
Historical Prologue

The theory of differential equations has a long history, beginning with Isaac Newton.

From the early Greeks through Copernicus, Kepler, and Galileo, the motions of

planets had been described directly in terms of their properties or characteristics,

for example, that they moved on approximately elliptical paths (or in combinations

of circular motions of different periods and amplitudes). Instead of this approach,

Newton described the laws that determine the motion in terms of the forces acting

on the planets. The effect of these forces can be expressed by differential equations.

The basic law he discovered was that the motion is determined by the gravitational

attraction between the bodies, which is proportional to the product of the two

masses of the bodies and one over the square of the distance between the bodies.

The motion of one planet around a sun obeying these laws can then be shown to lie

on an ellipse. The attraction of the other planets could then explain the deviation

of the motion of the planet from the elliptic orbit. This program was continued

by Euler, Lagrange, Laplace, Legendre, Poisson, Hamilton, Jacobi, Liouville, and

others.

By the end of the nineteenth century, researchers realized that many nonlinear

equations did not have explicit solutions. Even the case of three masses moving

under the laws of Newtonian attraction could exhibit very complicated behavior

and an explicit solution was not possible (e.g., the motion of the sun, earth, and

moon cannot be given explicitly in terms of known functions). Short term solutions

could be given by power series, but these were not useful in determining long-term

behavior. Poincaré, working from 1880 to 1910, shifted the focus from finding

explicit solutions to discovering geometric properties of solutions. He introduced

many of the ideas in specific examples, which we now group together under the

heading of chaotic dynamical systems. In particular, he realized that a deterministic

system (in which the outside forces are not varying and are not random) can exhibit

behavior that is apparently random (i.e., it is chaotic).

In 1898, Hadamard produced a specific example of geodesics on a surface of

constant negative curvature which had this property of chaos. G. D. Birkhoff
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continued the work of Poincaré and found many different types of long-term limiting

behavior, including the α- and ω-limit sets introduced in Sections 4.1 and 11.1. His

work resulted in the book [Bir27] from which the term “dynamical systems” comes.

During the first half of the twentieth century, much work was carried out on

nonlinear oscillators, that is, equations modeling a collection of springs (or other

physical forces such as electrical forces) for which the restoring force depends non-

linearly on the displacement from equilibrium. The stability of fixed points was

studied by several people including Lyapunov. (See Sections 4.5 and 5.3.) The ex-

istence of a periodic orbit for certain self-excited systems was discovered by Van der

Pol. (See Section 6.3.) Andronov and Pontryagin showed that a system of differen-

tial equations was structurally stable near an attracting fixed point, [And37] (i.e.,

the solutions for a small perturbation of the differential equation could be matched

with the solutions for the original equations). Other people carried out research

on nonlinear differential equations, including Bendixson, Cartwright, Bogoliubov,

Krylov, Littlewood, Levinson, and Lefschetz. The types of solutions that could be

analyzed were the ones which settled down to either (1) an equilibrium state (no

motion), (2) periodic motion (such as the first approximations of the motion of the

planets), or (3) quasiperiodic solutions which are combinations of several periodic

terms with incommensurate frequencies. See Section 2.2.4. By 1950, Cartwright,

Littlewood, and Levinson showed that a certain forced nonlinear oscillator had in-

finitely many different periods; that is, there were infinitely many different initial

conditions for the same system of equations, each of which resulted in periodic mo-

tion in which the period was a multiple of the forcing frequency, but different initial

conditions had different periods. This example contained a type of complexity not

previously seen.

In the 1960s, Stephen Smale returned to using the topological and geometric

perspective initiated by Poincaré to understand the properties of differential equa-

tions. He wrote a very influential survey article [Sma67] in 1967. In particular,

Smale’s “horseshoe” put the results of Cartwright, Littlewood, and Levinson in a

general framework and extended their results to show that they were what was later

called chaotic. A group of mathematicians worked in the United States and Europe

to flesh out his ideas. At the same time, there was a group of mathematicians in

Moscow lead by Anosov and Sinai investigating similar ideas. (Anosov generalized

the work of Hadamard to geodesics on negatively curved manifolds with variable

curvature.) The word “chaos” itself was introduced by T.Y. Li and J. Yorke in

1975 to designate systems that have aperiodic behavior more complicated than

equilibrium, periodic, or quasiperiodic motion. (See [Li,75].) A related concept

introduced by Ruelle and Takens was a strange attractor. It emphasized more the

complicated geometry or topology of the attractor in phase space, than the com-

plicated nature of the motion itself. See [Rue71]. The theoretical work by these

mathematicians supplied many of the ideas and approaches that were later used

in more applied situations in physics, celestial mechanics, chemistry, biology, and

other fields.
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The application of these ideas to physical systems really never stopped. One

of these applications, which has been studied since earliest times, is the descrip-

tion and determination of the motion of the planets and stars. The study of the

mathematical model for such motion is called celestial mechanics, and involves a

finite number of bodies moving under the effects of gravitational attraction given

by the Newtonian laws. Birkhoff, Siegel, Kolmogorov, Arnold, Moser, Herman,

and many others investigated the ideas of stability and found complicated behavior

for systems arising in celestial mechanics and other such physical systems, which

could be described by what are called Hamiltonian differential equations. (These

equations preserve energy and can be expressed in terms of partial derivatives of

the energy function.) K. Sitnikov in [Sit60] introduced a situation in which three

masses interacting by Newtonian attraction can exhibit chaotic oscillations. Later,

Alekseev showed that this could be understood in terms of a “Smale horseshoe”,

[Ale68a], [Ale68b], and [Ale69]. The book by Moser, [Mos73], made this result

available to many researchers and did much to further the applications of horse-

shoes to other physical situations. In the 1971 paper [Rue71] introducing strange

attractors, Ruelle and Takens indicated how the ideas in nonlinear dynamics could

be used to explain how turbulence developed in fluid flow. Further connections

were made to physics, including the periodic doubling route to chaos discovered by

Feigenbaum, [Fei78], and independently by P. Coullet and C. Tresser, [Cou78].

Relating to a completely different physical situation, starting with the work of

Belousov and Zhabotinsky in the 1950s, certain mathematical models of chemical

reactions that exhibit chaotic behavior were discovered. They discovered some

systems of differential equations that not only did not tend to an equilibrium, but

also did not even exhibit predictable oscillations. Eventually, this bizarre situation

was understood in terms of chaos and strange attractors.

In the early 1920s, A.J. Lotka and V. Volterra independently showed how dif-

ferential equations could be used to model the interaction of two populations of

species, [Lot25] and [Vol31]. In the early 1970s, May showed how chaotic out-

comes could arise in population dynamics. In the monograph [May75], he showed

how simple nonlinear models could provide “mathematical metaphors for broad

classes of phenomena.” Starting in the 1970s, applications of nonlinear dynamics

to mathematical models in biology have become widespread. The undergraduate

books by Murray [Mur89] and Taubes [Tau01] afford good introductions to bio-

logical situations in which both oscillatory and chaotic differential equations arise.

The books by Kaplan and Glass [Kap95] and Strogatz [Str94] include a large

number of other applications.

Another phenomenon that has had a great impact on the study of nonlinear

differential equations is the use of computers to find numerical solutions. There

has certainly been much work done on deriving the most efficient algorithms for

carrying out this study. Although we do discuss some of the simplest of these,

our focus is more on the use of computer simulations to find the properties of

solutions. E. Lorenz made an important contribution in 1963 when he used a

computer to study nonlinear equations motivated by the turbulence of motion of

the atmosphere. He discovered that a small change in initial conditions leads to

very different outcomes in a relatively short time; this property is called sensitive
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dependence on initial conditions or, in more common language, the butterfly effect.
Lorenz used the latter term because he interpreted the phenomenon to mean that

a butterfly flapping its wings in Australia today could affect the weather in the

United States a month later. We describe more of his work in Chapter 7. It

was not until the 1970s that Lorenz’s work became known to the more theoretical

mathematical community. Since that time, much effort has gone into showing

that Lorenz’s basic ideas about these equations were correct. Recently, Warwick

Tucker has shown, using a computer-assisted proof, that this system not only has

sensitive dependence on initial conditions, but also has what is called a “chaotic

attractor”. (See Chapter 7.) About the same time as Lorenz, Ueda discovered that

a periodically forced Van der Pol system (or other nonlinear oscillator) has what is

now called a chaotic attractor. Systems of this type are also discussed in Chapter

7. (For a later publication by Ueda, see also [Ued92].)

Starting about 1970 and still continuing, there have been many other numer-

ical studies of nonlinear equations using computers. Some of these studies were

introduced as simple examples of certain phenomena. (See the discussion of the

Rössler Attractor given in Section 7.4.) Others were models for specific situations

in science, engineering, or other fields in which nonlinear differential equations are

used for modeling. The book [Enn97] by Enns and McGuire presents many com-

puter programs for investigation of nonlinear functions and differential equations

that arise in physics and other scientific disciplines.

In sum, the last 40 years of the twentieth century saw the growing importance

of nonlinearity in describing physical situations. Many of the ideas initiated by

Poincaré a century ago are now much better understood in terms of the mathematics

involved and the way in which they can be applied. One of the main contributions

of the modern theory of dynamical systems to these applied fields has been the

idea that erratic and complicated behavior can result from simple situations. Just

because the outcome is chaotic, the basic environment does not need to contain

stochastic or random perturbations. The simple forces themselves can cause chaotic

outcomes.

There are three books of a nontechnical nature that discuss the history of

the development of “chaos theory”: the best seller Chaos: Making a New Science
by James Gleick [Gle87], Does God Play Dice?, The Mathematics of Chaos by

Ian Stewart [Ste89], and Celestial Encounters by Florin Diacu and Philip Holmes

[Dia96]. Stewart’s book puts a greater emphasis on the role of mathematicians in

the development of the subject, while Gleick’s book stresses the work of researchers

making the connections with applications. Thus, the perspective of Stewart’s book

is closer to the one of this book, but Gleick’s book is accessible to a broader audience

and is more popular. The book by Diacu and Holmes has a good treatment of

Poincaré’s contribution and the developments in celestial mechanics up to today.


