AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Discrete-Time Dynamics of Structured Populations and Homogeneous Order-Preserving Operators
About this Title
Horst R. Thieme, Arizona State University, Tempe, AZ
Publication: Mathematical Surveys and Monographs
Publication Year:
2024; Volume 281
ISBNs: 978-1-4704-7465-2 (print); 978-1-4704-7734-9 (online)
DOI: https://doi.org/10.1090/surv/281
Table of Contents
Download chapters as PDF
Front/Back Matter
Chapters
- Introduction
- Cones and ordered vector spaces
- The ordered vector space of real measures
- Homogeneous operators
- Spectral radii for homogeneous operators
- Order-bounded operators
- Upper semicontinuity of spectral radii
- A left resolvent for homogeneous operators
- Eigenvectors of (pseudo-)compact homogeneous operators
- Continuity of the spectral radius
- Eigenfunctionals
- Turnover versus reproduction number
- Linear maps on the vector space of measures
- Nonlinear dynamics
- Unstructured population models
- A rank-structured population with mating
- Two diffusing sexes and short reproductive season
- Nonlocal spatial spread of semelparous two-sex populations
- Populations with measure-valued structural distributions
- Appendix A. Some tools from real analysis
- A. S. Ackleh, R. M. Colombo, P. Goatin, S. Hille, and A. Muntean (guest editors), Mathematical modeling with measures, Math. Biosci. Engin. 17 (2020), Special issue.
- Azmy S. Ackleh, Rinaldo M. Colombo, Sander C. Hille, and Adrian Muntean, Preface to “Modeling with measures”, Math. Biosci. Eng. 12 (2015), no. 2, i–ii. MR 3327921, DOI 10.3934/mbe.2015.12.2i
- Azmy S. Ackleh, Vinodh K. Chellamuthu, and Kazufumi Ito, Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model, Math. Biosci. Eng. 12 (2015), no. 2, 233–258. MR 3327922, DOI 10.3934/mbe.2015.12.233
- Azmy S. Ackleh, John Cleveland, and Horst R. Thieme, Population dynamics under selection and mutation: long-time behavior for differential equations in measure spaces, J. Differential Equations 261 (2016), no. 2, 1472–1505. MR 3494403, DOI 10.1016/j.jde.2016.04.008
- Azmy S. Ackleh, Ben G. Fitzpatrick, and Horst R. Thieme, Rate distributions and survival of the fittest: a formulation on the space of measures, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), no. 4, 917–928. MR 2170216, DOI 10.3934/dcdsb.2005.5.917
- Azmy S. Ackleh, Robert J. Sacker, and Paul Salceanu, On a discrete selection-mutation model, J. Difference Equ. Appl. 20 (2014), no. 10, 1383–1403. MR 3240393, DOI 10.1080/10236198.2014.933819
- Azmy S. Ackleh and Paul L. Salceanu, Competitive exclusion and coexistence in an $n$-species Ricker model, J. Biol. Dyn. 9 (2015), no. suppl. 1, 321–331. MR 3360881, DOI 10.1080/17513758.2015.1020576
- M. Akian, S. Gaubert, and R. D. Nussbaum, A Collatz–Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, arXiv:1112.5968v1, 2011.
- Charalambos D. Aliprantis and Kim C. Border, Infinite dimensional analysis, 3rd ed., Springer, Berlin, 2006. A hitchhiker’s guide. MR 2378491
- Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, Graduate Studies in Mathematics, vol. 84, American Mathematical Society, Providence, RI, 2007. MR 2317344, DOI 10.1090/gsm/084
- Linda J. S. Allen, Edward J. Allen, and Colleen B. Jonsson, The impact of environmental variation on hantavirus infection in rodents, Mathematical studies on human disease dynamics, Contemp. Math., vol. 410, Amer. Math. Soc., Providence, RI, 2006, pp. 1–15. MR 2277878, DOI 10.1090/conm/410/07717
- Linda J. S. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Difference Equ. Appl. 14 (2008), no. 10-11, 1127–1147. MR 2447189, DOI 10.1080/10236190802332308
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. MR 2129498
- T. Andô, On fundamental properties of a Banach space with a cone, Pacific J. Math. 12 (1962), 1163–1169. MR 150572
- Jürgen Appell, Espedito De Pascale, and Alfonso Vignoli, Nonlinear spectral theory, De Gruyter Series in Nonlinear Analysis and Applications, vol. 10, Walter de Gruyter & Co., Berlin, 2004. MR 2059617, DOI 10.1515/9783110199260
- Wolfgang Arendt, Positive semigroups of kernel operators, Positivity 12 (2008), no. 1, 25–44. MR 2373131, DOI 10.1007/s11117-007-2137-z
- Wolfgang Arendt, Paul R. Chernoff, and Tosio Kato, A generalization of dissipativity and positive semigroups, J. Operator Theory 8 (1982), no. 1, 167–180. MR 670183
- Wolfgang Arendt and Robin Nittka, Equivalent complete norms and positivity, Arch. Math. (Basel) 92 (2009), no. 5, 414–427. MR 2506943, DOI 10.1007/s00013-009-3190-6
- Basem S. Attili and Saed F. Mallak, Existence of limit cycles in a predator-prey system with a functional response of the form $\textrm {arctan}(ax)$, Commun. Math. Anal. 1 (2006), no. 1, 33–40. MR 2250379
- Nicolas Bacaër and El Hadi Ait Dads, On the biological interpretation of a definition for the parameter $R_0$ in periodic population models, J. Math. Biol. 65 (2012), no. 4, 601–621. MR 2966664, DOI 10.1007/s00285-011-0479-4
- Michael F. Barnsley, Fractals everywhere, 2nd ed., Academic Press Professional, Boston, MA, 1993. Revised with the assistance of and with a foreword by Hawley Rising, III. MR 1231795
- Heinz Bauer, Probability theory and elements of measure theory, Second edition of the translation by R. B. Burckel from the third German edition, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1981. MR 636091
- Garrett Birkhoff, Uniformly semi-primitive multiplicative processes, Trans. Amer. Math. Soc. 104 (1962), 37–51. MR 146100, DOI 10.1090/S0002-9947-1962-0146100-6
- V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655, DOI 10.1007/978-3-540-34514-5
- Erich Bohl, Monotonie: Lösbarkeit und Numerik bei Operatorgleichungen, Springer Tracts in Natural Philosophy, Vol. 25, Springer-Verlag, Berlin-New York, 1974 (German). MR 636414
- F. F. Bonsall, Endomorphisms of partially ordered vector spaces, J. London Math. Soc. 30 (1955), 133–144. MR 68753, DOI 10.1112/jlms/s1-30.2.133
- F. F. Bonsall, Linear operators in complete positive cones, Proc. London Math. Soc. (3) 8 (1958), 53–75. MR 92938, DOI 10.1112/plms/s3-8.1.53
- F. F. Bonsall, Lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay, 1962. Notes by K. B. Vedak. MR 198173
- C. J. Briggs, H. C. J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations, Amer. Nat. 145 (1995), 855-887
- Kurt Bryan and Tanya Leise, The $\$25,000,000,000$ eigenvector: the linear algebra behind Google, SIAM Rev. 48 (2006), no. 3, 569–581. MR 2278443, DOI 10.1137/050623280
- J.-E. Busse, P. Gwiazda, and A. Marciniak-Czochra, Mass concentration in a nonlocal model of clonal selection, J. Math. Biol. 73 (2016), no. 4, 1001–1033. MR 3545528, DOI 10.1007/s00285-016-0979-3
- Robert Stephen Cantrell and Chris Cosner, Effects of domain size on the persistence of populations in a diffusive food-chain model with Beddington-DeAngelis functional response, Natur. Resource Modeling 14 (2001), no. 3, 335–367. MR 1871914
- Robert Stephen Cantrell and Chris Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. MR 2191264, DOI 10.1002/0470871296
- J. A. Carillo, P. Gwiazda, K. Kropielnicka, and A. Marciniak-Czochra, The escalator boxcar train method for a system of age-structured equations in the space of measures, SIAM J. Num. Anal. 11 (2019), 123–143.
- B. H. Carlson and H. R. Thieme, Can infectious diseases that do not confer immunity eradicate host species?, J. Biol. Systems 32 (2024), \PrintDOI{10.1142/S0218339023400016}.
- H. Caswell, Matrix population models, Sinauer Associates Inc., Sunderland, 1989.
- H. Caswell, Matrix population models – Construction, analysis, and interpretation, Sinauer Associates Inc., Sunderland, 2000.
- John Cleveland, Basic stage structure measure valued evolutionary game model, Math. Biosci. Eng. 12 (2015), no. 2, 291–310. MR 3327925, DOI 10.3934/mbe.2015.12.291
- John Cleveland and Azmy S. Ackleh, Evolutionary game theory on measure spaces: well-posedness, Nonlinear Anal. Real World Appl. 14 (2013), no. 1, 785–797. MR 2969873, DOI 10.1016/j.nonrwa.2012.08.002
- L. Collatz, Einschliessungssatz für die Eigenwerte von Integralgleichungen, Math. Z. 47 (1941), 395–398 (German). MR 7086, DOI 10.1007/BF01180971
- L. Collatz, Einschliessungssatz für die charakteristischen Zahlen von Matrizen, Math. Z. 48 (1942), 221–226 (German). MR 8590, DOI 10.1007/BF01180013
- J. M. Cushing, An introduction to structured population dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. MR 1636703, DOI 10.1137/1.9781611970005
- J. M. Cushing, Matrix models and population dynamics, Mathematical biology, IAS/Park City Math. Ser., vol. 14, Amer. Math. Soc., Providence, RI, 2009, pp. 49–149. MR 2522049, DOI 10.1090/pcms/014/04
- J. M. Cushing, On the relationship between $r$ and $R_0$ and its role in the bifurcation of stable equilibria of Darwinian matrix models, J. Biol. Dyn. 5 (2011), no. 3, 277–297. MR 2818158, DOI 10.1080/17513758.2010.491583
- J. M. Cushing, Discrete time darwinian dynamics and semelparity versus iteroparity, Math. Biosci. Eng. 16 (2019), no. 4, 1815–1835. MR 4030661, DOI 10.3934/mbe.2019088
- J. M. Cushing, Difference equations as models of evolutionary population dynamics, J. Biol. Dyn. 13 (2019), no. 1, 103–127. MR 3907772, DOI 10.1080/17513758.2019.1574034
- J. M. Cushing, R. F. Costantino, B. Dennis, R. A. Desharnais, and S. M. Henson, Chaos in ecology: Experimental nonlinear dynamics, Theoretical Ecology Series, vol. 1, Academic Press (Elsevier Science), New York, 2003.
- J. M. Cushing and Alex P. Farrell, A bifurcation theorem for nonlinear matrix models of population dynamics, J. Difference Equ. Appl. 26 (2020), no. 1, 25–44. MR 4065246, DOI 10.1080/10236198.2019.1699916
- J. M. Cushing and Kathryn Stefanko, A Darwinian dynamic model for the evolution of post-reproduction survival, J. Biol. Systems 29 (2021), no. 2, 433–450. MR 4274354, DOI 10.1142/S0218339021400088
- J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models, Nat. Res. Mod. 8 (1994), 297–333.
- Richard Datko, Extending a theorem of A. M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970), 610–616. MR 268717, DOI 10.1016/0022-247X(70)90283-0
- Roy O. Davies, A non-Prokhorov space, Bull. London Math. Soc. 3 (1971), 341–342. MR 293579, DOI 10.1112/blms/3.3.341
- N. V. Davydova, O. Diekmann, and S. A. van Gils, Year class coexistence or competitive exclusion for strict biennials?, J. Math. Biol. 46 (2003), no. 2, 95–131. MR 1963068, DOI 10.1007/s00285-002-0167-5
- N. V. Davydova, O. Diekmann, and S. A. van Gils, On circulant populations. I. The algebra of semelparity, Linear Algebra Appl. 398 (2005), 185–243. MR 2121350, DOI 10.1016/j.laa.2004.12.020
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- P. De Leenheer, Z. Gregg, and J. McCaslin, Some limitations on the use of the basic reproduction number, J. Difference Eqs. Appl. (2024), 1–25, \PrintDOI{10.1080/10236198.2024.2308110}.
- A. de Roos and L. Persson, Population and community ecology of ontogenic development, Princeton University Press, Princeton, NJ, 2013.
- Odo Diekmann, Natalia Davydova, and Stephan van Gils, On a boom and bust year class cycle, J. Difference Equ. Appl. 11 (2005), no. 4-5, 327–335. MR 2151678, DOI 10.1080/10236190412331335409
- O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz, and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol. 43 (2001), no. 2, 157–189. MR 1860461, DOI 10.1007/s002850170002
- O. Diekmann, Mats Gyllenberg, J. A. J. Metz, and Horst Thieme, The “cumulative” formulation of (physiologically) structured population models, Evolution equations, control theory, and biomathematics (Han sur Lesse, 1991) Lecture Notes in Pure and Appl. Math., vol. 155, Dekker, New York, 1994, pp. 145–154. MR 1254894
- Odo Diekmann, Mats Gyllenberg, J. A. J. Metz, and Horst R. Thieme, On the formulation and analysis of general deterministic structured population models. I. Linear theory, J. Math. Biol. 36 (1998), no. 4, 349–388. MR 1624188, DOI 10.1007/s002850050104
- Odo Diekmann, Hans Heesterbeek, and Tom Britton, Mathematical tools for understanding infectious disease dynamics, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2013. MR 3015083
- O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), no. 4, 365–382. MR 1057044, DOI 10.1007/BF00178324
- Odo Diekmann and Robert Planqué, The winner takes it all: how semelparous insects can become periodical, J. Math. Biol. 80 (2020), no. 1-2, 283–301. MR 4062821, DOI 10.1007/s00285-019-01362-3
- O. Diekmann and S. A. van Gils, Invariance and symmetry in a year-class model, Bifurcation, symmetry and patterns (Porto, 2000) Trends Math., Birkhäuser, Basel, 2003, pp. 141–150. MR 2014364
- O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations, SIAM J. Appl. Dyn. Syst. 8 (2009), no. 3, 1160–1189. MR 2551259, DOI 10.1137/080722734
- Odo Diekmann, Yi Wang, and Ping Yan, Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst. 20 (2008), no. 1, 37–52. MR 2350059, DOI 10.3934/dcds.2008.20.37
- A. Ducrot, Q. Griette, Z. Liu, and P. Magal, Differential equations and population dynamics II: Advanced approaches, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer Cham, In preparation.
- R. M. Dudley, Convergence of Baire measures, Studia Math. 27 (1966), 251–268. MR 200710, DOI 10.4064/sm-27-3-251-268
- R. M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original. MR 1932358, DOI 10.1017/CBO9780511755347
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, MA, 1966. MR 193606
- Christian Düll, Piotr Gwiazda, Anna Marciniak-Czochra, and Jakub Skrzeczkowski, Spaces of measures and their applications to structured population models, Cambridge Monographs on Applied and Computational Mathematics, vol. 36, Cambridge University Press, Cambridge, 2022. MR 4309603
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Eric Alan Eager, Richard Rebarber, and Brigitte Tenhumberg, Modeling and analysis of a density-dependent stochastic integral projection model for a disturbance specialist plant and its seed bank, Bull. Math. Biol. 76 (2014), no. 7, 1809–1834. MR 3249937, DOI 10.1007/s11538-014-9978-y
- Saber Elaydi, An introduction to difference equations, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2005. MR 2128146
- Saber N. Elaydi, Discrete chaos, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2008. With applications in science and engineering; With a foreword by Robert M. May; With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2364977
- S. N. Elaydi, J. M. Cushing, and A.-A. Yakubu, Discrete mathematical biology, Springer, New York, To appear.
- Stephen P. Ellner, Dylan Z. Childs, and Mark Rees, Data-driven modelling of structured populations, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, [Cham], 2016. A practical guide to the integral projection model. MR 3496931, DOI 10.1007/978-3-319-28893-2
- Stephen P. Ellner and Mark Rees, Stochastic stable population growth in integral projection models: theory and application, J. Math. Biol. 54 (2007), no. 2, 227–256. MR 2284066, DOI 10.1007/s00285-006-0044-8
- Keith E. Emmert and Linda J. S. Allen, Population persistence and extinction in a discrete-time, stage-structured epidemic model, J. Difference Equ. Appl. 10 (2004), no. 13-15, 1177–1199. MR 2100721, DOI 10.1080/10236190410001654151
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Joep H. M. Evers, Sander C. Hille, and Adrian Muntean, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, J. Differential Equations 259 (2015), no. 3, 1068–1097. MR 3342408, DOI 10.1016/j.jde.2015.02.037
- Alex P. Farrell, James P. Collins, Amy L. Greer, and Horst R. Thieme, Do fatal infectious diseases eradicate host species?, J. Math. Biol. 77 (2018), no. 6-7, 2103–2164. MR 3881875, DOI 10.1007/s00285-018-1249-3
- Alex P. Farrell and Horst R. Thieme, Predator—prey/host—parasite: a fragile ecoepidemic system under homogeneous infection incidence, Discrete Contin. Dyn. Syst. Ser. B 26 (2021), no. 1, 217–267. MR 4191544, DOI 10.3934/dcdsb.2020328
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 257325
- Herbert Federer, Colloquium lectures on geometric measure theory, Bull. Amer. Math. Soc. 84 (1978), no. 3, 291–338. MR 467473, DOI 10.1090/S0002-9904-1978-14462-0
- K.-H. Förster and B. Nagy, On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator, Proceedings of the Fourth Haifa Matrix Theory Conference (Haifa, 1988), 1989, pp. 193–205. MR 1010057, DOI 10.1016/0024-3795(89)90378-9
- R. Fortet and E. Mourier, Convergence de la répartition empirique vers la répartition théorique, Ann. Sci. École Norm. Sup. (3) 70 (1953), 267–285 (French). MR 61325
- D. Franco, C. Guiver, H. Logemann, and J. Perán, Boundedness, persistence and stability for classes of forced difference equations arising in population ecology, J. Math. Biol. 79 (2019), no. 3, 1029–1076. MR 3987188, DOI 10.1007/s00285-019-01388-7
- Eugenia Franco, Mats Gyllenberg, and Odo Diekmann, One dimensional reduction of a renewal equation for a measure-valued function of time describing population dynamics, Acta Appl. Math. 175 (2021), Paper No. 12, 67. MR 4323318, DOI 10.1007/s10440-021-00440-3
- Eugenia Franco, Odo Diekmann, and Mats Gyllenberg, Modelling physiologically structured populations: renewal equations and partial differential equations, J. Evol. Equ. 23 (2023), no. 3, Paper No. 46, 62. MR 4600253, DOI 10.1007/s00028-023-00880-4
- H. I. Freedman and P. Moson, Persistence definitions and their connections, Proc. Amer. Math. Soc. 109 (1990), no. 4, 1025–1033. MR 1012928, DOI 10.1090/S0002-9939-1990-1012928-6
- I. M. Gel’fand, Normierte ringe, Mat. Sbornik N.S. 9 (1941), 3–24.
- Xiaoqian Gong and Benedetto Piccoli, A measure model for the spread of viral infections with mutations, Netw. Heterog. Media 17 (2022), no. 3, 427–442. MR 4421533, DOI 10.3934/nhm.2022015
- Gustaf Gripenberg, On the definition of the cone spectral radius, Proc. Amer. Math. Soc. 143 (2015), no. 4, 1617–1625. MR 3314074, DOI 10.1090/S0002-9939-2014-12375-6
- Chris Guiver, On the strict monotonicity of spectral radii for classes of bounded positive linear operators, Positivity 22 (2018), no. 4, 1173–1190. MR 3843462, DOI 10.1007/s11117-018-0566-5
- Piotr Gwiazda, Jędrzej Jabłoński, Anna Marciniak-Czochra, and Agnieszka Ulikowska, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded Lipschitz distance, Numer. Methods Partial Differential Equations 30 (2014), no. 6, 1797–1820. MR 3267354, DOI 10.1002/num.21879
- Piotr Gwiazda, Karolina Kropielnicka, and Anna Marciniak-Czochra, The escalator boxcar train method for a system of age-structured equations, Netw. Heterog. Media 11 (2016), no. 1, 123–143. MR 3461738, DOI 10.3934/nhm.2016.11.123
- Piotr Gwiazda, Thomas Lorenz, and Anna Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients, J. Differential Equations 248 (2010), no. 11, 2703–2735. MR 2644146, DOI 10.1016/j.jde.2010.02.010
- Piotr Gwiazda and Anna Marciniak-Czochra, Structured population equations in metric spaces, J. Hyperbolic Differ. Equ. 7 (2010), no. 4, 733–773. MR 2746205, DOI 10.1142/S021989161000227X
- Piotr Gwiazda, Anna Marciniak-Czochra, and Horst R. Thieme, Measures under the flat norm as ordered normed vector space, Positivity 22 (2018), no. 1, 105–138. MR 3764634, DOI 10.1007/s11117-017-0503-z
- Piotr Gwiazda, Piotr Orlinski, and Agnieszka Ulikowska, Finite range method of approximation for balance laws in measure spaces, Kinet. Relat. Models 10 (2017), no. 3, 669–688. MR 3591128, DOI 10.3934/krm.2017027
- Mats Gyllenberg, Jifa Jiang, and Lei Niu, Chaotic attractors in Atkinson-Allen model of four competing species, J. Biol. Dyn. 14 (2020), no. 1, 440–453. MR 4115411, DOI 10.1080/17513758.2020.1779828
- Mats Gyllenberg, Jifa Jiang, Lei Niu, and Ping Yan, Permanence and universal classification of discrete-time competitive systems via the carrying simplex, Discrete Contin. Dyn. Syst. 40 (2020), no. 3, 1621–1663. MR 4063939, DOI 10.3934/dcds.2020088
- K. P. Hadeler, Pair formation in age-structured populations, Acta Appl. Math. 14 (1989), no. 1-2, 91–102. Evolution and control in biological systems (Laxenburg, 1987). MR 990038, DOI 10.1007/BF00046676
- K. P. Hadeler, Periodic solutions of homogeneous equations, J. Differential Equations 95 (1992), no. 1, 183–202. MR 1142283, DOI 10.1016/0022-0396(92)90049-S
- K. P. Hadeler, Pair formation, J. Math. Biol. 64 (2012), no. 4, 613–645. MR 2886028, DOI 10.1007/s00285-011-0454-0
- Karl Peter Hadeler, Topics in mathematical biology, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, Cham, 2017. MR 3752189, DOI 10.1007/978-3-319-65621-2
- K. P. Hadeler, R. Waldstätter, and A. Wörz-Busekros, Models for pair formation in bisexual populations, J. Math. Biol. 26 (1988), no. 6, 635–649. MR 973342, DOI 10.1007/BF00276145
- H. J. A. M. Heijmans, Markov semigroups and structured population dynamics, Aspects of positivity in functional analysis (Tübingen, 1985) North-Holland Math. Stud., vol. 122, North-Holland, Amsterdam, 1986, pp. 199–208. MR 859728
- Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn, and B. de Pagter, One-parameter semigroups, CWI Monographs, vol. 5, North-Holland Publishing Co., Amsterdam, 1987. MR 915552
- E. Hewitt and K. Stromberg, Real and abstract analysis, Springer, Berlin Heidelberg, 1956.
- Sander C. Hille and Daniël T. H. Worm, Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory 63 (2009), no. 3, 351–371. MR 2491036, DOI 10.1007/s00020-008-1652-z
- Sander C. Hille and Daniël T. H. Worm, Continuity properties of Markov semigroups and their restrictions to invariant $L^1$-spaces, Semigroup Forum 79 (2009), no. 3, 575–600. MR 2564065, DOI 10.1007/s00233-009-9176-7
- Frank Hoppensteadt, Mathematical theories of populations: demographics, genetics and epidemics, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1975. MR 526771
- Sze-Bi Hsu and Xiao-Qiang Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal. 40 (2008), no. 2, 776–789. MR 2438786, DOI 10.1137/070703016
- M. Iannelli, M. Martcheva, and F. A. Milner, Gender-structured population modeling, Frontiers in Applied Mathematics, vol. 31, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. Mathematical methods, numerics, and simulations. MR 2134254, DOI 10.1137/1.9780898717488
- Hisashi Inaba, The Malthusian parameter and $R_0$ for heterogeneous populations in periodic environments, Math. Biosci. Eng. 9 (2012), no. 2, 313–346. MR 2897081, DOI 10.3934/mbe.2012.9.313
- Hisashi Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol. 65 (2012), no. 2, 309–348. MR 2944513, DOI 10.1007/s00285-011-0463-z
- Hisashi Inaba, Age-structured population dynamics in demography and epidemiology, Springer, Singapore, 2017. MR 3616174, DOI 10.1007/978-981-10-0188-8
- Hisashi Inaba, The basic reproduction number $R_0$ in time-heterogeneous environments, J. Math. Biol. 79 (2019), no. 2, 731–764. MR 3982710, DOI 10.1007/s00285-019-01375-y
- V. S. Ivlev, Experimental ecology of the feeding of fishes, Yale University Press, New Haven, 1955.
- Peter Jagers, The deterministic evolution of general branching populations, State of the art in probability and statistics (Leiden, 1999) IMS Lecture Notes Monogr. Ser., vol. 36, Inst. Math. Statist., Beachwood, OH, 2001, pp. 384–398. MR 1836571, DOI 10.1214/lnms/1215090079
- A. D. Jassby, T. Platt, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol. Oceanogr. 21 (1976), 540-547
- Leyi Jiang, Taishan Yi, and Xiao-Qiang Zhao, Propagation dynamics for a class of integro-difference equations in a shifting environment, J. Differential Equations 380 (2024), 491–515. MR 4667626, DOI 10.1016/j.jde.2023.10.053
- Wen Jin, Persistence of Discrete Dynamical Systems in Infinite Dimensional State Spaces, ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.)–Arizona State University. MR 3232336
- Wen Jin, Hal L. Smith, and Horst R. Thieme, Persistence and critical domain size for diffusing populations with two sexes and short reproductive season, J. Dynam. Differential Equations 28 (2016), no. 3-4, 689–705. MR 3537352, DOI 10.1007/s10884-015-9434-1
- Wen Jin, Hal L. Smith, and Horst R. Thieme, Persistence versus extinction for a class of discrete-time structured population models, J. Math. Biol. 72 (2016), no. 4, 821–850. MR 3459168, DOI 10.1007/s00285-015-0898-8
- Wen Jin and Horst R. Thieme, Persistence and extinction of diffusing populations with two sexes and short reproductive season, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), no. 10, 3209–3218. MR 3327899, DOI 10.3934/dcdsb.2014.19.3209
- Wen Jin and Horst Thieme, An extinction/persistence threshold for sexually reproducing populations: the cone spectral radius, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 2, 447–470. MR 3432306, DOI 10.3934/dcdsb.2016.21.447
- Samuel Karlin, Positive operators, J. Math. Mech. 8 (1959), 907–937. MR 114138, DOI 10.1512/iumj.1959.8.58058
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 407617
- Achim Klenke, Probability theory, Translation from the German edition, Universitext, Springer, London, 2014. A comprehensive course. MR 3112259, DOI 10.1007/978-1-4471-5361-0
- Mark Kot and William M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci. 80 (1986), no. 1, 109–136. MR 849698, DOI 10.1016/0025-5564(86)90069-6
- M. A. Krasnosel’skij, Positive solutions of operator equations, Noordhoff, Groningen, 1964.
- M. A. Krasnosel’skij, Je. A. Lifshits, and A. V. Sobolev, Positive linear systems: The method of positive operators, Heldermann Verlag, Berlin, 1989.
- M. A. Krasnosel’skii and P. P. Zabreiko, Geometrical methods of nonlinear analysis, Springer, Berlin Heidelberg, 1984.
- Ulrich Krause, Positive dynamical systems in discrete time, De Gruyter Studies in Mathematics, vol. 62, De Gruyter, Berlin, 2015. Theory, models, and applications. MR 3309532, DOI 10.1515/9783110365696
- M. Krein, Sur les opérations linéaires transformant un certain ensemble conique en lui-même, C. R. (Doklady) Acad. Sci. URSS (N.S.) 23 (1939), 749–752 (French). MR 2018
- M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N.S.) 3 (1948), no. 1(23), 3–95 (Russian). MR 27128
- Timothy Lant and Horst R. Thieme, Markov transition functions and semigroups of measures, Semigroup Forum 74 (2007), no. 3, 337–369. MR 2321572, DOI 10.1007/s00233-006-0636-z
- Andrzej Lasota and Michael C. Mackey, Chaos, fractals, and noise, 2nd ed., Applied Mathematical Sciences, vol. 97, Springer-Verlag, New York, 1994. Stochastic aspects of dynamics. MR 1244104, DOI 10.1007/978-1-4612-4286-4
- Andrzej Lasota, Józef Myjak, and Tomasz Szarek, Markov operators with a unique invariant measure, J. Math. Anal. Appl. 276 (2002), no. 1, 343–356. MR 1944355, DOI 10.1016/S0022-247X(02)00457-2
- Bas Lemmens, Brian Lins, Roger Nussbaum, and Marten Wortel, Denjoy-Wolff theorems for Hilbert’s and Thompson’s metric spaces, J. Anal. Math. 134 (2018), no. 2, 671–718. MR 3771496, DOI 10.1007/s11854-018-0022-2
- Bas Lemmens and Roger Nussbaum, Nonlinear Perron-Frobenius theory, Cambridge Tracts in Mathematics, vol. 189, Cambridge University Press, Cambridge, 2012. MR 2953648, DOI 10.1017/CBO9781139026079
- Bas Lemmens and Roger Nussbaum, Continuity of the cone spectral radius, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2741–2754. MR 3056564, DOI 10.1090/S0002-9939-2013-11520-0
- Mark A. Lewis and Bingtuan Li, Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models, Bull. Math. Biol. 74 (2012), no. 10, 2383–2402. MR 2978784, DOI 10.1007/s11538-012-9757-6
- Mark A. Lewis, Nathan G. Marculis, and Zhongwei Shen, Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics, J. Math. Biol. 77 (2018), no. 6-7, 1649–1687. MR 3881861, DOI 10.1007/s00285-018-1206-1
- Bingtuan Li, Mark A. Lewis, and Hans F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol. 58 (2009), no. 3, 323–338. MR 2470192, DOI 10.1007/s00285-008-0175-1
- Chi-Kwong Li and Hans Schneider, Applications of Perron-Frobenius theory to population dynamics, J. Math. Biol. 44 (2002), no. 5, 450–462. MR 1908132, DOI 10.1007/s002850100132
- Frithjof Lutscher, Integrodifference equations in spatial ecology, Interdisciplinary Applied Mathematics, vol. 49, Springer, Cham, [2019] ©2019. With a foreword by Mark Lewis. MR 3971004, DOI 10.1007/978-3-030-29294-2
- Frithjof Lutscher and Sergei V. Petrovskii, The importance of census times in discrete-time growth-dispersal models, J. Biol. Dyn. 2 (2008), no. 1, 55–63. MR 2401580, DOI 10.1080/17513750701769899
- P. Magal, Global stability for differential equations with homogeneous nonlinearity and application to population dynamics, Discrete Contin. Dyn. Syst. Ser. B 2 (2002), no. 4, 541–560. MR 1921237, DOI 10.3934/dcdsb.2002.2.541
- Pierre Magal and Xiao-Qiang Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal. 37 (2005), no. 1, 251–275. MR 2172756, DOI 10.1137/S0036141003439173
- D. K. Mallawaarachchi, Linda J. S. Allen, and Cynthia Carey, Stability and permanence in gender- and stage-structured models for the boreal toad, J. Biol. Dyn. 5 (2011), no. 1, 1–26. MR 2787170, DOI 10.1080/17513751003777515
- John Mallet-Paret and Roger D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discrete Contin. Dyn. Syst. 8 (2002), no. 3, 519–562. MR 1897866, DOI 10.3934/dcds.2002.8.519
- John Mallet-Paret and Roger D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl. 7 (2010), no. 1, 103–143. MR 2652513, DOI 10.1007/s11784-010-0010-3
- John Mallet-Paret and Roger D. Nussbaum, Asymptotic fixed point theory and the beer barrel theorem, J. Fixed Point Theory Appl. 4 (2008), no. 2, 203–245. MR 2465551, DOI 10.1007/s11784-008-0095-0
- John N. McDonald and Neil A. Weiss, A course in real analysis, Academic Press, Inc., San Diego, CA, 1999. Biographies by Carol A. Weiss. MR 1680810
- Ronald E. Mickens, Difference equations, 2nd ed., Van Nostrand Reinhold Co., New York, 1990. Theory and applications. MR 1158461
- T. E. X. Miller and B. D. Inouye, Confronting two-sex demographic models with data, Ecology 92 (2011), 2141–2151.
- T. E. X. Miller, A. K. Shaw, B. D. Inouye, and M. G. Neubert, Sex-biased dispersal and the speed of two-sex invasions, Amer. Nat. 177 (2011), DOI: 10.1086/659628.
- Vladimir Müller and Aljoša Peperko, On the Bonsall cone spectral radius and the approximate point spectrum, Discrete Contin. Dyn. Syst. 37 (2017), no. 10, 5337–5354. MR 3668365, DOI 10.3934/dcds.2017232
- Gerard J. Murphy, Continuity of the spectrum and spectral radius, Proc. Amer. Math. Soc. 82 (1981), no. 4, 619–621. MR 614889, DOI 10.1090/S0002-9939-1981-0614889-2
- Jeffrey Musgrave and Frithjof Lutscher, Integrodifference equations in patchy landscapes II: population level consequences, J. Math. Biol. 69 (2014), no. 3, 617–658. MR 3248070, DOI 10.1007/s00285-013-0715-1
- H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic theories and the Boltzmann equation (Montecatini, 1981) Lecture Notes in Math., vol. 1048, Springer, Berlin, 1984, pp. 60–110. MR 740721, DOI 10.1007/BFb0071878
- Roger D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Kreĭn-Rutman theorem, Fixed point theory (Sherbrooke, Que., 1980) Lecture Notes in Math., vol. 886, Springer, Berlin, 1981, pp. 309–330. MR 643014
- Roger D. Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. 75 (1988), no. 391, iv+137. MR 961211, DOI 10.1090/memo/0391
- Roger D. Nussbaum, Iterated nonlinear maps and Hilbert’s projective metric. II, Mem. Amer. Math. Soc. 79 (1989), no. 401, iv+118. MR 963567, DOI 10.1090/memo/0401
- Roger D. Nussbaum, Eigenvectors of order-preserving linear operators, J. London Math. Soc. (2) 58 (1998), no. 2, 480–496. MR 1668148, DOI 10.1112/S0024610798006425
- Christian Poetzsche, Numerical dynamics of integrodifference equations: global attractivity in a $C^0$-setting, SIAM J. Numer. Anal. 57 (2019), no. 5, 2121–2141. MR 4000220, DOI 10.1137/18M1214469
- G. Poólya and G. Szegö, Aufgaben und Lehrsätze aus der analysis, I, Springer, Berlin, 1925.
- Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri, Numerical mathematics, 2nd ed., Texts in Applied Mathematics, vol. 37, Springer-Verlag, Berlin, 2007. MR 2265914, DOI 10.1007/b98885
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990. Translated from the second French edition by Leo F. Boron; Reprint of the 1955 original. MR 1068530
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 210528
- Paul Leonard Salceanu and Hal L. Smith, Persistence in a discrete-time, stage-structured epidemic model, J. Difference Equ. Appl. 16 (2010), no. 1, 73–103. MR 2589558, DOI 10.1080/10236190802400733
- Helmut Schaefer, Positive Transformationen in lokalkonvexen halbgeordneten Vektorräumen, Math. Ann. 129 (1955), 323–329 (German). MR 70965, DOI 10.1007/BF01362375
- Helmut Schaefer, Halbgeordnete lokalkonvexe Vektorräume. II, Math. Ann. 138 (1959), 259–286 (German). MR 106402, DOI 10.1007/BF01342907
- Helmut Schaefer, Some spectral properties of positive linear operators, Pacific J. Math. 10 (1960), 1009–1019. MR 115090
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 193469
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 423039
- Gunog Seo and Gail S. K. Wolkowicz, Existence of multiple limit cycles in a predator-prey model with $\arctan (ax)$ as functional response, Commun. Math. Anal. 18 (2015), no. 1, 64–68. MR 3365174
- Gunog Seo and Gail S. K. Wolkowicz, Sensitivity of the dynamics of the general Rosenzweig-MacArthur model to the mathematical form of the functional response: a bifurcation theory approach, J. Math. Biol. 76 (2018), no. 7, 1873–1906. MR 3788219, DOI 10.1007/s00285-017-1201-y
- V. M. Shurenkov, On the relationship between spectral radii and Perron Roots, Chalmers Univ Tech and Göteborg Univ, Preprint.
- J. G. Skellam, Random dispersal in theoretical populations, Biometrika 38 (1951), 196–218. MR 43440, DOI 10.1093/biomet/38.1-2.196
- Hal L. Smith, Monotone dynamical systems, Mathematical Surveys and Monographs, vol. 41, American Mathematical Society, Providence, RI, 1995. An introduction to the theory of competitive and cooperative systems. MR 1319817
- Hal L. Smith and Horst R. Thieme, Dynamical systems and population persistence, Graduate Studies in Mathematics, vol. 118, American Mathematical Society, Providence, RI, 2011. MR 2731633, DOI 10.1090/gsm/118
- Hal L. Smith and Horst R. Thieme, Persistence and global stability for a class of discrete time structured population models, Discrete Contin. Dyn. Syst. 33 (2013), no. 10, 4627–4646. MR 3049095, DOI 10.3934/dcds.2013.33.4627
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften, vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
- Kazuaki Taira, Semigroups, boundary value problems and Markov processes, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2019537, DOI 10.1007/978-3-662-09857-8
- Adelheid L. J. Thieme, Wanderings with Lady M: a happy threesome, Math. Biosci. Eng. 7 (2010), no. 1, iv–ix. MR 2654276, DOI 10.3934/mbe.2010.7.1iv
- Horst R. Thieme, On a class of Hammerstein integral equations, Manuscripta Math. 29 (1979), no. 1, 49–84. MR 539788, DOI 10.1007/BF01309313
- H. R. Thieme, Well-posedness of physiologically structured population models for Daphnia magna. How biological concepts can benefit by abstract mathematical analysis, J. Math. Biol. 26 (1988), no. 3, 299–317. MR 949095, DOI 10.1007/BF00277393
- Horst R. Thieme, Asymptotic proportionality (weak ergodicity) and conditional asymptotic equality of solutions to time-heterogeneous sublinear difference and differential equations, J. Differential Equations 73 (1988), no. 2, 237–268. MR 943942, DOI 10.1016/0022-0396(88)90107-6
- Horst R. Thieme, Mathematics in population biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003. MR 1993355
- Horst R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math. 70 (2009), no. 1, 188–211. MR 2505085, DOI 10.1137/080732870
- H.R. Thieme, Eigenvectors and eigenfunctionals of homogeneous order-preserving maps, arXiv:1302.3905v1, 2013.
- H. R. Thieme, Comparison of spectral radii and Collatz–Wielandt numbers for homogeneous maps, and other applications of the monotone companion norm on ordered normed vector spaces, arXiv:1406.6657v2, 2016.
- Horst R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, Ordered structures and applications, Trends Math., Birkhäuser/Springer, Cham, 2016, pp. 415–467. MR 3708356, DOI 10.1007/978-3-319-27842-1_{2}6
- Horst R. Thieme, Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations, J. Dynam. Differential Equations 28 (2016), no. 3-4, 1115–1144. MR 3537366, DOI 10.1007/s10884-015-9463-9
- Horst R. Thieme, Eigenvectors of homogeneous order-bounded order-preserving maps, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 1073–1097. MR 3639156, DOI 10.3934/dcdsb.2017053
- Horst R. Thieme, From homogeneous eigenvalue problems to two-sex population dynamics, J. Math. Biol. 75 (2017), no. 4, 783–804. MR 3687220, DOI 10.1007/s00285-017-1114-9
- Horst R. Thieme, Discrete-time population dynamics on the state space of measures, Math. Biosci. Eng. 17 (2020), no. 2, 1168–1217. MR 4060809, DOI 10.3934/mbe.2020061
- Horst R. Thieme, Persistent discrete-time dynamics on measures, Progress on difference equations and discrete dynamical systems, Springer Proc. Math. Stat., vol. 341, Springer, Cham, [2020] ©2020, pp. 59–100. MR 4219146, DOI 10.1007/978-3-030-60107-2_{4}
- Horst R. Thieme, Discrete-time population dynamics of spatially distributed semelparous two-sex populations, J. Math. Biol. 83 (2021), no. 2, Paper No. 18, 40. MR 4292766, DOI 10.1007/s00285-021-01649-4
- Horst R. Thieme, Discrete-time dynamics of structured populations via Feller kernels, Discrete Contin. Dyn. Syst. Ser. B 27 (2022), no. 2, 1091–1119. MR 4361674, DOI 10.3934/dcdsb.2021082
- Horst R. Thieme, Reproduction number versus turnover number in structured discrete-time population models, Advances in discrete dynamical systems, difference equations and applications, Springer Proc. Math. Stat., vol. 416, Springer, Cham, [2023] ©2023, pp. 495–539. MR 4606694, DOI 10.1007/978-3-031-25225-9_{2}3
- H. R. Thieme, Continuity of the spectral radius, applied to structured semelparous two-sex population models, J. Difference Eqs. Appl. (2023), \PrintDOI{10.1080/10236198.2023.224912}.
- Horst R. Thieme and Jinling Yang, An endemic model with variable re-infection rate and applications to influenza, Math. Biosci. 180 (2002), 207–235. John A. Jacquez memorial volume. MR 1950755, DOI 10.1016/S0025-5564(02)00102-5
- A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc. 14 (1963), 438–443. MR 149237, DOI 10.1090/S0002-9939-1963-0149237-7
- A. C. Thompson, On the eigenvectors of some not-necessarily-linear transformations, Proc. London Math. Soc. (3) 15 (1965), 577–598. MR 182882, DOI 10.1112/plms/s3-15.1.577
- A. J. Tromba, The beer barrel theorem, Functional differential equations and approximation of fixed points (Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978) Lecture Notes in Math., vol. 730, Springer, Berlin, 1979, pp. 484–488. A new proof of the asymptotic conjecture in fixed point theory. MR 548002
- A. Ulikowska, Structured population models in metric spaces, Dissertation, Warsaw University, 2013.
- P. van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29–48. John A. Jacquez memorial volume. MR 1950747, DOI 10.1016/S0025-5564(02)00108-6
- Aad W. van der Vaart and Jon A. Wellner, Weak convergence and empirical processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. With applications to statistics. MR 1385671, DOI 10.1007/978-1-4757-2545-2
- James S. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM J. Appl. Math. 16 (1968), 1208–1222. MR 244284, DOI 10.1137/0116101
- R. von Mises and H. Pollaczek-Geiringer, Praktische Verfahren der Gleichungsauflösung, Zeitschrift für Angewandte Mathematik und Mechanik 9 (1929), 58–77, 152–164.
- Xueying Wang and Xiao-Qiang Zhao, Target reproduction numbers for reaction-diffusion population models, J. Math. Biol. 81 (2020), no. 2, 625–647. MR 4135694, DOI 10.1007/s00285-020-01523-9
- Feng-Bin Wang, Lei Zhang, and Xiao-Qiang Zhao, Basic reproduction ratios for time-periodic homogeneous evolution systems, SIAM J. Appl. Math. 83 (2023), no. 5, 1806–1831. MR 4642254, DOI 10.1137/22M1531865
- Helmut Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642–648 (German). MR 35265, DOI 10.1007/BF02230720
- Ruiwen Wu and Xiao-Qiang Zhao, Propagation dynamics for a spatially periodic integrodifference competition model, J. Differential Equations 264 (2018), no. 10, 6507–6534. MR 3770057, DOI 10.1016/j.jde.2018.01.039
- Krzysztof Wysocki, Some ergodic theorems for solutions of homogeneous differential equations, SIAM J. Math. Anal. 24 (1993), no. 3, 681–702. MR 1215432, DOI 10.1137/0524042
- K. Yosida, Functional analysis, 2nd ed., Springer, Berlin Heidelberg, 1965–1968.
- P. P. Zabreĭko, M. A. Krasnosel′skiĭ, and Ju. V. Pokornyĭ, A certain class of positive linear operators, Funkcional. Anal. i Priložen. 5 (1971), no. 4, 9–17 (Russian). MR 291838
- Yuxiang Zhang and Xiao-Qiang Zhao, Bistable travelling waves in competitive recursion systems, J. Differential Equations 252 (2012), no. 3, 2630–2647. MR 2860634, DOI 10.1016/j.jde.2011.10.005