$\mathrm{NO}^{\mathrm{P}} \mathrm{N}^{\mathrm{g}}$

Robert Messer \& Philip Straffin

Topology Now!

Originally published by
The Mathematical Association of America, 2006.
ISBN: 978-1-4704-4781-6
LCCN: 2005937270

Copyright (c) 2006, held by the Amercan Mathematical Society Printed in the United States of America.
Reprinted by the American Mathematical Society, 2018
The American Mathematical Society retains all rights except those granted to the United States Government.
© The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at https://www.ams.org/

$$
1098765432 \quad 232221201918
$$

AMS/MAA | TEXTBOOKS

VOL 42

Topology Now!

Robert Messer
 Philip Straffin

Council on Publications

Roger Nelsen, Chair
Classroom Resource Materials Editorial Board
Zaven A. Karian, Editor
William C. Bauldry
Stephen B Maurer
Gerald Bryce
George Exner
William J. Higgins
Paul Knopp
Douglas Meade
Judith A. Palagallo
Wayne Roberts
Kay B. Somers
Daniel E. Kullman

MAA Textbooks

MAA Textbooks cover all levels of the undergraduate curriculum, with a focus on textbooks for upper division students. They are written by college and university faculty, and are carefully reviewed by an editorial board of teaching faculty in order to ensure superior exposition. The editorial board is especially interested in innovative manuscripts.

Combinatorics: A Problem Oriented Approach, Daniel A. Marcus
Complex Numbers and Geometry, Liang-shin Hahn
A Course in Mathematical Modeling, Douglas Mooney and Randall Swift
Cryptological Mathematics, Robert Edward Lewand
Differential Geometry and its Applications, John Oprea
Elementary Cryptanalysis, Abraham Sinkov
Elementary Mathematical Models, Dan Kalman
Essentials of Mathematics, Margie Hale
Field Theory and its Classical Problems, Charles Hadlock
Fourier Series, Rajendra Bhatia
Game Theory and Strategy, Philip D. Straffin
Geometry Revisited, H. S. M. Coxeter and S. L. Greitzer
Graph Theory: A Problem Oriented Approach, Daniel A. Marcus
Knot Theory, Charles Livingston
Mathematical Connections: A Companion for Teachers and Others, Al Cuoco
Mathematical Modeling in the Environment, Charles Hadlock
Mathematics for Business Decisions Part 1: Probability and Simulation (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux

Mathematics for Business Decisions Part 2: Calculus and Optimization (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux

The Mathematics of Games and Gambling, Edward Packel
Math Through the Ages, William Berlinghoff and Fernando Gouvea
Noncommutative Rings, I. N. Herstein
Non-Euclidean Geometry, H. S. M. Coxeter
Number Theory Through Inquiry, David C. Marshall, Edward Odell, and Michael Starbird
A Primer of Real Functions, Ralph P. Boas
A Radical Approach to Real Analysis, 2nd edition, David M. Bressoud
Real Infinite Series, Daniel D. Bonar and Michael Khoury, Jr.
Topology Now!, Robert Messer and Philip Straffin
Understanding our Quantitative World, Janet Andersen and Todd Swanson

Contents

Preface ix
1 Deformations 1
1.1 Equivalence 1
1.2 Bijections 6
1.3 Continuous Functions 14
1.4 Topological Equivalence 20
1.5 Topological Invariants 25
1.6 Isotopy 32
References and Suggested Readings for Chapter 1 40
2 Knots and Links 41
2.1 Knots, Links, and Equivalences 41
2.2 Knot Diagrams 47
2.3 Reidemeister Moves 55
2.4 Colorings 61
2.5 The Alexander Polynomial 65
2.6 Skein Relations 78
2.7 The Jones Polynomial 82
References and Suggested Readings for Chapter 2 88
3 Surfaces 91
3.1 Definitions and Examples 91
3.2 Cut-and-Paste Techniques 97
3.3 The Euler Characteristic and Orientability 103
3.4 Classification of Surfaces 109
3.5 Surfaces Bounded by Knots 120
References and Suggested Readings for Chapter 3 125
4 Three-dimensional Manifolds 127
4.1 Definitions and Examples 127
4.2 Euler Characteristic 131
4.3 Gluing Polyhedral Solids 135
4.4 Heegaard Splittings 143
References and Suggested Readings for Chapter 4 150
5 Fixed Points 151
5.1 Continuous Functions on Closed Bounded Intervals 151
5.2 Contraction Mapping Theorem 156
5.3 Sperner's Lemma 160
5.4 Brouwer Fixed-Point Theorem for a Disk 163
References and Suggested Readings for Chapter 5 167
6 The Fundamental Group 169
6.1 Deformations with Singularities 169
6.2 Algebraic Properties 174
6.3 Invariance of the Fundamental Group 179
6.4 The Sphere and the Circle 184
6.5 Words and Relations 192
6.6 The Poincaré Conjecture 201
References and Suggested Readings for Chapter 6 208
7 Metric and Topological Spaces 209
7.1 Metric Spaces 209
7.2 Topological Spaces 217
7.3 Connectedness 222
7.4 Compactness 226
7.5 Quotient Spaces 229
References and Suggested Readings for Chapter 7 231
Index 233

Preface

Topology is a branch of mathematics packed with intriguing concepts, fascinating geometric objects, and ingenious methods for studying them. The authors have written this textbook to make this material accessible to undergraduate students who may be at the beginning of their study of upper-level mathematics and who may not have covered the extensive prerequisites required for a traditional course in topology. Our preference is to cultivate the intuitive ideas of continuity, convergence, and connectedness so that students can quickly delve into knot theory, surfaces, fixed-points, and even obtain a taste of algebraic topology. We believe that students should see the exciting geometric ideas of topology now (!) rather than later.

We acknowledge the danger in building on less than a solid foundation, and one of our goals is to provide adequate reinforcement. Principles we introduce without a rigorous development are supported with numerous examples and explicit statements. We have also provided a selection of careful proofs. For example, we include a complete proof that the Alexander polynomial is a well-defined invariant for knots-a rare feat for a text at this level. After working with the material in this text, students will be well equipped to study the intricacies and abstractions of more advanced courses in point-set and algebraic topology. We hope that many of them will be motivated to take these courses.

The geometric approach to topology in this text also exposes students to the interrelation among the various branches of mathematics. Continuity and geometry are of course at the heart of the matter. This is a natural preparation for courses in real analysis, geometry, and further work in topology. Students will also see strong ties with linear algebra in the dimension of various objects, with abstract algebra in the fundamental group of a space, and with discrete mathematics in a variety of combinatorial and counting arguments.

The prerequisite for this approach to topology is some exposure to the geometry of objects in higher-dimensional Euclidean spaces, together with appreciation of precise mathematical definitions and proofs. We recommend courses in multivariable calculus and linear algebra, and one further proof-oriented course.

Organization. The first chapter introduces various ways objects can be considered to be the same. We begin with set-theoretical concepts and introduce the concept of continuity for preserving the geometrical properties of a space. For an object that is a subset of a larger space, we also consider a continuous family of deformations of the embedded object.

In the second chapter we apply these concepts to knots and links. Although we rely on intuitive ideas about polyhedral structure of sets and subsets, we point out the difficulties and how to address them before sweeping them under the rug. We develop some useful ways of distinguishing among knots and sample some polynomials of recent discovery that are quite powerful invariants of knots.

Chapters 3 and 4 present some basic examples of surfaces and their three-dimensional analogs. These classical results are among the most beautiful ideas of geometric topology. The proofs are honest, lacking only some of the technical details.

Chapter 5 takes a side tour into the theory of fixed-points. This provides an interesting application of topology that in turn has useful applications in disciplines beyond mathematics.

Chapter 6 introduces an algebraic system of dealing with loops in a space. Although we only scratch the surface of algebraic topology, students have an opportunity to work with the basic concepts and develop a sense of the power of algebraic techniques.

Chapter 7 presents material that is often the starting point in traditional texts. Our idea is that the abstractions of point-set topology will make more sense after the students have seen the geometric examples that motivate these abstractions. For example, the general concept of a quotient topology is nicely motivated by the geometric technique of gluing together edges of a polygonal disk to form a closed surface.

A course covering Chapters 1 through 4 would provide a geometric introduction to topology. The later chapters are somewhat independent. Chapter 5 connects topology with analysis, Chapter 6 introduces the algebraic aspects of topology, and Chapter 7 introduces abstract topological spaces.

We have included some harder material that will challenge students but which is not necessary to the flow of ideas. For example, the proofs that the Alexander polynomial is a well-defined knot invariant can easily be omitted from the end of Section 2.5 without loss of continuity. Likewise, the discussion of Heegaard splittings in Section 4.4, the Contraction Mapping Theorem in Section 5.2, and the material on words and relations in Section 6.5 can be regarded as supplemental topics.

For over twenty years, the second author has taught a junior-level course at Beloit College based on the material in Chapters 1 through 4 (omitting the Alexander polynomial proofs at the end of Section 2.5 and the material in Section 4.4) and most of Chapter 6, and tying everything together with Chapter 7.

Features. Each chapter begins with an informal introduction. This gives students a historical or mathematical context for topics contained in the chapter. The individual sections and topics within the sections are also linked with transitional comments that place the topics into a larger context.

An abundance of examples illustrate the new concepts. These are stated as problems that the students might encounter as homework or on exams. The solutions provide models for
dealing with the concepts as well as illustrations of the level of rigor expected in deriving results.

Each section contains a rich variety of exercises. Many exercises give students practice with the definitions and theorems of the section. Other exercises relate the current material to previous topics or provide motivation for future developments. Exercises frequently ask students to fill in gaps in arguments given in the section. The most challenging exercises extend topics in new directions, offering possibilities for independent study or undergraduate research.

A Web site is maintained at http://www.albion.edu/math/ram/TopologyNow! to provide additional support material for this text. Students and instructors are invited to visit this site and to submit comments, suggestions, questions, exercises, sample syllabi, and supplementary course material that might be of value to others.

Acknowledgments. The authors hope both students and teachers will enjoy this text. We have worked hard to make this material clear and comprehensible while maintaining a standard of honest mathematics. We encourage readers to contact us with suggestions and comments. The following students and professors have made comments and suggestions for improvements in preliminary material for this book. We gratefully acknowledge their contributions.

Albion College: Elizabeth Chen, Brad Emmons, Robert Gray, Miles Horak, Frederick Horein, Jamie Kucab, Martha O'Kennon, David Reimann, Timothy Schafer, Aaron St. John, David Tollefson, Matthew Woods

Beloit College: students in Phil Straffin's topology courses for over twenty years
Cranbrook Kingswood School: Yuyin Chen
University of Akron: Lisa Lackney, Benjamin Marko, Ian Deters, Lori McDonnell, Tom Price, Joel Rabe, Charles Williams

University of Detroit Mercy: Gillian Carney
University of Wyoming: Sylvia Hobart
Valparaiso University: Elizabeth Brondos, Ross Corliss, Steven Klee, Kimberly Pearson, Paul Schmid, Dan Tesch, Philip Whaley

Robert Messer	Philip Straffin
Albion College	Beloit College
ram@ albion.edu	straffin@beloit.edu

Index

$A^{2}, 95$
achiral, 87
Alexander polynomial, 67
Alexander trick, 131
alternating knot, 51
ambient isotopy, 32,33
angle, of a loop in a circle, 186
arc, 92
of a knot diagram, 50
arc trick, 163
nonending, 97, 205, 207
ball
closed, 212
open, 91,212
standard, 21
topological, 21
base point
of a loop, 169
bijection, 7, 14
Bolzano-Weierstrass Theorem, 159, 160
Borromean rings, 45
boundary
of a surface, 92
of a 3-manifold, 127
bracket polynomial, 82

Cartesian product, 9

continuity principle, 202
of groups, 201

Cat-Door Lemma, 161
category theory, 183
cell
standard, 21
topological, 21
cellular decomposition
of a 3-manifold, 132
checkerboard surface, 122
circle
Seifert, 123
Classification Theorem
for closed surfaces, 111
for surfaces with boundary, 115
closed
ball, 212
3-manifold, 133
closed surface, 110
Classification Theorem, 111
color wheel, 63
colorability
with p colors, 63
with three colors, 61
combination, 4
compact
3-manifold, 133
topological space, 226
triangulated space, 103
completeness, of $\mathbb{R}, 27$
component, path, 26
composition of functions, 11
concatenation of loops, 170
configuration space, 9
of chords, 97, 211
of lines in $\mathbb{R}^{2}, 97$
of lines in $\mathbb{R}^{3}, 96$
of lines in $\mathbb{R}^{4}, 131$
of rectangles, 12
of roots of polynomials, 12
of rotations of $S^{2}, 131$
of triangles, 9,12
of visible colors, 12
connected, 223
simply, 184
sum, 99
constant path, 174
continuity, 15
continuity principle for Cartesian products, 202
continuous function, 15
between metric spaces, 212
between topological spaces, 219
contractible, 190
contraction, 157, 190
Contraction Mapping Theorem, 158
converge, 20
convex, 173, 184
court-jester hat, 96, 109
covariant functor, 181, 183
cover, open, 226
cross-cap, 94
crossing number, 51
crossing/arc matrix, 66
cutting, 98
$D^{2}, 95$
definition, topologist's, 21
deformation retract, 191
deformation retraction, 191
degree
of a homotopy class of loops, 188
of a loop in $S^{1}, 187$
Δ polynomial, 78
determinant of a knot, 76
detour, triangular, 44
diagram, reduced alternating, 52
diameter, 227
disconnection, 223
discrete metric, 19, 211
discrete topology, 218
disk
open, 25,92
standard, 21
topological, 21
double cube space, 142
dunce cap, 96
edge, 103
of a cellular decomposition, 132
of a triangulation, 132
English Railway space, 211
equality
almost everywhere, 6
eventual, 6
equivalence
class, 4
between knots, 44
relation, 2
topological, 20
Euler characteristic, 104
magic trick, 103
of a surface, 105
of a 3-manifold, 133
eventually equal, 6
face, 103
of a cellular decomposition, 132
of a triangulation, 132
figure-eight knot, 61
finite-complement topology, 218
fixed point, 151
fixed-point property, 155
fixed-point theorem
for a closed bounded interval, 153
for a contraction, 158
free group, 194
Frege, Gottlob, 3
Frege's puzzle, 4
function
bijection, 7, 14
composition, 11
continuous, 15
identity, 11
injection, 7, 14
inverse, 11, 14
one-to-one, 7
onto, 7
surjection, 7, 14
functor, covariant, 181, 183
fundamental group, 177
general position, 47
rule of thumb, 48
generator, of a free group, 194
genus
of a handlebody, 145
of a knot, 122, 125
of a surface, 106
of a 3-manifold, 147
gluing, 93
granny knot, 65
group, 177
Cartesian product, 201
fundamental, 177
half-twist cube, 138
handle, 144-146
handlebody, 145
Hantschze-Wendt manifold, 142
Hausdorff Axiom, 221
Hausdorff space, 221
Heegaard splitting, 147
Heine-Borel Theorem, 185, 227
homeomorphic, 20
homeomorphism, 20, 219
HOMFLY polynomial, 82
homomorphism, 179
homotopy, 190
class, 172
of loops, 171
Hopf link, 45, 197
identity function, 11
image, of a set, 216
index
of a crossing, 69
of a handle, 144-146
of a region, 69, 77
indiscrete topology, 218
induced function, 29
injection, 7, 14
integers, 2
Intermediate-Value Theorem, 156
invariant
knot, 50
topological, 26
inverse function, 11, 14
isomorphic groups, 179
isomorphism, 179
isotopy, 32, 33
ambient, 32, 33
Jones polynomial, 82, 85
Jordan Curve Theorem, 30
$K^{2}, 95$
Kent, Clark, 5

Klein bottle, 94
one-sided, 108
two-sided, 140, 142
knot, 42
alternating, 51
diagram, 50
equivalence, 44
figure-eight, 61
invariant, 50
oriented, 57
trefoil, 61
trivial, 51, 61
type, 45
label, of an interval, 161
labeling, proper, 161
Lane, Lois, 5
least upper bound, 27
left-handed crossing, 57
lens space, 147
light-bulb trick, 38
limit point, 222
link, 45
oriented, 57
trivial, 51
linking number, 57
longitudinal curve, 147
loop, 169
concatenation, 170
homotopy class, 172
$M^{2}, 95$
magic trick, Euler characteristic, 103
manifold, 92, 127
Hantschze-Wendt, 142
Mean Value Theorem, 157
measure zero, 6
meridional curve, 147
meridional disk, 147
metric, 210
discrete, 19, 211
Roman road, 211
space, 210
standard, 210
taxicab, 210
uniform, 212
Möbius band, 13
one-sided, 107
open, 97
two-sided, 142
Monotone Convergence Theorem, 153
move, triangular, 44

$\mathbb{N}, 5$

natural numbers, 5
neighborhood, 91
Newton's method, 160
nonending arc trick, 97, 205, 207
non-metrizable topology, 218
nonorientable, 3-manifold, 139
No-Retraction Theorem, 165
null string, 200

1-handle, 144
one-sided
Klein bottle, 108
Möbius band, 107
projective plane, 108
surface, 107
torus, 141
one-to-one, 7
onto, 7
open
ball, 91, 212
cover, 226
Möbius band, 97
set, in a metric space, 212
set, in a topological space, 217
orientable
surface, 106
3-manifold, 139
orientation, of a face, 106
oriented link, 57
$P^{2}, 95$
partition, 161, 223
pasting, 93
path, 26
component, 26
connected, 26, 224
permutation, 4
Poincaré Conjecture, 206
polynomial
Alexander, 67
bracket, 82
$\Delta, 78$
HOMFLY, 82
Jones, 82, 85
positive definite, 210
product
Cartesian, 9
of homotopy classes of loops, 174
projection
stereographic, 22
projection function, 229
projective plane, 94
one-sided, 108
projective three-space, 131
proper labeling
of a subdivision, 161
of a triangulation, 162
pseudo-manifold, 135
$\mathbb{Q}, 6$
quarter-twist cube, 142
quotient
space, 229
topology, 229
$\mathbb{R}, 6$
rational numbers, 2, 6
real numbers, 6
reduced alternating diagram, 52
reflexivity, 2
regular projection, 49
Reidemeister move, 56
representation of a knot on a color wheel, 63
right-handed crossing, 57
Roman road metric, 211
rule of thumb, general position, 48
$S^{2}, 95$
scaling factor, 157
Schönflies Theorem, 30
Seifert circle, 123
Seifert surface, 123
sequence, convergent, 20
shelling a disk, 39
shortcut, triangular, 44
Simplicial Approximation Theorem, 192
simplicial complex, 192
simply connected, 184
skein relation, 78
Conway, 79
Jones polynomial, 85
Kauffman bracket polynomial, 82
solid torus, 128, 207
Spanish Hotel Theorem, 157
Sperner's Lemma, 162
sphere
standard, 21
topological, 21
standard
ball, 21
cell, 21
disk, 21
metric, 210
sphere, 21
star-shaped, 173
Stein, Gertrude, 160
stereographic projection, 22
subcover, 226
subspace topology, 218
Superman, 5
surface, 92
with boundary, Classification Theorem, 115
checkerboard, 122
closed, Classification Theorem, 110, 111
one-sided, 107
Seifert, 123
two-sided, 107
surjection, 7, 14
symmetry, 2
for a metric, 210
$T^{2}, 95$
$T^{3}, 203$
taxicab metric, 210
temperature, 156
3-handle, 146
3-manifold, 127
closed, 133
compact, 133
nonorientable, 139
orientable, 139
3-torus, 129
topological invariant, 26
topological space, 20, 217
topologically equivalent, 20
topologist's definition, 21
topology, 217
discrete, 218
finite-complement, 218
indiscrete, 218
non-metrizable, 218
subspace, 218
torus, 92
one-sided, 141
solid, 128, 207
three-dimensional, 129, 203
transitivity, 2
trefoil knot, 61
triangle inequality, 210
triangular
detour, 44
move, 44
shortcut, 44
triangulation
of a disk, 39
of a surface, 103
of a 3-manifold, 132
trick
Alexander, 131
arc, 163
Euler characteristic, 103
light-bulb, 38
nonending arc, 97, 205, 207
triple point, 49
trivial
group, 184
knot, 51, 61
link, 51
2-handle, 145
2-manifold, 92
two-sided
Klein bottle, 140
Möbius band, 142
surface, 107
2-sphere, 92
uniform metric, 212
upper bound, 27
vertex, 103
of a cellular decomposition, 132
of a triangulation, 132
wedge of circles, 193
well-defined, 174
Whitehead link, 45
winding number, 77
word
in a free group, 194
as gluing instruction, 93
wrapping function, 21, 23
writhe, 84

$\mathbb{Z}, 2$

0 -handle, 144

About the Authors

Robert Messer studied mathematics as an undergraduate at the University of Chicago. He wrote his thesis in geometric topology at the University of Wisconsin under D. Russell McMillan, receiving his PhD in 1975. He was a John Wesley Young Research Instructor at Dartmouth College and has taught at Western Michigan University and Vanderbilt University. He has been at Albion College since 1981 where he has served as chair of the Department of Mathematics and Computer Science from 1997 to 2002.

In addition to research in topology, he is the author of the textbook Linear Algebra: Gateway to Mathematics (1994) and one of the co-authors of Learning by Discovery: A Lab Manual for Calculus (MAA, 1993). He helped to organize and coach the Michigan All-Star Math Team for the American Regions Mathematics League Competitions and has served as director of the Michigan Mathematics Prize Competition for the Michigan Section of the Mathematical Association of America. He enjoys the combinatorics and symmetry of English change ringing as well as traditional American and English country dance.

Philip Straffin earned his undergraduate degree in mathematics from Harvard University. He learned knot theory from Ray Lickorish at Cambridge University on a Marshall Scholarship, and received his PhD from the University of California at Berkeley, with a thesis in algebraic topology under Emery Thomas. He has taught at Beloit College since 1970, and served as Chair of Mathematics and Computer Science from 1980 to 1990. He has twice been chosen as Beloit College's Teacher of the Year, and received the MAA's Haimo Award for Distinguished College Teaching of Mathematics in 1993.

Professor Straffin has published over 30 research and expository papers, and has won the Allendoerfer Award and the Trevor Evans Award for mathematical exposition from the MAA. His books include Topics in the Theory of Voting (1980) and Game Theory and Strategy (MAA, 1993), and edited collections Political and Related Models (with Steven

Brams and William Lucas, 1983) and Applications of Calculus (MAA, 1993). He is a member of the American Mathematical Society, the Mathematical Association of America and the Association for Women in Mathematics. For the MAA, he has been Chair of the Wisconsin Section, Editor of the Anneli Lax New Mathematical Library, and served on the MAA Notes Editorial Board, the Haimo Teaching Award Committee, the Beckenbach Book Prize Committee, the Council on Publications, and the Coordinating Council on Awards. He enjoys the challenge of scaling peaks in the mountains of Colorado.

MATHEMATICS/TOPOLOGY

NOW

Robert Messer \& Philip Straffin

Topology is a branch of mathematics packed with intriguing concepts, fascinating geometrical objects and ingenious methods for studying them. The authors have written this textbook to make this material accessible to undergraduate students without requiring extensive prerequisites in upper-level mathematics. The approach is to cultivate the intuitive ideas of continuity, convergence, and connectedness so students can quickly delve into knot theory, the topology of surfaces and three-dimensional manifolds, fixed points, and elementary homotopy theory. The fundamental concepts of point-set topology appear at the end of the book when students can see how this level of abstraction provides a sound logical basis for the geometrical ideas that have come before. This organization exposes students to the exciting geometrical ideas of topology now(!) rather than later.

Students using this textbook should have some exposure to the geometry of objects in higher-dimensional Euclidean spaces together with an appreciation of precise mathematical definitions and proofs. Multivariable calculus, linear algebra, and one further proof-oriented mathematics course are suitable preparation.

