, 133
random walk in random scenery, 174, 292
range of random walk, 133, 160, 177
rapidly decreasing function, 93, 300, 301
rate function, 2
recurrence, 138
renormalization, 48
resolution of identity, 97, 315, 317
resolvent approximation, 136
resolvent equation, 306
resolvent random walk, 136
reverse Markov inequality, 57
Schwartz space, 94, 300
self-adjoint operator, 61, 209, 314
function of self-adjoint operator, 318
self-attracting polymer, 26
self-repelling polymer, 26
semi-bounded operator
 lower —, 315
 upper —, 94, 315
semi-group, 92
simple random walk, 134, 145
small ball probability, 23
Sobolev inequality, 303
Sobolev space, 303
spectral decomposition, 314
spectral integral, 96, 316
spectral integral representation, 61, 210,
 314, 317
spectral measure, 97, 315
spherically symmetric function, 131
steep function, 3
sub-additive functional of random walk, 178
sub-additive sequence, 19
deterministic —, 19
sub-additive stochastic process, 21
sub-additivity, 1, 91, 117
sub-critical dimensions, 145
super-critical dimensions, 145, 173
symmetric operator, 92, 94, 208, 314
thick point, 173
topological dual space, 107
transience, 138
triangular approximation, 49, 50, 161, 192,
 258
uniform exponential integrability, 18
uniform tightness, 8, 139, 310
Varadhan’s integral lemma, 6
Wiener sausage, 249, 291, 293, 294
Young function, 309
Titles in This Series

157 Xia Chen, Random walk intersections: Large deviations and related topics, 2010
155 Yiannis N. Moschovakis, Descriptive set theory, 2009
154 Andreas Čap and Jan Slovák, Parabolic geometries I: Background and general theory, 2009
153 Habib Ammari, Hyeonbae Kang, and Hyundae Lee, Layer potential techniques in spectral analysis, 2009
152 János Pach and Micha Sharir, Combinatorial geometry and its algorithmic applications: The Alcàla lectures, 2009
151 Ernst Binz and Sonja Pods, The geometry of Heisenberg groups: With applications in signal theory, optics, quantization, and field quantization, 2008
150 Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite dimensional algebras and quantum groups, 2008
149 Gerald B. Folland, Quantum field theory: A tourist guide for mathematicians, 2008
148 Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, 2008
147 David J. Benson and Stephen D. Smith, Classifying spaces of sporadic groups, 2008
146 Murray Marshall, Positive polynomials and sums of squares, 2008
145 Tuna Altinel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, 2008
143 Alexander Molev, Yangians and classical Lie algebras, 2007
142 Joseph A. Wolf, Harmonic analysis on commutative spaces, 2007
141 Vladimir Maz’ya and Gunther Schmidt, Approximate approximations, 2007
140 Elisabetta Barletta, Sorin Dragomir, and Krishan L. Duggal, Foliations in Cauchy-Riemann geometry, 2007
139 Michael Tsfasman, Serge Vlăduţ, and Dmitry Nogin, Algebraic geometric codes: Basic notions, 2007
138 Kehe Zhu, Operator theory in function spaces, 2007
137 Mikhail G. Katz, Systolic geometry and topology, 2007
136 Jean-Michel Coron, Control and nonlinearity, 2007
134 Dana P. Williams, Crossed products of C^*-algebras, 2007
133 Andrew Knightly and Charles Li, Traces of Hecke operators, 2006
132 J. P. May and J. Sigurdsson, Parametrized homotopy theory, 2006
131 Jin Feng and Thomas G. Kurtz, Large deviations for stochastic processes, 2006
130 Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, 2006
129 William M. Singer, Steenrod squares in spectral sequences, 2006
127 Nikolai Chernov and Roberto Markarian, Chaotic billiards, 2006
126 Sen-Zhong Huang, Gradient inequalities, 2006
124 Ido Efrat, Editor, Valuations, orderings, and Milnor K-Theory, 2006
TITLES IN THIS SERIES

123 Barbara Fantechi, Lothar Götttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck’s FGA explained, 2005
122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and asymptotic methods, 2005
121 Anton Zettl, Sturm-Liouville theory, 2005
120 Barry Simon, Trace ideals and their applications, 2005
119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, 2005
118 Alexandru Buium, Arithmetic differential equations, 2005
117 Volodymyr Nekrashevych, Self-similar groups, 2005
116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005
115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005
114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005
113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, 2004
112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004
111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004
110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004
109 Goro Shimura, Arithmetic and analytic theories of quadratic forms and Clifford groups, 2004
108 Michael Farber, Topology of closed one-forms, 2004
107 Jens Carsten Jantzen, Representations of algebraic groups, 2003
106 Hiroyuki Yoshida, Absolute CM-periods, 2003
105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003
103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanrê, Lusternik-Schnirelmann category, 2003
102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003
101 Eli Glasner, Ergodic theory via joinings, 2003
100 Peter Duren and Alexander Schuster, Bergman spaces, 2004
99 Philip S. Hirschhorn, Model categories and their localizations, 2003
98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002
96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002
95 Seiichi Kamada, Braid and knot theory in dimension four, 2002
94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
The material covered in this book involves important and non-trivial results in contemporary probability theory motivated by polymer models, as well as other topics of importance in physics and chemistry. The development carefully provides the basic definitions of mutual intersection and self-intersection local times for Brownian motions and the accompanying large deviation results. The book then proceeds to the analogues of these concepts and results for random walks on lattices of \mathbb{R}^d. This includes suitable integrability and large deviation results for these models and some applications. Moreover, the notes and comments at the end of the chapters provide interesting remarks and references to various related results, as well as a good number of exercises. The author provides a beautiful development of these subtle topics at a level accessible to advanced graduate students.