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Preface

These notes provide a quick and brief introduction to Fourier Series. The emphasis is not
only on the mathematics but also on the history of the subject, its importance, its applica-
tions and its place in the rest of science.

I first learnt about Fourier Series as a student of physics. Together with several other
assorted topics, they formed a ragbag course called Mathematical Physics from which,
when the time came, real physics courses would pick what they wanted. A little later,
as a student of mathematics I came across Fourier Series in the middle of a course on
Mathematical Analysis. On each occasion, my teachers and my books (all good) managed
to keep a secret which I learnt later. Fourier Series are not just tools for the physicist
and examples for the mathematician. They are directly responsible for the development of
nearly one half of mathematical analysis over the last two centuries.

These notes have been consciously designed to reveal this aspect of the subject and
something more. The development of Fourier Series is illustrative of a recurrent pattern in
modern science. I hope the reader will see this pattern emerge from our discussion.

This book can be used by a variety of students. Mathematics students at the third year
undergraduate level should be able to follow most of the discussion. Typically, such stu-
dents may have had their first course in Analysis (corresponding to Chapters 1–8 of Prin-
ciples of Mathematical Analysis by W. Rudin) and have a good working knowledge of
complex numbers and basic differential equations. Such students can learn about Fourier
Series from this book and, at the same time, reinforce their understanding of the analysis
topics mentioned above. More preparation is required for reading Chapter 4, a part of Sec-
tion 2.5, Sections 5.2 and 5.4. These parts presuppose familiarity with Lebesgue spaces
and elements of Functional Analysis usually taught in the fourth year of an undergraduate
or the first year of a graduate program. At many places in the book the reader will see a
statement like “Let f be a continuous or, more generally, an integrable function.” Here

ix



x FOURIER SERIES

there is a choice. If it appears easier to handle continuous functions, the reader need not be
worried about discontinuous ones at this stage.

Thus the material in this book can be used either to augment an Analysis course or to
serve as the beginning of a special course leading to more advanced topics in Harmonic
Analysis. It can also be used for a reading project. Some readers may be happy reading just
Chapter 0 outlining the history of the subject; in some sense that captures the spirit of this
book. Others may enjoy the several tidbits offered in Chapter 3.

Two editions of this book have appeared in India before this Classroom Resource Ma-
terials edition. I am much obliged to the editors of this series and to colleagues and friends
H. Helson, A. I. Singh, S. K. Gupta, S. Serra and R. Horn for their comments and advice.
The computer drawings were made by a former student S. Guha. I am thankful to him and
to A. Shukla for preparing the electronic files.
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This is a concise introduction to Fourier series covering history, major 

themes, theorems, examples and applications. It can be used to learn 

the subject, and also to supplement, enhance and embellish undergrad-

uate courses on mathematical analysis.The book begins with a brief 

summary of the rich history of Fourier series over three centuries. The 

subject is presented in a way that enables the reader to appreciate how 

a mathematical theory develops in stages from a practical problem (such 

as conduction of heat) to an abstract theory dealing with concepts such 

as sets, functions, infinity and convergence. The abstract theory then 

provides unforeseen applications in diverse areas.The author starts out 

with a description of the problem that led Fourier to introduce his famous 

series. The mathematical problems this leads to are then discussed rigor-

ously. Examples, exercises and directions for further reading and research 

are provided, along with a chapter that provides materials at a more 

advanced level suitable for graduate students. The author demonstrates 

applications of the theory to a broad range of problems.The exercises of 

varying levels of difficulty that are scattered throughout the book will help 

readers test their understanding of the material.
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