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This solution manual accompanies A Discrete Transition to Advanced Mathematics by
Bettina Richmond and Tom Richmond. The text contains over 650 exercises. This manual
includes solutions to parts of 210 of them.

These solutions are presented as an aid to learning the material, and not as a substitute
for learning the material. You should attempt to solve each problem on your own and
consult the solutions manual only as a last resort.

It is important to note that there are many different ways to solve most of the exercises.
Looking up a solution before following through with your own approach to a problem may
stifle your creativity. Consulting the solution manual after finding your own solution might
reveal a different approach. There is no claim that the solutions presented here are the
“best” solutions. These solutions use only techniques which should be familiar to you.



Chapter 1

Sets and Logic

1.1 Sets

1. (a) True (b) The elements of a set are not ordered, so there is no “first” element of a
set.

2. |{M, I, S, S, I, S, S, I, P, P, I}| = |{M, I, S, P}| = 4 < 7 = |{F,L,O,R, I,D,A}|.

3. (a) {1, 2, 3} ⊆ {1, 2, 3, 4}
(b) 3 ∈ {1, 2, 3, 4}
(c) {3} ⊆ {1, 2, 3, 4}
(d) {a} ∈ {{a}, {b}, {a, b}}
(e) ∅ ⊆ {{a}, {b}, {a, b}}
(f) {{a}, {b}} ⊆ {{a}, {b}, {a, b}}

5. (a) A 0-element set ∅ has 20 = 1 subset, namely ∅.

(b) A 1-element set {1} has 21 = 2 subsets, namely ∅ and {1}.

(c) A 2-element set has 22 = 4 subsets.
A 3-element set has 23 = 8 subsets.
A 4-element set {1, 2, 3, 4} should have 24 = 16 subsets

(d) The 16 subsets of {1, 2, 3, 4} are:

∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}
(e) A 5-element set has 25 = 32 subsets.

A 6-element set has 26 = 64 subsets.
An n-element set has 2n subsets.

1



2 CHAPTER 1. SETS AND LOGIC

8. (a) 3, 4, 5, and 7: |S3| = |{t, h, r, e}| = 4 = |S4| = |{f, o, u, r}| = |S5| = |{f, i, v, e}| =
|S7| = |{s, e, v, n}|.

(b) S21 = S22 or S2002 = S2000, for example.

(c) a ∈ S1000 and a 6∈ Sk for k = 1, 2, . . . , 999.

(d) (i) True (ii) True (iii) True (iv) False (v) False (vi) True (vii) True
(viii) False (ix) True (x) True (xi) True: {n, i, e} = S9 ∈ S. (xii) True
(xiii) False (xiv) True (xv) True (xvi) False

9. (a) D1 = ∅,D2 = {2},D10 = {2, 5},D20 = {2, 5}

(b) (i) True (ii) False (iii) False (iv) True (v) True (vi) False (vii) True
(viii) False (ix) True (x) True (xi) False (xii) True

(c) |D10| = |{2, 5}| = 2; |D19| = |{19}| = 1.

(d) Observe that D2 = D4 = D8 = D16, D6 = D12 = D18, D3 = D9, D10 = D20.
Thus |D| = |{D1,D2, . . . ,D20}| = |{D1,D2,D3,D5, D6,D7,D10,D11,D13,D14,
D15,D17,D19}| = 13.

10. For example, let S1 = S2 = S3 = {1, 2, 3}, S4 = {4}, and S5 = {5}. Now S =
{Sk}5

k=1 = {{1, 2, 3}, {4}, {5}}, so |S| = 3.

1.2 Set Operations

1. (a) S ∩ T = {1, 3, 5}

(b) S ∪ T = {1, 2, 3, 4, 5, 7, 9}

(c) S ∩ V = {3, 9}

(d) S ∪ V = {1, 3, 5, 6, 7, 9}

(e) (T ∩ V ) ∪ S = {3} ∪ S = S = {1, 3, 5, 7, 9}

(f) T ∩ (V ∪ S) = T ∩ {1, 3, 5, 6, 7, 9} = {1, 3, 5}.

(g) V × T = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (9, 1),
(9, 2), (9, 3), (9, 4), (9, 5)}

(h) U × (T ∩ S) = {(3, 1), (3, 3), (3, 5), (6, 1), (6, 3), (6, 5), (9, 1), (9, 3), (9, 5)}.

2. (a) A ∩D = {A♦}; cardinality 1

(c) A ∩ (S ∪D) = {A♠, A♦}; cardinality 2

(e) (A ∩ S) ∪ (K ∩D) = {A♠,K♦}; cardinality 2

(g) K ∩ Sc = {K♣,K♦,K♥}; cardinality 3

(i) (A ∪K)c ∩ S = {2♠, 3♠, 4♠, 5♠, 6♠, 7♠, 8♠, 9♠, 10♠, J♠, Q♠}; cardinality 11

(n) K \ S = {K♥,K♣,K♦}; cardinality 3
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7. (x, y) ∈ A× (B ∩ C) ⇐⇒ x ∈ A, y ∈ B ∩ C

⇐⇒ x ∈ A, y ∈ B and y ∈ C

⇐⇒ x ∈ A and y ∈ B and x ∈ A and y ∈ C

⇐⇒ (x, y) ∈ (A×B) ∩ (A× C).

This shows that the elements of A× (B ∩C) are precisely those of (A×B)∩ (A×C),
and thus the two sets are equal.

9. The conditions are not equivalent. For example, the collection {S1, S2} where S1 =
S2 6= ∅ satisfies (Si ∩ Sj 6= ∅ ⇒ Si = Sj), but not (Si ∩ Sj 6= ∅ ⇒ i = j). However, if
the sets of the collection {Si|i ∈ I} are distinct, the statements will be equivalent.

10. Let A be the set of students taking Algebra and let S be the set of students taking
Spanish. Now |A ∪ S| = |A| + |S| − |A ∩ S| = 43 + 32 − 7 = 68. Thus, there are 68
students taking Algebra or Spanish.

12. A tree diagram for the outcomes will have 2 branches for the choice of meat, each
stem of which has 7 branches for the possible choices for vegetables, and each of these
stems has 5 branches for the choice of dessert. Thus, 2 choices for meat, 7 choices for
vegetable, and 5 choices for dessert give 2 · 7 · 5 = 70 choices for the special.

15. Observe that there are not 4 · 3 options, for Luis can not take both physics and
chemistry at 2:00. There are only 11 scheduling options, as shown in the tree diagram
below.

✏✏✏✏
PPPP

2
3
4

✏✏✏✏
PPPP

2
3
4

✏✏✏✏
PPPP

2
3
4

PPPP
3
4

2

1

12

11

✓
✓

✓
✓✓

❙
❙

❙
❙❙

✟✟✟✟

❍❍❍❍

1.3 Partitions

3. (a) Not necessarily. Some Bi may be empty.

(b) Yes (S 6= ∅ and L 6= ∅), S ∪ L = B, and S ∩ L = ∅.
(c) No. S and P partition A, but D has nonempty intersection with S or P yet

D 6= S and D 6= P .

(d) No. X = ∅.
(e) No. R ∩ S = S 6= ∅, but R 6= S.
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5. (a) Yes.

(b) No. L3 6= L4 even though L3 ∩ L4 = {(0, 0)} 6= ∅. Also, (0, 1) 6∈
S
D.

(c) Yes.

(d) Yes.

(e) No. (0, 1) 6∈
S
G. Also, P3 6= P4 yet P3 ∩ P4 = {(0, 0)} 6= ∅.

(f) No. (π,π) 6∈
S
H.

8. Each Ci is nonempty: Given i ∈ I, Bi 6= ∅, so ∃b ∈ Bi, and
√

b ∈ Ci.

C is a mutually disjoint collection: If Ci ∩ Cj 6= ∅, then ∃z ∈ Ci ∩ Cj , and from the
definition of Ci and Cj , we have z2 ∈ Bi ∩ Bj . Since Bi ∩ Bj 6= ∅ and {Bi|i ∈ I} is
a partition, it follows that Bi = Bj , so {x ∈ R|x2 ∈ Bi} = {x ∈ R|x2 ∈ Bj}, that is,
Ci = Cj .
S
C = R: Clearly

S
C ⊆ R, so it suffices to show R ⊆

S
C. Given x ∈ R, x2 ∈ [0,1) =S

B, so x2 ∈ Bi for some i ∈ I, which shows x ∈ Ci. Thus, x ∈ R ⇒ x ∈
S
C, as

needed.

11. (a) Given any partition P of S, each block of P may be partitioned into singleton
sets (that is, into blocks of D), so D is finer than any partition P of S.

(b) The coarsest partition of a set S is the one-block partition I = {S}. Given any
partition P of S, the block S of I is further partitioned by the blocks of P, so
ever partition P of S is finer than I.

(c) Since each block of the coarser partition Q is the union of one or more blocks of
the finer partition P, we have |P| ≥ |Q|.

(d) No. P = {(−1, 0], (0,1)} and Q = {(−1, 5], (5, 6), [6,1)} are partitions of R
with |P| ≤ |Q|, but neither partition is a refinement of the other.

1.4 Logic and Truth Tables

1. (a) S∧ ∼ G (b) H∨ ∼ S (c) ∼ (S ∧G) (d) (S ∧G) ∨ (∼ H)
(e) (S∨ ∼ S) ∧G (f) S ∧H ∧G (g) (S ∧H) ∨ (∼ G)

7. (a)
P Q P ∧Q ∼ (P ∧Q) ∼ Q ∼ (P ∧Q)∧ ∼ Q
T T T F F F
T F F T T T
F T F T F F
F F F T T T

∼ (P ∧Q)∧ ∼ Q = ∼ Q since the columns for these two statements are identical.

(b) Note that if Q fails, then (P ∧Q) fails, so that Q fails and (P ∧Q) fails. On the
other hand, if Q fails and some other conditions occur (namely, (P ∧ Q) fails),
then Q fails.
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10. Answers may vary.
P Q (a) (b) (c) (d) (e) (f) (g) (h) (i)
T T T F F F T T T F F
T F T T T F T F T F T
F T T F F F T T F T T
F F F T F T T T T F T

(a) P ∨ Q (b) ∼ Q (c) P∧ ∼ Q (d) ∼ P∧ ∼ Q (e) P∨ ∼ P (f) ∼ P ∨ Q
(g) P∨ ∼ Q (h) ∼ P ∧Q (i) ∼ P∨ ∼ Q

12. The placement of the parentheses in P ∨Q ∧R is important:
(P ∨Q) ∧R 6= P ∨ (Q ∧R), as the truth table below indicates.
P Q R (P ∨Q) ∧R P ∨ (Q ∧R)
T T T T T
T T F F T
T F T T T
T F F F T
F T T T T
F T F F F
F F T F F
F F F F F

14. P Q R (a) (b) (c) (d) (e)
T T T T F F T T
T T F F F F T T
T F T F F F T T
T F F F F T F T
F T T F F F T T
F T F F F F T T
F F T F F F T F
F F F F T F T T

(a) P ∧Q ∧R (b) ∼ P ∧ ∼ Q∧ ∼ R (c) P ∧ ∼ Q∧ ∼ R
(d) ∼ (P ∧ ∼ Q∧ ∼ R) (e) ∼ (∼ P ∧ ∼ Q ∧R)

1.5 Quantifiers

1. (a) ∀≤ ∈ (0,1) ∃n ∈ N such that 1
n < ≤.

(b) ∀e ∈ {2k|k ∈ N \ {1}} ∃a ∈ {2n|n ∈ Z} and ∃p ∈ {prime numbers} such that
e = ap.

(c) ∀≤ ∈ (0,1) ∃δ ∈ (0,1) such that x2 < ≤ whenever |x| < δ.

(d) ∃m ∈ Z such that ∀x ∈ Z ∃y ∈ Z with xy = m.

(e) ∀n ∈ N \ {1} ∃p ∈ {prime numbers} such that n < p < n2.

3. (a) True. Take x = ±1.
Negation: ∀x ∈ Z,∃y ∈ Z such that y

x 6∈ Z.
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(b) False. For a = 0, b
a is not even defined.

Negation: ∃a ∈ Z such that ∀b ∈ Z, b
a 6∈ Z.

(c) True. ∀u ∈ N, take v = 2u.
Negation: ∃u ∈ N such that ∀v ∈ N \ {u}, v

u 6∈ N.
(d) False. For u = 1, 1

v 6∈ N ∀v ∈ N.
Negation: ∃u ∈ N such that ∀v ∈ N \ {u}, u

v 6∈ N.
(e) True. ∀a ∈ N, take b = a2 and c = a.

Negation: ∃a ∈ N such that ∀b, c ∈ N, ab 6= c3.

6. (a) ∃a, b ∈ S such that ∀n ∈ N, na ≤ b.
(b) (i) No. (ii) Yes. (iii) No. (iv) Yes.

1.6 Implications

4. (a) S ⇒ U is false if and only if the stock market goes up but unemployment does
not go up.

(b) The converse of S ⇒ U is false if and only if unemployment goes up but the stock
market does not go up.

(c) The contrapositive of ∼ I ⇒ U is false if and only if unemployment does not go
up and interest rates do not go down.

6. (a) x2 = 4 only if x = 2. False.
Converse: x2 = 4 if x = 2. True.

(b) If 2x ≤ x, then x2 > 0. False (consider x = 0).
Converse: If x2 > 0, then 2x ≤ x. False.

(c) If 2 is a prime number, then 22 is a prime number. False.
Converse: If 22 is a prime number, then 2 is a prime number. True.

(d) If x is an integer then
√

x is an integer. False.
Converse: If

√
x is an integer, then x is an integer. True.

(e) If every line has a y-intercept, then every line contains infinitely many points.
True.
Converse: If every line contains infinitely many points then every line has a
y-intercept. False.

(f) A line has undefined slope only if it is vertical. True.
Converse: A line has undefined slope if it is vertical. True.

(g) x = −5 only if x2 − 25 = 0. True.
Converse: x = −5 if x2 − 25 = 0. False.

(h) x2 is positive only if x is positive. (Assume x ∈ R.) False.
Converse: x2 is positive if x is positive. True.

7. (a) “m is a multiple of 8” is sufficient but not necessary for m
2 ∈ Z.

(b) “m ∈ Z” is necessary but not sufficient for m
2 ∈ Z.
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(c) “m is a multiple of 2” is a necessary and sufficient condition on m for m
2 ∈ Z.

10. (a) P Q P⇒Q ∼P⇒Q ∼P ∨Q P ∨Q ∼(P⇒∼Q) P ∧Q
T T T T T T T T
T F F T F T F F
F T T T T T F F
F F T F T F F F

(b) (iii) and (v): (P ⇒ Q) = (∼ P ∨Q); (iv) and (vi): (∼ P ⇒ Q) = (P ∨Q); (vii)
and (viii): ∼ (P ⇒∼ Q) = (P ∧Q).

11. (c) P Q S P⇒S Q⇒S (P⇒S)∨(Q⇒S) P ∨Q (P ∨Q)⇒S
T T T T T T T T
T T F F F F T F
T F T T T T T T
T F F F T T T F
F T T T T T T T
F T F T F T T F
F F T T T T F T
F F F T T T F T

Because the columns corresponding to (P⇒S)∨(Q⇒S) and (P ∨Q)⇒S are not
identical, the statements are not equivalent.





Chapter 2

Proofs

2.1 Proof Techniques

2. Partition the set L of lattice points inside a given circle C into blocks B(x, y) where,
for (x, y) ∈ L, B(x, y) contains (x, y) and (x, y) rotated around the origin by 90◦, 180◦,
and 270◦. Now for each (x, y) ∈ L\{(0, 0)}, the block B(x, y) contains 4 elements, and
B(0, 0) contains one element. Since |L| is the sum of |B(x, y)| taken over all distinct
blocks, we have |L| = 4k + 1 where k + 1 is the number of blocks in this partition.

5. (b) Suppose x, y ≥ 0 are given. Then

0 ≤ bxc ≤ x

and 0 ≤ byc ≤ y.

Multiplying these equations gives
bxcbyc ≤ xy,

so bxcbyc is an integer which is ≤ xy. By definition, bxyc is the largest integer
which is ≤ xy, so bxcbyc ≤ bxyc. This argument holds for any x, y ∈ [0,1).

6. Suppose p(x) = ax2 + bx + c and p(1) = p(−1). The equation p(1) = p(−1) becomes
a + b + c = a− b + c, and subtracting (a + c) from both sides gives b = −b, so b = 0.
Thus, p(x) = ax2 + c, so p(2) = 22a + c = (−2)2a + c = p(−2).
Conversely, Suppose p(x) = ax2+bx+c and p(2) = p(−2). The equation p(2) = p(−2)
becomes 4a+2b+ c = 4a−2b+ c, and again we find that b = 0. Thus, p(x) = ax2 + c,
so p(1) = 12a + c = (−1)2a + c = p(−1).

8. Note that n3 +n = n(n2 +1). Since n and n2 have the same parity, n and n2 +1 have
opposite parities (that is, one is even and the other is odd). Since any multiple of an
even number is even, it follows that n(n2 + 1) = n3 + n is even.

9. (a) Suppose a is a multiple of 3, say a = 3n where n ∈ Z. Then a = (n−1)+n+(n+1),
the sum of three consecutive integers. Conversely, suppose a = k+(k+1)+(k+2)

9
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is the sum of three consecutive integers. Then a = 3(k + 1), so a is a multiple of
3.

(b) No. The sum 1 + 2 + 3 + 4 = 10 of four consecutive integers is not a multiple of
4, and 8, a multiple of 4, cannot be written as a sum of four consecutive integers:
0 + 1 + 2 + 3 = 6 < 8 < 10 = 1 + 2 + 3 + 4.

(c) The sum of k consecutive integers has form (n + 1) + (n + 2) + · · · + (n + k) =
kn + (1 + 2 + · · ·+ k). Since kn is a multiple of k, the sum will be a multiple of
k if and only if 1 + 2 + · · ·+ k is a multiple of k. Thus,

a is a multiple of k if and only if a may be written as a sum of k
consecutive integers

is true if and only if 1 + 2 + · · ·+ k is a multiple of k.
We will see later that 1+2+ · · ·+ k is the kth triangular number and is given by
the formula k(k+1)

2 . Thus, 1+2+ · · ·+k is a multiple of k if and only if k+1
2 ∈ Z,

that is, if and only if k is odd.

12. Direct proof: For any k ∈ Z, xk = π
2 + 2πk is a solution to sinx = 1, so sinx = 1 has

infinitely many solutions.

Indirect proof: Suppose to the contrary that sinx = 1 has only finitely many solutions.
The solution set is nonempty since sin(π

2 ) = 1. Let xm be the largest member of the
solution set. Now sin(xm +2π) = sinxm = 1, so xm +2π is an element of the solution
set which is larger than xm, contrary to the choice of xm as the largest solution.
Assuming that there were only finitely many solutions gave a contradiction, so there
must be infinitely many solutions.

25. Suppose k and l are distinct lines that intersect. Suppose A and B are points of
intersection of k and l. If A 6= B, then the two distinct points A and B determine a
unique line, contrary to k and l being distinct lines through A and B. Thus, A = B.
That is, k and l intersect in a unique point.

27. Moving a knight out and back to his original position on the first move effectively
gave the other player the first move in the double move chess game. In initial double
move chess, moving a knight out and back does not exchange the roles of first player
and second player, since the first player was playing initial double move chess and the
second player is left with a different game—one in which only one player gets an initial
double move.

2.2 Mathematical Induction

2. (b) For n = 1, the statement is 13 = 12(1+1)2

4 , which is true. Suppose the statement
holds for n = k, that is, suppose 13 + 23 + · · · + k3 = k2(k+1)2

4 . We wish to
show that the statement holds for n = k + 1, that is, we wish to show that
13 + 23 + · · ·+ k3 + (k + 1)3 = (k+1)2(k+2)2

4 . Adding (k + 1)3 to both sides of the
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induction hypothesis gives

13 + 23 + · · ·+ k3 + (k + 1)3 =
k2(k + 1)2

4
+ (k + 1)3

=
µ

(k + 1)2

4

∂
(k2 + 4(k + 1))

=
(k + 1)2(k + 2)2

4
,

as needed. Now the statement holds for n = 1 and for n = k + 1 whenever it
holds for n = k, so by mathematical induction, 13 +23 +33 + · · ·+n3 = n2(n+1)2

4
for every natural number n.

(e) For n = 1, the statement is 12 = 1(2−1)(2+1)
3 , which is true. Suppose the statement

holds for n = k, that is, suppose 12 + 32 + 52 + · · · + (2k − 1)2 = k(2k−1)(2k+1)
3 .

Adding (2k + 1)2 to both sides of this equation gives

12 + 32 + · · ·+ (2k − 1)2 + (2k + 1)2

=
k(2k − 1)(2k + 1)

3
+ (2k + 1)2

=
2k + 1

3
(k(2k − 1) + 3(2k + 1))

=
2k + 1

3
(2k2 + 5k + 3)

=
2k + 1

3
(2k + 3)(k + 1)

=
(k + 1)(2(k + 1)− 1)(2(k + 1) + 1)

3
,

so the statement holds for n = k + 1. Now the statement holds for n = 1
and for n = k + 1 whenever it holds for n = k, so by mathematical induction,
12 + 32 + 52 + · · ·+ (2n− 1)2 = n(2n−1)(2n+1)

3 for every natural number n.

4. We wish to show that for any n ∈ N, there exists m ∈ N such that n3 + (n + 1)3 +
(n + 2)3 = 9m. Taking n = 1, we find that 13 + 23 + 33 = 36 = 9m where m = 4 ∈ N.
Now suppose that the statement holds for n = k. Then k3 + (k + 1)3 + (k + 2)3 = 9m
for some m ∈ N. We wish to show that (k + 1)3 + (k + 2)3 + (k + 3)3 = 9j for some
j ∈ N. But

(k + 1)3 + (k + 2)3 + (k + 3)3 = k3 + (k + 1)3 + (k + 2)3 + (k + 3)3 − k3

= 9m + (k + 3)3 − k3

= 9m + k3 + 9k2 + 27k + 27− k3

= 9m + 9(k2 + 3k + 1)
= 9j where j = m + k2 + 3k + 1 ∈ N.

Now the statement holds for n = 1 and for n = k + 1 whenever it holds for n = k, so
by mathematical induction, for any n ∈ N, there exists m ∈ N such that n3 + (n +
1)3 + (n + 2)3 = 9m.



12 CHAPTER 2. PROOFS

9. Suppose α > −1,α 6= 0. We wish to show (1 + α)n > 1 + nα for n ≥ 2. Observe
that α > −1 guarantees that the powers (1 + α)n are all positive. For n = 2, the
statement is (1 + α)2 > 1 + 2α, which is true since (1 + α)2 = a + 2α + α2, and
α2 > 0 for α 6= 0. Now suppose (1 + α)k > 1 + kα for n = k ≥ 2. We wish to show
(1 + α)k+1 > 1 + (k + 1)α. But

(1 + α)k+1 = (1 + α)k(1 + α)
> (1 + kα)(1 + α) (Induction hypothesis)
= 1 + kα + α + kα2

= 1 + (k + 1)α + kα2

> 1 + (k + 1)α since kα2 > 0 for α 6= 0.

Now the statement holds for n = 2 and for n = k + 1 whenever it holds for n = k, so
by mathematical induction, (1 + α)n > 1 + nα for every natural number n ≥ 2.

14. (b) Any combination of m 4-cent stamps and n 10-cent stamps gives (4m+10n)-cents
postage. Since 4m + 10n is always even, 4-cent and 10-cent stamps can never be
combined to give any odd amount.

15. Assuming that all horses of any n-element set have the same color, the induction
step argues that all horses of an n + 1-element set H = {h1, . . . , hn+1} have the
same color since all horses of the n-element set H \ {h1} have the came color C, all
horses of the n-element set H \ {hn+1} have the came color D, and C = D since
H \ {h1} ∩H \ {hn+1} 6= ∅. However, H \ {h1} ∩H \ {hn+1} = ∅ if n = 1. Thus, the
first induction step (if true for n = 1, then true for n = 2) fails.

2.3 The Pigeonhole Principle

3. (a) 24. Worst case: First 8 nickels, 10 dimes, 3 quarters, then 3 pennies.
(b) 9. The pigeonhole principle applies. Worst case: 2 of each of the 4 types, then

one more.
(c) All 33. Worst case: the last coin drawn is a quarter.
(d) 25. Worst case: First 12 pennies, 8 nickels, 3 quarters, then 2 dimes.
(e) 16. Worst case: First 12 pennies, then 4 more coins to get a second pair.

5. Given 5 lattice points (ai, bi) i = 1, 2, 3, 4, 5, the pigeonhole principle implies that at
least three of the integers a1, . . . , a5 have the same parity. Without loss of generality,
assume a1, a2, and a3 have the same parity. Now by the pigeonhole principle, at
least two of the points b1, b2, b3 must have the same parity. Without loss of generality,
assume b1 and b2 have the same parity. Now the midpoint of the segment from (a1, b1)
to (a2, b2) is (a1+a2

2 , b1+b2
2 ), and this is a lattice point since a1 and a2 have the same

parity and b1 and b2 have the same parity.

7. In the worst case, each of the six cameras would receive 23 exposures before the next
exposure would give one camera 24 exposures. Thus, 23× 6 + 1 = 139 exposures are
needed to guarantee that one camera has 24 exposures.
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9. (a) Partition the balls into “50-sum” sets {1, 49}, {2, 48}, . . . , {24, 26} and two un-
paired singleton {25} and {50}. This gives 26 sets. If balls are drawn and assigned
to the appropriate set, to insure that one set receives two balls, we must draw 27
balls.





Chapter 3

Number Theory

3.1 Divisibility

4. If d | n2, then it need not be true that d | n. For example, 4|62 but 4 6 | 6.

6. (a) Suppose a|b. Then b = na for some n ∈ Z. If c ∈ Da, then c|a, so a = mc for
some m ∈ Z, so b = na = n(mc) = (nm)c where nm ∈ Z, so c|b, that is, c ∈ Db.
Thus, Da ⊆ Db. Conversely, suppose Da ⊆ Db. Now a ∈ Da so a ∈ Db, and thus
a|b.

(b) Suppose a|b. Then b = na for some n ∈ Z. If c ∈ Mb, then c = mb for some
m ∈ Z, so c = mb = m(na) = (mn)a where mn ∈ Z, so a|c. Thus, c ∈ Ma. This
shows that Mb ⊆ Ma. Conversely, suppose Mb ⊆ Ma. Since b ∈ Mb, we have
b ∈ Ma, so a|b.

(c) Da = Db ⇐⇒ Da ⊆ Db and Db ⊆ Da

⇐⇒ a|b and b|a by part (a)
⇐⇒ a = ±b (Theorem 3.1.7)
⇐⇒ |a| = |b|

(d) Ma = Mb ⇐⇒ Ma ⊆ Mb and Mb ⊆ Ma

⇐⇒ b|a and a|b by part (b)
⇐⇒ a = ±b (Theorem 3.1.7)
⇐⇒ |a| = |b|

9. (a) a = 73, b = 25: q = 0, r = 25.
(b) a = 25, b = 73: q = 2, r = 23.
(c) a = −73, b = −25: q = 1, r = 48.
(d) a = −25, b = −73: q = 3, r = 2.
(e) a = 79, b = −17: q = −1, r = 62.

15



16 CHAPTER 3. NUMBER THEORY

(f) a = −17, b = 79: q = −4, r = 11.
(g) a = −37, b = 13: q = 0, r = 13.
(h) a = 13, b = −37: q = −3, r = 2.

17. (a) If a and b leave a remainder of 2 when divided by 7, then a = 7q+2 and b = 7s+2
for some integers q and s, and thus a − b = 7q + 2 − (7s + 2) = 7(q − s) where
q − s ∈ Z, so 7|(a− b).

(b) If a = 7q + 2, then 10a = 70q + 20 = 70q + 14 + 6 = 7(10q + 2) + 6. Thus, by
uniqueness of the quotient and remainder when 10a is divided by 7, we have a
quotient of 10q + 2 and a remainder of 6.

20. We will show 4|(13n−1) ∀n ∈ N by mathematical induction. If n = 1, then 4|(131−1)
since 4|12. Suppose 4|(13k − 1). We wish to show that 4|(13k+1 − 1). Now

13k+1 − 1 = 13(13k − 1 + 1)− 1
= 13(13k − 1) + 13− 1
= 13(13k − 1) + 12

Now 4|(13k − 1) by the induction hypothesis and 4|12, so 4|(13k+1 − 1). Now by
mathematical induction, 4|(13n − 1) ∀n ∈ N.
Alternatively, the result of Exercise 23 shows that 12|(13n − 1) ∀n ∈ N, and since
4|12, we have 4|(13n − 1) ∀n ∈ N.

3.2 The Euclidean Algorithm

5. If a, b ∈ Z and z and w are linear combinations of a and b using integer coefficients,
say z = ja + kb and w = la + mb (j, k, l,m ∈ Z) then a linear combination of z and w
with integer coefficients has form sz + tw (s, t ∈ Z). Now

sz + tw = s(ja + kb) + t(la + mb)
= (sj + tl)a + (ks + tm)b

is a linear combination of a and b with integer coefficients sj + tl and ks + tm.

7. gcd(15, 39) = 3, so 3 should divide 15s + 39t for any s, t ∈ Z. The bill should be of
form 15s + 39t (s, t ∈ N ∪ {0}), so the bill should be a multiple of 3 cents. It is not.

11. Suppose a, b, q, r ∈ Z \ {0} and a = bq + r.

(a) gcd(a, b) = gcd(b, r) is true.
Proof: If d is any common divisor of a and b, then d is a divisor of a − bq = r.
Thus, any common divisor of a and b is a common divisor of b and r. Conversely,
any common divisor of b and r must also divide b and bq + r = a, and therefore
must be a common divisor of a and b. This shows that the common divisors of a
and b are precisely the common divisors of b and r, so gcd(a, b) = gcd(b, r).

(c) In general, gcd(q, r) does not divide b. For example, with a = 45, b = 7, q = 6,
and r = 3, we have gcd(q, r) = 3 but 3 does not divide 7.
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3.3 The Fundamental Theorem of Arithmetic

3. Substituting the expressions for lcm(m,n) and gcd(m,n) given in Corollary 3.3.4 into
mn = gcd(m,n)lcm(m,n) and observing that min{mi, ni} + max{mi, ni} = mi + ni

proves Corollary 3.3.5.

8. (a) If n = pn1
1 pn2

2 · · · pnj

j , then nk = pkn1
1 pkn2

2 · · · pknj

j , and it follows that m = nk is
a perfect kth power if and only if the multiplicity of each prime factor of m is a
multiple of k.

(b) Suppose m = pn1
1 pn2

2 · · · pnj

j . If m is a perfect square, then 2|ni for each i =
1, . . . , j. If m is a perfect cube, then 3|ni for each i = 1, . . . , j. If m is simul-
taneously a perfect square and a perfect cube, then 2|ni and 3|ni for each i, so
the prime factorization of each ni contains a 2 and a 3. Thus, 6|ni for each
i = 1, . . . , j, and it follows that m is a perfect 6th power.

10. d|a ⇒ a = dq for some q ∈ Z
⇒ a2 = d2q2 for q2 ∈ Z
⇒ d2|a2.

Conversely, suppose d2|a2. Then a2 = d2s for some s ∈ Z. Consider the prime
factorization of s = a2

d2 . If the prime factorizations of a2 and d2 are p2n1
1 · · · p2nj

j and
p2m1
1 · · · p2mj

j respectively, then by dividing we find that the prime factorization of
s = a2

d2 must be p2(n1−m1)
1 · · · p2(nj−mj)

j = t2 where t = pn1−m1
1 · · · pnj−mj

j = a
d . Now

since s = t2 is a perfect square, a2 = d2s ⇒ a2 = d2t2 ⇒ a = ±dt ⇒ d|a.

18. Suppose p(x) = cnxn + cn−1xn−1 + · · ·+ c2x2 + c1x + c0 is a polynomial with integer
coefficients c0, . . . , cn, and r = a

b (a, b ∈ Z, b 6= 0, gcd(a, b) = 1) is a rational number
with p(r) = 0. Since p(r) = 0, we have

cnan

bn
+

cn−1an−1

bn−1
+ · · ·+ c2a2

b2
+

c1a

b
+ c0 = 0. (3.1)

Multiplying both sides of this equation by bn and rearranging the terms gives

cnan = −cn−1a
n−1b− · · ·− c2a

2bn−2 − c1abn−1 − c0b
n.

Since b divides the right hand side of this equation, it must divide the left hand side,
so b|cnan. Since gcd(a, b) = 1, we have gcd(b, an) = 1 and thus b|cn.

Again multiplying Equation (3.1) by bn and rearranging the terms, we find that

cnan + cn−1a
n−1b + · · ·+ c2a

2bn−2 + c1abn−1 = −c0b
n.

Since a divides the left hand side of this equation, a must divide the right hand side
as well, so a|c0bn. Since gcd(a, b) = 1 = gcd(a, bn), it follows that a|c0. Together with
the result of the previous paragraph, this proves the Rational Root Theorem.
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19. (a) To count the number of factors of form (ai − aj) where 1 ≤ i < j ≤ m + 1,
observe that once i is selected, the inequality i < j ≤ m + 1 implies that there
are m + 1 − i possibilities for j. As i may assume any value from 1 to m, the
number of factors is

Pm
i=1(m + 1− i) = m + (m− 1) + · · ·+ 2 + 1 = Tm.

(b) The pigeonhole principle implies that dm+1
2 e of the integers a1, . . . am+1 must have

the same parity. The argument of (a) shows that from any s integers b1, . . . , bs,
we may form Ts−1 distinct factors (bi − bj). Thus, the dm+1

2 e integers from
a1, . . . , am+1 of the same parity give k = Tdm+1

2 e−1 distinct even factors (ai−aj)
in P , and it follows that 2k|P .

3.4 Divisibility Tests

1. (a) 10a = 110q + 10r = 110q + 11r − r = 11(10q + r) − r = 11q0 − r where q0 =
10q + r ∈ Z.

(b) The case m = 0 is clear: 100a = a = 11q + (−1)0r as given. If 10ka = 11q0 +
(−1)kr, then applying (a) gives 10(10ka) = 11q00 − (−1)kr or 10k+1a = 11q00 +
(−1)k+1r for some q00 ∈ Z. By mathematical induction, 10ma = 11q00 + (−1)mr
for any integer m ≥ 0.

(c) In a = 11q + r, take a = 1, q = 0, and r = 1, so that for any integer m ≥ 0,
10m = 11q00 + (−1)m for some integer q00.

4. If s = hd2j−1 · · · d2d1d0i has 2j digits then t = hd0d1d2 · · · d2j−1i, so

s + t = (d2j−1102j−1 + d2j−2102j−2 + · · ·+ d2102 + d110 + d0)
+(d0102j−1 + d1102j−2 + · · ·+ d2j−3102 + d2j−2101 + d2j−1)

= d2j−1(102j−1 + 1) + d2j−2(102j−2 + 101)
+d2j−3(102j−3 + 102) + · · ·+ dj(10j + 10j−1)
+dj−1(10j−1 + 10j) + · · ·+ d2(102 + 102j−3)
+d1(101 + 102j−2) + d0(1 + 102j−1)

= d2j−1(102j−1 + 1) + 10d2j−2(102j−3 + 1)
+102d2j−3(102j−5 + 1) + · · ·+ 10j−1dj(101 + 1)
+10j−1dj−1(1 + 101) + · · ·+ 102d2(1 + 102j−5)
+10d1(1 + 102j−3) + d0(1 + 102j−1).

Recalling that 11|(10m + 1) for any odd number m, and observing that each term
in the last expression above contains a factor of form (10m + 1) (m odd), we have
11|(s + t).

8. For n = hdkdk−1 · · · d2d1d0i, we have

n = hdkdk−1 · · · d3000i+ 100d2 + 10d1 + d0

= hdkdk−1 · · · d3000i+ 96d2 + 4d2 + 8d1 + 2d1 + d0

= [hdkdk−1 · · · d3000i+ 96d2 + 8d1] + [4d2 + 2d1 + d0].
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Since 8 divides each term in the first bracketed expression above, 8 divides that brack-
eted expression, and it follows from Corollary 3.4.2 that 8|n if and only if 8 divides
the second bracketed expression. That is, 8|n if and only if 8|(4d2 + 2d1 + d0).

11. All of the tests below are direct consequences of Theorem 3.4.3.

(a) For n = hdk · · · d2d1d0i, 12|n if and only if [3|(dk + · · · + d1 + d0) and 4|hd1d0i].
Proof: 12|n if and only if 3|n and 4|n, since 3 and 4 are relatively prime.

(b) For n = hdk · · · d2d1d0i, 14|n if and only if [2|d0 and 7|n]. Proof: 14|n if and only
if 2|n and 7|n, since 2 and 7 are relatively prime.

(c) For n = hdk · · · d2d1d0i, 15|n if and only if [5|d0 and 3|(dk + · · ·+ d1 + d0)].
Proof: 15|n if and only if 5|n and 3|n, since 5 and 3 are relatively prime.

(d) For n = hdk · · · d2d1d0i, 18|n if and only if [9|(dk + · · ·+ d1 + d0) and 2|d0].
Proof: 18|n if and only if 9|n and 2|n, since 9 and 2 are relatively prime.

(e) For n = hdk · · · d2d1d0i, 75|n if and only if [25|hd1d0i and 3|(dk + · · ·+ d1 + d0)].
Proof: 75|n if and only if 25|n and 3|n, since 25 and 3 are relatively prime.

17. Suppose that the sum of the digits of a and the sum of the digits of 5a both equal k.
Then a = 9q + k and 5a = 9n + k for some integers q, n. Now 4a = 5a− a = 9(n− q),
so 9|4a. Since 9 and 4 are relatively prime, we have 9|a.

3.5 Number Patterns

1. 1 + 3 + · · ·+ (2n− 1)
(2n + 1) + · · ·+ (4n− 1)

=
1 + 3 + · · ·+ (2n− 1)

(1 + 3 + · · ·+ (4n− 1))− (1 + 3 + · · ·+ (2n− 1))

=
n2

(2n)2 − n2

=
n2

3n2

=
1
3

3. (c) 1 · 2 · · · j + 2 · 3 · · · (j + 1) + · · · (n)(n + 1) · · · (n + j − 1) = n(n+1)···(n+j)
j+1 for all

j, n ∈ N. Suppose j ∈ N is given. The case n = 1 is clearly true. If
1 · 2 · · · j + 2 · 3 · · · (j + 1) + · · · (k)(k + 1) · · · (k + j − 1) = k(k+1)···(k+j)

j+1 , then
1 · 2 · · · j + 2 · 3 · · · (j + 1) + · · · (k)(k + 1) · · · (k + j− 1) + (k + 1)(k + 2) · · · (k + j)

=
k(k + 1) · · · (k + j)

j + 1
+ (k + 1)(k + 2) · · · (k + j)

= (k + 1) · · · (k + j)
µ

k

j + 1
+ 1

∂

= (k + 1) · · · (k + j)
µ

k + j + 1
j + 1

∂
,

as needed. Now by mathematical induction, the result holds for all n ∈ N. Since
j ∈ N was arbitrary, this completes the proof.
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5. By adding 1 to each odd number in the nth row of Nicomachus’ Pattern, we obtain
the nth row of this pattern. Since there are n terms in the nth row of Nicomachus’
Pattern, we find that the sum of the nth row of this pattern exceeds the corresponding
sum in Nicomachus’ Pattern by n, and is thus n3 + n.
Alternatively, observe that the sum of the first n rows of this pattern is the sum of
the first Tn even numbers, namely 2 + 4 + · · ·+ 2Tn = 2(1 + 2 + · · ·Tn) = 2TTn . Now
the sum of the entries in the nth row alone is the sum of the first n rows minus the
sum of the first n− 1 rows. That is, the sum of the entries in the nth row is

2(TTn − TTn−1) = Tn(Tn + 1)− Tn−1(Tn−1 + 1)
= T 2

n + Tn − T 2
n−1 − Tn−1

= (Tn − Tn−1)(Tn + Tn−1) + (Tn − Tn−1)
= n(n2) + n

= n3 + n.

7. 1 = 1
3 + 5 = 8

6 + 9 + 12 = 27
10 + 14 + 18 + 22 = 64

...

Tn + (Tn + n) + (Tn + 2n) + · · ·+ (Tn + (n− 1)n) = nTn + [n + 2n + · · ·+ (n− 1)n]
= nTn + nTn−1

= n(Tn + Tn−1)
= n(n2)
= n3

10. (a) (4, 12, 24, 40, . . .) = (4T1, 4T2, 4T3, 4T4, . . .).
(b) (4Tn − n)2 + · · · + (4Tn − 1)2 + (4Tn)2 = (4Tn + 1)2 + · · · + (4Tn + n)2, orPn

j=0(4Tn − j)2 =
Pn

j=1(4Tn + j)2.
(c)

nX

j=0

(4Tn − j)2 =
nX

j=0

(16T 2
n − 8jTn + j2)

=
nX

j=0

(16T 2
n + j2)− 8Tn

nX

j=0

j

= (16T 2
n + 02) +

nX

j=1

(16T 2
n + j2)− 8T 2

n

=
nX

j=1

(16T 2
n + j2) + 8T 2

n
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=
nX

j=1

(16T 2
n + j2) + 8Tn

nX

j=1

j

=
nX

j=1

(16T 2
n + 8jTn + j2)

=
nX

j=1

(4Tn + j)2.

12. (1, 3, . . . , (2n− 1)) · (n, n, · · · , n) = 1n + 3n + · · ·+ (2n− 1)n
= n(1 + 3 + · · ·+ (2n− 1))
= n(n2)
= n3





Chapter 4

Combinatorics

4.1 Getting from Point A to Point B

2.
≥

7
4
¥

= 35.

4. Since 2310 = 2 · 3 · 5 · 7 · 11, a divisor of 2310 having exactly 3 prime factors will be
of form p1p2p3 where p1, p2, p3 ∈ {2, 3, 5, 7, 11}. There are

≥
5
3
¥

= 10 ways to pick
three primes p1, p2, p3 from the set {2, 3, 5, 7, 11}, and thus there are 10 divisors of
2310 having exactly three prime factors.

8. One edge, say the top edge, of the n × n grid requires n matchsticks. There are
n + 1 parallel copies of n matchsticks in the grid, the last one being the bottom
edge. Thus, n(n + 1) matchsticks are required to draw in the horizontal part of the
grid. Similarly, n(n + 1) matchsticks are needed for the vertical part, for a total of
2n(n + 1) = 4Tn matchsticks.

9. For n = 1, . . . , 6, the table below shows the routes from A to B which make exactly n
turns. Each route is seven blocks, three of which are to the west (denoted by w) and
four of which are to the east (denoted by e). The numbers in the bottom row of the
table show the number of routes from A to B which make exactly n turns.
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1 2 3 4 5 6
wwweeee wweeeew wweweee weweeew wewewee ewewewe
eeeewww ewwweee wweewee ewwewee weweewe

weeeeww wweeewe ewweewe weewewe
eewwwee wewweee weeweew eweweew
eeewwwe ewweeew ewewwee eweewew

weewwee eweewwe eewewew
weeewwe weeewew
eweeeww eewwewe
eewweew eewewwe
eeweeww
eeeweww
eeewwew

2 5 12 9 6 1

4.2 The Fundamental Principle of Counting

1. A positive divisor of n = pn1
1 pn2

2 pn3
3 · · · pnk

k has form pm1
1 pm2

2 pm3
3 · · · pmk

k where 0 ≤
mj ≤ nj for each j = 1, . . . , k. Thus, the number of positive divisors of n is the number
of ways to choose a sequence (m1, . . . ,mk) of whole numbers satisfying 0 ≤ mj ≤ nj for
each j = 1, . . . , k. As there are nj + 1 choices for mj (j = 1, . . . , k), the Fundamental
Principle of Counting tells us that there are (n1 + 1)(n2 + 1) · · · (nk + 1) positive
divisors of n. Applying this to 233271111, we see that there are (4)(3)(2)(2) = 48
positive divisors of 233271111.

3. There are two choices—depressed or not—for each of the four valves, so there are
24 = 16 fingering positions for a four-valve instrument. Equivalently, each fingering
position corresponds to a subset of valves to be depressed. There are 4 valves and
24 = 16 possible subsets.

If the third and fourth valves are not to be depressed simultaneously, then there are
three choices for positions of the third and fourth valves: only the third valve depressed,
only the fourth valve depressed, or neither valve depressed. These 3 options follow the
2 options (depressed or not) for the first valve and the 2 options (depressed or not)
for the second valve. This gives a total of 2 · 2 · 3 = 12 fingering positions in which the
third and fourth valve are not depressed simultaneously.

5. There are
≥

7
4
¥

ways to select the Democrats and
≥

9
4
¥

ways to select the Republicans,

so there are
≥

7
4
¥ ≥

9
4
¥

= 35 · 126 = 4410 ways to make the appointments.

8. (a) There are 26 choices for the first letter, 26 choices for the second letter, 26 choices
for the third letter, 10 choices for the first digit, 10 choices for the second digit,
and 10 choices for the third digit, for a total of 263103 = 17, 576, 000 possible
license plates.

(b) 263103
≥

6
3
¥

= 351, 520, 000; There are 26 choices for each of the three letters,
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10 choices for each of the three digits, and
≥

6
3
¥

ways to choose three of the six
positions for the letters.

4.3 A Formula for the Binomial Coefficients

5. (a) P (11, 3) = 11 · 10 · 9 = 990
(b) P (11, 3)P (11, 3)P (10, 3)P (8, 3) = (11 · 10 · 9)(11 · 10 · 9)(10 · 9 · 8)(8 · 7 · 6) =

237, 105, 792, 000

8. (a)
≥

52
5

¥
= 2, 598, 960

(b)
≥

4
3
¥ ≥

4
2
¥

= 24

4.4 Combinatorics with Indistinguishable Objects

1. The frequency of letters in each anagram are given, followed by an application of
Theorem 4.4.2.

(a) c, 1; o,1; m, 2; i,1; t,2; e,2; s,1; 10!
2!2!2! = 453, 600

(b) m,2; e,3; a,1; s, 2; u,1; r,1; n,1; t,1; 12!
2!2!3! = 19, 958, 400

(c) t,1; h,1; e,3; p,1; r,3; o,2; f,1, a,1; d,1, s,1; 15!
2!3!3! = 18, 162, 144, 000

(d) r,1; e,3; v,1; i, 3; s,1; d,2; t,1; o,1; n,1; 14!
2!3!3! = 1, 210, 809, 600

(e) t,2; h,1; e, 4; o,4; d,1; r,2; s,1, v,1; l,1; 17!
2!2!4!4! = 154, 378, 224, 000

(f) t,3; r,2; u,1; s,3; w,1; o,1; h,1; i,1; n,1; e,1; 15!
2!3!3! = 18, 162, 144, 000

(g) w,1; i,2; l,2; a,3; m,1; s,2; h,1; k,1; e,3; p,1; r,1; 18!
2!2!2!3!3! = 22, 230, 464, 256, 000

(h) t,4; h,2; e,6; u,3; n,1; i,3; d,1; s,4; a,2; b,1; r,2; o,1; f,2; 32!
2!2!2!2!3!3!4!4!6! =

1, 101, 524, 811, 141, 375, 548, 928, 000, 000

3. (a) There are 15!
6!6!3! = 420, 420 distinguishable permutations of the six indistinguish-

able nut crunch bars, six indistinguishable chocolate bars, and three indistinguish-
able toffee bars, and thus there are 420, 420 distinguishable ways to distribute
the bars to a row of 15 students.

(b) We have three tasks: distributing the nut crunch bars, the chocolate bars, and
the toffee bars. Distributing six nut crunch bars to 15 students can be done
in

≥
6 + 15− 1

6
¥

=
≥

20
6

¥
= 38, 760 ways. Distributing six chocolate bars to

15 students can also be done in 38, 760 ways. Finally, distributing three toffee
bars to 15 students can be done in

≥
3 + 15− 1

3
¥

=
≥

17
3

¥
= 680 ways. By the

Fundamental Principle of Counting, the 15 bars can be distributed to 15 students
in (38, 760)(38, 760)(680) = 1, 021, 589, 568, 000 ways.

7. (a) Each child has 7 choices. 75 = 16, 807.
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(b) Five drinks can be placed in 11 drink-or-divider slots in
≥

11
5

¥
= 462 ways.

8. Let F represent a football toss ticket, C a cakewalk ticket, and G a miniature golf
ticket. The number of indistinguishable arrangements of the tickets

F F F C C C C G G G G G G

is 13!
3!4!6! = 60, 060.

11. (a) The budget increase will be divided into 100 equal one-percent increments which
will be distributed among three areas. This may be done in

≥ 100 + 3− 1
100

¥
=

≥
102
2

¥
= 5151 ways.

(b) After 15% increases are distributed to each of the three areas, there remain 55
one-percent increments to be divided among the three areas. This can be done
in

≥
55 + 3− 1

2
¥

=
≥

57
2

¥
= 1596 ways.

(c) After a 50% increase is allotted for salaries, the remaining 50 one-percent incre-
ments can be distributed to the three areas in

≥
50 + 3− 1

2
¥

=
≥

52
2

¥
= 1326

ways.

4.5 Probability

2. (a) 1
435 . There are

≥
30
2

¥
= 435 possible pairs, and {Sarah, Becky} constitute only

one such pair.

(b) 28
435 . Of the

≥
30
2

¥
= 435 possible pairs, there are 28 of form {Sarah, x} where x

is a member other than Sarah or Becky.

(c) 57
435 . Of the

≥
30
2

¥
= 435 possible pairs, there are 28 in which Sarah is selected

but not Becky (see (b)) and likewise, 28 in which Becky is selected but not Sarah.
Together with one pair in which both are selected, this gives 28 + 28 + 1 = 57
pairs including Sarah or Becky.

(d) 378
435 . From (c), 57 of the 435 pairs include Sarah or Becky, so the remaining
435− 57 = 378 pairs include neither Sarah nor Becky.

4. Note that the sample space S consists of
≥

52
5

¥
= 2, 598, 960 possible 5-card hands.

(a)
4

≥
13
5

¥

≥
52
5

¥ = 5148
2,598,960 ≈ 0.00198079. There are 4 possible suits, and once the suit

is selected,
≥

13
5

¥
possible hands within that suit.
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(b)

≥
13
1

¥ ≥
4
4
¥ ≥

48
1

¥

≥
52
5

¥ = 624
2,598,960 ≈ 0.000240096. From 13 kinds, we choose 1. From

the 4 of this kind, we choose all 4, and from the 48 cards not of this kind, we
choose 1.

(c)
13 · 12

≥
4
3
¥ ≥

4
2
¥

≥
52
5

¥ = 3744
2,598,960 ≈ 0.00144058. There are 13 ways to choose the

kind to get 3 of, and
≥

4
3
¥

ways to select the three from 4 cards of this kind, and

There are 12 ways to choose the kind to get 2 of, and
≥

4
2
¥

ways to select the
two from 4 cards of this kind.

(d)

≥
10
1

¥ ≥
4
1
¥ ≥

4
1
¥ ≥

4
1
¥ ≥

4
1
¥ ≥

4
1
¥

≥
52
5

¥ == 10240
2,598,960 ≈ 0.00394004. There are 10 choices

(A, 2, 3, . . . , 10) for the lowest card in the straight. This determines which 5 val-
ues will be in the straight. There are 4 cards of each of these values and we wish
to choose 1 of each.

We have found that there are
624 ways to get a four of a kind
3744 ways to get a full house
5148 ways to get a flush,and
10240 ways to get a straight.

Thus, these hands are here listed in order from rarest to most common, so four
of a kind beats a full house, a full house beat a flush, and a flush beats a straight.

8. 30
1200 = 1

40 . Since 1200 = 243152, any positive divisor of 1200 has form 2r3s5t where
0 ≤ r ≤ 4, 0 ≤ s ≤ 1, and 0 ≤ t ≤ 2. As there are 5 choices for r, 2 choices for s, and
3 choices for t, there are (5)(2)(3) = 30 divisors of 1200 in the set {1, 2, . . . , 1200}.

10. As seen in Example 4.5.4, the sample space contains
≥

19
7

¥
= 50, 388 elements.

(b) 19,305
50,388 . There are

≥
13
5

¥
ways to select the five colors. Since there must be one

gumball of each color, this accounts for 5 gumballs. The remaining 2 may be
distributed among the 5 colors (requiring 4 dividers) in

≥
2 + 4

2
¥

=
≥

6
2
¥

= 15
ways. Thus, there are 1287 · 15 = 19, 305 assortments with exactly 5 colors.

(c) 19,071
50,388 . No more than 4 colors means 1 color, 2 colors, 3 colors, or 4 colors. In (a)
we found that there are 13 assortments with one color, and in Example 4.5.4 we
found that there are 14300 assortments with exactly 4 colors.
Assortments with exactly 2 colors: There are

≥
13
2

¥
= 78 ways to choose the

2 colors. Since there must be one gumball of each color, this accounts for 2
gumballs. The remaining 5 may be distributed among the 2 colors (requiring 1
divider) in

≥
5 + 1

5
¥

=
≥

6
5
¥

= 6 ways. Thus, there are 78 · 6 = 468 assortments
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with exactly 2 colors.
Assortments with exactly 3 colors: There are

≥
13
3

¥
= 286 ways to choose the

3 colors. Since there must be one gumball of each color, this accounts for 3
gumballs. The remaining 4 may be distributed among the 3 colors (requiring
2 dividers) in

≥
4 + 2

4
¥

=
≥

6
4
¥

= 15 ways. Thus, there are 286 · 15 = 4290
assortments with exactly 3 colors.
Combining our results, there are 13 + 468 + 4290 + 14300 = 19, 071 assortments
with no more than 4 colors.



Chapter 5

Relations

5.1 Relations
3. If A = {1, 2, 3} and R = {(1, 2), (2, 1), (1, 3)}, then R is not symmetric (for (1, 3) ∈ R

but (3, 1) 6∈ R) and is not antisymmetric (for (1, 2) ∈ R and (2, 1) ∈ R, but 1 6= 2).
This shows that neither implication holds.

5. The ordered pairs given with some negative answers suggest points at which the prop-
erty in question fails.
Relation Domain Range Refl. Sym. Antisym. Trans.

(a) S {1,3,5} {3,5} No No No No: (3,5), (5,3)
(b) R N N \ {1} No No No No

(1,1) (1,3) (7,8) (100,15),(15,5)
(c) T {0,4,7} {0,4,7} Yes Yes No Yes

(0,7)
(d) U Z \ {0} Z \ {0} No Yes No Yes

(0,0) (1,2)
(e) P Z \ {0} Z \ {0} No Yes No No

(5,5) (3,7) (6,5), (5,2)

7. (a) S ×S has 9 elements, and thus has 29 = 512 subsets. Relations on S are subsets
of S × S, so there are 512 relations on S.

(b) Every reflexive relation on S has form {(1, 1), (2, 2), (3, 3)}∪C where C is a subset
of the remaining six elements of S × S. There are 26 such subsets C, and thus
26 = 64 reflexive relations on S.

(c) The relations described are of form

{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} ∪ C

where C is a subset of the remaining three elements of S × S, that is, where
C ⊆ {(2, 1), (3, 1), (3, 2)}. There are 23 = 8 such subsets. They are C1 = ∅, C2 =
{(2, 1)}, C3 = {(3, 1)}, C4 = {(3, 2)}, C5 = {(2, 1), (3, 1), }, C6 = {(2, 1), (3, 2)},

29
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C7 = {(3, 1), (3, 2)}, and C8 = {(2, 1), (3, 1), (3, 2)}. Now the 8 such relations are
given by Ri = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} ∪ Ci for i = 1, . . . , 8.

(d) Each relation Ri (i = 1, . . . 8) has {1, 2, 3} as domain and range.

(e) Refl. Sym. Antisym. Trans.
R1 Yes No Yes Yes
R2 Yes No No Yes
R3 Yes No No No
R4 Yes No No Yes
R5 Yes No No No
R6 Yes No No No
R7 Yes No No No
R8 Yes Yes No Yes

10. (a) i. {(2,3), (2,1), (3,5), (4,4)}
ii. {(1,3), (3,5), (5,4), (5,2)}
iii. {(5,4), (5,2)}

(b) The graph of S is a parabola in R2 with vertex at the origin and having the y-axis
as axis of symmetry. The graph of S|[0,1) is the right half of that parabola,
including the vertex (0, 0).

(c) i. {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,3), (2,4), (2,5), (2,6), (3,3),
(3,4), (3,5), (3,6) }

ii. {(2,2), (2,3), (2,4), (2,5), (2,6), (4,4), (4,5), (4,6)}
iii. {(6,6)}

13. (a) R1 ◦Rn = R1 and Rn ◦R1 = R1 for all n ∈ {1, 2, . . . , 16}.
(b) R8 ◦Rn = Rn and Rn ◦R8 = Rn for all n ∈ {1, 2, . . . , 16}.
(c) For all n ∈ {1, 2, . . . , 16}, R16 ◦ Rn is the largest relation on {1, 2} having the

same domain as Rn, and Rn ◦ R16 is the largest relation on {1, 2} having the
same range as Rn.

5.2 Equivalence Relations

5. In measuring angles in radian measure, angles x and y are coterminal if and only if
x = y + 2πn for some n ∈ Z, that is, if and only if x ≡ y (mod 2π).

8. (a) # is not reflexive and not transitive, and thus is not an equivalence relation.

(b) ∆ is an equivalence relation. The equivalence classes are {∅}, {{1}, {2}, {3}},
{{1, 2}, {1, 3}, {2, 3}}, and {{1, 2, 3}}.

(c) ∗ is an equivalence relation. The equivalence classes are {∅, {2}}, {{1}, {1, 2}},
{{3}, {2, 3}}, and {{1, 3}, {1, 2, 3}}.

(d) ≈ is not symmetric and is thus not an equivalence relation.
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5.3 Partial Orders

3. (a) The relation is a partial order.

(b) v is reflexive since x ≤ x2 ∀x ∈ N. v is not antisymmetric. For example, 7 v 8
and 8 v 7, yet 7 6= 8. v is not transitive. For example, 15 v 4 and 4 v 2, but
15 6v 2. Thus v is not a partial order.

(c) The relation ø is reflexive, but is neither antisymmetric (3 ø 4 and 4 ø 3 but
3 6= 4, for example) nor transitive (6 ø 4 and 4 ø 2, but 6 6ø 2, for example).
Thus, ø is not a partial order.

5. (P(S),⊆) is totally ordered if and only if |S| ≤ 1.

If |S| = 0, then P(S) = {∅}, a one-element collection totally ordered by inclusion. If
|S| = 1, then P(S) = {∅, S}, a two-element collection totally ordered by inclusion. If
|S| ≥ 2, then there exist distinct elements a, b ∈ S, and {a}, {b} ∈ P(S) but {a} 6⊆ {b}
and {b} 6⊆ {a}. Thus, if |S| ≥ 2, then (P(S),⊆) is not totally ordered.

10. (a) Yes. The maximum element of S is an upper bound of C.

(b) No. Let P = [0, 1) ∪ (2, 3] in R with the usual order. The upper bounds of
C = [0, 1) are precisely the points of (2, 3]. Thus, C = [0, 1) has upper bounds,
but no least upper bound.

(c) No. Let P = {{a}, {b}, {a, b, c}, {a, b, d}, {a, b, c, d}} ordered by inclusion, and let
C = {{a}, {b}}. Now the set of upper bounds of C is UB = {{a, b, c}, {a, b, d},
{a, b, c, d}}. Now since UB has no minimum element, C has no least upper bound.

(d) Yes. If C has a least upper bound, then the set UB of upper bounds of C is
nonempty, and if UB has a minimum element, it must be unique. (See Theo-
rem 5.3.6.)

11. a−<b if and only if there is a line from a upward to b in the Hasse diagram for the
poset.

(a) {2}−<{2, 3}; {3}−<{2, 3}; {2, 3}−<{2, 3, 4}; {4, 5}−<{4, 5, 6}.

17. (a) Yes. If each Pi has a maximum element mi, then (mi)i∈I is the maximum element
in P , for given any (xi)i∈I ∈ P , we have xi ≤i mi ∀i ∈ I, so by the definition of
the product order, (xi)i∈I ≤ (mi)i∈I .

(b) Yes. Suppose (mi)i∈I is the maximum element in P . Then ∀(xi)i∈I ∈ P , we have
(xi)i∈I ≤ (mi)i∈I and hence xi ≤i mi ∀i ∈ I. We claim mi0 is the maximum
element of Pi0 . Suppose x ∈ Pi0 . Define (ai)i∈I ∈ P by ai = mi for i ∈ I \ {i0}
and ai0 = x. Now (ai)i∈I ≤ (mi)i∈I implies x = ai0 ≤ mi0 . Since x ∈ Pi0 was
arbitrary, this shows that mi0 is maximum in Pi0 .

(c) If, for all i ∈ I, mi is a maximal element in Pi, then (mi)i∈I is maximal in P , for
if (xi)i∈I ∈ P with (xi)i∈I ≥ (mi)i∈I , then mi ≤i xi ∀i ∈ I. Since mi is maximal
in Pi, this implies mi = xi ∀i ∈ I, so (xi)i∈I = (mi)i∈I , and (mi)i∈I is maximal
in P .
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If (mi)i∈I is maximal in P , then mi is maximal in Pi ∀i ∈ I, for if not, there
exists i0 ∈ I and x ∈ Pi0 with mi0 <i0 x. Now (ai)i∈I ∈ P defined by ai =
mi ∀i ∈ I \{i0} and ai0 = x is a point of P strictly larger than (mi)i∈I , contrary
to the maximality of (mi)i∈I .

5.4 Quotient Spaces

3. (a) For 0 < ≤ < 2, consider the line l≤ through the point (2− ≤, 200) ∈ P (0, 100) and
the point (2, 202− ≤) ∈ P (1, 100). The slope of l≤ is 2−≤

≤ , and these slopes range
from 0 to 1 as ≤ ranges from 2 to 0. With arbitrary positive slopes allowed,
we may find a line of this form passing through the point (8, 2n + 1) ∈ P (4, n)
for every integer n ≥ 100. Thus, P (0, 100), P (1, 100) and P (4, n) are collinear
for all integers n ≥ 100. To show that P (0, 100), P (1, 100) and P (4, n) are
collinear for all integers n < 100, for 0 < ≤ < 2, consider the lines through
(2+≤, 200) ∈ P (1, 100) and (2−≤, 202−≤) ∈ P (0, 100). Such a line has slope 2−≤

−2≤ ,
and as ≤ ranges from 0 to 2, these slopes range from −1 to 0. Thus, there exists
such a line through P (0, 100), P (1, 100) and P (4, n) for all integers n < 100.

(c) No. Let L1 be the collinear set {P (0, 100), P (2, 102)}, let L2 be the collinear set
{P (0, 100), P (2, 100)}, and let L3 be the collinear set {P (0, 100), P (2, 98)}. It is
easy to see that (i) there is a line l1 of slope m1 which illuminates all the pixels of
L1 if and only if m1 ∈ (1

3 , 3), (ii) there is a line l2 of slope m2 which illuminates
all the pixels of L2 if and only if m2 ∈ (−1, 1), and (iii) there is a line l3 of slope
m3 which illuminates all the pixels of L3 if and only if m3 ∈ (−3, −1

3 ).
Now L1 is parallel to L2 since there exist parallel lines li of slope mi = 2

3 il-
luminating all the pixels of Li (i = 1, 2), and L2 is parallel to L3 since there
exist parallel lines li of slope mi = −2

3 illuminating all the pixels of Li (i = 2, 3).
However, no line l1 illuminating all the pixels of L1 can be parallel to any line
l3 illuminating all the pixels of L3, since m1 ∈ (1

3 , 3) and m3 ∈ (−3, −1
3 ) imply

m1 6= m3.

6. Suppose [a] = [a1] and [b] = [b1] in Z/n. Then a = a1 + kn and b = b1 + jn for
some j, k ∈ Z. Thus, ab = (a1 + kn)(b1 + jn) = a1b1 + n(a1j + kb1 + knj) where
a1j + kb1 + knj ∈ Z, so [ab] = [a1b1] in Z/n. Thus, [a] × [b] = [a1] × [b1] whenever
[a] = [a1] and [b] = [b1], so the operation × is well defined.

7. (a) Since [3]× [5] = [15] = [1] in Z/7, [5] is the multiplicative inverse of [3] in Z/7.
(b) Since [3]× [2] = [6] = [1] in Z/5, [2] is the multiplicative inverse of [3] in Z/5.
(c) Since [3]× [3] = [9] = [1] in Z/4, [3] is the multiplicative inverse of [3] in Z/4.
(d) In Z/6, We have [3] × [0] = [0], [3] × [1] = [3], [3] × [2] = [0], [3] × [3] = [3],

[3]× [4] = [0], and [3]× [5] = [3]. Thus, there is no [n] ∈ Z/6 with [3]× [n] = [1],
so [3] has no multiplicative inverse in Z/6.

11. (b) Reflexive: For any triangle t1, t1 has an angle whose measure is greater than or
equal to that of every angle in t1. Transitive: If t1 has an angle whose measure
is greater than or equal to that of every angle in t2 and t2 has an angle whose
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measure is greater than or equal to that of every angle in t3, then t1 has an angle
whose measure is greater than or equal to that of every angle in t3.
Now t1 π t2 if and only if the largest angle in t2 is greater than or equal to the
largest angle in t1. Thus, t1 ∼ t2 if and only if the largest angle in t1 has the
same measure as the largest angle in t2. The resulting partial order on equivalence
classes is a total order.

14. (a) For any a ∈ ∅, we have b ≤ a ⇒ b ∈ ∅ vacuously, so ∅ ∈ T . For a, b ∈ S, clearly
a ∈ S and b ≤ a implies b ∈ S, so S ∈ T .

(b) Suppose D1,D2, . . . ,Dn ∈ T , a ∈ D1 ∩ D2 ∩ · · · ∩ Dn, and b ≤ a. Since
D1,D2, . . . ,Dn are each decreasing, b ∈ Di(i = 1, 2, . . . , n), so b ∈ D1 ∩ · · ·∩Dn.
Thus, D1 ∩ · · · ∩Dn ∈ T .

(c) Suppose J is an arbitrary index set (finite or infinite), Dj ∈ T ∀j ∈ J , a ∈
∪j∈JDj , and b ≤ a. Now a ∈ ∪j∈JDj ⇒ ∃j0 ∈ J such that a ∈ Dj0 . Now Dj0

decreasing implies b ∈ Dj0 , and thus b ∈ ∪j∈JDj . Thus ∪j∈JDj ∈ T .





Chapter 6

Functions and Cardinality

6.1 Functions

1. (a) The graph represents a function from R to R if and only if every vertical line
intersects the graph in exactly one point.
If the graph represents a function f , the line x = a intersects the graph in exactly
one point (a, f(a)). If every vertical line x = a intersects the graph in exactly
one point, let this point be (a, f(a)) and this defines a function from R to R.

(b) The graph represents a function from a subset of R to R if and only if every
vertical line intersects the graph in no more than one point.
If the graph represents a function f : S → R where S ⊆ R, then x = a intersects
the graph in exactly one point (a, f(a)) for each a ∈ S, and in no points for
a 6∈ S. Conversely, if every vertical line intersects the graph G in no more than
one point, the graph represents f : S → R where S = {a ∈ R|x = a intersects G}
and (a, f(a)) is the intersection of x = a with G.

8. We will show f is not one-to-one if and only if there is a horizontal line intersecting
the graph more than once. If f is not one-to-one, then there exist a 6= b such that
f(a) = f(b), so the horizontal line y = f(a) intersects the graph of f in (at least) two
points, namely (a, f(a)) and (b, f(b)). Conversely, if a horizontal line y = c intersects
the graph of f in two points (a, c) and (b, c) with a 6= b, then f(a) = f(b) = c, so f is
not one-to-one.

10. We will describe f : {1, 2, 3}→ {1, 2, 3} by listing the ordered triple (f(1), f(2), f(3)).
Now the functions (1, 2, 3), (1, 3, 2), (2, 1, 3), and (3, 2, 1) are the only ones with f ◦f =
id. If g◦f is one-to-one, then f must be, so all functions with f ◦f = id are one-to-one.
(In fact, if f ◦ f = id, then f = f−1, so f is invertible and is thus one-to-one and
onto.)

13. (a) ∼f is reflexive since f(a) = f(a) ∀a ∈ A. ∼f is symmetric since f(a) = f(b) ⇒
f(b) = f(a). ∼f is transitive since f(a) = f(b) and f(b) = f(c) imply f(a) =
f(c).
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(b) If f is injective, then a ∼f b ⇐⇒ f(a) = f(b) ⇐⇒ a = b, so ∼f is ∆A. If
∼f is ∆A and f(a) = f(b), then a ∼f b, so (a, b) ∈ ∆A, so a = b, and thus f is
injective.

17. (a) Let S = [−1, 0), T = (0, 1], and A = S∪T have the usual order from R. Consider
f : A → R (where R has the usual order) defined by f(x) = x + 1 if x < 0 and
f(x) = x if x > 0. Now f is increasing on S and on T , but not on A = S ∪ T
since, for example, −1

4 ≤ 1
4 but f(−1

4 ) = 3
4 6≤

1
4 = f(1

4 ).
(b) Suppose f is increasing on S and on T .

S ∩ T 6= ∅ is not necessary for f to be increasing on A = S ∪ T : consider
f : S ∪ T → R given by f(x) = x, where S = [−1, 0) and T = (0, 1] are subsets
of R with the usual order.
S∩T 6= ∅ is not sufficient for f to be increasing on A = S∪T : consider A = S∪T
where S = {{1}, {1, 2}} and T = {{1}, {1, 2, 3}} with set inclusion as the order.
Define f : A → N (where N has the usual order) by f({1}) = 1, f({1, 2}) = 5,
and f({1, 2, 3}) = 2. Now f is increasing on S and on T but not on A = S ∪ T
since {1, 2} ⊆ {1, 2, 3} but f({1, 2}) = 5 6≤ 2 = f({1, 2, 3}).

20. (a) Observe that f π g if and only if f(1)−f(0)
1−0 ≤ g(1)−g(0)

1−0 , that is, if and only if the
slope of f is less than or equal to the slope of g. Clearly f π f for any f ∈ F
since the slope of f is less than or equal to the slope of f . If f π g and g π h,
then the slope of f is less than or equal to that of g, and the slope of g is less
than or equal to that of h, so the slope of f is less than or equal to that of h, so
f π h, and thus π is transitive.

6.2 Inverse Relations and Inverse Functions

2. (a) The inverse relation {(2,1), (1,2), (4,3), (3,4)} is a function.
(b) The inverse relation {(1,1), (1,3), (1,2), (1,4)} is not a function.
(c) The inverse relation {(1,1), (2,1), (3,1), (4,1)} is a function.
(d) The inverse relation {(3,1), (4,2), (3,3), (3,4)} is not a function.
(e) The inverse relation {(3,1), (1,2), (2,3)} is not a function on {1,2,3,4}.

3. (a) f−1(x) = 3x+1
5

(f) f−1(x) = 1+2x
x−2

4. (b) T = [3,1), f |−1
T (x) =

√
x + 4 + 3, or T 0 = (−1, 3], f |−1

T 0 (x) = −
√

x + 4 + 3
(d) T = P({2n− 1|n ∈ N} ∪ {4n|n ∈ N}) and f |−1

T (S) = {s ∈ S|s is odd} ∪ {2s|s ∈
S and s is even}.

(e) T = N ∪ {0} and f |−1
T (x) = x− 1, or T 0 = {2n− 1|n ∈ N} ∪ {2− 2n|n ∈ N} and

f |−1
T 0 (x) = x− 1 if x is even and f |−1

T 0 (x) = 1− x if x is odd.
(g) T = {∅, {1}, {1, 2}, {1, 2, 3}, . . .} and f |−1

T (x) = {1, 2, . . . , x} if x 6= 0; f |−1
T (0) =

∅.
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(h) T = A, f(T ) = {[x, y] ⊆ R|x ≤ y + 4}, and f |−1
T ([x, y]) = [x + 1, y − 3].

12. Suppose f : A → B and C ⊆ D ⊆ B. Now

x ∈ f−1(C) ⇒ f(x) ∈ C ⊆ D

⇒ f(x) ∈ D

⇒ x ∈ f−1(D).

Thus, f−1(C) ⊆ f−1(D).
The converse fails. If f(x) = x2, then f−1([−10, 1]) ⊆ f−1([−3, 1]) but [−10, 1] 6⊆
[−3, 1].

19. (d) f−1(5) contains numbers of the following types:

TYPE form/choices for each digit total number
5 odd digits:

5 5 5 5 5 55 = 3125

odd odd odd odd odd

3 odd digits, 1 even:
4 5 5 5 4 · 53 = 500

even 6= 0 odd odd odd
5 5 5 5 54 = 625

odd even odd odd
5 5 5 5 54 = 625

odd odd even odd
5 5 5 5 54 = 625

odd odd odd even

1 odd digit, 2 evens:
4 5 5 4 · 52 = 100

even 6= 0 odd even
4 5 5 4 · 52 = 100

even 6= 0 even odd
5 5 5 53 = 125

odd even even

Adding the numbers in the right column above gives |f−1(5)| = 5825.

6.3 Cardinality of Infinite Sets

6. A function f : {1, 2}→ N is completely characterized by the ordered pair (f(1), f(2)) ∈
N×N. This gives a bijection between the set of all functions f : {1, 2}→ N and N×N.
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Since N× N is countable, so is the set of all functions f : {1, 2}→ N.

7. (a) Suppose Ai is countable for i = 1, 2, . . . , n. Consider the products A1, A1 ×A2,
A1 × A2 × A3, . . . ,

Qn
i=1 Ai. Clearly A1 is countable. If

Qk
i=1 Ai is countable,

then
Qk+1

i=1 Ai = (
Qk

i=1 Ai)×Ak+1 is a product of two countable sets and is thus
countable. By mathematical induction, it follows that

Qn
i=1 Ai is countable for

any n if each Ai is countable.
(b) Corresponding f : {1, 2, . . . , n}→ N to (f(1), f(2), . . . , f(n)) ∈ Nn gives a bijec-

tion from the set B to Nn. Since the latter set is countable by (a), the former set
is also countable.

13. “The smallest natural number that cannot be defined using less than twenty words”
is a thirteen-word description of that natural number.

6.4 An Order Relation on Cardinal Numbers

3. Each nondegenerate interval in R contains a rational number. Since there are only
countably many rational numbers, there can be only countably many pairwise disjoint
intervals.

4. Let C0
r = Cr ∩ {(x, y) ∈ R2|x ≥ 0, y ≥ 0} be the first quadrant part of the circle Cr.

The projection function f : C0
r → [0, r] defined by f((x, y)) = x is a bijection. Since

[0, r] is uncountable (see Exercise 3 of Section 6.3), it follows that C0
r is uncountable.

Now C0
r = A ∪ B ∪ C where A = {(x, y) ∈ C0

r|x ∈ Q}, B = {(x, y) ∈ C0
r|y ∈ Q},

and C = {(x, y) ∈ C0
r|x 6∈ Q, y 6∈ Q}. Now A is indexed by a subset of Q, so A is

countable. (h : A → [0, r] ∩Q defined by h((x, y)) = x is a bijection.) Similarly, B is
countable. Now A ∪ B ∪ C = C0

r is uncountable, so C must be uncountable. Thus,
C0

r ⊆ Cr contains uncountably many points (x, y) with x 6∈ Q and y 6∈ Q.

9. (a) No. 3
2 = 6

4 but g(3
2 ) = 2 6= 4 = g(6

4 ).
(b) h is well defined since every element of Q+ has a unique representation as m

n
where m and n are relatively prime natural numbers. h is not one-to-one since
h(1

4 ) = 4 = h(3
4 ). h is onto, since for any n ∈ N, n = h( 1

n ).

14. Given an algebraic number α, pick a polynomial p(x) = c0 + c1x + · · · + cnxn with
integer coefficients c0, . . . , cn such that p(α) = 0. (In fact, there exists a unique such
polynomial of minimal degree such that c0, . . . , cn are relatively prime and cn > 0.)
Suppose α is the mth zero of p(x) when the distinct real zeros of p(x) are listed in
increasing order. Map α to the natural number whose base 12 representation is the
sequence of digits

m1m2 · · ·mj ± c1
0c

2
0 · · · ck0

0 ± c1
1c

2
1 · · · ck1

1 · · · ± c1
n−1c

2
n−1 · · · c

kn−1
n−1 ± c1

nc2
n · · · ckn

n

where the digits base 12 are 0, 1, . . . , 9,+, and −; m = m1m2 · · ·mj where m1, . . . ,mj

are the base 10 digits of m; and ci = ±c1
i c

2
i · · · c

ki
i where c1

i , . . . c
ki
i are the base 10 digits

of ci if ci 6= 0, and ci = +c1
i = +0 if ci = 0. This gives an injection from the set A of

algebraic numbers to N, so A is countable.
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Graph Theory

7.1 Graphs

2. (a) 65 = 7776
(b) 157 = 170859375

(c)
≥
n +

≥
n
2

¥¥k
. Any edge has either one endpoint (and there are n choices for the

vertex at which such a loop may be based) or has two endpoints (and there are≥
n
2

¥
choices for the two end points). This gives n +

≥
n
2

¥
= n2+n

2 = Tn ways

to construct one edge, so there are
≥
n +

≥
n
2

¥¥k
= T k

n ways to construct k edges
on n vertices.

(d) 0
(e) 120

(f) There are
≥

n
2

¥
possible edges (with distinct endpoints) on n vertices, and we

wish to choose k of them:




≥

n
2

¥

k



.

6. (a) e1, e2, e1, e6, e10, for example.
(c) Impossible. If a walk has distinct vertices, it must have distinct edges, so every

path is a trail.
(e) e7, e8, e11, e10.

10. G is a connected graph if and only if
S

i∈I Di is a connected subset of the plane. That
is, G is a connected graph if and only if for every a, b ∈

S
i∈I Di, there is a continuous

curve contained in
S

i∈I Di ⊆ R2 from a to b.

13. By placing a doorway in each edge of the graph, the problem becomes analogous to
those of Exercise 12. The associated graph is shown below. Since more than two
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vertices have odd degree (namely B,D,E, and F ), the graph has no Eulerian trail, so
it is impossible to draw a continuous curve bisecting each edge of the original graph.

A

ED

CB

F

A B C

D E

F

7.2 Matrices, Digraphs, and Relations

2.

(a)





0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0



 (c)





0 2 0 1 0
2 1 0 0 0
0 0 0 1 1
1 0 1 0 1
0 0 1 1 1





8. (a) A 1❣❄s s2e1 e3
e5

e4

e2❣❄ s3 ❣❄✲

✛

✓
✒

✏
✑

(b) Since the (1, 3) entry of A3 is 4, there are four (v1, v3)-walks (i.e., (1, 3)-walks) of
length three. Referring to the edge labels in (a), they are e1e1e2, e1e2e3, e2e3e3,
and e2e4e2.

13. (a) 



0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0





(b) The adjacency matrix will be an (m + n)× (m + n) matrix containing an m×m
square of zeros in the upper left corner, an n × n square of zeros in the lower
right corner, and all other entries are ones.

15. (c)

✉3

1

4

2✉

✉

✉
❅

❅
❅

❅
❅

☛✡ ✟✠

✒✑
✓✏

e1

e2

e3

e5
e4

e6

e1 e2 e3 e4 e5 e6

1
2
3
4





1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 0 0 2
0 0 0 1 1 0
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17. (c) Let P =
Qn

i=1

Qn
j = 1
j 6= i

(1− aijaji). Then

P 6= 0 ⇐⇒ 1− aijaji 6= 0 ∀i, j ∈ {1, 2, . . . n}, i 6= j

⇐⇒ aijaji = 0∀i, j ∈ {1, 2, . . . n}, i 6= j

⇐⇒ aij = 0 or aji = 0 ∀i, j ∈ {1, 2, . . . n}, i 6= j

⇐⇒ [aij = 1 and aji = 1] implies i = j ∀i, j ∈ {1, . . . n}
⇐⇒ iRj and jRi imply i = j ∀i, j ∈ {1, 2, . . . n}
⇐⇒ R is antisymmetric.

7.3 Shortest Paths in Weighted Graphs

6. (b) agbhfe is a shortest (a, e)-path, and thus bhfe must be a shortest (b, e)-path
(for if there were a shorter (b, e)-path, appending it to agb would give a shorter
(a, e)-path, contrary to agbhfe being a shortest (a, e)-path).

8. (a) The shortest (d, v)-paths found by the implementation of Dijkstra’s algorithm
below are dcba, dcb, dc, d, dgfe, dgf , dg.

v a b c d e f g
1d 1d 1d 0d 1d 1d 2d

1d 5c 1d 0d 1d 4c 2d

1d 5c 1d 0d 1d 3g 2d
12f 5c 1d 0d 9f 3g 2d
8b 5c 1d 0d 9f 3g 2d
8b 5c 1d 0d 9f 3g 2d
8b 5c 1d 0d 9f 3g 2d

9. (c) The shortest (f, v)-paths found by the implementation of Dijkstra’s algorithm
below are fa, fb, fgc, fgd, fbe, f , fg fgch.

v a b c d e f g h
4f 2f 1f 1f 5f 0f 2f 1f

4f 2f 10b 1f 4b 0f 2f 1f

4f 2f 7g 8g 4b 0f 2f 11g

4f 2f 7g 8g 4b 0f 2f 11g

4f 2f 7g 8g 4b 0f 2f 11g

4f 2f 7g 8g 4b 0f 2f 10c

4f 2f 7g 8g 4b 0f 2f 10c

4f 2f 7g 8g 4b 0f 2f 10c
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10. (a) The shortest (a, v)-paths found by the implementation of Dijkstra’s algorithm
below are a, ab, ac, aefd, ae, aef .

v a b c d e f
0a 4a 8a 1a 6a 1d

0a 4a 8a 1a 6a 1d

0a 4a 8a 1a 6a 12e

0a 4a 8a 1a 6a 12e

0a 4a 8a 17f 6a 12e
0a 4a 8a 17f 6a 12e

11. (b) The shortest (c, v)-paths found by the implementation of Dijkstra’s algorithm
below are ca, cab, c, cd, cgfe, cgf , cg, cdh.

v a b c d e f g h
2c 8c 0c 6c 1c 1c 5c 1c

2c 5a 0c 6c 1c 1c 5c 1c

2c 5a 0c 6c 19b 15b 5c 1c

2c 5a 0c 6c 19b 9g 5c 9g

2c 5a 0c 6c 19b 9g 5c 7d

2c 5a 0c 6c 19g 9g 5c 7d
2c 5a 0c 6c 12f 9g 5c 7d
2c 5a 0c 6c 12f 9g 5c 7d

7.4 Trees

7. (a) Each of the first five spanning trees shown below can be rotated 60◦ or 120◦
to obtain other spanning trees. These 5 × 3 = 15 spanning trees and the sixth
spanning tree shown below give 16 spanning trees.

s s
s
s

✡
✡
✡✡

❏
❏

❏❏

s s
s
s

❏
❏

❏❏

✟✟ s s
s
s

✡
✡
✡✡

❍❍ s s
s
s

✟✟ s s
s
s

❍❍ s s
s
s

✟✟ ❍❍

(b) 100%. Classify the edges as “spokes” (the edges of the sixth spanning tree shown
above) and “rim edges”. By the Pigeonhole principle, three edges selected at
random must contain at least two spokes or at least two rim edges. In either case,
these two edges form a connected subgraph which contains 3 of the 4 vertices of
G. The third edge has two endpoints, and one of them must be already among
the three vertices incident on the first two edges. It follows that any three edges
selected at random form a connected subgraph.

10. Using the Pythagorean theorem to find the lengths BE and AE, we find the lengths
of the edges, in increasing order, are as shown:

BD 3, CE 3, DE 4, BC 4, BE 5, AC unknown, AB 12, AE 13.
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Applying Kruskal’s algorithm, we select edges BD,CE, either DE or BC, and AC.
Since the side AC of unknown length does appear in the minimal spanning tree, we
must compute its length to find the length of the minimal spanning tree. Since angles
BEC and ABC are both complements of angle CBE, they have the same measure θ.
From the 3-4-5 triangle, we see that cos θ = 3

5 . Applying the law of cosines to triangle
ABC, we have AC2 = 42+122−2(4)(12)3

5 = 102.4, so AC =
√

102.4 ≈ 10.1193. Thus,
the length of the minimal spanning tree is approximately 3+3+4+10.1193 = 20.1193.

12. The weights of the edges of graph Q are given below in increasing order.
FG 5 BD 6 EH 7 FH 7 AB 8 EF 8 DE 9 CF 9
CG 9 AD 10 CD 10 GH 10 BE 11 DH 11 BC 12 CH 12

We go through the list and select the following edges to form a minimal spanning tree
for Q: FG, BD, EH, FH, AB, DE, and CF. The only other edges forming a minimal
spanning tree for G are FG, BD, EH, FH, AB, DE, and CG. The weight of the minimal
spanning trees is 51.

14. (a) The algorithm for maximal spanning trees is this: Start with any edge of maximal
weight. From the remaining edges, add any edge of maximal weight which does
not create a cycle. Repeat until all vertices are used. The result is a maximal
spanning tree.
We now prove that the algorithm works. Given a connected weighted graph
G(V,E) with weight function w : E → [0,1). Let m− 1 = max{w(e)|e ∈ E} be
the maximum weight in G, and define G0 to be the graph G0(V,E) having the same
vertices and edges, but with the new weight function w0(e) = m−w(e). Note that
a list of the edges of G in increasing order of weights gives a list of the edges of G0

in decreasing order of weights. Let S be the set of all spanning trees for G(V,E).
Then S is also the set of all spanning trees for G0(V,E). Each T ∈ S has v−1 edges
where v = |V |. If T = {e1, . . . , ev−1} ∈ S, then w(T ) = w(e1)+ · · ·+w(ev−1) and
w0(T ) = (m−w(e1))+ · · ·+(m−w(ev−1)) = (v− 1)m−w(T ). Thus, for T ∈ S,
w(T ) is maximum when w0(T ) is minimum, and conversely. This shows that a
minimal spanning tree for G0 is a maximal spanning tree for G, and conversely.

(b) As in the solution to Exercise 11, we list the edges of the graph of Exercise 11 in
order.
AF 315 HK 320 CD 330 AB 332 BF 340 GK 345 FJ 350 BC 360
CF 360 JK 365 DG 370 FH 375 EI 375 IJ 378 AE 380 EF 380
Since we want a maximal spanning tree, we proceed greedily through the edges
from the heaviest backwards through the list to the lightest, including edges as
long as they do not create a cycle. The edges required are: EF, AE, IJ, EI, FH,
DG, JK, CF, BC, GK. These edges form a maximal spanning tree, and the weight
of this tree is 380 + 380 + 378 + 375 + 375 + 370 + 365 + 360 + 360 + 345 = 3688.
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Sequences

8.1 Sequences

5. (151, 144, 137, 130, 123, 116, 109, 102, 95, 88, 81, 74, 67, 60, 53, 46, 39, 32, 25, 18, 11, 4).
There are 22 nonnegative terms in this sequence, indicating that 22 is the largest
number of sevens which can be subtracted from 158 so that the remaining difference
(namely, 4) is nonnegative. This tells us that 158 ÷ 7 gives a quotient of 22 with a
remainder of 4.

6. (e) (bn)1n=1 = (|3n − 4| − 5)1n=1 is a subsequence of (an)1n=1. (f : R → R is not
increasing, but f : N → N is.)

11. (b) Suppose bn = b + ns and an = arn for n = 0, 1, 2, . . .. Then abn = arb+ns =
arb · rns = arb(rs)n, so (abn)1n=0 is geometric with first term arb and ratio rs.

12. (a) No. For example, if (an)1n=1 = (2, 4, 6, 8, 10, . . .) and (bn)1n=1 = (1, 2, 4, 8, . . .),
then (abn)1n=0 = (a1, a2, a4, a8, . . .) = (2, 4, 8, 16, . . .) which is not arithmetic.

16. (a) If D is a nonempty countable set, then either D = {d1, d2, . . . , dn} is finite or D
is countably infinite. If D is finite, then

(d1, d2, . . . , dn−1, dn, dn, dn, dn, dn, . . .)

is a sequence whose set of terms is D. If D is countably infinite, then there exists
a bijection f from N to D, and (f(n))1n=1 is a sequence whose set of terms is D.

(b) If D = {d1, d2, . . . , dn}, then any sequence in D is a subsequence of

(d1, d2, . . . , dn, d1, d2, . . . , dn, d1, d2, . . . , dn, . . .).

If D = {d1, d2, d3, . . .) is countably infinite, then any sequence in D is a subse-
quence of

(d1, d1, d2, d1, d2, d3, d1, d2, d3, d4, d1, d2, d3, d4, d5, d1, d2, . . .).
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8.2 Finite Differences

1. (a) The sequence of second differences is constantly 4. This tells us that the sequence
is generated by a second degree polynomial p(n) = an2 +bn+c. Since the second
differences of the sequence determined by p(n) are constantly 2!a = 4, we find
that a = 2. Since the first term 4 is p(0) = c, we have p(n) = 2n2 + bn + 4. Now
p(1) = 3 = 2(12) + b(1) + 4 implies b = −3, so p(n) = 2n2 − 3n + 4.

(c) The sequence of third differences is constantly 18. This tells us that the sequence
is generated by a third degree polynomial p(n) = an3+bn2+cn+d. Since the third
differences of the sequence determined by p(n) are constantly 3!a = 18, we find
that a = 3. Since the first term −1 is p(0) = d, we have p(n) = 3n3+bn2+cn−1.
The equations p(1) = 2 and p(2) = 23 yield, respectively, b+c = 0 and 2b+c = 0,
and the only simultaneous solution to these equations is b = c = 0. Thus,
p(n) = 3n3 − 1.

(e) The sequence of third differences is constantly 30 = 5 ·3! and the initial term is 9,
so the sequence is generated by a third degree polynomial of form 5n3+bn2+cn+9.
The equations p(1) = 11 and p(2) = 43 yield b + c = −3 and 2b + c = −3, giving
b = 0 and c = −3. Thus, p(n) = 5n3 − 3n + 9.

(g) The sequence of fourth differences is constantly 48 = 2 · 4! and the initial term is
38, so the sequence is generated by a polynomial of form p(n) = 2n4 + bn3 +
cn2 + dn + 38. The equations p(1) = 40, p(2) = 70, and p(3) = 200 yield
b + c + d = 0 = 4b + 2c + d = 9b + 3c + d. Clearly b = c = d = 0 is a
solution, so p(n) = 2n4 + 38.

3. (c) an = f(n) = n2+2n. Observe that the 3rd differences (and all mth differences for
m ≥ 3) are 1, 2, 4, 8, . . .. The sequence (2n)1n=0 has 1, 2, 4, 8, . . . as mth differences
for all natural numbers m. The fact that the first and second differences of our
sequence are not 1, 2, 4, 8, . . . suggests that the terms of our sequence are 2n+p(n)
where p(n) is a second degree polynomial. (The addition of such a polynomial
will alter only the first and second differences, since all subsequent differences of
p(n) would be zero.) Subtracting 2n from the nth term of the original sequence
leaves the sequence n2, so the original sequence is given by an = n2 + 2n.

5. If an = f(n) =
Pn

i=0 i2, then the sequence of first differences is (02, 12, 22, 32, . . .)
and thus the sequence of third differences is constantly 2! = 2. Thus, an = f(n) =
an3 + bn2 + cn + d, and since the third differences of this sequence are 3!a = 2, we
have a = 2

3! = 1
3 . Since f(0) = 0 = d, we now have f(n) = 1

3n3 + bn2 + cn. From
f(1) = 12 = 1

3 + b + c and f(2) = 12 + 22 = 5 = 8
3 + 4b + 2c, we find that b = 1

2 and
c = 1

6 , so

f(n) = 12 + · · ·+ n2 =
n3

3
+

n2

2
+

n

6
=

n

6
(2n2 + 3n + 1) =

n(n + 1)(2n + 1)
6

.

7. If the kth differences of (ai)1i=1 are generated by an nth degree polynomial, then the
nth differences of the kth differences of of (ai)1i=1 are a nonzero constant. Thus, the
(n+k)th differences of (ai)1i=1 are constant and nonzero, so (ai)1i=1 is generated by an
(n + k)th degree polynomial.
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12. (b) The first differences of −5,−2, 4, 16, 40, . . . agree with those of (3 · 2i)1i=0 =
(3, 6, 12, 24, 48, . . .), so these two sequences differ by a constant. The original
sequence is (3 · 2i − 8)1i=0.

8.3 Limits of Sequences of Real Numbers

3. Given ≤ > 0, we wish to find N ∈ N such that

n ≥ N ⇒
ØØØØ

1− n2

3n2 + 1
− −1

3

ØØØØ < ≤.

But
ØØØØ

1− n2

3n2 + 1
− −1

3

ØØØØ =
ØØØØ

3− 3n2

3(3n2 + 1)
+

3n2 + 1
3(3n2 + 1)

ØØØØ =
ØØØØ

4
3(3n2 + 1)

ØØØØ =
4

9n2 + 3
.

Choose N ∈ N such that 1
N < ≤.

n ≥ N ⇒ 9n2 + 3 ≥ 4N

⇒ 4
9n2 + 3

≤ 4
4N

=
1
N

< ≤.

Thus, n ≥ N ⇒
ØØØ 1−n2

3n2+1 −
−1
3

ØØØ < ≤, as needed.

[Or, choose N ∈ N such that 4
9N2+3 < ≤, if you believe such an N exists.]

5. Given M < 0, we we wish to find N ∈ N such that n ≥ N ⇒ 2n2+1
3−n < M . Choose

N = max{4,−M} and suppose n ≥ N . Now n ≥ N ⇒ n ≥ 4, which implies

2n2 + 1
3− n

=
2n2

3− n
+

1
3− n

<
2n2

3− n
=
−n(−2n)

3− n
= −n

µ
2n

n− 3

∂
= −n

µ
n + n

n− 3

∂

< −n (since
n + n

n− 3
> 1).

Now because −n ≤ −N ≤ M , we have n ≥ N now implies 2n2+1
3−n < M , as needed.

8. The functions that preserve all limits are known as continuous functions. Our example
will necessarily be discontinuous. Let f(x) = 1 if x 6= 0 and f(0) = 0. Let (an)1n=1 =
( 1

n )1n=1. Now f(an) = f( 1
n ) = 1 for any n ∈ N, so limn→1 f(an) = limn→1 1 = 1,

but f(limn→1 an) = f(limn→1
1
n ) = f(0) = 0 6= 1 = limn→1 f(an).

12. (b) The following statements are equivalent:
i. limn→1 an = 1
ii. ∀M > 0 ∃N ∈ N, N > 100 such that n ≥ N ⇒ an > M

iii. ∀M > 0 ∃N ∈ N, N > 100 such that n + 100 ≥ N ⇒ an+100 > M
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iv. ∀M > 0 ∃N 0 = N − 100 ∈ N such that n ≥ N 0 ⇒ bn > M

v. limn→1 bn = 1

14. Suppose limn→1 an = A and limn→1 bn = B. Suppose ≤ > 0 is given. Then there
exist Na, Nb ∈ N such that n ≥ Na ⇒ |an−A| < ≤

2 and n ≥ Nb ⇒ |bn−B| < ≤
2 . Now

for n ≥ max{Na, Nb}, we have

|An + bn − (A + B)| = |an −A + bn −B|
≤ |an −A|+ |bn −B|

<
≤

2
+

≤

2
= ≤.

Thus, limn→1(an + bn) = A + B = limn→1 an + limn→1 bn.

8.4 Some Convergence Properties

1. (a) False. Consider an = 1
n , bn = 1

2n .

(b) True. If limn→1 an = A < B = limn→1 bn, take ≤ = B−A
2 . Now there exists

Ma,Mb ∈ N such that

A− ≤ < an < A + ≤ ≤ B − ≤ < bj < B + ≤

for any n ≥ Ma and any j ≥ Mb. Now for M = max{Ma,Mb}, we have an <
bn ∀n ≥ M .

6. Any decreasing sequence (an)1n=1 which is not bounded below by any M must diverge
to −1, for given M < 0, ∃N ∈ N such that aN < M , and therefore an ≤ M ∀n ≥ N .

If (an)1n=1 is a decreasing sequence of real numbers which is bounded below, then
(−an)1n=1 is an increasing sequence of real numbers bounded above, and therefore
(−an)1n=1 converges to a limit −L by the proof of Theorem 8.4.1. It follows that
(an)1n=1 converges to L.

Thus, any decreasing sequence of real numbers either converges or diverges to −1.

9. (a) Dividing the numerator and denominator of the expression for an by n2 gives

an =
1− 100

n

1 + 2
n2

=
p( 1

n )
q( 1

n )
where p(x) = 1− 100x and q(x) = 1 + 2x2.

Similarly, we find r(x) = 1 + 100x and s(x) = 1 + 2x2.

(b)
lim

n→1
an = lim

n→1

p( 1
n )

q( 1
n )

=
limn→1 p( 1

n )
limn→1 q( 1

n )
=

p(0)
q(0)

=
1
1

= 1,

and similarly, limn→1 bn = 1.

(c) Since an ≤ cn ≤ bn ∀n ∈ N and the outer two sequences converge to 1 as n →1,
it follows that limn→1 cn = 1.
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8.5 Infinite Arithmetic

2. 1− 1 + 1− 1 + 1− · · · diverges. The odd partial sums are all 1 and the even partial
sums are all 0, so the sequence (1, 0, 1, 0, 1, 0, . . .) of partial sums does not converge.

4. dn = 0. 111 · · · 1| {z }
n digits

and limn→1 dn = 0.111 = 1. (Just as 0.999 = 1.0 in base 10, in

base 2 we have 0.111 = 1.0.)

9. (c) Let Pn =
Q1

n=0

°
1 + 1

r(2n)

¢
and sn =

P1
j=0 rj . Note that

P0 = 1 +
1
r

= s1

P1 =
µ

1 +
1
r

∂µ
1 +

1
r2

∂
= 1 +

1
r

+
1
r2

+
1
r3

= s3

P2 = P1

µ
1 +

1
r4

∂
= s7

P3 = s15

and in general, Pn = s2n+1−1.
Now if r ∈ (0, 1), then

P1
j=0 rj converges, and this implies the convergence of

(sn)1n=0 and thus (s2n+1−1)1n=0 = (Pn)1n=0. If r ≥ 1, then
P1

j=0 r(2j) diverges
since limj→1 r(2j) 6= 0, and by Theorem 8.5.4, limn→1 Pn also diverges. Thus,
for r > 0,

P1
j=0 rj =

Q1
j=0

≥
1 + 1

r(2j)

¥
.

10. Let pk be the kth partial product.

(b) (p100k)10k=1 = (0.6667326, 0.6666832, 0.6666740, 0.6666708, 0.6666693, 0.6666685,
0.6666680, 0.6666677, 0.6666674, 0.6666673). This suggests that the partial prod-
ucts decrease to 2

3 .

11. (b) As n →1, the graphs of fn(x) converge to the graph of y = cos(x).

13. (a) Let pk =
q

3 +
p

2 + · · ·√ak where (ai)1i=1 = (3, 2, 3, 2, 3, 2, . . .). Now pk+2 =
p

3 +
√

2 + pk. Observe that p1 =
√

3 < 3 and p2 =
p

3 +
√

2 <
√

3 + 2 <
√

9 =
3. Now suppose p1, . . . , pk+1 < 3. Then pk+2 =

p
3 +

√
2 + pk <

p
3 +

√
2 + 3

since g(x) =
p

3 +
√

2 + x is an increasing function. Since
p

3 +
√

5 <
√

3 + 5 <√
9 = 3, we have pk+2 < 3. By mathematical induction, (pk)1k=1 is bounded

above by 3.

17. Any periodic sequence of nonnegative real numbers is bounded above, and thus the
sequence of partial expressions for the associated infinite additive nested radical is
increasing and bounded above, and hence is convergent.

18. (a) If
q

n +
p

n +
√

n + · · · = 3, then n +
q

n +
p

n +
√

n + · · · = 9, or n + 3 = 9,
so n = 6.
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8.6 Recurrence Relations

2. Given a kth-order recurrence relation and k initial conditions a1, . . . , ak, this uniquely
determines ak+1. Now suppose aj−k+1, aj−k+2, . . . , aj have been uniquely determined.
The recurrence relation then gives aj+1. By mathematical induction, we see that an

is uniquely determined for any n ∈ N, and thus f(n) = an is the unique solution to
the recurrence relation.

5. The Fibonacci sequence is given by F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn ∀n ∈
N∪{0}. The characteristic equation r2 = r+1 has roots r = 1±

√
5

2 , which provide the
basic solutions ((1+

√
5

2 )n)1n=0 and ((1−
√

5
2 )n)1n=0 to the recurrence relation. We wish

to find a linear combination c(1+
√

5
2 )n+d(1−

√
5

2 )n which satisfies the initial conditions:

0 = F0 = c + d (so d = −c)

1 = F1 = c

√
1 +

√
5

2

!

+ d

√
1−

√
5

2

!

= c

√
1 +

√
5

2

!

− c

√
1−

√
5

2

!

=
√

5c

It follows that c = 1√
5

and d = −1√
5
, so

Fn =
(1+

√
5

2 )n − (1−
√

5
2 )n

√
5

∀n ∈ N ∪ {0}.

6. (a) The recurrence relation an+2 = 3an+1 + 10an has characteristic equation r2 −
3r− 10 = 0 = (r− 5)(r + 2), so the general solution to the recurrence relation is
an = b5n +c(−2)n. The initial condition a0 = −2 gives −2 = b+c and the initial
condition a1 = 11 gives 11 = 5b− 2c. These two linear equations in b and c have
a unique solution b = 1, c = −3. Thus, an = 1 · 5n − 3(−2)n = 5n − 3(−2)n.

(c) The recurrence relation an+4 = 13an+2 − 36an has characteristic equation r4 −
13r2 + 36 = 0 = (r2− 9)(r2− 4), which has roots ±3,±2, so the general solution
to the recurrence relation is an = b3n + c(−3)n + d2n + e(−2)n. The initial
conditions a0 = 14, a1 = −5, a2 = 101 and a3 = −35 give

b + c + d + e = 14
3b − 3c + 2d− 2e = −5
9b + 9c + 4d + 4e = 101

27b− 27c + 8d− 8e = −35

This system may be solved using standard linear algebra techniques, or we may
reduce this system of 4 equations in 4 unknowns to two systems of 2 equations
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in 2 unknowns: The first and third equations form a system in unknowns (b + c)
and (d + e)

(b + c) + (d + e) = 14
9(b + c) + 4(d + e) = 101

with solutions b + c = 9, d + e = 5. The second and fourth equations form a
system in unknowns (b− c) and (d− e)

3(b− c) + 2(d− e) = −5
27(b− c) + 8(d− e) = −35

with solutions b− c = −1, d− e = −1. Now combining b + c = 9 and b− c = −1,
we find b = 4, c = 5, and combining d+e = 5 and d−e = −1, we find d = 2, e = 3.
Thus, the solution to the recurrence relation with the given initial conditions is
an = 4 · 3n + 5(−3)n + 2 · 2n + 3(−2)n.

8. (a) The characteristic equation is r2 = 4r − 4 or (r − 2)2 = 0, so r = 2 is a repeated
root of multiplicity 2.

(b) Substituting an = 2n into the recurrence relation, we get 2n+2 = 4 · 2n+1− 4 · 2n,
or upon dividing by 2n, 22 = 4 · 2 − 4, which is true. Substituting an = n2n

into the recurrence relation, we get (n + 2)2n+2 = 4(n + 1)2n+1 − 4n2n, or upon
dividing by 4 · 2n, (n + 2) = (n + 1)2− n, which is true. Now by Theorem 8.6.2,
an = c2n + dn2n is a solution to the recurrence relation.

(c) The initial conditions give 5 = a0 = c + 0d and −4 = a1 = 2c + 2d, so c = 5 and
d = −7, and thus an = 5(2n)− 7n(2n) = 2n(5− 7n) ∀n ≥ 0.





Chapter 9

Fibonacci Numbers and Pascal’s
Triangle

9.1 Pascal’s Triangle

3. (a) Ways to write 4 as an ordered sum of natural numbers
using one term 4 1 way

using two terms 1+3 = 3+1 = 2+2 3 ways
using three terms 1+1+2 = 1+2+1 = 2+1+1 3 ways
using four terms 1+1+1+1 1 way

There are 8 =
P3

j=0

µ
3
j

∂
solutions. By the results of Section 4.4, the number of

natural number solutions to x1 + · · ·+xk = 4 is the same as the number of whole

number solutions to x01 + · · ·x0k = 4 − k, which will be
µ

4− k + k − 1
4− k

∂
=

µ
3

4− k

∂
. Summing from k = 1 to 4 gives the number we wish, namely

P4
k=1

µ
3

4− k

∂
=

P3
j=0

µ
3
j

∂
= 23 = 8.

(b) The number of natural number solutions to x1 + · · ·+ xk = m is the same as the
number of whole number solutions to x01 + · · ·x0k = m − k, and this number isµ

m− k + k − 1
m− k

∂
=

µ
m− 1
m− k

∂
. Summing from k = 1 to m gives the number

we wish, namely
mX

k=1

µ
m− 1
m− k

∂
=

m−1X

j=0

µ
m− 1

j

∂
= 2m−1.

The last equality holds from the result of Example 9.1.1.

5. Of the 24 = 1+4+6+4+1 = 16 subsets of {a, b, c, d}, half of them (23 = 1+6+1 =

53
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≥
4
0
¥

+
≥

4
2
¥

+
≥

4
4
¥

= 8 of them) have an even number of elements. These subsets
are ∅, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, and {a, b, c, d}.

10. The seven entries around
≥

n
k

¥
are

µ
n− 1
k − 1

∂ ≥
n− 1

k

¥

≥
n

k − 1
¥ ≥

n
k

¥ ≥
n

k + 1
¥

≥
n + 1

k

¥ µ
n + 1
k + 1

∂
which we label as

a b
c d e .

f g

Let h =
µ

n + 2
k + 1

∂
. We wish to show that a + b + c + d + e + f + g = 2h. Now

a + b + c + d + e + f + g = [(a + b) + c] + (d + e) + (f + g)
= [d + c] + (g) + (h)
= f + g + h

= 2h, as needed.

13. (a)

≥ ≥
n
0

¥
,

≥
n
1

¥
,

≥
n
2

¥
, . . . ,

°n
n

¢¥
· (0, 1, 2, . . . , n) = 2n−1 · n.

14. (a)
≥ ≥

n
0

¥
,

≥
n
1

¥
,

≥
n
2

¥
, . . . ,

°n
n

¢¥
· (0, 1, 2, . . . , n)

=
≥

n
1

¥
+ 2

≥
n
2

¥
+ 3

≥
n
3

¥
+ · · ·+ (n− 1)

≥
n

n− 1
¥

+ n
°n
n

¢

= n +
n!

(n− 2)!1!
+

n!
(n− 3)!2!

+ · · ·+ n!
1!(n− 2)!

+ n

= n
h
1 +

≥
n− 1

1
¥

+
≥

n− 1
2

¥
+ · · ·+

≥
n− 1
n− 2

¥
+ 1

i

= n · 2n−1 (by the result of Example 9.1.1).

17. (a) Observe that row k contains only odd entries if and only if row k + 1 contains
only even entries except for the initial and final 1’s. Thus, by Theorem 9.1.8, the
rows which contain only odd entries are rows 2m − 1 for m ∈ N ∪ {0}.

(b) The entries of row m alternate odd, even, odd, even, . . . if and only if the entries
of row m + 1 are all odd, and by part (a), this occurs if and only if m + 1 =
2n − 1 (n ∈ N), if and only if m = 2n − 2 for some n ∈ N.

9.2 The Fibonacci Numbers

1. (a) F7 = 13. See Example 9.2.2, and interpret 100 high blocks as $5 payments and
200 high blocks as $10 payments.

(b) F12 = 144.
(c) Fn+1.
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5. (d)

Fn+1
✲✛

Fn−2

Fn−1

✻

❄

Fn

❄

✻

Fn+1
✲✛

Fn−2

Fn−1

✻

❄

Fn

❄

✻

✩✛

Fn+1 + Fn−2 = 2Fn

Or, consider the following rectangle with area 2Fn. The shaded region has area
Fn+1 (since Fn−1 + Fn = Fn+1) but also has area 2Fn − Fn−2.

Fn−2 Fn−1

Fn

1

1
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

6. F0 = 0 = (−1)1F0 and F−1 = 1 = (−1)2F1. Now suppose F−k = (−1)k+1Fk for
k = 0, 1, . . . , j. Now

F−(j+1) = F−(j−1) − F−j

= (−1)jFj−1 − (−1)−j+1Fj

= (−1)j+2(Fj−1 + Fj)
= (−1)j+2Fj+1

By mathematical induction, F−n = (−1)n+1Fn for any integer n ≥ 0, and dividing by
(−1)n+1 shows that the result holds for all negative integers, as well.

8. F 2
m + F 2

m−1 = F2m−1. Apply Theorem 9.2.4 with n = 2m− 1 and j = m− 1.

10. After trying a few values of n, the formula is easily recognized to be

FnFn+1 − Fn−1Fn+2 = (−1)n+1.

Dividing by (−1)n+1 gives

(−1)n+1FnFn+1 + (−1)nFn−1Fn+2 = 1.

Observing that (−1)j+1Fj = F−j , we have

F−nFn+1 + F1−nFn+2 = 1 = F1 = F2 = F−1.

This formula looks very similar to one proved in Theorem 9.2.4:

Fj+1Fm−j + FjFm−j−1 = Fm.
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We would hope to find appropriate values of m and j which transform the result of
Theorem 9.2.4 into the formula we wish to prove. Taking m = 2 and j = −n gives the
result.

12. (b) (F 2
n+1 − F 2

n−1)7n=2 = (3, 8, 21, 55, 144, 377). The formula is F 2
n+1 − F 2

n−1 = F2n.
Applying Theorem 9.2.4 with m = j gives

F2j = Fj+1Fj + FjFj−1

= Fj(Fj+1 + Fj−1)
= (Fj+1 − Fj−1)(Fj+1 + Fj−1)
= F 2

j+1 − F 2
j−1.

9.3 The Golden Ratio

4. The sequence of partial expressions is

(
√

1,
q

1−
√

1,

r

1−
q

1−
√

1, . . .) = (1, 0, 1, 0, 1, 0, . . .),

which diverges. [Were one not to notice this divergence, one would be tempted to say
the value of the nested radical is x where x =

√
1− x, so that x = −1±

√
5

2 . All this
shows, however, is that if the nested radical converged, its value would be one of those
given.]

6. Let ABCD, M , E, and F be as described and take AB = 1. Then BC = 1 and MB =
1
2 , so CM =

q
12 + (1

2 )2 =
√

5
2 . Now AE = AM + ME = AM + MC = 1

2 +
√

5
2 = ϕ,

so AE
AD = ϕ

1 = ϕ, and AEFD is a golden rectangle.

7. The restrictions lwh = 1,
√

l2 + w2 + h2 = 2, and h = 1 give l2 + w2 = 3 and l = 1
w .

Substituting the latter equation into the former and multiplying through by w2 gives
1 + w4 = 3w2, a quadratic in w2 with solutions

w2 =
3 +

√
5

2
= 1 + ϕ = ϕ2

and

w2 =
3−

√
5

2
=

2
3 +

√
5

=
1
ϕ2

.

Since w must be positive, we have w = ϕ and l = 1
w = 1

ϕ , or w = 1
ϕ and l = 1

w = ϕ.

9.4 Fibonacci Numbers and the Golden Ratio

1. These problems use the fact that ϕ2 = ϕ + 1, and (multiplying by ϕn) ϕn+2 =
ϕn+1 + ϕn.
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(b) 2ϕ4 − 3ϕ2 − 8 = 2(ϕ + 1)2 − 3(ϕ + 1)− 8
= 2(ϕ2 + 2ϕ + 1)− 3ϕ− 3− 8
= 2(ϕ + 1) + 4ϕ + 2− 3ϕ− 11
= 3ϕ− 7

(d) 2ϕ5 − 3ϕ4 + 1 = 2(ϕ4 + ϕ3)− 3ϕ4 + 1
= −1ϕ4 + 2ϕ3 + 1
= −(ϕ3 + ϕ2) + 2ϕ3 + 1
= ϕ3 − ϕ2 + 1
= (ϕ2 + ϕ)− ϕ2 + 1
= ϕ + 1

6. (a) Yes. If (an)1n=1 and (bn)1n=1 are additive sequences and cn = an + bn, then

cn+2 = an+2 + bn+2

= (an+1 + an) + (bn+1 + bn)
= (an+1 + bn+1) + (an + bn)
= cn+1 + cn,

so (cn)1n=1 is additive as well.

(b) i. (Fn−1 + Fn+1)1n=1 = (1, 3, 4, 7, 11, . . .) = (Ln)1n=1

ii. (Ln−1 + Ln+1)1n=2 = (5, 10, 15, 25, 40, . . .) = (5Fn)1n=2

iii. (ϕn + (ϕ0)n)1n=1 = (1, 3, 4, 7, 11, . . .) = (Ln)1n=1

iv. (F2n
Fn

)1n=1 = (1, 3, 4, 7, 11, . . .) = (Ln)1n=1

7. (a) From Exercise 4 (a), we have

lim
n→1

an+1

an
= lim

n→1

Fn−1a1 + Fna2

Fn−2a1 + Fn−1a2

= lim
n→1

Fn−1(a1 + Fn
Fn−1

a2)

Fn−2(a1 + Fn−1
Fn−2

a2)

= ϕ

µ
a1 + ϕa2

a1 + ϕa2

∂

= ϕ.

11. x

1 + x− x2
= 1x− 1x2 + 2x3 − 3x4 + 5x5 − · · ·+ (−1)n+1Fnxn + · · ·
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9.5 Pascal’s Triangle and the Fibonacci Numbers

2. (c) Number of Number of Number of ways
$50 calculators $100 calculators to distribute

8 0
≥

15
8

¥
= 6435

6 1
≥

15
6

¥ ≥
9
1
¥

= 45045

4 2
≥

15
4

¥ ≥
11
2

¥
= 75075

2 3
≥

15
2

¥ ≥
13
3

¥
= 30030

0 4
≥

15
4

¥
= 1365

157,950
The total number of outcomes is 157, 950, which is not a Fibonacci number. It
falls between F26 = 121, 393 and F27 = 196, 418.

4. The formula follows immediately from Theorem 9.5.2 and the fact that
≥

m
j

¥
=

≥
m

m− j

¥
. This new formula would have been suggested by Example 9.5.1 if the right

column of the tables there had listed the number of ways to distribute $50 calculators
(rather than the $100 ones) among those receiving new calculators.

7. (a) 5nF2n

(b) 5nF2n+1

(c) 5n−1L2n

(d) 5nF2n+3.



Chapter 10

Continued Fractions

10.1 Finite Continued Fractions

2. (a) [4; ]

(c) [4; 10]

(f) −23
7

= −3
2
7

= −4 +
5
7

= −4 +
1
√

7
5

! = −4 +
1

1 +
2
5

= −4 +
1

1 +
1
√

5
2

!

= −4 +
1

1 +
1

2 +
1
2

= [−4; 1, 2, 2]

(i) −7
5

= −2 +
1
°

5
3

¢ = −2 +
1

1 +
1
°

3
2

¢
= −2 +

1

1 +
1

1 +
1
2

= [−2; 1, 1, 2]

3. (b) [0; ] = 0, [0; 2] = 1
2 , [0; 2, 5] = 5

11 , [0; 2, 5, 4] = 21
46 .

(d) [−4; ] = −4, [−4; 1] = −3, [−4; 1, 1] = −7
2 , [−4; 1, 1, 1] = −10

3 , [−4; 1, 1, 1, 2] =
−27
8 .

6. The expressions in (a) both equal 23
7 ; those in (b) both equal 21

4 . The expressions on
the left are not regular continued fractions (see the −2 in (a) and the second 2 in (b)),
so Theorem 10.1.6 does not apply.

59
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10. k k
14 1− k

14 = 14−k
14

1 [0;14] [0;1,13]
2 [0;7] [0;1,6]
3 [0;4,1,2] [0;1,3,1,2]
4 [0;3,2] [0;1,2,2]
5 [0;2,1,4] [0;1,1,1,4]
6 [0;2,3] [0;1,1,3]
7 [0;2] [0;2] = [0;1,1]

For 0 < k < 7, the continued fraction for 1 − k
14 is of form [0; a1, a2, . . . , an] where

n ≥ 1, and the continued fraction for k
n is [0; a1 + a2, . . . , an]. Furthermore, in this

notation, a1 = 1. For n = 7, the two representations [0; 2] = [0; 1, 1] = [0; 1 + 1] for 7
14

allow us to apply the pattern in this case as well. The pattern is described in general
in Exercise 11.

10.2 Convergents of a Continued Fraction

1. No. a0 is the integral part of [a0; a1, . . . , an]. If x 6∈ Z, the integral part of −x is
not the negative of the integral part of x. For example, [2; 3] = 7

3 , so −[2; 3] = −7
3 .

The integral part of −7
3 is −3, so the continued fraction for −[2; 3] is not of form

[−2; a1, . . . , an]. In fact, −[2; 3] = [−3; 1, 2] and [−2; 3] = −5
3 .

2. (a) C0 = 0, C1 = 1, C2 = 1
2 , C3 = 3

5 , C4 = 7
12 , C5 = 10

17 , C6 = 17
29 , C7 = 44

75 , C8 = 105
179

(b) C0 = 2, C1 = 3, C2 = 11
4 , C3 = 14

5 , C4 = 67
24 , C5 = 81

29 , C6 = 472
169 , C7 = 553

198

3. Since qk = akqk−1 + qk−2, the qk’s will increase most slowly if every ak = 1.

([1; 1], [1; 1, 1], . . . , [1; 1, 1, 1, 1, 1, 1]) =
µ

2
1
,
3
2
,
5
3
,
8
5
,
13
8

,
21
13

∂
.

Each expression is of form Fn+2
Fn+1

where Fn is the nth Fibonacci number.

7. (a) 225
157 = p4

q4
= [1; 2, 3, 4, 5]; [1; 2, 3, 4] = 43

30 = p3
q3

; [1; 2, 3] = 10
7 = p2

q2
; [1; 2] = 3

2 = p1
q1

;
[1; ] = 1.

(b) 157
30 = [5; 4, 3, 2] = q4

q3
. 30

7 = [4; 3, 2] = q3
q2

. 7
2 = [3; 2] = q2

q1
. 2

1 = [2; ] = q1
q0

.
(c) Each is of form qk

qk−1
.

10.3 Infinite Continued Fractions

3. 1 +
1

1 +
√

2
=

(1 +
√

2) + 1
1 +

√
2

=
2 +

√
2

1 +
√

2

√
1−

√
2

1−
√

2

!

=
−
√

2
−1

=
√

2.

Putting this expression for
√

2 in place of the
√

2 appearing on the left gives
√

2 = 1 +
1

1 + 1 +
1
1 +

√
2

= 1 +
1

2 +
1
1 +

√
2

.
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Repeating this gives
√

2 = [1; 2, 2, 2, 2, . . .] = [1; 2 ].

5. (a) If r 6= 0 is a root of p(x) = ax2 + bx + c (a, b, c ∈ Z) and k ∈ Z, then translating
p(x) by k units to the right gives a parabola with zero at r + k. That is, r + k is
a root of the polynomial p(x − k). Furthermore, if ar2 + br + c = 0 and r 6= 0,
dividing by r2 gives a + b(1

r ) + c(1
r )2 = 0, so 1

r is a root of q(x) = cx2 + bx + a.
(b) Given a periodic continued fraction [a0; a1, . . . , ak−1, ak, . . . , ak+j ], Exercise 4

shows that r1 = [0; ak, . . . , ak+j ] is a root of a quadratic equation with inte-
ger coefficients. Now r2 = [ak−1; ak, . . . , ak+j ] = ak−1 + 1

r1
is also a root of a

quadratic equation with integer coefficients by an application of part (a). Simi-
larly,

r3 = [ak−2; ak−1, ak, . . . , ak+j ] = ak−2 +
1
r2

is also a root of a quadratic equation with integer coefficients. Continuing this
iterative process, we find that the original continued fraction [a0; a1, . . . , ak−1,
ak, . . . , ak+j ] = rk+1 is a root of a quadratic equation with integer coefficients.

10.4 Applications of Continued Fractions

1. (a) Since 17 and 13 are relatively prime, Theorem 10.4.1 tells us that all solutions
of the Diophantine equation 17x + 13y = 981 have form (21 + 13j, 48− 17j) for
j ∈ Z. Four other solutions may be found by taking j = 1,−1, 2, and 10, giving
solutions (34, 31), (8, 65), (47, 14), and (151,−122).

2. (a) 26x + 53y = 3938: Since 26 and 53 are relatively prime, we find 26
53 = [0; 2, 26],

a continued fraction of order n = 2 with convergent Cn−1 = C1 = 1
2 . By

Theorem 10.4.2, the solutions (x, y) have form

((−1)13938(2) + 53k, (−1)23938(1)− 26k) = (53k − 7876, 3938− 26k).

As we want positive solutions, x = 53k − 7876 > 0 implies k > 7876
53 ≈ 148.6,

and y = 3938 − 26k > 0 implies k < 3938
26 ≈ 151.5. Thus, k = 149, 150, or 151,

yielding solutions (x, y) = (21, 64), (74, 38), and (127, 12).
(d) 213x + 121y = 6714: Since 213 and 121 are relatively prime, we find 213

121 =
[1; 1, 3, 5, 1, 4], a continued fraction of order n = 5 with convergent Cn−1 = C4 =
44
25 . By Theorem 10.4.2, the solutions have form

(x, y) = ((−1)46714(25) + 121k, (−1)56714(44)− 213k)
= (167850 + 121k,−295416− 213k).

As we want positive solutions, x = 167850 + 121k > 0 implies k > −167850
121 ≈

−1387.2, and y = −295416 − 213k > 0 implies k < −295416
213 ≈ −1386.9. Thus,

k = −1387 and the only solution is (x, y) = (23, 15).

5. Each congruence given has form ax ≡ c (mod b) where a and b are relatively prime,
so by Theorem 10.4.4, the solution is of form x = (−1)n−1cqn−1 + bk where k ∈ Z,
a
b = [a0; a1, . . . , an], and [a0; a1, . . . an−1] = pn−1

qn−1
.
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(a) For 25x ≡ 18 (mod 26), we find 25
26 = [0; 1, 25], a continued fraction of order n =

2 and with Cn−1 = C1 = 1, so q1 = 1 and all solutions are of form (−1)118(1) +
26k = −18 + 26k = 8 + 26k0 (k, k0 ∈ Z). Thus, all solutions are congruent to 8
modulo 26.

7. Let x be the number of minutes the press ran. Then 28x newspapers were printed.
Because enough newsprint for 65 newspapers remained on the last spool, the press
had printed 235 − 65 = 170 newspapers from its last spool. Thus, the number of
newspapers printed is congruent to 170 modulo 235. That is, 28x ≡ 170 (mod 235).
Since 28 = 22 · 7 and 235 = 5 · 47 are relatively prime, Theorem 10.4.4 applies. We
find that 28

235 = [0; 8, 2, 1, 1, 5], a continued fraction of order n = 5. The first two
convergents of this continued fraction are C0 = 0

1 and C1 = 1
8 , so q0 = 1 and q1 = 8.

From the recurrence relation qk = akqk−1 + qk−2, we find that q2 = 2(8) + 1 = 17,
q3 = 1(17) + 8 = 25, and q4 = qn−1 = 1(25) + 17 = 42. Since the solutions are
congruent modulo 235 to (−1)n−1cqn−1 = (−1)4(170)(42) = 7140 = 90 + 235(30) and
only positive answers are possible, the solution set is {90+235j|j ∈ N}. The operator
should not have spent 90 + 235 minutes at lunch, so the only possible answer in the
appropriate range is 90 minutes.

9. We find that C4 = 134
35 and C5 = 1229

321 . Since all even convergents of α are below α,
C4 is an underestimate and |α− C4| = α− C4. Now Lemma 10.4.6 gives

1
12, 460

=
1

35(35 + 321)
< α− 134

35
<

1
35(321)

=
1

11, 235
≈ 0.000089.

It follows that

47, 705
12, 460

=
1

35(35 + 321)
+

134
35

< α <
134
35

+
1

35(321)
=

1229
321

,

so α ∈ (47,705
12,460 , 1229

321 ) ⊂ (134
35 , 1229

321 ) = (C4, C5).

11. (b) 3π = [9; 2, 2, 1, 4, 1, 1, 1, 97, 4, . . .] has convergent C5 = 377
40 , and this must be the

best approximation to 3π by a rational number with denominator ≤ 40.


