Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Ramsey Theory for Product Spaces

About this Title

Pandelis Dodos, University of Athens, Athens, Greece and Vassilis Kanellopoulos, National Technical University of Athens, Athens, Greece

Publication: Mathematical Surveys and Monographs
Publication Year: 2016; Volume 212
ISBNs: 978-1-4704-2808-2 (print); 978-1-4704-3017-7 (online)
DOI: https://doi.org/10.1090/surv/212
MathSciNet review: MR3469779
MSC: Primary 03-02; Secondary 03E02, 05-02, 05D10

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

Part 1. Coloring theory

Part 2. Density theory

Part 3. Appendices

References [Enhancements On Off] (What's this?)

References
  • M. Ajtai and E. Szemerédi, Sets of lattice points that form no squares, Stud. Sci. Math. Hungar. 9 (1974), 9–11.
  • N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the regularity lemma, J. Algorithms 16 (1994), 80–109.
  • N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs, Combinatorica 20 (2000), 451–476.
  • N. Alon and J. Spencer, The Probabilistic Method, 2nd edition, John Wiley & Sons, 2000.
  • S. A. Argyros, V. Felouzis and V. Kanellopoulos, A proof of Halpern–Läuchli partition theorem, Eur. J. Comb. 23 (2002), 1–10.
  • T. Austin, Deducing the density Hales–Jewett theorem from an infinitary removal lemma, J. Theor. Probab. 24 (2011), 615–633.
  • T. Austin and T. Tao, On the testability and repair of hereditary hypergraph properties, Random Struct. Algorithms 36 (2010), 373–463.
  • J. E. Baumgartner, A short proof of Hindman’s theorem, J. Comb. Theory, Ser. A 17 (1974), 384–386.
  • F. A. Behrend, On sets of integers which contain no three in arithmetic progression, Proc. Natl. Acad. Sci. USA 23 (1946), 331–332.
  • V. Bergelson, “Ergodic Ramsey theory—an update”, in Ergodic Theory of $\mathbb {Z}^d$-Actions, London Mathematical Society Lecture Note Series, Vol. 228, Cambridge University Press, 1996, 1–61.
  • V. Bergelson, A. Blass and N. Hindman, Partition theorems for spaces of variable words, Proc. Lond. Math. Soc. 68 (1994), 449–476.
  • V. Bergelson and A. Leibman, Set-polynomials and polynomial extension of the Hales–Jewett theorem, Ann. Math. 150 (1999), 33–75.
  • A. Blass, A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (1981), 271–277.
  • A. Blass, Ultrafilters: where topological dynamics $=$ algebra $=$ combinatorics, Topology Proc. 18 (1993), 33–56.
  • T. F. Bloom, A quantitative improvement for Roth’s theorem on arithmetic progressions, preprint (2014), available at \verb"arXiv:1405.5800".
  • R. Bicker and B. Voigt, Density theorems for finitistic trees, Combinatorica 3 (1983), 305–313.
  • P. Billingsley, Probability and Measure, 3rd edition, John Wiley $\&$ Sons, 1995.
  • B. Bollobás and V. Nikiforov, “An abstract regularity lemma”, in Building Bridges, Bolyai Society Mathematical Studies, Vol. 19, Springer, 2008, 219–240.
  • T. J. Carlson, Some unifying principles in Ramsey theory, Discr. Math. 68 (1988), 117–169.
  • T. J. Carlson and S. G. Simpson, A dual form of Ramsey’s theorem, Adv. Math. 53 (1984), 265–290.
  • D. Conlon, A new upper bound for diagonal Ramsey numbers, Ann. Math. 170 (2009), 941–960.
  • P. Dodos, V. Kanellopoulos and N. Karagiannis, A density version of the Halpern–Läuchli theorem, Adv. Math. 244 (2013), 955–978.
  • P. Dodos, V. Kanellopoulos and Th. Karageorgos, Szemerédi’s regularity lemma via martingales, preprint (2014), available at \verb"arXiv:1410.5966".
  • P. Dodos, V. Kanellopoulos and K. Tyros, Dense subsets of products of finite trees, Int. Math. Res. Not. 4 (2013), 924–970.
  • P. Dodos, V. Kanellopoulos and K. Tyros, A simple proof of the density Hales–Jewett theorem, Int. Math. Res. Not. 12 (2014), 3340–3352.
  • P. Dodos, V. Kanellopoulos and K. Tyros, A density version of the Carlson–Simpson theorem, J. Eur. Math. Soc. 16 (2014), 2097–2164.
  • P. Dodos, V. Kanellopoulos and K. Tyros, Measurable events indexed by words, J. Comb. Theory, Ser. A 127 (2014), 176–223.
  • P. Dodos, V. Kanellopoulos and K. Tyros, A concentration inequality for product spaces, J. Funct. Anal. 270 (2016), 609–620; available at \verb"arXiv:1410.5965".
  • G. Elek and B. Szegedy, A measure-theoretic approach to the theory of dense hypergraphs, Adv. Math. 231 (2012), 1731–1772.
  • M. Elkin, An improved construction of progression-free sets, Israel J. Math. 184 (2011), 93–128.
  • E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symb. Logic 39 (1974), 163–165.
  • P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.
  • P. Erdős, “Problems and results on graphs and hypergraphs: similarities and differences”, in Mathematics of Ramsey Theory, Algorithms and Combinatorics, Vol. 5, Springer, 1990, 12–28.
  • P. Erdős, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Comb. 2 (1986), 113–121.
  • P. Erdős and A. Hajnal, Some remarks on set theory, IX. Combinatorial problems in measure theory and set theory, Mich. Math. Journal 11 (1964), 107–127.
  • P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. 2 (1952), 417–439.
  • P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935), 463–470.
  • P. Frankl and V. Rödl, The uniformity lemma for hypergraphs, Graphs Comb. 8 (1992), 309–312.
  • P. Frankl and V. Rödl, Extremal problems on set systems, Random Struct. Algorithms 20 (2002), 131–164.
  • A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica 19 (1999), 175–220.
  • Z. Füredi, “Extremal hypergraphs and combinatorial geometry”, in Proceedings of the International Congress of Mathematicians, Vol. 2, Birkhäuser, 1995, 1343–1352.
  • H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204–256.
  • H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Anal. Math. 31 (1978), 275–291.
  • H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Anal. Math. 45 (1985), 117–168.
  • H. Furstenberg and Y. Katznelson, Idempotents in compact semigroups and Ramsey theory, Israel J. Math. 68 (1989), 257–270.
  • H. Furstenberg and Y. Katznelson, A density version of the Hales–Jewett theorem, J. Anal. Math. 57 (1991), 64–119.
  • H. Furstenberg and B. Weiss, Markov processes and Ramsey theory for trees, Comb. Prob. Comput. 12 (2003), 547–563.
  • F. Galvin, A generalization of Ramsey’s theorem, Notices Amer. Math. Soc. 15 (1968), 548.
  • F. Galvin, Partition theorems for the real line, Notices Amer. Math. Soc. 15 (1968), 660.
  • F Galvin and K. Prikry, Borel sets and Ramsey’s theorem, J. Symb. Logic 38 (1973), 193–198.
  • W. T. Gowers, Lipschitz functions on classical spaces, Eur. J. Comb. 13 (1992), 141–151.
  • W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal. 7 (1997), 322–337.
  • W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465–588.
  • W. T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Comb. Prob. Comput. 15 (2006), 143–184.
  • W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. Math. 166 (2007), 897–946.
  • W. T. Gowers, “Erdős and arithmetic progressions”, in Erdős Centennial, Bolyai Society Mathematical Studies, Vol. 25, Springer, 2013, 265–287.
  • R. L. Graham, K. Leeb and B. L. Rothschild, Ramsey’s theorem for a class of categories, Adv. Math. 8 (1972), 417–433.
  • R. L. Graham and V. Rödl, “Numbers in Ramsey theory”, in Surveys in Combinatorics, 1987, London Mathematical Society Lecture Note Series, Vol. 123, Cambridge University Press, 1987, 111–153.
  • R. L. Graham and B. L. Rothschild, Ramsey’s theorem for $n$-parameter sets, Trans. Amer. Math. Soc. 159 (1971), 257–292.
  • R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, 2nd edition, John Wiley & Sons, 1980.
  • B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math. 167 (2008), 481–547.
  • A. Grzegorczyk, Some classes of recursive functions, Diss. Math. 4 (1953), 1–45.
  • A. H. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222–229.
  • J. D. Halpern and H. Läuchli, A partition theorem, Trans. Amer. Math. Soc. 124 (1966), 360–367.
  • J. D. Halpern and A. Lévy, The boolean prime ideal theorem does not imply the axiom of choice, Proceedings of the Symposium in Pure Mathematics, Vol. 13, part I, American Mathematical Society, Providence, R. I., 1967, 83–134.
  • N. Hindman, Finite sums from sequences within cells of a partition of $\nn$, J. Comb. Theory, Ser. A 17 (1974), 1–11.
  • N. Hindman and R. McCutcheon, Partition theorems for left and right variable words, Combinatorica 24 (2004), 271–286.
  • N. Hindman and R. McCutcheon, One sided ideals and Carlson’s theorem, Proc. Amer. Math. Soc. 130 (2002), 2559–2567.
  • N. Hindman and D. Strauss, Algebra in the Stone–Čech compactification: theory and applications, Walter de Gruyter, Berlin, 1998.
  • V. Kanellopoulos, A proof of W. T. Gowers’ $c_0$ theorem, Proc. Amer. Math. Soc. 132 (2004), 3231–3242.
  • V. Kanellopoulos, Ramsey families of subtrees of the dyadic tree, Trans. Amer. Math. Soc. 357 (2005), 3865–3886.
  • A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer, 1995.
  • J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi, “The regularity lemma and its applications in graph theory”, in Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Vol. 2292, Springer, 2002, 84–112.
  • J. Komlós and M. Simonovits, “Szemerédi’s regularity lemma and its applications in graph theory”, in Combinatorics: Paul Erdős is Eighty, Vol. 2 (Keszthely, 1993), Bolyai Society Mathematical Studies, Vol. 2, János Bolyai Mathematical Society, 1996, 295–352.
  • R. Laver, Products of infinitely many perfect trees, J. London Math. Soc. 29 (1984), 385–396.
  • A. Louveau, S. Shelah and B. Veličković, Borel partitions of infinite trees of a perfect tree, Ann. Pure App. Logic 63 (1993), 271–281.
  • L. Lovász and B. Szegedy, Szemerédi’s lemma for the analyst, Geom. Funct. Anal. 17 (2007), 252–270.
  • D. Lubell, A short proof of Sperner’s lemma, J. Comb. Theory 1 (1966), 299.
  • R. McCutcheon, Elemental Methods in Ergodic Ramsey Theory, Lecture Notes in Mathematics, Vol. 1722, Springer, 1999.
  • R. McCutcheon, Two new extensions of the Hales–Jewett theorem, Electron. J. Comb. 7 (2000), R49.
  • K. Milliken, Ramsey’s theorem with sums or unions, J. Comb. Theory, Ser. A 18 (1975), 276–290.
  • K. Milliken, A Ramsey theorem for trees, J. Comb. Theory, Ser. A 26 (1979), 215–237.
  • K. Milliken, A partition theorem for the infinite subtrees of a tree, Trans. Amer. Math. Soc. 263 (1981), 137–148.
  • B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular $k$-uniform hypergraphs Random Struct. Algorithms 28 (2006), 113–179.
  • C. St. J. A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proc. Camb. Philos. Soc. 61 (1965), 33–39.
  • K. O’Bryant, Sets of integers that do not contain long arithmetic progressions, Electron. J. Comb. 18 (2011), R59.
  • J. Pach, J. Solymosi and G. Tardos, Remarks on a Ramsey theory for trees, Combinatorica 32 (2012), 473–482.
  • A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, Vol. 29, Amererican Mathematical Society, 1988.
  • J. Pawlikowski, Parameterized Ellentuck theorem, Topology Appl. 37 (1990), 65–73.
  • D. H. J. Polymath, A new proof of the density Hales–Jewett theorem, Ann. Math. 175 (2012), 1283–1327.
  • R. Rado, Studien zur Kombinatorik, Math Z. 36 (1933), 424–480.
  • R. Rado, Note on combinatorial analysis, Proc. London Math. Soc. 48 (1943), 122–160.
  • F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–286.
  • A. Rényi, Foundations of Probability, Holden-Day Series in Probability and Statistics, 1970.
  • V. Rödl and M. Schacht, Regular partitions of hypergraphs: regularity lemmas, Combin. Probab. Comput. 16 (2007), 833–885.
  • V. Rödl and M. Schacht, Regular partitions of hypergraphs: counting lemmas, Combin. Probab. Comput. 16 (2007), 887–901.
  • V. Rödl and M. Schacht, Generalizations of the removal lemma, Combinatorica 29 (2009), 467–501.
  • V. Rödl, M. Schacht, E. Tengan and N. Tokushige, Density theorems and extremal hypergraph problems, Israel J. Math. 152 (2006), 371–380.
  • V. Rödl and J. Skokan, Regularity lemma for $k$-uniform hypergraphs Random Struct. Algorithms 25 (2004), 1–42.
  • H. E. Rose, Subrecursion: functions and hierarchies, Oxford Logic Guide 9, Oxford University Press, Oxford, 1984.
  • K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.
  • W. Rudin, Principles of Mathematical Analysis, 3rd edition, International Series in Pure and Applied Mathematics, McGraw–Hill, 1976.
  • I. Z. Ruzsa and E. Szemerédi, “Triple systems with no six points carrying three triangles”, in Combinatorics (Keszthely, 1976), Colloquia Mathematics Societies János Bolyai, Vol. 18, 1978, 939–945.
  • J. H. Sanders, A generalization of Schur’s theorem, Thesis, Yale University, 1968.
  • T. Sanders, On Roth’s theorem on progressions, Ann. Math. 174 (2011), 619–636.
  • S. Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amer. Math. Soc. 1 (1988), 683–697.
  • S. Shelah, A partition theorem, Sci. Math. Jpn. 56 (2002), 413–438.
  • J. Solymosi, A note on a question of Erdős and Graham, Combin. Probab. Comput. 13 (2004), 263–267.
  • J. Spencer, Ramsey’s theorem—a new lower bound, J. Comb. Theory, Ser. A 18 (1975), 108–115.
  • E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928) 544–548.
  • J. Stern, A Ramsey theorem for trees with an application to Banach spaces, Israel J. Math. 29 (1978), 179–188.
  • E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199–245.
  • E. Szemerédi, “Regular partitions of graphs”, in Problèmes combinatoires et théorie des graphes (Colloq. Internat. du CNRS, Univ. Orsay, Orsay, 1976), Colloques Internationaux du CNRS, Vol. 260, CNRS, 1978, 399–401.
  • T. Tao, A variant of the hypergraph removal lemma, J. Comb. Theory, Ser. A 113 (2006), 1257–1280.
  • T. Tao, Szemerédi’s regularity lemma revisited, Contrib. Discrete Math. 1 (2006), 8–28.
  • T. Tao, A correspondence principle between $($hyper$)$graph theory and probability theory, and the $($hyper$)$graph removal lemma, J. Anal. Math. 103 (2007), 1–45.
  • T. Tao, An Epsilon of Room, II: Pages from Year Three of a Mathematical Blog, American Mathematical Society, 2011.
  • T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, Vol. 105, Cambridge University Press, 2006.
  • A. D. Taylor, A canonical partition relation for the finite subsets of $\omega$, J. Comb. Theory, Ser. A 21 (1976), 137–146.
  • A. D. Taylor, Bounds for the disjoint unions theorem, J. Comb. Theory, Ser. A 30 (1981), 339–344.
  • A. Thomason, An upper bound for some Ramsey numbers, J. Graph Theory 12 (1988), 509–517.
  • S. Todorcevic, Introduction to Ramsey Spaces, Annals of Mathematics Studies, No. 174, Princeton University Press, 2010.
  • K. Tyros, On colorings of variable words, Discr. Math. 338 (2015), 1025–1028.
  • B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212–216.
  • M. Walters, Combinatorial proofs of the polynomial van der Waerden and the polynomial Hales–Jewett theorem, J. London Math. Soc. 61 (2000), 1–12.