
What Is Statistics?

Some Definitions of Statistics

This is a course primarily about statistics, but what exactly is statistics? In other

words, what is this course about?1 Here are some definitions of statistics from other

people:

• a collection of procedures and principles for gaining information in order to

make decisions when faced with uncertainty (J. Utts [Utt05]),

• a way of taming uncertainty, of turning raw data into arguments that can

resolve profound questions (T. Amabile [fMA89]),

• the science of drawing conclusions from data with the aid of the mathematics

of probability (S. Garfunkel [fMA86]),

• the explanation of variation in the context of what remains unexplained (D.

Kaplan [Kap09]),

• the mathematics of the collection, organization, and interpretation of numer-

ical data, especially the analysis of a population’s characteristics by inference

from sampling (American Heritage Dictionary [AmH82]).

While not exactly the same, these definitions highlight four key elements of statis-

tics.

Data – the raw material

Data are the raw material for doing statistics. We will learn more about different

types of data, how to collect data, and how to summarize data as we go along. This

will be the primary focus of Chapter 1.

1As we will see, the words statistic and statistics get used in more than one way. More on that
later.
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Information – the goal

The goal of doing statistics is to gain some information or to make a decision.

Statistics is useful because it helps us answer questions like the following:

• Which of two treatment plans leads to the best clinical outcomes?

• How strong is an I-beam constructed according to a particular design?

• Is my cereal company complying with regulations about the amount of cereal

in its cereal boxes?

In this sense, statistics is a science – a method for obtaining new knowledge.

Uncertainty – the context

The tricky thing about statistics is the uncertainty involved. If we measure one box

of cereal, how do we know that all the others are similarly filled? If every box of

cereal were identical and every measurement perfectly exact, then one measurement

would suffice. But the boxes may differ from one another, and even if we measure

the same box multiple times, we may get different answers to the question How
much cereal is in the box?

So we need to answer questions like How many boxes should we measure? and

How many times should we measure each box? Even so, there is no answer to these

questions that will give us absolute certainty. So we need to answer questions like

How sure do we need to be?

Probability – the tool

In order to answer a question like How sure do we need to be?, we need some way of

measuring our level of certainty. This is where mathematics enters into statistics.

Probability is the area of mathematics that deals with reasoning about uncertainty.

So before we can answer the statistical questions we just listed, we must first develop

some skill in probability. Chapter 2 provides the foundation that we need.

Once we have developed the necessary tools to deal with uncertainty, we will

be able to give good answers to our statistical questions. But before we do that,

let’s take a bird’s eye view of the processes involved in a statistical study. We’ll

come back and fill in the details later.

A First Example: The Lady Tasting Tea

There is a famous story about a lady who claimed that tea with milk tasted different

depending on whether the milk was added to the tea or the tea added to the milk.

The story is famous because of the setting in which she made this claim. She was

attending a party in Cambridge, England, in the 1920s. Also in attendance were a

number of university dons and their wives. The scientists in attendance scoffed at

the woman and her claim. What, after all, could be the difference?

All the scientists but one, that is. Rather than simply dismiss the woman’s

claim, he proposed that they decide how one should test the claim. The tenor of
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the conversation changed at this suggestion, and the scientists began to discuss how

the claim should be tested. Within a few minutes cups of tea with milk had been

prepared and presented to the woman for tasting.

Let’s take this simple example as a prototype for a statistical study. What

steps are involved?

(1) Determine the question of interest.

Just what is it we want to know? It may take some effort to make a

vague idea precise. The precise questions may not exactly correspond to our

vague questions, and the very exercise of stating the question precisely may

modify our question. Sometimes we cannot come up with any way to answer

the question we really want to answer, so we have to live with some other

question that is not exactly what we wanted but is something we can study

and will (we hope) give us some information about our original question.

In our example this question seems fairly easy to state: Can the lady tell

the difference between the two tea preparations? But we need to refine this

question. For example, are we asking if she always correctly identifies cups of

tea or merely if she does better than we could do ourselves (by guessing)?

(2) Determine the population.

Just who or what do we want to know about? Are we only interested in

this one woman or women in general or only women who claim to be able to

distinguish tea preparations?

(3) Select measurements.

We are going to need some data. We get our data by making some mea-

surements. These might be physical measurements with some device (like a

ruler or a scale). But there are other sorts of measurements too, like the an-

swer to a question on a form. Sometimes it is tricky to figure out just what to

measure. (How do we measure happiness or intelligence, for example?) Just

how we do our measuring will have important consequences for the subsequent

statistical analysis.

In our example, a measurement may consist of recording for a given cup

of tea whether the woman’s claim is correct or incorrect.

(4) Determine the sample.

Usually we cannot measure every individual in our population; we have to

select some to measure. But how many and which ones? These are important

questions that must be answered. Generally speaking, bigger is better, but

it is also more expensive. Moreover, no size is large enough if the sample is

selected inappropriately.

Suppose we gave the lady one cup of tea. If she correctly identifies the

mixing procedure, will we be convinced of her claim? She might just be

guessing; so we should probably have her taste more than one cup. Will we

be convinced if she correctly identifies 5 cups? 10 cups? 50 cups?

What if she makes a mistake? If we present her with 10 cups and she

correctly identifies 9 of the 10, what will we conclude? A success rate of 90%

is, it seems, much better than just guessing, and anyone can make a mistake

now and then. But what if she correctly identifies 8 out of 10? 80 out of 100?
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And how should we prepare the cups? Should we make 5 each way? Does

it matter if we tell the woman that there are 5 prepared each way? Should we

flip a coin to decide even if that means we might end up with 3 prepared one

way and 7 the other way? Do any of these differences matter?

(5) Make and record the measurements.

Once we have the design figured out, we have to do the legwork of data

collection. This can be a time-consuming and tedious process. In the case

of the lady tasting tea, the scientists decided to present her with ten cups

of tea which were quickly prepared. A study of public opinion may require

many thousands of phone calls or personal interviews. In a laboratory setting,

each measurement might be the result of a carefully performed laboratory

experiment.

(6) Organize the data.

Once the data have been collected, it is often necessary or useful to orga-

nize them. Data are typically stored in spreadsheets or in other formats that

are convenient for processing with statistical packages. Very large data sets

are often stored in databases.

Part of the organization of the data may involve producing graphical and

numerical summaries of the data. We will discuss some of the most important

of these kinds of summaries in Chapter 1. These summaries may give us initial

insights into our questions or help us detect errors that may have occurred to

this point.

(7) Draw conclusions from data.

Once the data have been collected, organized, and analyzed, we need to

reach a conclusion. Do we believe the woman’s claim? Or do we think she is

merely guessing? How sure are we that this conclusion is correct?

Eventually we will learn a number of important and frequently used meth-

ods for drawing inferences from data. More importantly, we will learn the basic

framework used for such procedures so that it should become easier and easier

to learn new procedures as we become familiar with the framework.

(8) Produce a report.

Typically the results of a statistical study are reported in some manner.

This may be as a refereed article in an academic journal, as an internal re-

port to a company, or as a solution to a problem on a homework assignment.

These reports may themselves be further distilled into press releases, newspa-

per articles, advertisements, and the like. The mark of a good report is that

it provides the essential information about each of the steps of the study.

As we go along, we will learn some of the standard terminology and pro-

cedures that you are likely to see in basic statistical reports and will gain a

framework for learning more.

At this point, you may be wondering who the innovative scientist was and

what the results of the experiment were. The scientist was R. A. Fisher, who first

described this situation as a pedagogical example in his 1925 book on statistical

methodology [Fis25]. We’ll return to this example in Sections 2.4.1 and 2.7.3.
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Consider a model where the penetrances are

• P (D|AA) = 0.01,

• P (D|Aa) = 0.05,

• P (D|aa) = 0.50.

Q. Now consider an AA× aa cross. What is the probability that a child will have

the disease?

A. In this case we know the child will have genotype Aa, so P(D) = P(D | Aa) =
0.05.

Q. What is the probability that a child will have the disease in an AA×Aa cross?

A. We can divide the event D into three mutually exclusive cases and sum their

probabilities:

P(D) = P(D and AA) + P(D and Aa) + P(D and aa)

= P(AA) · P(D | AA) + P(Aa) · P(D | Aa) + P(aa) · P(D | aa)
= (0.5)(0.01) + (0.5)(0.05) + (0)(0.5) = 0.03 . �

2.3. Discrete Distributions

2.3.1. The Distribution of a Discrete Random Variable: pmfs and cdfs

Recall that the distribution of a variable in a data set described what values oc-

curred and with what frequency. What we need now is a way to describe the

distribution of a random variable. We do this somewhat differently for discrete and

continuous random variables, so for the moment we will focus our attention on the

discrete case.

One useful way to describe the distribution of a discrete random variable –

especially one that has a finite range – is in a table like the one we used in Exam-

ple 2.2.1 for the random variable X that counts the number of heads in four tosses

of a fair coin:

value of X 0 1 2 3 4

probability 0.0625 0.2500 0.3750 0.2500 0.0625

Notice that the probability table allows us to assign to each possible outcome a

probability. This means that the table is really describing a function. This function

is called a probability mass function or pmf. A pmf can be any function that

obeys the probability axioms.

Definition 2.3.1. Let X : S → R be a random variable. The probability mass
function (pmf) for X is a function f : R → [0, 1] such that for all x ∈ R,

f(x) = P(X = x) . �
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We will write fX for the pmf of X when we want to emphasize the random

variable.

Lemma 2.3.2. Let f be the pmf for a random variable X : S → R. Then

(1) f(x) ∈ [0, 1] for all x ∈ R, and

(2)
∑

s∈S

f(X(s)) = 1.

Furthermore if g is a function such that

(1) g(x) ∈ [0, 1] for all x ∈ R, and

(2)
∑

g(x) �=0

g(x) = 1 ∈ [0, 1] for all x ∈ R,

then g is a pmf for a random variable.

Proof. Exercise 2.38. �

As we will see, the pmf will be much more important to our study of random

variables than the set S or the particular function mapping S to R.

It is possible to write down an explicit formula for the pmf of the random

variable in Example 2.2.1, namely

fX(x) =

{
4!

16x!(4−x)! if x ∈ {0, 1, 2, 3, 4},
0 otherwise.

You can easily check that the values given by this formula match those in the table

above. Sometimes it is not so easy to write down a formula for the pmf of a random

variable, but the function exists nonetheless, since we can always define it by

fX(x) = P(X = x) . (2.4)

Figure 2.6 shows three different ways that we can plot the pmf from Exam-

ple 2.2.1. In the first plot, the non-zero values of this function are represented

by dots placed according to the Cartesian coordinate scheme. In the second plot,

vertical lines are used instead. In the third plot, lines are drawn connecting the

dots. It is important to remember that although these lines help us see the shape

of the distribution, the value of the pmf is zero between the dots. All of these

plots can be made using xyplot() by setting the type argument to ’p’, ’h’ (for

histogram-like), or c(’p’,’l’), respectively.
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Figure 2.6. Graphs of a pmf.
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Figure 2.7. A probability histogram (left) and the graph of a cdf (right).

pmf-plot

# define pmf (vectorized),

# checking to be sure input is in { 0, 1, 2, 3, 4 }

> f <- function(x) {

+ sapply(x, function(x) {

+ if ( ! ( x %in% 0:4 ) ) { return(0) }

+ return( factorial(4) / ( 16 * factorial(x) * factorial(4-x) ) )

+ })

+ }

> f(0:6)

[1] 0.0625 0.2500 0.3750 0.2500 0.0625 0.0000 0.0000

> probplot1 <- xyplot(f(0:4)~0:4, xlab="x", ylab="probability")

> probplot2 <- xyplot(f(0:4)~0:4, xlab="x", ylab="probability",

+ type="h")

> probplot3 <- xyplot(f(0:4)~0:4, xlab="x", ylab="probability",

+ type=c("l","p"))

Another useful picture is a probability histogram. A probability histogram

is made very much like the density histograms we made from data. Typically

vertical bars are centered at the possible values of the random variable, but this

is not required and for random variables with many possible values, it may be

useful to combine some of the bins. In any case, the area of each bar represents

the probability that the random variable takes on a value covered by the base of

the rectangle. (If we choose boundaries that are not possible values of the random

variable, we do not need to worry about whether the left or right endpoint belongs

to the bin.) An example appears in Figure 2.7.

There is yet one more important way to describe the distribution of a discrete

random variable, with a cumulative distribution function (cdf).

Definition 2.3.3 (Cumulative Distribution Function). The cumulative distribution
function FX of a random variable X is defined by

FX(x) = P(X ≤ x) . �

The graph of a cdf of a discrete random variable is a step function. See Fig-

ure 2.7. There is, of course, a connection between the pmf and cdf of a given random

variable, namely
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FX(x) =
∑

w≤x

fX(w) , and

fX(x) = F (x)− F (x−) ,

where F (x−) = max{F (w) | w < x}.3 The notation here is more challenging than

the idea. To get the cdf from the pmf, we simply add up the probabilities for all

possible values up to and including x. To get the pmf from the cdf, we look at how

much the cdf has increased since its “last change”.

Example 2.3.1. Suppose that the cdf for a discrete random variable is given by

F (x) =

{
1− 1

�x+1� if x > 0,

0 otherwise .

Q. What is the pmf for this random variable?

A. We begin by calculating f(3):

f(3) = F (3)− F (3−) = F (3)− F (2) =

(

1− 1

4

)

−
(

1− 1

3

)

=
1

12
.

More generally,

f(x) =

{
1

x(x+1) if x is a positive integer,

0 otherwise. �
In the next section we turn our attention to two important examples of discrete

distributions.

2.3.2. The Binomial and Negative Binomial Distributions

In Example 2.2.1 the random variable X counted the number of heads in four tosses

of a fair coin. This is an example of an important family of distributions called the

binomial distributions. A binomial random variable arises in a situation where

our random process can be divided up into a sequence of smaller random processes

called trials and

(1) the number of trials (usually denoted n) is specified in advance,

(2) there are two outcomes (traditionally called success and failure) for each trial,

(3) the probability of success (frequently denoted p or π) is the same in each trial,

and

(4) each trial is independent of the other trials.

3Technically, if X can take on infinitely many values, we may need to use the supremum (sup)
in place of the maximum (max). The supremum of a bounded, non-empty set is the smallest number
that is at least as large as all numbers in the set. This is the maximum when the maximum exists. See
Exercise 2.39.
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The binomial random variable counts the number of successes. There are actually

many different binomial distributions, one for each positive integer n and probability

π. Collectively, we refer to these distributions as the binomial family. Members

of the family are distinguished by the values of the parameters n and π but are

otherwise very similar. We will use the following notation to succinctly describe

binomial random variables.

Notation 2.3.4. If X is a binomial random variable with parameters n and π, we
will write X ∼ Binom(n, π).

We would like to have a general formula for the pmf of a binomial distribution:

fX(x;n, π) = P(X = x) = ??? .

Notice the use of the semi-colon in this equation. The semi-colon separates the

parameters of the distribution from the independent variable of the pmf.

The tools we developed in Section 2.2 make deriving a formula for the pmf of

a binomial random variable straightforward.

Theorem 2.3.5 (pmf for Binomial Distributions). Let X ∼ Binom(n, π). Then
the pmf for X is given by

fX(x;n, π) =

(
n

x

)

πx(1− π)n−x .

Proof. For a fixed n, there are 2n possible outcomes (see Example 2.2.8). These

outcomes are not equally likely unless π = 0.5, but we can determine the probability

of any particular outcome. For example, if n = 4, then

P(SSFS) = π · π · (1− π) · π = π3(1− π)1 .

More generally, any outcome with x successes in n trials will have probability

πx(1 − π)n−x, and the number of such outcomes is
(
n
x

)
since we must select x of

the n trials to be successful. So

P(X = x) =

(
n

x

)

︸︷︷︸
number of outcomes

with X = x

· πx(1− π)n−x

︸ ︷︷ ︸
probability of
each outcome

. �

The cdf for a binomial random variable cannot be expressed simply in closed

form, but R offers functions to compute both the pmf and the cdf, as well as a

function that will make random draws from a binomial distribution. These functions

are summarized in Box 2.3.

Example 2.3.2. Here are some example uses of the functions in Box 2.3.

binom-demo01> randomData <- rbinom(n=20,size=4,prob=0.5)

> randomData

[1] 3 1 2 2 3 1 3 4 2 2 0 1 1 2 2 3 2 3 4 2

> table(randomData)

randomData

0 1 2 3 4

1 4 8 5 2
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Box 2.3. Working with Binom(size, prob) in R

The following functions are available in R for working with a binomial random

variable X ∼ Binom(size, prob):

function (& arguments) explanation

dbinom(x,size,prob) returns P(X = x) (the pmf)

pbinom(q,size,prob) returns P(X ≤ q) (the cdf)

qbinom(p,size,prob) returns smallest x such that P(X ≤ x) ≥ p

rbinom(n,size,prob) makes n random draws of the random vari-

able X and returns them in a vector

set.seed(seed) sets the seed for the random number gener-

ator; see ?set.seed for details

> dbinom(0:4,size=4,prob=0.5) # matches earlier example

[1] 0.0625 0.2500 0.3750 0.2500 0.0625

> dbinom(0:4,size=4,prob=0.5) * 20 # pretty close to our table above

[1] 1.25 5.00 7.50 5.00 1.25

> pbinom(0:4,size=4,prob=0.5) # same as cumsum(dbinom(...))

[1] 0.0625 0.3125 0.6875 0.9375 1.0000 �
It is important to note that

• R uses size for the number of trials (n), n for the number of random draws,

and prob for the probability of success (π). prob and size can be abbreviated

to p and s if desired, but most often we will simply use them without names

and in the required order.

• pbinom() gives the cdf not the pmf. Reasons for this naming convention will

become clearer later.

• There are similar functions in R for many of the distributions we will encounter,

and they all follow a similar naming scheme. We simply replace binom with

the R-name for a different distribution.

Example 2.3.3.

Q. Free Throw Freddie is a good free throw shooter. Over the last few seasons

he has made 80% of his free throws. Let’s assume that each of Freddie’s shots is

independent of the others4 and that he has an 80% probability of making each. At

the end of each practice, Freddie shoots 20 free throws to keep sharp. What is the

probability that he makes all 20? At least 15? Exactly 16 (80% of 20)?

A. We will model this situation as a binomial random variable. Let X be the

number of made free throws in 20 attempts. Then X ∼ Binom(20, 0.8). We’ll let

4How one might gather data to test this assumption of independence is an interesting question.
But it will have to wait for another day.
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Box 2.4. Working with NBinom(size, prob) in R

The following functions are available in R for working with a binomial random

variable X ∼ NBinom(size, prob):

function (& arguments) explanation

rnbinom(n,size,prob) makes n random draws of the random vari-

able X and returns them in a vector

dnbinom(x,size,prob) returns P(X = x) (the pmf)

qnbinom(p,size,prob) returns smallest x such that P(X ≤ x) ≥ p

pnbinom(q,size,prob) returns P(X ≤ x) (the cdf)

R do the number crunching here, but you are welcome to check these using the

formulas.

binom-freddy01
> dbinom(20,20,0.8) # probability of making all 20

[1] 0.011529

> 1 - pbinom(14,20,0.8) # probability of NOT making 14 or fewer

[1] 0.8042

> dbinom(16,20,0.8) # probability of making exactly 16

[1] 0.2182 �
The negative binomial random variables arise in a very similar situation to

that of the binomial random variables. The difference is that instead of deciding

in advance how many trials to perform and counting the number of successes, now

we will decide how many successes there will be and repeat the trials until we

have obtained the desired number of successes. The negative binomial random

variable counts the number of failures that occur before getting the desired number

of successes.5

Let X be negative binomial with parameters s (number of successes) and π
(probability of success). We will denote this X ∼ NBinom(s, π). The R functions

related to negative binomial distributions are similar to those for the binomial

distributions (see Box 2.4). In R the number of successes is called size rather than

s but can be abbreviated to s.

Example 2.3.4.

Q. Suppose you roll a pair of standard 6-sided dice until you get double sixes. How

many rolls will it take? What is the probability that it will take you at least 20

rolls? At least 30? At least 40? At least 50?

A. We’ll work out formulas for the negative binomial distributions shortly. For

now, we’ll let R do the work. Let X ∼ NBinom(1, 1/36). Remember that X is

5Whether the negative binomial variable counts the number of failures or the number of trials
varies in the literature, so when looking at information about this distribution, be sure to check which
convention the author is using. The convention we are choosing matches what is done in R.
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the number of failures. Let Y = X + 1 be the total number of rolls. We want

to determine P(Y ≥ 20) = P(X ≥ 19) = 1 − P(X ≤ 18) and the corresponding

probabilities for the other questions. We can do them all in one step in R.

nbinom-first-example01
> 1-pnbinom(c(18,28,38,48),size=1,prob=1/36)

[1] 0.58552 0.44177 0.33332 0.25148

You could be rolling quite a while if you are waiting for double sixes. �
Now we want to derive the formula for the pmf of a negative binomial variable.

The simplest case is when we stop after the first success, i.e., when s = 1. In this

case

P(X = x) = P(x failures followed by a success)

= (1− π)xπ .

When s = 1, a negative binomial distribution is called a geometric distribution

because the pmf forms a geometric series with ratio (1− π). The sum of the series

is
∞∑

x=0

(1− π)xπ =
π

1− (1− π)
=

π

π
= 1 .

That’s a good thing, since all pmfs are supposed to sum to 1. You can access the

geometric distribution directly in R using rgeom(), dgeom(), and pgeom().

Now let’s try the case where s > 1. Let E be the event that there are x failures

and s− 1 successes in the first x+ s− 1 trials followed by a success in trial x+ s.
Then

P(X = x) = P(E) =

(
x+ s− 1

x

)

(1− π)xπs−1 · π

=

(
x+ s− 1

x

)

(1− π)xπs .

This proves the following theorem. Notice that when s = 1 we get the same

expression that we just derived for the geometric distribution.

Theorem 2.3.6. Let X ∼ NBinom(s, π). Then P(X = x) =
(
x+s−1

x

)
(1−π)xπs. �

2.4. Hypothesis Tests and p-Values

We have said that a fair coin is equally likely to be heads or tails when tossed.

Based on this assumption, we determined that the probability of getting heads is

50%. But now suppose we have a coin and we do not know if it is a fair coin. How

can we test it? Clearly we need to flip the coin and check the outcomes. But how

many times do we flip the coin? And what decision do we make? If we flip the

coin 100 times, we would expect roughly 50 heads and 50 tails, but we know that

it is very likely we won’t get exactly 50 of each. At what point would we become

suspicious that the coin is biased (more likely to give one outcome than the other)?
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2.4.1. The (Exact) Binomial Test

If we flip a coin n times and let X be the number of heads, then X ∼ Binom(n, π)
for some unknown value of π. We want to know whether or not π = 0.50. For

example, suppose that n = 100 and we get x = 40 heads in our sample. What

do we conclude? Is this consistent with a fair coin? Or is it sufficient evidence to

suggest that the coin is biased?

Well, if it really is the case that π = 0.50, then P(X ≤ 40) = 0.02844, so we

would only get 40 or fewer heads about 2.8% of the times that we did this test. In

other words, getting only 40 heads is pretty unusual, but not extremely unusual.

This gives us some evidence to suggest that the coin may be biased. After all, one

of two things must be true. Either

• the coin is fair (π = 0.50) and we were just “unlucky” in our particular 100

tosses, or

• the coin is not fair, in which case the probability calculation we just did doesn’t

apply to the coin.

That in a nutshell is the logic of a statistical hypothesis test. We will learn a

number of hypothesis tests, but they all follow the same basic four-step outline.

Step 1: State the null and alternative hypotheses

A hypothesis is a statement that can be either true or false. A statistical hy-

pothesis is a hypothesis about a parameter (or parameters) of some population or

process. In this example, the statistical hypothesis we are testing is

• H0: π = 0.50

where π is the probability of obtaining a head when we flip the coin. This is called

the null hypothesis. In some ways it is like a straw man. We will collect evidence

(data) against this hypothesis. If the evidence is strong enough, we will reject

the null hypothesis in favor of an alternative hypothesis. In our coin tossing

example, the alternative hypothesis is

• Ha: π 	= 0.50

because π = 0.50 when the coin is a fair coin but will be some different value if the

coin is biased.

Step 2: Calculate a test statistic

A statistic is a number calculated from sample data. Mathematically, a statistic

is simply a function that assigns a real number to a data set:

f : DATA → R .

In our coin tossing example, we may wish to count the number of heads obtained

in 100 tosses of the coin. So our statistic is the function that takes any sequence of

heads and tails (the data) and returns the number of heads (a number).
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If we have a particular data set in mind, we will also refer to the numerical

output of this function applied to that data set as a statistic. If we use this number

to test a statistical hypothesis, we will call it a test statistic. In our example, the

number of heads is 40, and we could denote this test statistic as x = 40. A test

statistic should be a number that measures in some way how consistent the data

are with the null hypothesis. In this case, a number near 50 is in keeping with the

null hypothesis. The farther x is from 50, the stronger the evidence against the null

hypothesis.

Step 3: Compute the p-value

Now we need to evaluate the evidence that our test statistic provides. To do this

requires yet another way of thinking about our test statistic. Assuming our sample

was obtained in some random way, we can also think about a statistic as a random

variable. A random process produces a data set, from which we calculate some

number. Schematically,

random process → sample → DATA → statistic .

The distribution of this kind of random variable is called its sampling distribu-

tion. To distinguish between these two views (a particular number vs. a random

variable), we will often use capital letters to denote random variables and lowercase

to indicate particular values. So our random variable in this case will be called X.

Now we can ask probability questions about our test statistic. The general form

of the question is, How unusual would my test statistic be if the null hypothesis
were true? To answer this question, it is important that we know something

about the distribution of X when the null hypothesis is true. In this case, X ∼
Binom(100, 0.5). So how unusual is it to get only 40 heads? If we assume that the

null hypothesis is true (i.e., that the coin is fair), then

P(X ≤ 40) = pbinom(40,100,0.5) = 0.0284 ,

and since the Binom(100, 0.5) is a symmetric distribution, we get the same proba-

bility for the other tail:

P(X ≥ 60) = 1 - pbinom(59,100,0.5) = 0.0284 .

So the probability of getting a test statistic at least as extreme (unusual) as 40 is

0.0568. This probability is called a p-value.

Step 4: Draw a conclusion

Drawing a conclusion from a p-value is a bit of a judgment call. Our p-value is

0.0568. This means that if we flipped 100 fair coins many times, between 5% and

6% of these times we would obtain fewer than 41 or more than 59 heads. So our

result of 40 is a bit on the unusual side, but not extremely so. Our data provide

some evidence to suggest that the coin may not be fair, but the evidence is far from

conclusive. If we are really interested in the coin, we probably need to gather more

data.
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Other hypothesis tests will proceed in a similar fashion. The details of how

to compute a test statistic and how to convert it into a p-value will change from

test to test, but the interpretation of the p-value is always the same. On the

other hand, this interpretation does involve some amount of judgment, whereas the

computation of the p-value is more or less automatic (a computer will typically do

it for us). A famous rule of thumb regarding p-values is that when the p-value is

less than 0.05, then we have enough evidence to reject the null hypothesis. This

is a useful rule of thumb, but it should not be taken too literally. A p-value of

0.049 is hardly different from a p-value of 0.051. Both indicate nearly the same

strength of evidence against the null hypothesis even though one is less than 0.05
and the other greater. Furthermore, when interpreting p-values, we must take into

consideration the consequences of making a mistake. We’ll return to the topic of

errors in a moment, but first let’s do some more examples.

Example 2.4.1.

Q. Let’s return to our example of the lady tasting tea. Suppose we decide to test

whether the lady can tell the difference between tea poured into milk and milk

poured into tea by preparing 10 cups of tea. We will flip a coin to decide how each

is prepared. Then we present the ten cups to the lady and have her state which

ones she thinks were prepared each way. If she gets 9 out of 10 correct, what do we

conclude?

A. The null hypothesis is that she is just guessing, i.e.,

H0 : π = 0.5 .

Under that assumption, P(X ≥ 9) = 0.0107, so the chances of getting 9 or 10

correct just by guessing is just over 1%. This test can be conducted easily in R:

binomtest-lady-tea01

> 1-pbinom(8,10,0.5);

[1] 0.010742

> binom.test(9,10);

Exact binomial test

data: 9 and 10

number of successes = 9, number of trials = 10, p-value = 0.02148

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.55498 0.99747

sample estimates:

probability of success

0.9

There is more in this output than we have discussed to this point, but it is easy

to find the p-value. Notice that it is twice the probability that we just calculated.

This is because by default, binom.test() does a two-sided test. In this case the

p-value computed by binom.test() is P(X ≥ 9 or X ≤ 1). It is possible to have

R compute a one-sided test instead:



60 2. Probability and Random Variables

binomtest-lady-tea02
> binom.test(9,10,alternative="greater");

Exact binomial test

data: 9 and 10

number of successes = 9, number of trials = 10, p-value = 0.01074

alternative hypothesis: true probability of success is greater than 0.5

95 percent confidence interval:

0.60584 1.00000

sample estimates:

probability of success

0.9

The output indicates which kind of test is being done by reporting which of the

following alternative hypotheses is being used:

Ha : π 	= 0.5 (two-sided alternative),

Ha : π < 0.5 (one-sided alternative),

Ha : π > 0.5 (one-sided alternative).

The fact that R by default computes a two-sided p-value can serve as a reminder

that one must offer additional justification to legitimately use a one-sided test. �
There is a certain attraction to one-sided tests. Since the p-value for a one-

sided test is always smaller than the p-value for a two-sided test (unless the sample

proportion is on the “wrong side” of the hypothesized proportion), a one-sided

test appears to give stronger evidence against the null hypothesis. But it is not

appropriate to use a one-sided test simply because you want a smaller p-value.

There are differing opinions about when a one-sided test is appropriate. At one

extreme are those who say one should never do a one-sided test. In any case one

thing is certain: the decision to do a one-sided test must be something that can be

defended without referring to the data. That is, it must be based on some a priori
knowledge about the situation.

In the coin tossing example, it is clear that a two-sided alternative is the ap-

propriate choice. We have no reason to expect the coin, if biased, to be biased in

a particular direction. So without looking at data, we wouldn’t even know which

of the two possible one-sided tests to do. For the lady tasting tea, we can at least

identify a difference between the two possible alternatives before collecting any data:
in one case she is correct more often than expected and in the other case she is

wrong too often. What will we conclude if she gets 9 out of 10 wrong? Should we

consider that to be evidence that she can indeed tell the difference between the two

tea preparations? The answer to that question will essentially answer the question

of whether to use a one-sided or two-sided alternative.

Example 2.4.2.

Q. A children’s game uses a die that has a picture of a ghost named Hugo on one

side and numbers on the other sides. If the die is fair, the ghost should be rolled 1

time in 6. You test the die by rolling 50 times, and the ghost is rolled 16 times. Is

there any reason to be concerned that the die is not fair?
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A. We can perform a binomial test with the following hypotheses:

• H0 : π = 1/6,

• Ha : π 	= 1/6.

Not having any prior knowledge about the die, a two-sided alternative is appropri-

ate.

Now we need to convert our test statistic, x = 16, into a p-value. We can do

this directly with binom.test().

binomtest-hugo01

> binom.test(16,50,1/6)

Exact binomial test

data: 16 and 50

number of successes = 16, number of trials = 50, p-value =

0.006943

alternative hypothesis: true probability of success is not equal to 0.16667

95 percent confidence interval:

0.19520 0.46699

sample estimates:

probability of success

0.32

It is interesting to do this manually as well. Let’s start with a one-sided test

and compare to the results of binom.test().

binomtest-hugo02

# one-sided test manually and using binom.test()

> 1-pbinom(15,50,1/6);

[1] 0.0057345

> binom.test(16,50,1/6,alternative="greater");

Exact binomial test

data: 16 and 50

number of successes = 16, number of trials = 50, p-value =

0.005734

alternative hypothesis: true probability of success is greater than 0.16667

95 percent confidence interval:

0.21210 1.00000

sample estimates:

probability of success

0.32

Obtaining a two-sided p-value is a bit more challenging this time. Since X ∼
Binom(50, 1/6), the p-value should be P(X ≥ 16) + P(X ≤ k) for some number

k. But what number k do we use? The distribution of X is not symmetric in this

case, and the mean (50/6 = 8.33) is not an integer, so it isn’t so easy to simply

take the “mirror image” like we did when the null hypothesis was π = 0.5. The

usual solution is quite clever. We will add up P(X = x) for all values of x with
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P(X = x) ≤ P(X = 16):

p-value =
∑

P(X=x)≤P(X=16)

P(X = x) .

That is, we add the probabilities for all values that are at least as unusual as the

value obtained from our data.

binomtest-hugo03
# finding the "other side" by inspection:

> dbinom(16,50,1/6);

[1] 0.0035458

> rbind(0:4,dbinom(0:4,50,1/6));

[,1] [,2] [,3] [,4] [,5]

[1,] 0.00000000 1.0000000 2.0000000 3.00000 4.00000

[2,] 0.00010988 0.0010988 0.0053844 0.01723 0.04049

>

# this should match the p-value from binom.test()

> pbinom(1,50,1/6) + 1 - pbinom(15,50,1/6);

[1] 0.0069432

# letting R automate finding the interval too:

> probs <- dbinom(0:50,50,1/6); sum(probs[probs <= dbinom(16,50,1/6)])

[1] 0.0069432

Since P(X = x) ≤ P(X = 16) when x = 0 or x = 1, we get the left tail probability

from pbinom(1,50,1/6).

Note: This situation is based on a game the author once played with his chil-

dren. Basing his strategy on the expected number of ghosts that would be rolled,

he lost badly and became suspicious of the die. In fact, the die had two ghosts (on

opposite sides). �

2.4.2. Types of Error and Statistical Power

When we carry out a hypothesis test, there are two kinds of mistakes we could

make. It could be that the null hypothesis is true but that we reject it (because

the p-value is small by random chance). This is called type I error. If we decide

in advance what amount of type I error we can live with, that amount is called the

significance level of the test. Usually it is denoted by α. You may see the result of

a hypothesis test reported in terms of α instead of with a p-value. In our example

above, we could say that “our results were not significant at the α = 0.05 level” (or

that they were significant at the α = 0.10 level). This style of reporting used to

be especially common when calculating p-values was more cumbersome than it is

with today’s computers and is equivalent to saying whether our p-value was above

(not significant) or below (significant) our pre-specified threshold α. If we pick a

significance level α in advance and the null hypothesis is true, then the probability

of type I error is α.

On the other hand, it could be that the null hypothesis is false but that we

do not reject it. This is called type II error. The probability of type II error is

usually denoted β, but it is not as straightforward to calculate. This is because the

probability of type II error depends on two things:
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reject H0 don’t reject H0

H0 is true type I error �
H0 is false � type II error

Figure 2.8. Types of error when conducting hypothesis tests.

• the value of α that will be used and

• “just how wrong” the null hypothesis is.

Suppose that we choose α = 0.05. Then we will reject the null hypothesis if the

number of heads in our sample is less than 40 or greater than 60:

binomtest-power01

> qbinom(0.025,100,0.5) # find q with pbinom(q,100,0.5) >= 0.025

[1] 40

> pbinom(39:40,100,0.5) # double checking

[1] 0.017600 0.028444

On the other hand, if the coin is biased but 40 ≤ x ≤ 60, then we will make a type II

error. The values of our test statistic that lead to rejection of H0 ([0, 39]∪ [61, 100]
in our example) are called the rejection region for the test. The boundary values

of the rejection region are called critical values. (Note: This has nothing to do

with critical values from calculus.)

If our coin is biased so that heads actually occurs 95% of the time, (i.e., π = 0.95
is our particular alternative), then we will be very likely to reject the null hypothesis

and β will be small. In fact, we can easily calculate it:

binomtest-power02
> pbinom(60,100,0.95) - pbinom(39,100,0.95);

[1] 6.2386e-26

The chances of making the wrong decision – type II error – are very small in this

case.

But if the bias is smaller and the coin comes up heads 55% of the time instead,

then the probability of making a type II error is quite large:

binomtest-power03
> pbinom(60,100,0.55) - pbinom(39,100,0.55);

[1] 0.8648

This shows that 100 coin tosses isn’t very likely to catch a coin with only a modest

bias (differing from a fair coin by 5% or less).

Similarly, for any particular alternative value of π, we can calculate the prob-

ability of making a type II error. The power of the test against that alternative

is 1− β, which is the probability that we will make the correct decision (reject the

null hypothesis) when that alternative is true. That is, β and power are really func-

tions of πa, the probability of getting heads in some particular alternative. These

functions can be plotted (by calculating a number of values and “connecting the

dots”).

binomtest-power05
> p <- seq(0,1,by=0.02);

> power <- 1 - ( pbinom(60,100,p) - pbinom(39,100,p) );
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Figure 2.9. The power of a binomial test depends on πa, the alternative value
of π.

> myplot <- xyplot(power~p,ylab="power",xlab=expression(pi[a]),

+ type=’l’, lwd=2);

>

Figure 2.9 shows that the power is very low when πa is near 0.5 but is nearly 1

when πa is sufficiently far from 0.5.

Another way to explore power is to fix πa and let n vary. This can help us

determine how many coins to toss based on our desired power (see Figure 2.10).

binomtest-power06
> p <- rep(c(0.52,0.55,0.60), each=2000);

> plab <- paste("alt prob =", as.character(p));

> n <- rep(1:2000,times=3);

> critical <- qbinom(0.025,size=n,prob=p);

> power <- 1 - ( pbinom(n-critical+1,n,p) - pbinom(critical-1,n,p) );

> myplot <- xyplot(power~n|plab,ylab="power",xlab="number of coin tosses",

+ ylim=c(0,1.1), type=’l’, lwd=2);

A test is said to be under-powered if we collect too little data to have much

chance of detecting an effect of some desired magnitude and over-powered if we

collect more data than were necessary. The design of a good statistical study will

include a power analysis that attempts to determine a reasonable sample size

given some assumptions about effect size.
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Figure 2.10. Power curves show how power depends on sample size for vari-
ous values of πa.
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