
Chapter 1

Logic and Proofs

Mathematics admits no “absolute truth”. Instead, most mathematicians work within
the axiom system known as Zermelo-Fraenkel with choice, or ZFC for short. ZFC for-
malizes the concept of a set, an abstraction of a collection of objects, called elements.
For now, the details of ZFC are unimportant. This chapter describes the basic rules of
logic. Chapter 2 provides an informal introduction to ZFC.

ZFC is believed to be logically consistent, and the “correctness” of mathemati-
cal statements is evaluated according to “provability” and “logical consistency” with
respect to ZFC. Theorems proved in ZFC are said colloquially to be “true”. Strictly
speaking, however, mathematicians do not find metaphysical truths, but instead de-
duce logical conclusions starting from assumptions called hypotheses.

1.1. Statements, Negation, and Connectives

A statement is a sentence having a truth value, T (True) or F (False). Contact with the
external world can be made via experience, but in mathematics true and false may be
viewed as undefined terms.

As noted earlier, the basic objects of ZFC are sets, collections of elements. The
examples below refer to the set of integers, or whole numbers: 0, 1, −1, 2, −2, and so
forth.

Example 1.1. −4 is an even integer.
The decimal expansion of 𝜋 contains the string ‘999999’. (True)
2 + 2 = 5. (False)

Example 1.2. Sentences that are not statements include “𝑛 is an even integer” (whose
truth value depends on 𝑛) “101000 is a large number” (“large” has not been givenmath-
ematical meaning), and the self-referential examples, “This sentence is true” (whose
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2 1. Logic and Proofs

truth value must be specified as an axiom) and “This sentence is false” (which cannot
be consistently assigned a truth value).

Conventionally, abstract statements are denoted 𝑃 and 𝑄.

Not. The negation of a statement 𝑃 is its logical opposite ¬𝑃. You may regard the
negation as 𝑃 preceded by the clause “It is not the case that. . . ”, but usually a more
pleasant wording can be found.

Example 1.3. 𝑃: 2 + 2 = 4. ¬𝑃: 2 + 2 ≠ 4.

Let 𝑃 and 𝑄 be statements. New statements can be constructed using the “logical
connectives” and, or, and implies.

And. The statement “𝑃 and 𝑄” has its ordinary meaning: The compound state-
ment is true provided both 𝑃 and 𝑄 are true, and is false otherwise.

Example 1.4. 2 + 2 = 4 and 0 < 1. (True)
2 + 2 = 5 and 0 < 1. (False)
2 + 2 = 5 and 1 < 0. (False)

Or. The statement “𝑃 or 𝑄” always has the “inclusive” meaning in mathematics:
𝑃 is true, or 𝑄 is true, or both.

Example 1.5. 2 + 2 = 4 or 0 < 1. (True)
2 + 2 = 5 or 0 < 1. (True)
2 + 2 = 5 or 1 < 0. (False)

Remark 1.6. In colloquial English, “or” is frequently used in the “exclusive” sense.
The sentence “You will earn a 70% on the final exam or you will not pass the course”
is conventionally interpreted to mean “If you earn a 70% on the final exam, then you
will pass the course, and if you do not earn a 70%, then you will not pass.”

Mathematicians and computer scientists denote “exclusive or” by “xor” to distin-
guish it from “or”. The statement “𝑃 xor 𝑄” means 𝑃 is true, or 𝑄 is true, but not both.
When needed, “𝑃 xor 𝑄” can be expressed as “(𝑃 or 𝑄) and ¬(𝑃 and 𝑄)”. To a mathe-
matician, the NewHampshire state motto reads Live free xor die. In this book, xor does
not systematically appear again.

Implies. A statement of the form “If 𝑃 then 𝑄”, which also reads “𝑃 implies 𝑄”,
is called a logical implication and plays a central role in mathematics. 𝑃 is called the
hypothesis of the implication and 𝑄 is the conclusion.

By definition, a logical implication is valid provided 𝑄 is true whenever 𝑃 is true.
In other words, “𝑃 implies 𝑄” is a valid deduction unless 𝑃 is true and 𝑄 is false.
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Example 1.7. If 1 ≠ 0, then 12 ≠ 0. (True)
If 1 ≠ 0, then 12 = 0. (False)
If 1 = 0, then 0 = 0. (True)
If 1 = 0, then 12 = 0. (True)

If “𝑃 implies 𝑄” is valid, we think of 𝑄 as being deduced or derived from 𝑃. The
definition of “valid implication” ensures that by startingwith true hypotheses andmak-
ing valid deductions, we obtain only true conclusions, not falsehoods. There are two
noteworthy and potentially confusing consequences of this convention, however.

First, it is valid (not logically erroneous) to deduce an arbitrary conclusion from
a false hypothesis. An implication with false hypothesis is said to be vacuously true.
Humorous examples abound: “If 1 = 0, then money grows on trees.”

In particular, the third and fourth implications of the preceding example are vac-
uously true. It may be helpful to point out that in each case, we can give a proof. If
1 = 0, then subtracting this equation from itself gives 0 = 0, which proves the third
statement, while squaring gives 12 = 02 = 0, proving the fourth statement.

Second, a valid implication need not connect causally related statements. The im-
plication “If 0 = 0, then 2 is an even integer” is valid because both the hypothesis and
conclusion are true, but is effectively a non sequitur; the conclusion does not “follow”
from the hypothesis in any obvious sense. A valid implication does not, of itself, con-
stitute a proof. In the example at hand, we know the implication is valid only because
there exists a separate proof, consisting of implications whose validity can be checked
directly.

In these two senses, mathematicians are liberal in deeming an implication to be
valid. Again, “validity” is the weakest criterion that excludes the act of drawing a false
conclusion from a true hypothesis.

Remark 1.8. If, in some axiom system, some statement 𝑃 and its negation ¬𝑃 are both
true, then every statement 𝑄 is provable, since either “𝑃 implies 𝑄” or “¬𝑃 implies 𝑄”
is vacuously true. The pair {𝑃, ¬𝑃} is called a logical contradiction. An axiom system
is inconsistent if a contradiction can be derived from it.

Work ofK.Gödel in the 1930s showedZFCcannot be proved consistentwithout us-
ing some other (“more powerful”) axiom systemwhose consistency is unknown. How-
ever, if there is a contradiction in ZFC, there is a contradiction in ordinary arithmetic.

Belief in the consistency of ZFC is about as close as mathematics gets to an “article
of faith”.

In this book, and throughoutmathematics in practice, valid deductions do actually
link causally related statements. Most implications involve classes of objects, and assert
that every object satisfying some condition must also satisfy some other condition.
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Negation and Conjunctions. If 𝑃 and 𝑄 are statements, then the statement
“𝑃 and 𝑄” is false if at least one of 𝑃 and 𝑄 is false. If someone assures you two state-
ments are both true, only one has to be false for the assurance to be unfounded. For-
mally, the compound statements

¬(𝑃 and 𝑄), (¬𝑃) or (¬𝑄)
express the same logical condition.

Analogously, if someone assures you at least one statement of two is true, then both
must be false for the assurance to be unfounded. Formally, the compound statements

¬(𝑃 or 𝑄), (¬𝑃) and (¬𝑄)
express the same logical condition.

Together, the two preceding relationships are known asDeMorgan’s laws, after the
19th Century English logician A. DeMorgan. Loosely, the conjunctions “and” and “or”
are interchanged by negation, perhaps contrary to first impression.

Consequently, the order of negation and a connective matters:

Example 1.9. The integers 1 and 0 are not both zero. (True)
The integers 1 and 0 are both not zero. (False)

Remark 1.10. All too frequently, one sees humorous ambiguities of the type “While
driving, teens should not use cell phones and obey traffic laws”. To avoid confusion,
this sentence should be phrased “While driving, teens should obey traffic laws and not
use cell phones” (placing the negation where it clearly applies only to one clause) or
“While driving, teens should not use cell phones, and should obey traffic laws” (explic-
itly delimiting the negation).

In formal logic, “¬𝑃 and 𝑄” means “(¬𝑃) and 𝑄”.

1.2. Quantification

To accommodate classes of objects in the framework of statements, we allow state-
ments to contain variables standing for elements of a set, so long as each variable is
“quantified”, accompanied by the phrase “for every” or “there exists”. The quantifiers
are crucial; pay close attention to themwhile reading, and do not omit themwhen think-
ing and writing.

Example 1.11. For every integer 𝑛, 𝑛2 − 𝑛 is an even integer. (True)
For every integer 𝑛, 𝑛2 ≥ 0. (True)
For every integer 𝑛, 𝑛2 = 1. (False)

“For every” statements are said to involve universal quantification. Each statement
encapsulates multiple statements. For example, the first statement of the preceding
example encapsulates an infinite collection of statements, one for each integer: 02 − 0
is an even integer; 12 − 1 is an even integer; (−1)2 − (−1) is an even integer; and so
forth.
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Example 1.12. There exists an integer 𝑛 such that 𝑛2 = 1. (True)
There exists an integer 𝑛 such that 𝑛2 = 2. (False)
There exists an 𝑛 such that both 𝑛 and 𝑛 + 1 are even. (False)
“There exists” statements are said to involve existential quantification. Again, each

encapsulates multiple statements. For example, the third expresses that at least one
truism is found among the statements: 0 and 1 are both even; 1 and 2 are both even;
−1 and 0 are both even; and so forth. The compound statement is false because every
individual statement is false.
Remark 1.13. The statements of the preceding examples contain only “bound” (i.e.,
quantified) variables.

Sentences containing “free” or “unbound” variables (such as “𝑛 is an even integer”
or “𝑥2 + 𝑥 − 2 = 0”) are not statements. However, sentences containing unbound
variables play the useful role of conditions in mathematics, selecting objects (perhaps
integers 𝑛 or real numbers 𝑥) for which the resulting statement is true.

Many mathematical theorems take the universally quantified form “For every 𝑥
satisfying 𝑃(𝑥), condition 𝑄(𝑥) is true”. For stylistic variety, such statements may be
worded as implications involving “arbitrary” values of variables.
Example 1.14. If 𝑥 is a real number such that 𝑥2 + 𝑥 − 2 = 0, then 𝑥 = 1 or 𝑥 = −2.
(True)

If 𝑛 is an integer, then there exist unique integers 𝑞 and 𝑟 such that 𝑛 = 4𝑞+ 𝑟 and
0 ≤ 𝑟 < 4. (True)

If 𝑎, 𝑏, and 𝑐 are positive integers, then 𝑎3 + 𝑏3 ≠ 𝑐3. (True)
Quantifiers and Negation. The universal quantifier “for every” may be viewed

as an enhancement of the “and” conjunction: “For every integer 𝑛, the condition 𝑃(𝑛)
is true” means that the infinitely many statements 𝑃(0), 𝑃(1), 𝑃(−1), and so forth, are
all true.

The existential quantifier “there exists” may be viewed similarly as an enhance-
ment of “or”: “There exists an integer 𝑛 such that the condition 𝑃(𝑛) is true” means
that among the infinitely many statements 𝑃(0), 𝑃(1), 𝑃(−1), . . . , at least one is true.
Example 1.15. Logical negation “converts” a “for every” statement into a “there ex-
ists” statement of negations, and converts a “there exists” statement into a “for every”
statement of negations:
𝑃: For every integer 𝑛, 𝑛2 ≥ 0.

¬𝑃: There exists an integer 𝑛 such that 𝑛2 < 0.

𝑃: There exist integers𝑚 and 𝑛 such that𝑚2 + 𝑛2 = 8.
¬𝑃: For all integers𝑚 and 𝑛,𝑚2 + 𝑛2 ≠ 8.
Remark 1.16. This type of linguistic transformation needs to become second nature.
Particularly, a positive assertion regarding a class of objects can be disproved by finding
a counterexample, but cannot be proved by finding an example.
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Example 1.17. Three logicians walk into a bar. The bartender asks, “Do all of you
want a beer?”

The first logician replies, “I don’t know.” The second adds, “I also don’t know.”
The third says, “Yes.”

Remark 1.18. When the hypothesis of a logical implication contains a variable but no
quantifier is explicitly present, the convention is to read “for every”. For example, “If
𝑥 > 0 then 𝑥2 > 0” should be read “For every real number 𝑥, if 𝑥 > 0 then 𝑥2 > 0”
(assuming the context dictates real numbers as opposed to, say, integers).

If an implicitly quantified statement is negated, the existential quantifier must be
added explicitly: “There exists a real number 𝑥 > 0 such that 𝑥2 ≤ 0”.

To avoid confusion, including your own, include logical quantifiers explicitly. This
book makes a special effort to set a good example.

Implications, and Multiple Quantifiers. Among the most subtle conditions in
mathematics are those containing multiple quantifiers. Elementary algebra seldom
ventures into this territory, but analysis, the mathematics underlying and extending
differential and integral calculus, is suffusedwith definitions and theorems of this type.
When you encountermultiply quantified statements, slowdown and read several times
to ensure you thoroughly understand the dependencies implicit in the ordering.

Example 1.19. For every integer 𝑛, there exists an integer𝑀 such that 𝑛 ≤ 𝑀. (True;
every integer 𝑛 is smaller than some other integer𝑀.)

There exists an integer𝑀 such that for every integer 𝑛, 𝑛 ≤ 𝑀. (False; there is no
largest integer𝑀, i.e., no integer that is greater than every other integer 𝑛.)

Each of these statements can be interpreted usefully as a strategy in an adversarial
game; see Exercises 1.15 and 1.16.

1.3. Truth Tables and Applications

The logical operators (“not”, “and”, “or”, and “implies”) introduced above are neatly
summarized by truth tables:

𝑃 𝑄 ¬𝑃 𝑃 and 𝑄 𝑃 or 𝑄 𝑃 implies 𝑄

T T F T T T
T F F F T F
F T T F T T
F F T F F T

Truth tables furnish a useful tool for studying sentences built of other statements
and logical connectives. This section gives a few applications.

Logical Equivalence. Two statements 𝑃 and 𝑄 are logically equivalent if each
implies the other: 𝑃 implies 𝑄 and 𝑄 implies 𝑃. For brevity, we may write 𝑃 iff 𝑄, “iff”
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being short for “if and only if”. A truth table calculation shows 𝑃 and 𝑄 are equivalent
precisely when they have the same truth value:

𝑃 𝑄 𝑃 implies 𝑄 𝑄 implies 𝑃 𝑃 iff 𝑄

T T T T T
T F F T F
F T T F F
F F T T T

The Converse. The implications “𝑃 implies 𝑄” and “𝑄 implies 𝑃” are said to be
converse to each other. The preceding table shows these implications are not equiva-
lent.

The Contrapositive. The implications “𝑃 implies 𝑄” and “¬𝑄 implies ¬𝑃” are
said to be contrapositive to each other. An implication and its contrapositive are logi-
cally equivalent:

𝑃 𝑄 𝑃 implies 𝑄 ¬𝑄 ¬𝑃 ¬𝑄 implies ¬𝑃

T T T F F T
T F F T F F
F T T F T T
F F T T T T

This fact of logic should become second nature to you. Implications with a large num-
ber of hypotheses are generally easier to understand and prove in contrapositive form.

Example 1.20. In each statement, 𝑥 stands for a real number. Let 𝑃 be the statement
“𝑥2 − 1 ≠ 0” and 𝑄 be the statement “𝑥 ≠ 1”.

The implication 𝑃 implies𝑄 is true, but may require a few seconds’ thought to see.
The converse implication, “If 𝑥 ≠ 1, then 𝑥2 − 1 ≠ 0” is an invalid deduction. The

number 𝑥 = −1 is a counterexample: It satisfies the converse hypothesis 𝑄, but not the
converse conclusion 𝑃.

The contrapositive reads, “If 𝑥 = 1, then 𝑥2−1 = 0.” This implication is obviously
true, and on general grounds its truth implies the truth of 𝑃 implies 𝑄.
Example 1.21. In each statement below, 𝑛 is a positive integer. A positive integer 𝑛 is
said to be prime if 𝑛 > 1, and if 𝑛 has no positive divisors other than 1 and 𝑛.

Direct implication: If 𝑛 is a prime, then 𝑛 = 2 or 𝑛 is odd. (True)
Converse: If 𝑛 = 2 or 𝑛 is odd, then 𝑛 is a prime. (False: 𝑛 = 1 and 𝑛 = 9 are the

two smallest of infinitely many counterexamples.)
Contrapositive: If 𝑛 ≠ 2 and 𝑛 is not odd, then 𝑛 is not prime. (True. Every such

integer has the form 𝑛 = 2𝑘 for some integer 𝑘 > 1.)

One final example, drawn from analysis rather than from algebra, will illustrate
the power of the contrapositive.
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Example 1.22. In each statement, 𝑥 ≥ 0 is a real number and 𝑛 is a positive integer.
Direct implication: If 𝑥 < 1/𝑛 for every 𝑛, then 𝑥 = 0.
Converse: If 𝑥 = 0, then 𝑥 < 1/𝑛 for every 𝑛.
Contrapositive: If 𝑥 > 0, then there exists an 𝑛 such that 1/𝑛 ≤ 𝑥.
It turns out that all three statements are true. The second is easily seen, even

though the conclusion consists of infinitely many statements: 0 < 1, 0 < 1/2, 0 < 1/3,
etc.

The third statement is true and not difficult to see; informally, 1/𝑘 → 0 as 𝑘 → ∞,
so if 𝑥 > 0, there is some positive integer 𝑛 such that 1/𝑛 ≤ 𝑥.

The direct implication is therefore true, since its contrapositive is true. However,
the direct implication exhibits a new phenomenon: The hypothesis consists of infin-
itely many statements, 𝑥 < 1, 𝑥 < 1/2, 𝑥 < 1/3, etc., but no finite number of these
statements implies the conclusion. Indeed, if we assume only finitely many inequalities
of the form 𝑥 < 1/𝑛, there is a largest denominator, say 𝑁, and our collection of in-
equalities is equivalent to the single inequality 𝑥 < 1/𝑁, which does not imply 𝑥 = 0.

Exercises

Exercise 1.1. Many types of logical errors exist, including conflating an implication
with its converse or inverse, assuming the conclusion, over-generalization, using unde-
fined terms or using the same term for different things, and logical disconnect (where
a true statement is followed by “therefore the desired conclusion is true”).

Analyze the following syllogisms. (Recall that an integer 𝑝 ≥ 2 is prime if the only
positive divisors of 𝑝 are 1 and 𝑝.) Determine whether the hypotheses and conclusions
of each are true, and whether one of the errors of the preceding paragraph has been
made, or if the hypotheses justify the conclusions. (This is a stronger requirement than
“implies”. For example, “1 + 1 = 2 implies 0 ⋅ 1 = 0” is true, but the conclusion is not
justified by the hypothesis: Truth of the hypothesis makes the conclusion no easier to
see.)
(a) 3 is prime, 5 is prime, 7 is prime. Each is an odd integer greater than 1. Therefore

every odd integer greater than 1 is prime.
(b) Every even integer greater than 2 is not prime. Therefore every odd integer greater

than 2 is prime.
(c) Every even integer greater than 2 is not prime. Therefore every prime greater

than 2 is not even.
(d) It is repugnant to the nature of a prime to be even. Therefore every prime greater

than 2 is odd.
Exercise 1.2. The following arguments are similar to those of the preceding exercise,
but contain non-mathematical assertions. As such, they may contain errors of pure
logic, but in addition may be questionable due to imprecisely defined terms. Discuss



Exercises 9

and clarify vague terms if necessary, and analyze the logic of each as in the preceding
exercise.
(a) Successful students spend long hours in the library. Therefore, spending long

hours in the library makes a successful student.
(b) People called Galileo a crank during his life. In his lifetime, Galileo was an unrec-

ognized genius. People call me a crank. Therefore I am an unrecognized genius.
(c) All healthy dogs have four legs. All healthy dogs are animals. Therefore all ani-

mals have four legs.
(d) All healthy dogs are carbon-based life forms. All healthy dogs are earth animals.

Therefore all earth animals are carbon-based life forms.
(e) I am alive. Therefore I will live forever. (Adapted from the bumper sticker, “I

intend to live forever. So far, so good.”)
(f) All other men die. I am not like other men. Therefore I’ll not die. (Adapted from

Vladimir Nabokov.)

Exercise 1.3. A store sign reads, “Everything on this table discounted up to 50%, or
even more.”
(a) What is logically conveyed by this sign?
(b) What implicit promises do you take from the sign’s truth?

Exercise 1.4. A promotional flyer proclaims: You are the guaranteed recipient of at
least two of the following.

• Hotel Resort Platinum Getaway!
• $2,500.00 Instant Scratch Ticket!
• Home Theater System (retail value $500)!
• $1,000.00 Instant Scratch Ticket!
• $10,000 in cash!

Assuming these statements are true, what is the maximum value of the guaranteed
prizes? What is the minimum value of the guaranteed prizes? If you cannot answer
one or both questions, explain why not and what additional information you would
need.

Exercise 1.5. The human brain has evolved to detect “cheating”—behavior violating
established rules. These rules have logical content, but the “cheating” interpretation
can be remarkably easier to “see”. For best results, work out parts (a) and (b) completely
before reading part (c).
(a) Each card in a deck is printed with a letter “D” or “N” on one side and a number

between 16 and 70 on the other. Your job is to assess whether or not cards satisfy
the criterion: “Every ‘D’ card has a number greater than or equal to 21 printed on
the reverse.” You are also to separate cards that satisfy this criterion from those
that do not.
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Write the criterion as an “If. . . , then. . . ” statement, and determine which of
the following cards satisfy the criterion:

20 46 16 25
D D N N
(i) (ii) (iii) (iv)

(b) You are shown four cards:

18 35 D N
(i) (ii) (iii) (iv)

Which cards must be turned over to determine whether or not they satisfy the
criterion of part (a)? (The question continues; complete these parts before pro-
ceeding.)

(c) The legal drinking age in a certain state is 21. Your job at a gathering is to ensure
that no one under 21 years of age is drinking alcohol, and to report those that are.
A group of four people consists of a 20 year old who is drinking, a 46 year old
who is drinking, a 16 year old who is not drinking, and a 25 year old who is not
drinking. Which of these people is/are violating the law?

After reporting this incident, you find four people at the bar: An 18 year old
and a 35 year old with their backs to you, and two people of unknown age, one
of whom is drinking. From which people do you need further information to see
whether or not they are violating the law?

(d) Explain why the card question is logically equivalent to the drinking question.
Which did you find easier to answer correctly? (This exercise is adapted from the
Wason selection task in social psychology.)

Exercise 1.6. (a) List (with justification) all sets of three non-zero digits (i.e., inte-
gers between 1 and 9 inclusive) whose sum is 15.

(b) Consider a two-player adversarial game with the following rules: (i) Players alter-
nately pick integers between 1 and 9; each number can be picked at most once.
(ii) A player wins if they pick some set of three numbers that add to 15.

Does each digit appear equally often in a “winning triple”? If not, which
number(s) is/are most or least frequent?
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(c) Show that the digits between 1 and 9 can be placed uniquely into a 3 × 3 array so
that (i) The top row is “2, 9, 𝑥” for some digit 𝑥; (ii) The digits in each row sum
to 15, the digits in each column sum to 15, and the digits on the diagonals sum
to 15. Conclude that a set of three numbers adds to 15 if and only if the positions
of those digits win the game of tic-tac-toe.

Exercise 1.7. The President, a law-abiding citizen who always tells the truth, has time
for one more Yes/No question at a press conference. In an attempt to embarrass the
President, a reporter asks, “Have you stopped offering illegal drugs to visiting Heads of
State?”

(a) Which answer (“Yes” or “No”) is logically truthful?

(b) Suppose the President answers “Yes”. Can the public conclude that the President
has offered illegal drugs to visiting Heads of State? What if the answer is “No”?

(c) Explain why both answers are embarrassing.

This rhetorical technique is the bread and butter of “push polls”, propaganda or smear
campaigns often conducted by telephone, disguised as attempts to gauge public opin-
ion. If the President were a Zen Buddhist she might reply “mu” (pronounced “moo”),
meaning “Your question is too flawed in its hypotheses to answer meaningfully.”

Exercise 1.8. One domino covers two neighboring squares of a chess board. In each
part, assume dominoes are non-overlapping, aligned with board squares, and rest en-
tirely on the board.

(a) Can a 7 × 7 board be covered by dominoes? A 6 × 6 board? 8 × 8?

(b) Suppose two opposite corner squares are removed from a 6 × 6 board. Prove that
the remaining squares cannot be covered by dominoes. What if the board is 7×7?

(c) Suppose two neighboring corner squares are removed from a 6×6 board. Can the
remaining squares be evenly covered by dominoes? What if the board is 7 × 7?

(d) Prove that if two squares of opposite color are removed from an 8×8 chess board,
the remaining squares can be covered by dominoes. Hint: First show that each
square can be visited precisely once by starting in one corner and successively
stepping to neighboring squares.

Exercise 1.9. In the game Minesweeper, each square in an array is either empty or
holds a mine. You task is to flag all the squares containing a mine, and only those
squares. When a square is cleared (correctly marked as not containing a mine), the
number of mines in adjacent squares is shown.
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The 8 × 8 grid below (left) contains 20 uncleared squares (gray) and 44 cleared
squares (white). Flag the mines (and only those squares), and explain your reasoning
for each square.

(For your convenience, the squares are labeled using algebraic notation for chess.
For instance, a1 is the lower left corner, and f5 is the left end of the peninsula in the
middle.)

1 2 1 2 2 2

1 1

1 2 2 1 1 3

3

a b c d e f g h

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

A B C D E

Exercise 1.10. Professor Calculus works at the corner of Avenue A and 1st Street (the
black spot, above right), and lives at the corner of Avenue E and 7th Street (the open
circle). Each day, Professor Calculus walks home along the city streets, traveling only
northward or eastward, and not passing through the park (gray rectangle). Howmany
distinct routes home are there?

Hint: How many distinct routes can Professor Calculus take to B1? To E1?

Exercise 1.11. In each pair 𝑃, 𝑄 of conditions, 𝑛 represents an integer. (i) Give the
negations of 𝑃 and 𝑄, and (ii) Form the implication 𝑃 implies 𝑄, its converse, and its
contrapositive, and determine whether each is true.

(a) 𝑃: 𝑛2 − 4 = 0. 𝑄: 𝑛 = 2.
(b) 𝑃: 𝑛 is even. 𝑄: 𝑛 is an integer multiple of 4.
(c) 𝑃: 𝑛 is even. 𝑄: 𝑛 is the square of an even integer.

Exercise 1.12. Let 𝑃 and 𝑄 be arbitrary statements.

(a) Use a truth table to prove that “𝑃 implies 𝑄” is logically equivalent to “¬𝑃 or 𝑄”.
(b) Use part (a) to re-show that an implication and its contrapositive are logically

equivalent.

Exercise 1.13. Let 𝑥 stand for a real number, and consider the conditions:
𝑃 ∶ 𝑥3 − 3𝑥2 + 2𝑥 ≠ 0, 𝑄 ∶ 𝑥 ≠ 1.

(a) Write out the direct implication 𝑃 implies 𝑄 and the contrapositive. Are these
statements true or false? Which is easier to decide?
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(b) Write out the converse implication 𝑄 implies 𝑃 and the inverse ¬𝑃 implies ¬𝑄.
Are these statements true or false? Which is easier to decide?

Exercise 1.14. Let 𝑃, 𝑄, and 𝑅 be arbitrary statements. Use a truth table to prove that
the following pairs of statements are logically equivalent:
(a) “¬(𝑃 or 𝑄)” and “¬𝑃 and ¬𝑄”.
(b) “¬(𝑃 and 𝑄)” and “¬𝑃 or ¬𝑄”.
(c) “(𝑃 or 𝑄) and 𝑅” and “(𝑃 and 𝑅) or (𝑄 and 𝑅)”.
(d) “(𝑃 and 𝑄) or 𝑅” and “(𝑃 or 𝑅) and (𝑄 or 𝑅)”.
Exercise 1.15. (a) Consider the statement, “For every integer 𝑛, there exists an inte-

ger𝑚 such that 𝑛 < 𝑚.” Is this statement true or false? Explain.
(b) Consider the statement, “There exists an integer𝑚 such that for every integer 𝑛,

𝑛 < 𝑚.” Is this statement true or false? Explain.
(c) Consider an adversarial game (“Who can pick the larger number?”) with the fol-

lowing rules: The first player picks an integer 𝑛 and tells it to the second player.
The second player picks an integer 𝑚 ≠ 𝑛. The player with the larger integer
wins. If your goal is to win, would you rather play first, or second? Explain care-
fully how the statements in parts (a) and (b) are related to winning strategies in
the game.

Exercise 1.16. (a) Consider the statement, “For every integer 𝑛 ≤ 0, there exists an
integer𝑚 ≤ 0 such that 𝑛 < 𝑚.” Is this statement true or false? Explain.

(b) Consider the statement, “There exists an integer𝑚 ≤ 0 such that for every integer
𝑛 ≤ 0 distinct from𝑚, we have 𝑛 < 𝑚.” Is this statement true or false? Explain.

(c) Consider an adversarial game (“Who can pick the larger non-positive number?”)
with the following rules: The first player picks an integer 𝑛 ≤ 0 and tells it to the
second player. The second player picks an integer 𝑚 ≤ 0, 𝑚 ≠ 𝑛. The player
with the larger integer wins. If your goal is to win, would you rather play first, or
second? Explain carefully how the statements in parts (a) and (b) are related to
winning strategies in the game.

(d) Explain carefully what property of the non-positive integers makes the answers
to this question differ from those of the preceding question.





Chapter 2

An Introduction to Sets

Modernmathematics is built on the concept of a “set”, a collection of “elements”. These
primitive notions will serve in lieu of definitions. This chapter informally introduces
the set of complex numbers, connects sets with the basics of logic, and gives advice on
constructing and writing mathematical proofs.

2.1. Specifying Sets

Example 2.1. The collection of all integers (whole numbers) is a set. Its elements are
0, 1, −1, 2, −2, and so forth. The set of integers is denoted 𝐙, from the German Zahl
(number). Formal axioms for the integers are given in Chapter 3.

Example 2.2. The collection of “prime numbers”, integers 𝑝 greater than 1 that have
no divisors other than 1 and 𝑝, is a set. The numbers 2, 5, and 213466917−1 are elements,
while 4 and 213466917 = 2 ⋅ 213466916 are not.

Example 2.3. The set of periodic table entries in the year 1960 has 102 elements. “Hy-
drogen”, “promethium”, and “astatine” are elements of this set, while “Massachusetts”,
“ammonia”, and “surprise” are not.

Abstract sets will be denoted with capital letters, such as𝐴 or 𝐵. Elements are nor-
mally denoted with lowercase letters, such as 𝑎 and 𝑏. We write “𝑎 ∈ 𝐴” as shorthand
for the statement “𝑎 is an element of (the set) 𝐴”, and “𝑏 ∉ 𝐴” for the logical negation
“𝑏 is not an element of 𝐴”. For example, 0 ∈ 𝐙, −7 ∈ 𝐙, and 1

2
∉ 𝐙.

Definition 2.4. Let 𝐴 and 𝐵 be sets. We say 𝐴 is a subset of 𝐵, and write “𝐴 ⊆ 𝐵”, if
𝑥 ∈ 𝐴 implies 𝑥 ∈ 𝐵, that is, if every element of 𝐴 is an element of 𝐵. Two sets 𝐴 and 𝐵
are equal if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, namely if they have exactly the same elements: 𝑥 ∈ 𝐴 if
and only if 𝑥 ∈ 𝐵.

15
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The most basic and explicit way of describing a set is to list its elements. Curly
braces are used to denote a list of elements comprising a set. Sets do not “keep track
of” what order the elements are listed, or whether their elements are multiply listed.

Example 2.5. Each set 𝐴 = {−1, 0, 1}, 𝐵 = {0, 1, −1}, and 𝐶 = {0, 1, 0, −1, 1} contains
three elements, and in fact 𝐴 = 𝐵 = 𝐶.
Example 2.6. Let 𝐴 be a set. For each element 𝑎 in 𝐴, there is a singleton set {𝑎}
contained in𝐴. Take care to distinguish𝑎 and {𝑎}; 𝑎 is an object, while {𝑎} is a “package”
that contains exactly one object.

Example 2.7. There exists an empty set∅ containing no elements. For all 𝑥, the state-
ment 𝑥 ∈ ∅ is false. In particular, for every set𝐴 the logical implication “𝑥 ∈ ∅ implies
𝑥 ∈ 𝐴” is vacuous (has a false hypothesis). Consequently, ∅ ⊆ 𝐴 is true for all 𝐴.
Remark 2.8. The empty set is unique: If ∅ and ∅′ are sets having no elements, then
∅ ⊆ ∅′ and ∅′ ⊆ ∅ are both true, so ∅ = ∅′.

In mathematics, we always restrict our attention to sets contained in a fixed set𝒰,
called a universe. Specific subsets of𝒰 are conveniently described using set-builder no-
tation, in which elements are selected according to logical conditions formally known
as a predicates. The expression {𝑥 in 𝒰 ∶ 𝑃(𝑥)} is read “the set of all 𝑥 in 𝒰 such
that 𝑃(𝑥)”.
Example 2.9. The expression {𝑥 in 𝐙 ∶ 𝑥 > 0}, read as “the set of all 𝑥 in 𝐙 such that
𝑥 > 0”, specifies the set 𝐙+ of positive integers.

To personify, if 𝒰 is a population whose elements are individuals, then a subset 𝐴
of 𝒰 is a club or organization, and the predicate defining 𝐴 is a membership card. We
screen individuals 𝑥 for membership in 𝐴 by checking whether or not 𝑥 carries the
membership card for 𝐴, namely whether or not 𝑃(𝑥) is true.
Example 2.10. There can exist no “set𝒰 of all sets”. If therewere, the set𝑅 = {𝑥 in 𝒰 ∶
𝑥 ∉ 𝑥}, comprising all sets that are not elements of themselves, would have the property
that 𝑅 ∈ 𝑅 if and only if 𝑅 ∉ 𝑅. This contradiction is known as Russell’s paradox, after
the English logician B. Russell.

Example 2.11. The expression {𝑥 in 𝐙 ∶ 𝑥 = 2𝑛 for some 𝑛 in 𝐙} is the set of even
integers. We often denote this set 2𝐙, the idea being that the general even integer arises
from multiplying some integer by 2.

Similarly, the set of odd integers could be expressed as
2𝐙 + 1 = {𝑥 in 𝐙 ∶ 𝑥 = 2𝑛 + 1 for some 𝑛 in 𝐙}.

Remark 2.12. For brevity, we sometimes write, e.g., the set of even integers as
{2𝑛 ∶ 𝑛 ∈ 𝐙}, read as “the set of 2𝑛 such that 𝑛 is an element of 𝐙”. This way of
writing a set is convenient, and the meaning is generally clear, but it isn’t technically
proper; compare Example 2.10. To define a set formally, first give the universe, then
specify the predicate.
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Remark 2.13. The elements of a set may be other sets. For example, the set 𝐴 =
{2𝐙, 2𝐙+1} has two elements, 2𝐙 and 2𝐙+1. Note carefully that 𝐴 is not a subset of 𝐙:
The elements of 𝐴 are not themselves integers, but sets of integers.

2.2. Complex Numbers

Points in the Cartesian planemay be viewed as numerical entities in a way that extends
the familiar real number line. The resulting “complex number system” illustratesmany
of the algebraic and geometric concepts introduced later.
Definition 2.14. A complex number is an expression 𝛼 = 𝑎 + 𝑖𝑏 in which 𝑎 and 𝑏
are real numbers and 𝑖 is a symbol satisfying 𝑖2 = −1. The real numbers 𝑎 and 𝑏 are,
respectively, the real part and imaginary part of 𝛼. We say 𝛼 is real if 𝑏 = 0, non-real if
𝑏 ≠ 0, and imaginary if 𝑎 = 0.

α = a+ bi

ᾱ = a− bi

i

0 1−1
Re

Im

a

bi

−bi

Figure 2.1. The complex plane.

Viewing the real and imaginary parts of a complex number 𝛼 = 𝑎+𝑏𝑖 as Cartesian
coordinates, we identify 𝛼 with the point (𝑎, 𝑏), Figure 2.1.
Definition 2.15. The set of complex numbers is the complex plane 𝐂. Each real num-
ber 𝑎 is identified with the complex number 𝑎 + 0 ⋅ 𝑖. The set of all such points is the
real axis. The set of all imaginary numbers 0+𝑏 ⋅ 𝑖 is the imaginary axis. The conjugate
of 𝛼 is the complex number �̄� = 𝑎 − 𝑏𝑖 obtained by reflecting 𝛼 across the real axis.
Remark 2.16. Imaginary numbers may seem tainted with suspicion, as if they don’t
really exist but it’smathematically convenient to pretend they do. This sentiment traces
back to the Ancient Greeks, who viewed numbers as lengths, what we now call “real
numbers”. Indeed, no real number has square equal to −1.

As noted above, however, 𝑖 has a perfectly concrete existence as the point (0, 1)
in the Cartesian plane. Even the mysterious equation 𝑖2 = −1 turns out to have a
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natural interpretation: Multiplication by 𝑖 corresponds to a counterclockwise quarter-
turn of the complex plane about the origin. Performing this operation twice, namely
squaring 𝑖, amounts to a half-turn, which multiplies each complex number by −1.

From a modern perspective, the complex numbers earn their status as “numbers”
by admitting operations of addition, subtraction, multiplication, and division that gen-
eralize the familiar algebraic properties of real numbers. We turn next to the algebraic
and geometric descriptions of these operations.
Definition 2.17. Let 𝛼1 = 𝑎1 + 𝑖𝑏1 and 𝛼2 = 𝑎2 + 𝑖𝑏2 be complex numbers. Their sum
is defined by the formula

𝛼1 + 𝛼2 = (𝑎1 + 𝑖𝑏1) + (𝑎2 + 𝑖𝑏2) = (𝑎1 + 𝑎2) + 𝑖(𝑏1 + 𝑏2).

The formula for subtraction is similar and is left to you to work out. Adding two
complexnumbers corresponds to the parallelogram law for vector addition in the plane;
see Figure 2.2.

α2

α1

α1 + α2

−α2

α1 − α2

0

Figure 2.2. Adding and subtracting complex numbers.

Definition 2.18. A set 𝐴 contained in 𝐂 is closed under addition if for all 𝛼1 and 𝛼2
in 𝐴, the sum 𝛼1 + 𝛼2 is in 𝐴.
Example 2.19. The set {0} is closed under addition, since 0 + 0 = 0.
Example 2.20. Suppose 𝐴 is closed under addition and 1 ∈ 𝐴. Of necessity, 2 = 1+1,
3 = 2 + 1, 4 = 3 + 1, and so forth, are in 𝐴. That is, 𝐴 contains the set of positive
integers. Since the set of positive integers is closed under addition, our hypotheses
imply nothing further.

Similarly, if 𝐴 is closed under addition and 𝛼 ≠ 0 is an element of 𝐴, then every
positive integer multiple of 𝛼 is an element of 𝐴. Since these multiples are distinct, the
set 𝐴must be infinite.

If𝐴 is closed under addition, it does not follow that𝐴 is “generated” by one element
as in the previous examples.
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Example 2.21. The set 𝐙 of integers is closed under addition in 𝐂, as are the set 𝐐 of
rational numbers (ratios of integers) and the set 𝐑 of real numbers. None of these sets
is obtained by adding a single element to itself repeatedly.

Example 2.22. The set 𝐙 + 𝑖𝐙 = {𝑚 + 𝑖𝑛 ∶ 𝑚, 𝑛 ∈ 𝐙} of Gaussian integers, Figure 2.3,
is closed under addition: If 𝛼1 = 𝑚1+𝑖𝑛1 and 𝛼2 = 𝑚2+𝑖𝑛2 are Gaussian integers, the
addition formula for complex numbers gives 𝛼1 +𝛼2 = (𝑚1 +𝑚2) + 𝑖(𝑛1 +𝑛2). Since a
sum of integers is an integer, the real and imaginary parts of 𝛼1 +𝛼2 are integers. That
is, 𝛼1 + 𝛼2 ∈ 𝐙 + 𝑖𝐙. Since 𝛼1 and 𝛼2 were arbitrary, 𝐙 + 𝑖𝐙 is closed under addition.

0

Figure 2.3. The Gaussian integers.

Example 2.23. The set𝐴 of complex numbers that are either real or imaginary, i.e., the
union of the real and imaginary axes, is not closed under addition. Since “closed under
addition” is a “for every” condition, its negation is a “there exists” condition; that is, it
suffices to find a single counterexample. For instance, 1 ∈ 𝐴 (since 1 is real) and 𝑖 ∈ 𝐴
(since 𝑖 is imaginary) but 1 + 𝑖 ∉ 𝐴 (the sum is neither real nor imaginary), so 𝐴 is not
closed under addition.

To define multiplication of complex numbers, we treat 𝑖 as a symbol distributing
over the addition of real numbers, commuting with themultiplication of real numbers,
and satisfying 𝑖2 = −1. A short calculation using familiar laws of algebra leads us to

(𝑎1 + 𝑖𝑏1)(𝑎2 + 𝑖𝑏2) = 𝑎1𝑎2 + 𝑖(𝑎1𝑏2 + 𝑎2𝑏1) + 𝑖2𝑏1𝑏2
= (𝑎1𝑎2 − 𝑏1𝑏2) + 𝑖(𝑎1𝑏2 + 𝑎2𝑏1).

Definition 2.24. Let 𝛼1 = 𝑎1 + 𝑖𝑏1 and 𝛼2 = 𝑎2 + 𝑖𝑏2 be complex numbers. Their
product is defined by the formula

𝛼1𝛼2 = (𝑎1𝑎2 − 𝑏1𝑏2) + 𝑖(𝑎1𝑏2 + 𝑎2𝑏1).
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Example 2.25. If 𝛼 = 𝑎 + 𝑏𝑖, then 𝑖𝛼 = 𝑖(𝑎 + 𝑏𝑖) = −𝑏 + 𝑎𝑖. As expected, the vector
(−𝑏, 𝑎) is obtained by rotating the vector (𝑎, 𝑏) through a quarter-turn.

As a consistency check, 𝑖(𝑖𝛼) = 𝑖(−𝑏 + 𝑎𝑖) = −𝑎 − 𝑏𝑖 = −𝛼.
Example 2.26. If 𝛼 = 𝑎 + 𝑏𝑖, then

𝛼�̄� = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 − (𝑏𝑖)2 = 𝑎2 + 𝑏2.
By the Pythagorean theorem, 𝛼�̄� = (distance from 0 to 𝛼)2.

Complex multiplication is commutative: For all complex numbers 𝛼1 and 𝛼2, we
have 𝛼2𝛼1 = 𝛼1𝛼2. Wemay therefore attempt to define division by declaring 𝛽 = 𝛼1/𝛼2
if and only if 𝛽𝛼2 = 𝛼1 = 𝛼2𝛽.
Remark 2.27. If multiplication were not commutative, the equations 𝛼1 = 𝛽𝛼2 and
𝛼1 = 𝛼2𝛽 might well be incompatible conditions for 𝛼1.

To define complex division, let 𝛼1 and 𝛼2 be complex numbers with 𝛼2 ≠ 0. We
wish to write 𝛼1/𝛼2 = 𝑐1 + 𝑖𝑐2, namely, to find formulas for 𝑐1 and 𝑐2 in terms of the
real and imaginary parts of the numerator and denominator.

The trick is analogous to rationalizing the denominator in high school algebra:
Here we “realify” the denominator, multiplying the top and bottom by the conjugate
number �̄�2 = 𝑎2 − 𝑖𝑏2:

𝑎1 + 𝑖𝑏1
𝑎2 + 𝑖𝑏2

= 𝑎1 + 𝑖𝑏1
𝑎2 + 𝑖𝑏2

⋅ 𝑎2 − 𝑖𝑏2
𝑎2 − 𝑖𝑏2

= (𝑎1𝑎2 + 𝑏1𝑏2) + 𝑖(−𝑎1𝑏2 + 𝑎2𝑏1)
𝑎22 + 𝑏22

.

Example 2.28. To divide 𝛼1 = 2 − 𝑖 by 𝛼2 = 4 + 3𝑖, calculate as follows:
2 − 𝑖
4 + 3𝑖 =

2 − 𝑖
4 + 3𝑖 ⋅

4 − 3𝑖
4 − 3𝑖 =

(8 − 3) + (−6 − 4)𝑖
42 + 32

= 5 − 10𝑖
25 = 1 − 2𝑖

5 .

In practice, direct calculation is easier than memorizing the formula.

Example 2.29. If 𝛼 = 𝑎 + 𝑏𝑖 ≠ 0, then
1
𝛼 = 1

𝑎 + 𝑖𝑏 = 𝑎 − 𝑖𝑏
𝑎2 + 𝑏2 =

𝑎
𝑎2 + 𝑏2 − 𝑖 𝑏

𝑎2 + 𝑏2 .

That is, every non-zero complex number has a reciprocal.

The arithmetic operations on complex numbers satisfy familiar rules of algebra.
For later reference, we collect several of these here. The proofs are straightforward cal-
culations based on corresponding properties for real numbers and are left as exercises.

Proposition 2.30. For all complex numbers 𝛼, 𝛽, and 𝛾:
(i) (𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾) and 𝛽 + 𝛼 = 𝛼 + 𝛽.
(ii) (𝛼𝛽)𝛾 = 𝛼(𝛽𝛾) and 𝛽𝛼 = 𝛼𝛽.
(iii) 𝛼(𝛽 + 𝛾) = 𝛼𝛽 + 𝛼𝛾 and (𝛼 + 𝛽)𝛾 = 𝛼𝛾 + 𝛽𝛾.
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Remark 2.31. Inwords, (i) complex addition is associative and commutative; (ii) com-
plex multiplication is associative and commutative; (iii) multiplication distributes (on
the left and on the right) over addition.

Example 2.32. For all complex 𝛼 and 𝛽, the difference of squares identity holds: 𝛼2 −
𝛽2 = (𝛼 + 𝛽)(𝛼 − 𝛽).

Complex multiplication has a beautiful and useful geometric interpretation, most
easily expressed in terms of polar coordinates. Recall that every point (𝑎, 𝑏) in the plane
can be written (𝑟 cos 𝜃, 𝑟 sin 𝜃) for some radius 𝑟 ≥ 0 and some angle 𝜃, measured coun-
terclockwise from the positive 𝑥 axis and unique up to an added integer multiple of 2𝜋.
Definition 2.33. Let 𝛼 = 𝑎+𝑏𝑖 = 𝑟 cos 𝜃+ 𝑖𝑟 sin 𝜃 be a complex number. The radius 𝑟
is called the magnitude of 𝛼, and the polar angle is the argument of 𝛼. If −𝜋 < 𝜃 < 𝜋,
we say 𝜃 is the principal argument of 𝛼.
Remark 2.34. The magnitude of 𝛼 = 𝑎 + 𝑖𝑏, denoted |𝛼|, is given by

|𝛼| = 𝑟 = √𝑎2 + 𝑏2 = √𝛼�̄�.
Example 2.35. Since 𝑖 = 0 + 1 ⋅ 𝑖 = cos 𝜋

2
+ 𝑖 sin 𝜋

2
, the magnitude of 𝑖 is 1 and the

principal argument of 𝑖 is 𝜋
2
.

Example 2.36. Let 𝜃 be a real number. By Euler’s formula (see the appendix), we have
cos 𝜃 + 𝑖 sin 𝜃 = 𝑒𝑖𝜃. The magnitude of 𝑒𝑖𝜃 is 1, and the argument is 𝜃.

Generally, 𝛼 = |𝛼|(cos 𝜃 + 𝑖 sin 𝜃) = |𝛼|𝑒𝑖𝜃.

If 𝑒𝑖𝜃1 = (cos 𝜃1+𝑖 sin 𝜃1) and 𝑒𝑖𝜃2 = (cos 𝜃2+𝑖 sin 𝜃2) are complex numbers of unit
magnitude, the sum formulas for the cosine and sine functions allow us to write their
product as

𝑒𝑖𝜃1 ⋅ 𝑒𝑖𝜃2 = (cos 𝜃1 + 𝑖 sin 𝜃1)(cos 𝜃2 + 𝑖 sin 𝜃2)
= (cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2) + 𝑖(cos 𝜃1 sin 𝜃2 + cos 𝜃2 sin 𝜃1)
= cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2) = 𝑒𝑖(𝜃1+𝜃2).

That is, the law of exponents holds for imaginary exponents. Since every complex num-
ber has polar form 𝛼 = |𝛼| 𝑒𝑖𝜃, complex multiplication satisfies

𝛼1𝛼2 = (|𝛼1| 𝑒𝑖𝜃1)(|𝛼2| 𝑒𝑖𝜃2) = (|𝛼1| |𝛼2|) 𝑒𝑖(𝜃1+𝜃2).
Geometrically, wemultiply two complex numbers bymultiplying theirmagnitudes and
adding their arguments (polar angles). See Figure 2.4.

Example 2.37. Since 𝑖 = cos 𝜋
2
+ 𝑖 sin 𝜋

2
= 𝑒𝑖

𝜋
2 , we have

𝑖𝛼 = 𝑖|𝛼| 𝑒𝑖𝜃 = |𝛼| 𝑒𝑖(𝜃+
𝜋
2
);

againwe see thatmultiplication by 𝑖 rotates the plane about the origin by a quarter-turn
counterclockwise.
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0
z1 = r1 e

iθ1

z2 = r2 e
iθ2

z3 = r3 e
iθ3

θ

αz1

αz2αz3

Figure 2.4. Complex multiplication by 𝛼 = |𝛼|𝑒𝑖𝜃 .

Example 2.38. Every non-zero complex number has precisely two complex square
roots. This is particularly clear using polar form: Every non-zero complex number 𝑧
may be written uniquely as 𝑟𝑒𝑖𝜃 for some real 𝑟 > 0 and real 𝜃 with −𝜋 < 𝜃 ≤ 𝜋. The
numbers ±√𝑟𝑒𝑖𝜃/2 are the distinct square roots of 𝑧; see Exercise 2.9.

Example 2.39. If 𝛼𝑥2 + 𝛽𝑥 + 𝛾 = 0 with 𝛼, 𝛽, and 𝛾 complex and 𝛼 ≠ 0, then

𝑥 = −𝛽 ± √𝛽2 − 4𝛼𝛾
2𝛼 ,

by the same completing-the-square proof you have seen for real coefficients. There are
no “exceptional” cases; every quadratic has exactly two complex solutions, counting
multiplicity.

Definition 2.40. A set 𝐴 contained in 𝐂 is closed under multiplication if, for all 𝛼1 and
𝛼2 in 𝐴, the product 𝛼1 ⋅ 𝛼2 is an element of 𝐴.

Example 2.41. The set of complex numbers of magnitude 1 is the unit circle

𝑈(1) = {𝑧 in 𝐂 ∶ |𝑧| = 1} = {𝑧 in 𝐂 ∶ 𝑧 = 𝑒𝑖𝜃 for some real 𝜃}.

The set𝑈(1) is closed under multiplication: If |𝛼1| = 1 and |𝛼2| = 1, i.e., 𝛼1, 𝛼2 ∈ 𝑈(1),
then |𝛼1𝛼2| = |𝛼1||𝛼2| = 1, so 𝛼1𝛼2 ∈ 𝑈(1).

Example 2.42. The finite subsets {1} and {−1, 1} of 𝑈(1) are also closed under multi-
plication. More generally, for each positive integer 𝑛 there exists a subset 𝑈𝑛 of 𝑈(1)
that contains exactly 𝑛 elements and is closed under multiplication:

𝑈𝑛 = {1 = 𝑒0, 𝑒𝑖 2𝜋/𝑛, 𝑒𝑖 4𝜋/𝑛, … , 𝑒𝑖 2𝜋(𝑛−1)/𝑛}
= {𝑒𝑖 2𝜋𝑘/𝑛 ∶ 𝑘 = 0, … , 𝑛 − 1}.
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The sets 𝑈4 and 𝑈6 are shown in Figures 2.5 and 2.6. Each is finite and closed under
multiplication.

0
1= −1

ei π/2 = i

ei π

ei 3π/2 = −i

Figure 2.5. The set 𝑈4.

0
1= −1

ei π/3ei 2π/3

ei π

ei 4π/3 ei 5π/3

Figure 2.6. The set 𝑈6.

The elements of𝑈𝑛 are precisely the complex numbers 𝜁 = 𝑟𝑒𝑖𝜃 satisfying the equa-
tion 𝜁𝑛 = 1, namely the so-called 𝑛th roots of unity. To see why, note that
1 = 𝜁𝑛 = 𝑟𝑛𝑒𝑖𝑛𝜃 precisely when 𝑟 = 1 and 𝑛𝜃 is an integer multiple of 2𝜋. Assum-
ing without loss of generality that 0 ≤ 𝜃 < 2𝜋, we have 0 ≤ 𝑛𝜃 < 2𝑛𝜋, so that 𝑛𝜃 = 0,
2𝜋, 4𝜋, . . . , 2(𝑛 − 1)𝜋, or 𝑛𝜃 = 2𝑘𝜋 for some integer 𝑘 with 0 ≤ 𝑘 < 𝑛.

To see that the set of 𝑛th roots of unity is closed under multiplication, note that if
𝜁𝑛1 = 1 and 𝜁𝑛2 = 1, then (𝜁1𝜁2)𝑛 = 𝜁𝑛1 𝜁𝑛2 = 1, which means 𝜁1𝜁2 is an 𝑛th root of unity.

2.3. Sets and Logic, Partitions

Let 𝒰 be a universe, and let 𝐴 and 𝐵 be subsets of 𝒰. The statements 𝑥 ∈ 𝐴 and
𝑥 ∈ 𝐵may be viewed as predicates 𝑃 and𝑄 on elements of𝒰. By definition, the logical
implication “𝑥 ∈ 𝐴 implies 𝑥 ∈ 𝐵” corresponds to the set relation “𝐴 ⊆ 𝐵”. Logical
negation, disjunction (or), and conjunction (and) similarly have natural interpretations
in terms of 𝐴 and 𝐵.

The complement of 𝐴: 𝐴𝑐 = {𝑥 in 𝒰 ∶ 𝑥 ∉ 𝐴}.
The union of 𝐴 and 𝐵: 𝐴 ∪ 𝐵 = {𝑥 in 𝒰 ∶ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}.
The intersection of 𝐴 and 𝐵: 𝐴 ∩ 𝐵 = {𝑥 in 𝒰 ∶ 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}.



24 2. An Introduction to Sets

A Venn diagram pictorially represents subsets of a universe 𝒰. The universe is
depicted as a rectangle, and subsets are disks or, if necessary, more complicated shapes.
The complement of 𝐴, or the union and intersection of two sets 𝐴 and 𝐵, might be
drawn as indicated:

A

Ac

Two sets 𝐴 and 𝐵 are disjoint if 𝐴∩𝐵 = ∅, namely, if 𝐴 and 𝐵 have no elements in
common. A Venn diagram of disjoint sets might be drawn as a pair of non-overlapping
disks.
Example 2.43. The sets 2𝐙 and 2𝐙+1 of even and odd integers are disjoint: No integer
is both even and odd. The sets 𝐴 = 2𝐙 and 𝐵 = 𝐙+ are not disjoint: For example, 2, 4,
and 84 are elements of 𝐴 ∩ 𝐵, since each is both positive and a multiple of 2.
Definition 2.44. Let 𝐴 be a set. The power set of 𝐴, 𝒫(𝐴), is the set of all subsets of 𝐴.
Example 2.45. If 𝐴 = {0, 1} has two elements, the power set 𝒫(𝐴) has four elements:

𝒫(𝐴) = {∅, {0}, {1}, 𝐴}.
The empty set and𝐴 itself are always subsets of𝐴, so a power set is never empty. Indeed,
𝒫(∅) = {∅} has a single element.
Definition 2.46. Let 𝐴 be a set, and 𝐼 a set of indices. A family of non-empty subsets
{𝐴𝑖}𝑖∈𝐼 of 𝐴 constitutes a partition of 𝐴 if each element of 𝐴 is an element of exactly one
of the sets 𝐴𝑖.
Remark 2.47. In other words, {𝐴𝑖}𝑖∈𝐼 is a partition of 𝐴 if 𝐴𝑖 ≠ ∅ for all 𝑖 (each set is
non-empty), 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠ 𝑗 (each pair of sets is disjoint), and 𝐴 is the union of
the sets 𝐴𝑖.
Example 2.48. The sets 𝐴0 = 2𝐙 and 𝐴1 = 2𝐙 + 1 are a partition of 𝐴 = 𝐙; every
integer is either even or odd, and no integer is both. Here the index set is 𝐼 = {0, 1}.

The sets 𝐴0 = 3𝐙, 𝐴1 = 3𝐙+ 1, 𝐴2 = 3𝐙+ 2 are another partition of 𝐙, since every
integer leaves a unique remainder of 0, 1, or 2 upon division by 3:

𝐙 ⋯ −4 −3 −2 −1 0 1 2 3 4 5 6 ⋯

𝐴0 ⋯ −3 0 3 6 ⋯

𝐴1 ⋯ −2 1 4 ⋯

𝐴2 ⋯ −4 −1 2 5 ⋯
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Example 2.49. We will prove in Chapter 3 (Theorem 3.16) that if 𝑛 > 1 is an integer,
there is a partition of 𝐙 into 𝑛 subsets, 𝐴𝑘 = 𝑛𝐙 + 𝑘 with 𝑘 = 0, . . . , 𝑛 − 1 an integer.
An integer 𝑥 is an element of 𝐴𝑘 if and only if 𝑥 leaves a remainder of 𝑘 upon division
by 𝑛.

In Chapter 8, we will write [𝑘]𝑛 = 𝑛𝐙 + 𝑘 and form a set 𝐙𝑛 having 𝑛 elements:
𝐙𝑛 = {[0]𝑛, [1]𝑛, … , [𝑛−1]𝑛}. Note that 𝐙𝑛 ⊆ 𝒫(𝐙): The elements of 𝐙𝑛 are subsets of 𝐙.

Advice on Writing Proofs. Discovering and writing proofs are nearly opposite
activities. You’ll find that most of the writing you do in discovering mathematics does
not need to be written up; it’s just “scaffolding”.

Example 2.50. Assume 𝛼 ∈ 𝐂. Prove: |𝛼| = |�̄�|.
(Preliminary Work). When proving an identity such as this we have an obvious

strategy: Express each side in terms of simpler information and see if the answers agree.
Here, set 𝛼 = 𝑎 + 𝑖𝑏 with 𝑎 and 𝑏 real. Then �̄� = 𝑎 − 𝑖𝑏, so we have

|𝛼| = √𝑎2 + 𝑏2, |�̄�| = √𝑎2 + (−𝑏)2 = √𝑎2 + 𝑏2.
These are indeed equal.

(The Written Solution). Assume 𝛼 ∈ 𝐂. Prove: |𝛼| = |�̄�|.
Proof : Let 𝛼 be an arbitrary complex number, and write 𝛼 = 𝑎 + 𝑖𝑏 with 𝑎 and 𝑏

real. We have �̄� = 𝑎 − 𝑖𝑏, and therefore
|�̄�| = √𝑎2 + (−𝑏)2 = √𝑎2 + 𝑏2 = |𝛼|,

as was to be shown.

Remark 2.51. Whenwriting up a formal proof of an algebraic identity𝑄, the preferred
style is to build a chain of equalities from one side to the other. Do not write down the
desired conclusion 𝑄 and then manipulate each side until you have an identity 𝑃. At
best, this “two-column” argument establishes the converse, 𝑄 implies 𝑃, which is not
equivalent to 𝑃 implies 𝑄, and does not even imply the truth of 𝑄. See Exercises 2.23
and 2.24 for pitfalls of the “two-column” style of proof.

Example 2.52. Prove or disprove: 2𝐙 + 1 = 2𝐙 − 1.
(Preliminary Work). By the definition of equality of sets, we are to determine

whether each set is a subset of the other. Some initial formalization can be performed
mechanically. Give each set a name, write down its definition, and express the question
in terms of this framework.

Here, we have two sets of integers,
𝐴 = 2𝐙 + 1 = {𝑥 in 𝐙 ∶ 𝑥 = 2𝑢 + 1 for some 𝑢 in 𝐙},
𝐵 = 2𝐙 − 1 = {𝑦 in 𝐙 ∶ 𝑦 = 2𝑣 − 1 for some 𝑣 in 𝐙}.

We wish to show either that 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 (which by definition means 𝐴 = 𝐵 as
sets), or that at least one of these inclusions is false.
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Next, try to determine intuitively whether or not the statement is false (which can
be shown by exhibiting a counterexample, an element of one set that is not an element
of the other set) or true. To get an element of 2𝐙+1, add 1 to an even integer: 1 = 0+1,
3 = 2 + 1, 5 = 4 + 1, −1 = −2 + 1, and so forth, are elements. Similarly, subtracting 1
from an even integer gives an element of 2𝐙 − 1: −1 = 0 − 1, 1 = 2 − 1, 3 = 4 − 1,
−3 = −2 − 1, and so forth, are elements.

This evidence doesn’t merely suggest the two sets are equal, it even points to a
strategy of proof: Any integer one greater than an even integer is one less than the next
largest even integer. We’ll sketch out an informal proof to settle notation and iron out
any unforeseen logical wrinkles.

The statement “𝐴 ⊆ 𝐵” may be phrased “if 𝑥 ∈ 𝐴, then 𝑥 ∈ 𝐵”. If 𝑥 ∈ 𝐴, then by
the definition of 𝐴 there exists an integer 𝑢 such that 𝑥 = 2𝑢+1 = 2(𝑢+1)−1. Setting
𝑣 = 𝑢 + 1 (an integer because 𝑢 is), we see 𝑥 has the form 2𝑣 − 1 for some integer 𝑣,
which by definition means 𝑥 ∈ 𝐵. This shows 𝐴 ⊆ 𝐵.

The inclusion 𝐵 ⊆ 𝐴 is entirely similar, so at this stage we can write up a formal
proof. The considerations above that led to the proof are customarily omitted from
the formal write-up. Note, however, that the proof involves choices not easily known
ahead of time; the scratch work is important!

(The Written Solution). Show 2𝐙 + 1 = 2𝐙 − 1.
Proof : By definition, 𝐴 = {𝑥 in 𝐙 ∶ 𝑥 = 2𝑢 + 1 for some 𝑢 in 𝐙} and 𝐵 = {𝑦 in 𝐙 ∶

𝑦 = 2𝑣 − 1 for some 𝑣 in 𝐙}. Assume 𝑥 ∈ 𝐴. By hypothesis, there exists an integer 𝑢
such that 𝑥 = 2𝑢 + 1. Let 𝑣 = 𝑢 + 1, so 𝑢 = 𝑣 − 1, and note 𝑣 is an integer. Since

𝑥 = 2𝑢 + 1 = 2(𝑣 − 1) + 1 = 2𝑣 − 2 + 1 = 2𝑣 − 1,
𝑥 ∈ 𝐵. Since 𝑥was arbitrary (i.e., 𝑥 could have been any element of 𝐴), we have shown
𝐴 ⊆ 𝐵.

Conversely, suppose 𝑦 = 2𝑣 − 1 ∈ 𝐵 for some integer 𝑣. Let 𝑢 = 𝑣 − 1, so that
𝑣 = 𝑢 + 1. Then

𝑦 = 2𝑣 − 1 = 2(𝑢 + 1) − 1 = 2𝑢 + 1,
so 𝑦 ∈ 𝐴. Since 𝑦 was arbitrary, we have shown 𝐵 ⊆ 𝐴.

Since 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, we have 𝐴 = 𝐵.

Writing proofs requires practice. The final result should be a coherent, logical,
step-by-step argument starting with the given hypotheses and leading to the conclu-
sion.

Example 2.53. Let 𝐴 and 𝐵 be subsets of 𝒰. Find the most general conditions on 𝐴
and 𝐵 under which 𝐴 ∩ 𝐵 = 𝐴.

(Examples). If you’re comfortable with sets and operations, go for the frontal as-
sault (“reducing to the definitions”, below). Otherwise, proceed by writing out exam-
ples on scratch paper or a blackboard. If Venn diagrams are more natural, use those. If
concrete sets are easier to think about, use those. At this stage it’s all right to let𝒰 = 𝐙,
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the set of integers, but in the final proof, do not make any assumptions on the nature
of 𝒰, 𝐴, or 𝐵.

(Simpler cases). Since the target condition involves two sets, we can reduce to a
simpler question by “fixing” one set and letting the other set vary.

If 𝐴 = ∅, then 𝐴 ∩ 𝐵 = ∅ ∩ 𝐵 = ∅ = 𝐴 regardless of 𝐵. If 𝐴 = 𝒰, then 𝐴 ∩ 𝐵 =
𝒰 ∩ 𝐵 = 𝐵, which is not equal to 𝐴 unless 𝐵 = 𝒰.

These examples show the condition 𝐴 ∩ 𝐵 = 𝐴 can be true, but is not always
true. The guiding task is to discover what common aspect these examples possess. If
you’re still not sure, draw a Venn diagram with a circle representing 𝐴, and ask: What
condition on 𝐵 guarantees that 𝐴 ⊆ 𝐴 ∩ 𝐵? Draw circles that are disjoint from 𝐴, that
are contained in 𝐴, that partially overlap 𝐴, or that contain 𝐴. The evidence of this
“experiment” should point toward the desired condition.

(Reducing to the definitions). The condition 𝐴 ∩ 𝐵 = 𝐴 encapsulates two set in-
clusions, 𝐴 ∩ 𝐵 ⊆ 𝐴 and 𝐴 ⊆ 𝐴 ∩ 𝐵. The first inclusion is true for all pairs of sets: If
𝑎 ∈ 𝐴 ∩ 𝐵, then 𝑎 ∈ 𝐴 and 𝑎 ∈ 𝐵, so perforce 𝑎 ∈ 𝐴. Since 𝑎 is an arbitrary element
of 𝐴 ∩ 𝐵, this argument shows 𝐴 ∩ 𝐵 ⊆ 𝐴.

We are therefore seeking the most general conditions under which 𝐴 ⊆ 𝐴 ∩ 𝐵,
namely, “𝑎 ∈ 𝐴 implies ‘𝑎 ∈ 𝐴 and 𝑎 ∈ 𝐵’ ”. Clearly, this is equivalent to “𝑎 ∈ 𝐴
implies 𝑎 ∈ 𝐵”, which may be rephrased as 𝐴 ⊆ 𝐵, our putative answer.

As a consistency check, recall that 𝐴 = ∅ and 𝐴 = 𝒰 = 𝐵 satisfied the condition.
In each case, 𝐴 ⊆ 𝐵 holds. If the purported abstract condition is violated by examples,
it’s definitely wrong.

(Putative conclusion). As the result of considerations above, we claim that 𝐴 ∩
𝐵 = 𝐴 if and only if 𝐴 ⊆ 𝐵. To prove this formally, it suffices to establish two logical
implications:

𝐴 ∩ 𝐵 = 𝐴 implies 𝐴 ⊆ 𝐵, 𝐴 ⊆ 𝐵 implies 𝐴 ∩ 𝐵 = 𝐴.
Here, approximately, is what you’d normally write up:

(The Written Solution). 𝐴 ∩ 𝐵 = 𝐴 if and only if 𝐴 ⊆ 𝐵.
Proof : (𝐴 ∩ 𝐵 = 𝐴 implies 𝐴 ⊆ 𝐵) Assume 𝐴 ∩ 𝐵 = 𝐴, namely 𝐴 ∩ 𝐵 ⊆ 𝐴 and

𝐴 ⊆ 𝐴∩𝐵. Since the first inclusion holds for all sets, our initial hypothesis is equivalent
to 𝐴 ⊆ 𝐴 ∩ 𝐵.

Let 𝑎 be an arbitrary element of 𝐴. Since 𝐴 ⊆ 𝐴 ∩ 𝐵 by hypothesis, 𝑎 ∈ 𝐴 ∩ 𝐵, so
𝑎 ∈ 𝐴 and 𝑎 ∈ 𝐵. In particular, 𝑎 ∈ 𝐵. We have shown that if 𝑎 ∈ 𝐴, then 𝑎 ∈ 𝐵; this
means that 𝐴 ⊆ 𝐵, as was to be shown.

(𝐴 ⊆ 𝐵 implies 𝐴 ∩ 𝐵 = 𝐴) By hypothesis, if 𝑎 ∈ 𝐴, then 𝑎 ∈ 𝐵, so if 𝑎 ∈ 𝐴,
then 𝑎 ∈ 𝐴 and 𝑎 ∈ 𝐵. Since 𝑎 is arbitrary we have 𝐴 ⊆ 𝐴 ∩ 𝐵. The reverse inclusion
𝐴 ∩ 𝐵 ⊆ 𝐴 holds for all sets 𝐴 and 𝐵. We have shown that if 𝐴 ⊆ 𝐵, then 𝐴 ∩ 𝐵 = 𝐴.
This completes the proof.
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Find your own writing style. Do write accurately and precisely, but don’t be pedan-
tic or excessively wordy.

Avoid pronouns, especially “it”. In the middle of even a simple proof, two or three
objects tend to be under consideration, and “it” can often refer to any of them. If you’re
unable to decide exactly what “it” refers to, you’ve located something you don’t fully
understand.

Exercises

Exercise 2.1. Let 𝐴 be a set and assume 𝑎 ∈ 𝐴. Determine whether each statement
is always true, sometimes true, or never true. If the statement is sometimes true, give
examples of 𝐴 and/or 𝑎 for which the statement is true or is false.
(a) 𝑎 ∈ {𝑎}, (b) 𝑎 ⊆ 𝐴, (c) {𝑎} ⊆ ∅, (d) ∅ ∈ 𝐴, (e) {𝑎} ∈ 𝐴.
Exercise 2.2. On graph paper, carefully sketch the indicated sets of complex numbers.
Determine whether each pair of sets is disjoint; if not, describe the intersection.

(a) 𝐴 = {𝛼 ∈ 𝐂 ∶ |𝛼| ≤ 1};
𝐵 = {𝛼 ∈ 𝐂 ∶ |𝛼 − 2| ≤ 1};
𝐶 = {𝛼 ∈ 𝐂 ∶ |𝛼 − 3𝑖| ≤ 1}.

(b) 𝐴 = {𝛼 ∈ 𝐂 ∶ |𝛼| ≤ 1/2};
𝐵 = {𝛼 ∈ 𝐂 ∶ 1 ≤ |𝛼| ≤ 2};
𝐶 = {𝛼 ∈ 𝐂 ∶ 3 ≤ |𝛼 − 𝑖| ≤ 4}.

(c) 𝐴 = {𝛼 ∈ 𝐂 ∶ |𝛼 + 1| ≤ 1};
𝐵 = {𝛼 ∈ 𝐂 ∶ |𝛼 − 1| ≤ 1};
𝐶 = {𝛼 ∈ 𝐂 ∶ |𝛼 − 𝑖| ≤ 3}.

(d) 𝐴 = {𝛼 ∈ 𝐂 ∶ 0 ≤ Re𝛼};
𝐵 = {𝛼 ∈ 𝐂 ∶ Re𝛼 ≤ 1};
𝐶 = {𝛼 ∈ 𝐂 ∶ 0 ≤ Im𝛼}.

Exercise 2.3. If 𝐴 and 𝐵 are sets of complex numbers, we define their sum to be the
set

𝐴 + 𝐵 = {𝑐 ∈ 𝐂 ∶ 𝑐 = 𝑎 + 𝑏 for some 𝑎 in 𝐴 and 𝑏 in 𝐵}
= {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

If 𝐴 and 𝐵 are sets of complex numbers, prove that
𝐴 + 𝐵 = ⋃

𝑎∈𝐴
({𝑎} + 𝐵).

Exercise 2.4. For the following pairs of sets, sketch 𝐴, 𝐵, and 𝐴+ 𝐵. (See Exercise 2.3
for the definition of 𝐴 + 𝐵.)
(a) 𝐴 = {−2,−1, 0, 1, 2}, 𝐵 = {−𝑖, 0, 2𝑖}.
(b) 𝐴 = {−2,−1, 0, 1, 2}, 𝐵 = {𝑧 in 𝐂 ∶ |𝑧| ≤ 1/2}.
(c) 𝐴 = {−2,−1, 0, 1, 2}, 𝐵 = {𝑧 in 𝐂 ∶ |𝑧| ≤ 1}.
(d) 𝐴 = [−1, 1] (the closed real interval), 𝐵 = {𝑧 in 𝐂 ∶ |𝑧| ≤ 1}.
Exercise 2.5. If 𝑛 is an integer, let 𝐴𝑛 = [𝑛, 𝑛 + 1) be the half-open interval consisting
of all real 𝑥 such that 𝑛 ≤ 𝑥 < 𝑛 + 1. In each part, sketch a few of the indicated sets
and establish the stated property.



Exercises 29

(a) The collection {𝐴𝑛}𝑛∈𝐙 is a partition of 𝐑.
(b) If 𝐵𝑛 = {𝛼 in 𝐂 ∶ Re𝛼 ∈ 𝐴𝑛}, then {𝐵𝑛}𝑛∈𝐙 is a partition of 𝐂.
(c) If 𝐶𝑛 = {𝛼 in 𝐂 ∶ Im𝛼 ∈ 𝐴𝑛}, then {𝐶𝑛}𝑛∈𝐙 is a partition of 𝐂.
(d) If 𝐷𝑛 = {𝛼 in 𝐂 ∶ |𝛼| ∈ 𝐴𝑛}, then {𝐷𝑛}𝑛∈𝐙 is a partition of 𝐂. (Note: The 𝐷𝑛 are

not all non-empty.)
Exercise 2.6. If𝐴 and 𝐵 are sets of complex numbers, give a definition of their product
analogous to Exercise 2.3, and then state and prove the corresponding property for
products of sets.
Exercise 2.7. For the following pairs of sets, sketch 𝐴, 𝐵, and 𝐴𝐵. (See Exercise 2.6 for
the definition of 𝐴𝐵.)
(a) 𝐴 = {−1, 1, 𝑖, 2}, 𝐵 = {−𝑖, 0, 2𝑖}.
(b) 𝐴 = {1, 2, 3}, 𝐵 = {𝑧 in 𝐂 ∶ |𝑧| = 1}.
(c) 𝐴 = 𝐵 = {𝑧 in 𝐂 ∶ |𝑧| = 1}.
(d) 𝐴 = {1, 𝑖, −1, −𝑖} = {𝑒𝑘𝜋𝑖/2 ∶ 𝑘 ∈ 𝐙},

𝐵 = {1, 1
2
(−1 + 𝑖√3), 1

2
(−1 − 𝑖√3)} = {𝑒2𝑘𝜋𝑖/3 ∶ 𝑘 ∈ 𝐙}.

Exercise 2.8. Let 𝐴 = 2𝐙 and 𝐵 = 3𝐙.
(a) Find 𝐴 ∩ 𝐵; that is, determine which integers are in 𝐴 ∩ 𝐵.
(b) List the elements of 𝐴 ∪ 𝐵 between −12 and 12.
(c) Show that𝐴+𝐵 is closed under addition and closed under taking negatives. (That

is, if𝑛 ∈ 𝐴+𝐵, then−𝑛 ∈ 𝐴+𝐵.) Show that 1 ∈ 𝐴+𝐵 and argue that consequently
𝐴 + 𝐵 = 𝐙.

Exercise 2.9. Let 𝑟 and 𝜃 be real numbers such that 𝑟 > 0 and −𝜋 < 𝜃 ≤ 𝜋.
(a) Show that√𝑟𝑒𝑖𝜃/2 and −√𝑟𝑒𝑖𝜃/2 are distinct square roots of 𝑧 = 𝑟𝑒𝑖𝜃.
(b) Prove that 𝑧 has at most two distinct square roots. Hint: Use Example 2.32.
(c) Suppose that 𝑥 and 𝑦 are real and that 𝑧 = 𝑥+ 𝑖𝑦 is non-zero. If (𝑢+ 𝑖𝑣)2 = 𝑧, find

algebraic formulas for 𝑢 and 𝑣 in terms of 𝑥 and 𝑦, and show that 𝑢, 𝑣 are real.
(d) Find and plot the square roots of 𝑖 in polar and rectangular forms.
(e) Find and plot the square roots of − 1

2
(1 + 𝑖√3) in polar and rectangular forms.

Exercise 2.10. In each part, let 𝐴 = 𝐙 + 𝑖𝐙.
(a) Let 𝐵 = {𝑧 in 𝐂 ∶ |𝑧| ≤ 2}. Sketch the set 𝐴 ∩ 𝐵 and list the elements.
(b) How many elements of 𝐴 satisfy |𝑧| ≤ 5?

Suggestion: Listing them all may be a bit tedious, but by using symmetry you can
cut your work by a factor of four.

(c) Let 𝑛 > 0 be an integer, and let 𝐶𝑛 be the number of elements of 𝐴 satisfying
|𝑧| ≤ 𝑛. Prove 𝐶𝑛 < (2𝑛 + 1)2.

(d) Modify the idea of part (c) to prove (𝑛 + 1)2 < 𝐶𝑛.
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Exercise 2.11. In each part, let 𝐴 = 𝐙 + 𝑖𝐙.
(a) Show 𝐴 is closed under multiplication.
(b) Which elements of 𝐴 have a reciprocal (multiplicative inverse) in 𝐴?
Exercise 2.12. (a) Suppose 𝐴 ⊆ 𝐙 + 𝑖𝐙 is closed under addition and closed under

taking negatives. Prove that if 1 ∈ 𝐴 and 𝑖 ∈ 𝐴, then 𝐴 = 𝐙 + 𝑖𝐙.
(b) Prove that (1 + 𝑖)𝐙 + (3 + 2𝑖)𝐙 = 𝐙 + 𝑖𝐙.
Exercise 2.13. Each part refers to the set

𝐐[√2] = 𝐐 + 𝐐√2 = {𝑚 + 𝑛√2 ∶ 𝑚, 𝑛 ∈ 𝐐}.
(a) Show 𝐐[√2] is closed under addition. Suggestion: Compare Example 2.22.
(b) Show 𝐐[√2] is closed under multiplication.
(c) Show that if 𝛼 = 𝑚 + 𝑛√𝑛 is a non-zero element of 𝐐[√2], there exists a unique

𝛼′ = 𝑚′ + 𝑛′√2 in 𝐐[√2] such that 𝛼𝛼′ = 1.

Exercise 2.14. Let 𝜁 = 𝑒2𝜋𝑖/3 = 1
2
(−1 + √3), and let 𝐴 = 𝐙 + 𝜁𝐙.

(a) Give a formal definition of the set 𝐴.
(b) Prove 𝐴 is closed under addition.
(c) Prove 𝐴 is closed under multiplication. (This depends on the specific value 𝜁.)
(d) Show that 𝑈6 = 𝑈(1) ∩ 𝐴, and illustrate with a sketch.
(e) Which elements of 𝐴 have a reciprocal in 𝐴? Explain.
Exercise 2.15. Let 𝐴 and 𝐵 be subsets of 𝒰.
(a) Prove 𝐴 ⊆ 𝐵 if and only if 𝐵𝑐 ⊆ 𝐴𝑐, and illustrate with a Venn diagram.
(b) How is part (a) related to contrapositives?
Exercise 2.16. Let 𝐴, 𝐵, and 𝐶 be subsets of a universe 𝒰, and let 𝑃, 𝑄, and 𝑅 be the
predicates 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵, and 𝑥 ∈ 𝐶. Use truth tables to prove:

(a) (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶). (b) (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶).

Exercise 2.17. Let𝐴,𝐵, and𝐶 be subsets of a universe𝒰. As in Exercise 2.16, use truth
tables to establish De Morgan’s laws (a) and (b) and the distributive laws (c) and (d).

(a) (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐.
(b) (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐.

(c) (𝐴 ∪ 𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶).
(d) (𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶).

Exercise 2.18. Draw Venn diagrams illustrating each part of the preceding exercise,
and compare with Exercise 1.14.
Exercise 2.19. (a) Let 𝐴 = {𝑎, 𝑏, 𝑐} be a set with three distinct elements. List the

elements of the power set 𝒫(𝐴).
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(b) How would your answer to part (a) differ if 𝐴 = {0, 1, 2}?
(c) Describe how you could use your answer to part (a) to list the elements of the

power set of 𝐴′ = {𝑎, 𝑏, 𝑐, 𝑑}. Suggestion: There are two types of subsets of 𝐴′,
those having 𝑑 as an element and those not having 𝑑 as an element.

Exercise 2.20. Let 𝐴 and 𝐵 be subsets of 𝒰.
(a) Suppose 𝐴 ⊆ 𝐵. Prove 𝒫(𝐴) ⊆ 𝒫(𝐵) as subsets of 𝒫(𝒰).
(b) Suppose that 𝒫(𝐴) = 𝒫(𝐵) as subsets of 𝒫(𝒰). Prove 𝐴 = 𝐵.
Exercise 2.21. Let 𝐴 and 𝐵 be subsets of 𝒰. Their difference is defined to be 𝐴 ⧵ 𝐵 =
{𝑥 in 𝐴 ∶ 𝑥 ∉ 𝐵}.
(a) Prove 𝐴 ⧵ 𝐵 = 𝐴 ∩ 𝐵𝑐, and illustrate with a Venn diagram.
(b) List the elements of 𝐙 ⧵ 𝐙+ between −5 and 5.
(c) List the elements of 2𝐙 ⧵ 3𝐙 between −12 and 12.
(d) List the elements of 3𝐙 ⧵ 2𝐙 between −12 and 12.
Exercise 2.22. Let 𝐴 and 𝐵 be subsets of𝒰. Their symmetric difference is defined to be
𝐴△𝐵 = (𝐴 ⧵ 𝐵) ∪ (𝐵 ⧵ 𝐴).

(a) Prove 𝐴△𝐵 = (𝐴 ∪ 𝐵) ⧵ (𝐴 ∩ 𝐵) and illustrate with a Venn diagram.
(b) Prove 𝐴△𝐵 = {𝑥 in 𝒰 ∶ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵 but not both}. This condition is

called exclusive or, denoted “xor”.

Exercise 2.23. Explain in detailwhat iswrongwith this two-column “proof” that−1 =
1.

−1 = 1 to be shown,
(−1)2 = 12 square both sides,

1 = 1 true statement.
Therefore −1 = 1.
Exercise 2.24. Let 𝑎 and 𝑏 denote real numbers, and assume 𝑎 = 𝑏.
(a) What is wrong with the following “proof” that 2 = 1?

𝑏2 = 𝑎𝑏 𝑎 = 𝑏,
𝑏2 − 𝑎2 = 𝑎𝑏 − 𝑎2 subtract 𝑎2,

(𝑏 + 𝑎)(𝑏 − 𝑎) = 𝑎(𝑏 − 𝑎) factor each side,
(𝑏 + 𝑎) = 𝑎 cancel common factor,

2𝑎 = 𝑎 𝑎 = 𝑏,
2 = 1 cancel common factor.

(b) If the proof is read from bottom to top, is each step valid?



Chapter 4

Mappings and Relations

As in calculus, a “function” or “mapping” is a rule associating a unique “output” to
each “input”. While this intuitive description is adequate for informal work, rigorous
mathematics requires more precision: The sets of allowable inputs and potential out-
puts must be made an intrinsic part of a function.

Example 4.1. Consider the familiar squaring function 𝑓(𝑥) = 𝑥2, where 𝑥 ranges over
the set of real numbers. If we set 𝑦 = 𝑓(𝑥), we might wish to “solve” for 𝑥 in terms of 𝑦.
At first glance this is trivial: set 𝑥 = √𝑦. Unfortunately, closer inspection reveals two
fatal flaws. First, if 𝑦 < 0, there is no real 𝑥 satisfying 𝑥2 = 𝑦. In this context, the square
root is undefined. Second, if 𝑦 > 0, there exist two values of 𝑥 with 𝑥2 = 𝑦; the input 𝑥
is not a function of the output 𝑦, so the square root is not well-defined. In either event,
we have not associated a unique output to each input.

In high school, you learned to avoid complications with square roots by only con-
sidering non-negative numbers 𝑦, and agreeing that √𝑦 always refers to the non-
negative square root. Technically you are no longer inverting the function 𝑓(𝑥) = 𝑥2
with 𝑥 real, but a different function defined by the same formula, for which the allowable
inputs and potential outputs have been explicitly restricted.

Remark 4.2. The squaring function is arguably artificial in this respect, but for other
familiar functions, such as the circular trig functions, the inability to invert causes gen-
uine annoyances. Consider longitude (measured in degrees) as a function of position
on the earth. Upon circumnavigating the earth to the east, longitude increases by 360∘.
But this cannot be the whole story; if it were, each geographic location would have
multiple longitudes, any two differing by a whole multiple of 360∘.

47
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Figure 4.1. Cartesian products.

Instead, when you circumnavigate the globe in an eastward direction, you must
cross a line where longitude “jumps down” by 360∘. This discontinuity is a mathe-
matical artifact of the impossibility of inverting sine and cosine to recover longitude
continuously as a real-valued function of position on the earth.

The earth is approximately spherical and rotates with respect to the distant stars.
A sidereal day, or 24 hours, is the time required for the earth to rotate 360∘ with respect
to the stars. This duration is the same for all points on the earth, but the starting time
(midnight) depends on one’s longitude. By international treaty, the earth’s surface is
divided into twenty-four time zones, each a sector of longitude 15∘ wide (with substan-
tial allowances for geographical and political boundaries). The times in neighboring
zones differ by one hour.

The global discontinuity of longitude has a notable practical consequence: the ex-
istence of the International Date Line, an imaginary “cut” along the surface of the earth
joining the south and north poles, along which local time “jumps” by 24 hours, affect-
ing global travelers and international stock traders alike.

4.1. Mappings, Images, and Preimages

Before giving the formal definition of a mapping, we need to construct an appropriate
set universe.
Definition 4.3. Let 𝐴 and 𝐵 be sets. Their Cartesian product 𝐴×𝐵 is the set of all
“ordered pairs” from 𝐴 and 𝐵,

𝐴×𝐵 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}.
Example 4.4. The Cartesian plane 𝐑×𝐑 = 𝐑2 is the set of ordered pairs of real num-
bers. Similarly, 𝐑×𝐑×𝐑, or 𝐑3, is Cartesian space, the set of ordered triples of real
numbers.
Example 4.5. If 𝐴 = {𝑎, 𝑏, 𝑐} and 𝐵 = {0, 1}, then the Cartesian product 𝐴×𝐵 is the
six-element set {(𝑎, 0), (𝑏, 0), (𝑐, 0), (𝑎, 1), (𝑏, 1), (𝑐, 1)} in the left-hand diagram in Fig-
ure 4.1.

For the same set 𝐵, 𝐵×𝐵 = {(0, 0), (1, 0), (0, 1), (1, 1)}.

Example 4.6. If 𝐴 = ∅ or 𝐵 = ∅, then 𝐴 × 𝐵 = ∅.
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Figure 4.2. The image of a set under a mapping.

Anabstract Cartesian product can be visualized conveniently by depicting the set𝐴
on a horizontal axis and the set 𝐵 on a vertical axis, and taking the set of points lying
above or below 𝐴 and to the left or right of 𝐵. The right-hand diagram in Figure 4.1
shows the case where 𝐴 and 𝐵 are intervals.
Definition 4.7. Amapping 𝑓 from 𝐴 to 𝐵 is a subset 𝑓 of 𝐴×𝐵 satisfying the following
condition:

For every 𝑎 in 𝐴, there exists a unique 𝑏 in 𝐵 such that (𝑎, 𝑏) ∈ 𝑓.
The set 𝐴 is the domain of 𝑓, and 𝐵 is the codomain. We write 𝑏 = 𝑓(𝑎), and call 𝑏 the
value of 𝑓 at 𝑎. We also say 𝑎 ismapped to 𝑏 by 𝑓, or that 𝑓 maps 𝑎 to 𝑏.

The notation 𝑓 ∶ 𝐴 → 𝐵, read “𝑓 from 𝐴 to 𝐵”, signifies that 𝑓 is a mapping
from 𝐴 to 𝐵. A mapping 𝑓 ∶ 𝐴 → 𝐵 associates a unique value 𝑏 in the codomain to
each element 𝑎 of the domain. If the Cartesian product 𝐴×𝐵 is viewed as a rectangle, a
mapping is a “graph” in the sense of calculus, namely a subset intersecting each vertical
line in the rectangle exactly once. The vertical line at horizontal position 𝑎 intersects 𝑓
(a.k.a. the graph of 𝑓) at location 𝑏 = 𝑓(𝑎).
Remark 4.8. If 𝐴 is non-empty, there exists no mapping 𝑓 ∶ 𝐴 → ∅.

If 𝐵 is arbitrary (empty or not), there is a unique mapping 𝑓 ∶ ∅ → 𝐵.
Definition 4.9. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping. If 𝑆 ⊆ 𝐴, we define the image of 𝑆
under 𝑓 to be the set

𝑓(𝑆) = {𝑏 in 𝐵 ∶ 𝑏 = 𝑓(𝑠) for some 𝑠 in 𝑆} ⊆ 𝐵;
see Figure 4.2. In particular, the image of 𝑓 is the set 𝑓(𝐴) ⊆ 𝐵 of all values of 𝑓.
Definition 4.10. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping. If 𝑇 ⊆ 𝐵, we define the preimage of 𝑇
under 𝑓 to be the set

𝑓−1(𝑇) = {𝑎 in 𝐴 ∶ 𝑓(𝑎) ∈ 𝑇} ⊆ 𝐴
of elements of the domain mapped into 𝑇 by 𝑓; see Figure 4.3.
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Figure 4.3. The preimage of a set.

Remark 4.11. A mapping 𝑓 ∶ 𝐴 → 𝐵 may be viewed as a “poll” taken of a popu-
lation 𝐴, with responses in the set 𝐵. The image under 𝑓 of a set 𝑆 ⊆ 𝐴 is the set of
responses from individuals in 𝑆. The preimage of a set 𝑇 ⊆ 𝐵 is the set of individuals
whose responses are in 𝑇.
Example 4.12. If 𝐴 is a non-empty set, we define the identity mapping 𝐼𝐴 ∶ 𝐴 → 𝐴 by
𝐼𝐴(𝑎) = 𝑎 for all 𝑎 in 𝐴. Under the identity mapping, every set is its own image and its
own preimage.

Example 4.13. Let 𝐴 and 𝐵 be non-empty sets. For each 𝑏 in 𝐵, there is a constant
mapping 𝑐𝑏 ∶ 𝐴 → 𝐵 defined by 𝑐𝑏(𝑎) = 𝑏 for all 𝑎 in 𝐴. The image of an arbitrary
non-empty subset of 𝐴 is the singleton {𝑏}. The preimage of a set 𝑇 is either the empty
set (if 𝑏 ∉ 𝑇) or the entire domain 𝐴 (if 𝑏 ∈ 𝑇).
Proposition 4.14. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping, 𝑆1 and 𝑆2 subsets of 𝐴, and 𝑇1 and 𝑇2
subsets of 𝐵. Then
(i) 𝑓(𝑆1 ∪ 𝑆2) = 𝑓(𝑆1) ∪ 𝑓(𝑆2).
(ii) 𝑓(𝑆1 ∩ 𝑆2) ⊆ 𝑓(𝑆1) ∩ 𝑓(𝑆2).
(iii) 𝑓−1(𝑇1 ∪ 𝑇2) = 𝑓−1(𝑇1) ∪ 𝑓−1(𝑇2).
(iv) 𝑓−1(𝑇1 ∩ 𝑇2) = 𝑓−1(𝑇1) ∩ 𝑓−1(𝑇2).

Proof. To prove two sets are equal, we must establish inclusions in both directions.
Assume 𝑆1 and 𝑆2 are subsets of 𝐴.

(The inclusion 𝑓(𝑆1 ∪ 𝑆2) ⊆ 𝑓(𝑆1) ∪ 𝑓(𝑆2)). If 𝑏 ∈ 𝑓(𝑆1 ∪ 𝑆2), then by definition
there exists an element 𝑎 in 𝑆1 ∪ 𝑆2 such that 𝑓(𝑎) = 𝑏. Since either 𝑎 ∈ 𝑆1 or 𝑎 ∈ 𝑆2
by definition of the union of sets, either 𝑏 ∈ 𝑓(𝑆1) or 𝑏 ∈ 𝑓(𝑆2), which means 𝑏 ∈
𝑓(𝑆1) ∪ 𝑓(𝑆2). This proves 𝑓(𝑆1 ∪ 𝑆2) ⊆ 𝑓(𝑆1) ∪ 𝑓(𝑆2).

(The inclusion 𝑓(𝑆1) ∪ 𝑓(𝑆2) ⊆ 𝑓(𝑆1 ∪ 𝑆2)). If 𝑏 ∈ 𝑓(𝑆1) ∪ 𝑓(𝑆2), there exists an 𝑎
in 𝑆1 ⊆ 𝑆1 ∪ 𝑆2 such that 𝑓(𝑎) = 𝑏 or there exists an 𝑎 in 𝑆2 ⊆ 𝑆1 ∪ 𝑆2 such that
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Figure 4.4. The preimage of a point under a surjective mapping.

𝑓(𝑎) = 𝑏. In either case, there exists an 𝑎 in 𝑆1 ∪ 𝑆2 such that 𝑓(𝑎) = 𝑏, which means
𝑏 ∈ 𝑓(𝑆1 ∪ 𝑆2). This proves 𝑓(𝑆1) ∪ 𝑓(𝑆2) ⊆ 𝑓(𝑆1 ∪ 𝑆2).

The other parts are entirely similar and are left to you. □

4.2. Surjectivity and Injectivity

Our inability to invert the map 𝑓 ∶ 𝐑 → 𝐑, 𝑓(𝑥) = 𝑥2, had two aspects: When we
wrote 𝑦 = 𝑓(𝑥), some 𝑦 were associated with no values of 𝑥, and some were associated
with multiple values of 𝑥.
Definition 4.15. A mapping 𝑓 ∶ 𝐴 → 𝐵 is surjective if for every 𝑏 in 𝐵, there exists
an 𝑎 in 𝐴 such that 𝑓(𝑎) = 𝑏.
Remark 4.16. A mapping 𝑓 ∶ 𝐴 → 𝐵 is surjective if, for every 𝑏 in 𝐵, the equation
𝑓(𝑎) = 𝑏 can be solved (perhaps non-uniquely) for𝑎 in𝐴. In otherwords,𝑓 is surjective
if every element of the codomain is a value of 𝑓.

In terms of sets, 𝑓 is surjective if the preimage of 𝑇 = {𝑏} is non-empty for each 𝑏
in 𝐵, or the image of 𝑓 is the entire codomain, 𝑓(𝐴) = 𝐵; see Figure 4.4.

Geometrically, a mapping 𝑓 ∶ 𝐑 → 𝐑 is surjective if every horizontal line hits the
graph of 𝑓 at least once.

Definition 4.17. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping. Points 𝑎1 and 𝑎2 in 𝐴 are identified
by 𝑓 if 𝑓(𝑎1) = 𝑓(𝑎2), namely if 𝑎1 and 𝑎2 are mapped to the same value by 𝑓.
Definition 4.18. A mapping 𝑓 is injective if 𝑓(𝑎1) = 𝑓(𝑎2) implies 𝑎1 = 𝑎2. Contra-
positively, if 𝑎1 ≠ 𝑎2, then 𝑓(𝑎1) ≠ 𝑓(𝑎2).
Remark 4.19. A mapping 𝑓 is injective if and only if 𝑓 does not identify any pairs of
distinct elements. Equivalently, the preimage of an arbitrary singleton𝑇 = {𝑏} contains
at most one element.

Geometrically, 𝑓 ∶ 𝐑 → 𝐑 is injective if every horizontal line hits the graph of 𝑓
at most once.
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Remark 4.20. Continuing Remark 4.11, a mapping 𝑓 ∶ 𝐴 → 𝐵 is surjective if every
allowable answer to the poll is given by at least one individual. Similarly, 𝑓 is injective if
no two people give the same response; knowledge of the response uniquely determines
the individual who gave that response.
Definition 4.21. Amapping 𝑓 ∶ 𝐴 → 𝐵 is bijective if 𝑓 is both surjective and injective.
Remark 4.22. A surjective mapping is sometimes called a surjection. An injection and
a bijection are defined similarly.
Remark 4.23. If 𝑓 ∶ 𝐴 → 𝐵 is bijective, then each element 𝑎 in 𝐴 corresponds to
exactly one element 𝑏 in 𝐵. For this reason, many authors use the phrase “one to one
correspondence” to connote a bijection. We avoid this name, since it can be easily
confused with a “one to one mapping”, an alternative name for an injection.
Remark 4.24. If 𝑓 ∶ 𝐴 → 𝐵 is bijective, the equation 𝑓(𝑎) = 𝑏 can be solved uniquely
for each 𝑏 in 𝐵. Procedurally, 𝑓 “relabels” elements of the set 𝐴 using elements of 𝐵 as
names.
Example 4.25. Define 𝑓1 ∶ 𝐑 → [0,∞) by 𝑓1(𝑥) = 𝑥2. This mapping is surjective
(every non-negative real 𝑦 can be written as 𝑥2 = 𝑓1(𝑥) for at least one real 𝑥), but not
injective (since 𝑓1(−1) = 1 = 𝑓1(1), but −1 ≠ 1).
Example 4.26. Define 𝑓2 ∶ (0,∞) → 𝐑 by 𝑓2(𝑥) = 𝑥2. This mapping is not surjective
(there is no real 𝑥 such that 𝑥2 = 𝑓2(𝑥) = −1), but is injective. To establish injectivity,
suppose 𝑎21 = 𝑓2(𝑎1) = 𝑓2(𝑎2) = 𝑎22. Subtracting and factoring, we find 0 = 𝑎22 − 𝑎21 =
(𝑎2 − 𝑎1)(𝑎2 + 𝑎1), which implies 𝑎1 = 𝑎2 or 𝑎1 = −𝑎2. The latter is impossible since
𝑎1 and 𝑎2 are positive by hypothesis.

Wehave shown that if𝑓2(𝑎1) = 𝑓2(𝑎2), then𝑎1 = 𝑎2. Since𝑎1 and𝑎2were arbitrary,
𝑓2 is injective.

Note carefully that the mappings 𝑓1 and 𝑓2 in these examples are defined by the
same formula, but have distinct domains and/or codomains.

Example 4.27. Let 𝜁 = 𝑒2𝜋𝑖/3 = 1
2
(−1 + 𝑖√3), and consider 𝐴 = {1, 𝜁, 𝜁2} ⊆ 𝐂×. Since

𝜁 is a cube root of unity, (𝜁2)2 = 𝜁4 = 𝜁 and (𝜁2)3 = 1.
The mapping 𝑓 ∶ 𝐴 → 𝐴 defined by 𝑓(𝑧) = 𝑧2 is bijective: 1 = 𝑓(1), 𝜁 = 𝑓(𝜁2),

and 𝜁2 = 𝑓(𝜁).
The mapping 𝑔 ∶ 𝐴 → 𝐴 defined by 𝑓(𝑧) = 𝑧3 is neither injective nor surjective.

Indeed, 𝑓(𝑧) = 1 for every 𝑧 in 𝐴.
Example 4.28. Define 𝑓 ∶ 𝐙 → 𝐙 by 𝑓(𝑎) = 1 − 𝑎. Prove 𝑓 is bijective.

(Injectivity). Let 𝑎1 and 𝑎2 be arbitrary integers, and assume that 𝑓(𝑎1) = 𝑓(𝑎2).
By the definition of 𝑓, 1−𝑎1 = 1−𝑎2, so 𝑎1 = 𝑎2 by elementary algebra. Since 𝑎1 and 𝑎2
were arbitrary, 𝑓 is injective.

(Surjectivity). Informally, we wish to solve 𝑏 = 𝑓(𝑎) = 1 − 𝑎 for 𝑎 in terms of 𝑏.
Rearrangement gives 𝑎 = 1 − 𝑏.
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Formally, let 𝑏 be an arbitrary integer, and consider the integer 𝑎 = 1 − 𝑏. Since
𝑓(𝑎) = 𝑓(1 − 𝑏) = 1 − (1 − 𝑏) = 𝑏, we have shown that for every integer 𝑏, there exists
an integer 𝑎 such that 𝑓(𝑎) = 𝑏. This means 𝑓 is surjective.

Example 4.29. Let 𝑓 ∶ 𝐙 → 𝐙 be defined by 𝑓(𝑎) = 1 − 2𝑎. Prove that 𝑓 is injective
(one-to-one) but not surjective (onto).

(Injectivity). Let 𝑎1 and 𝑎2 be integers, and assume 𝑓(𝑎1) = 𝑓(𝑎2), i.e., that 1 −
2𝑎1 = 1 − 2𝑎2. Subtracting the left side from the right, 0 = 2𝑎1 − 2𝑎2 = 2(𝑎1 − 𝑎2).
By Theorem 3.13 (ii), 𝑎1 − 𝑎2 = 0 as well. Since 𝑓(𝑎1) = 𝑓(𝑎2) implies 𝑎1 = 𝑎2, 𝑓 is
injective.

(Non-surjectivity). To show that 𝑓 is not surjective, it suffices to exhibit an integer
not in the image of 𝑓. Let 𝑏 = 0. The equation 𝑓(𝑎) = 𝑏 becomes 1−2𝑎 = 0, or 1 = 2𝑎.
There exists no integer 𝑎 satisfying this condition, which means 0 is not in the image
of 𝑓.

Example 4.30. Define 𝑓 ∶ 𝐙+ → 𝐙 by

𝑓(𝑎) = {
𝑘 = 𝑎 − 1

2 if 𝑎 = 2𝑘 + 1 is odd,

−𝑘 = −𝑎2 if 𝑎 = 2𝑘 is even.

Prove 𝑓 is bijective. (Informally, there are just as many positive integers as there are
integers!)

(Initial exploration). To understand 𝑓 intuitively, list its first several values. The
inputs (elements of the domain) are 1, 2, 3, 4, . . . . To find an output, determinewhether
the input is even or odd, and evaluate the corresponding formula. Thus 𝑓(1) = 0 (1 is
odd), 𝑓(2) = −1 (2 is even), 𝑓(3) = 1, 𝑓(4) = −2, 𝑓(5) = 2, and so forth:

𝑎 1 2 3 4 5 6 7 8 9

𝑓(𝑎) 0 −1 1 −2 2 −3 3 −4 4
In other words, 𝑓 alternately “counts off” one negative, one positive. Using arrows to
indicate successive values: Since the same value is never achieved twice, 𝑓 is injective.

0−1 1−2 2−3 3−4 4

Figure 4.5. Counting the integers.

Since every integer value is achieved, 𝑓 is surjective. We must convert this intuition
into a formal proof.
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(Injectivity). Let 𝑎1 and 𝑎2 be integers, and assume 𝑓(𝑎1) = 𝑓(𝑎2). Because 𝑓 is
defined “piecewise”, it’s most convenient to consider three separate cases.

Case 1: 𝑎1 and 𝑎2 both odd. By hypothesis and the definition of 𝑓, (𝑎1 − 1)/2 =
(𝑎2 − 1)/2, and elementary algebra implies 𝑎1 = 𝑎2.

Case 2: 𝑎1 and 𝑎2 both even. Here, −𝑎1/2 = −𝑎2/2, and again we find 𝑎1 = 𝑎2.
Case 3: 𝑎1 and 𝑎2 have opposite parity (one is odd, one is even). Without loss of

generality, we may assume 𝑎1 is odd and 𝑎2 is even. (Otherwise, swap their names.)
Since 𝑓(𝑎2) < 0 ≤ 𝑓(𝑎1), the hypothesis 𝑓(𝑎1) = 𝑓(𝑎2) is false. Said contrapositively, if
𝑓(𝑎1) = 𝑓(𝑎2), we are not in Case 3.

Since the conclusion 𝑎1 = 𝑎2 followed in each case, we have shown that 𝑓 is injec-
tive.

(Surjectivity). Let 𝑏 be an arbitrary integer, and consider two cases:
Case 1: 𝑏 < 0. Let 𝑎 = −2𝑏. Since 𝑎 is an even integer, we have 𝑓(𝑎) = −𝑎/2 = 𝑏;

there exists an 𝑎 such that 𝑓(𝑎) = 𝑏 provided 𝑏 < 0.
Case 2: 0 ≤ 𝑏. Let 𝑎 = 1 + 2𝑏. Since 𝑎 is odd, 𝑓(𝑎) = (𝑎 − 1)/2 = 2𝑏/2 = 𝑏; there

exists an 𝑎 such that 𝑓(𝑎) = 𝑏 provided 0 ≤ 𝑏.
Since every integer 𝑏 is either negative or non-negative, we have handled all pos-

sibilities. In each case, there exists an integer 𝑎 such that 𝑓(𝑎) = 𝑏, so 𝑓 is onto.

Example 4.31. Let 𝐴 be an arbitrary set, and let 𝒫(𝐴) be its power set. The following
argument of G. Cantor shows there is no surjection 𝑓 ∶ 𝐴 → 𝒫(𝐴).

Let 𝑓 ∶ 𝐴 → 𝒫(𝐴) be an arbitrary mapping. For each 𝑎 in 𝐴, the value 𝑓(𝑎) is a
subset of 𝐴, so the statement 𝑎 ∈ 𝑓(𝑎) is meaningful for each 𝑎. Let

𝑇 = {𝑎 in 𝐴 ∶ 𝑎 ∉ 𝑓(𝑎)}.
To prove 𝑓 is not surjective, it suffices to show 𝑓(𝑡) ≠ 𝑇 for all 𝑡 in 𝐴. We will prove
that if 𝑓(𝑡) = 𝑇 for some 𝑡, then set theory is logically inconsistent. Contrapositively, if
set theory is logically consistent, then 𝑓(𝑡) ≠ 𝑇 for all 𝑡 in 𝐴.

If 𝑓(𝑡) = 𝑇, we may ask which alternative is true: 𝑡 ∉ 𝑇 or 𝑡 ∈ 𝑇. By the definition
of 𝑇, if 𝑡 ∈ 𝑓(𝑡) = 𝑇, then 𝑡 fails to satisfy the criterion for membership in 𝑇, so 𝑡 ∉ 𝑇.
However, if 𝑡 ∉ 𝑓(𝑡) = 𝑇, then 𝑡 satisfies the criterion of membership, so 𝑡 ∈ 𝑇.
In summary, the statement 𝑡 ∈ 𝑇 is logically equivalent to its negation 𝑡 ∉ 𝑇. This
completes the proof.

4.3. Composition and Inversion

Definition 4.32. Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 be mappings. Their composition is
the mapping 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶 defined by

(𝑔 ∘ 𝑓)(𝑎) = 𝑔(𝑓(𝑎)) for each 𝑎 in 𝐴.
In this situation we say 𝑔 is composable with 𝑓.
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Remark 4.33. In other words, plug the output of 𝑓 into 𝑔, obtaining (𝑔 ∘ 𝑓)(𝑎).
When context clearly signifies composition, the operator symbol ∘may be omitted,

and the composition 𝑔 ∘ 𝑓 denoted 𝑔𝑓.
Proposition 4.34 (Mapping composition is associative). If 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶,
and ℎ ∶ 𝐶 → 𝐷 are composable, then ℎ(𝑔𝑓) = (ℎ𝑔)𝑓 as mappings from 𝐴 to 𝐷.

Proof. If 𝑎 is an arbitrary element of 𝐴, then
[ℎ ∘ (𝑔 ∘ 𝑓)](𝑎) = ℎ[(𝑔 ∘ 𝑓)(𝑎)] = ℎ[𝑔(𝑓(𝑎))]

= (ℎ ∘ 𝑔)(𝑓(𝑎)) = [(ℎ ∘ 𝑔) ∘ 𝑓](𝑎). □

Surjectivity and injectivity of mappings 𝑓 and 𝑔 are related to whether or not the
composition 𝑔𝑓 is surjective and/or injective. Think of two functions “cooperating”,
with 𝑔 acting on the output of 𝑓. If 𝑓 achieves every value in 𝐵 and 𝑔 achieves every
value in 𝐶, then in tandem they achieve every value in 𝐶. Similarly, if neither 𝑔 nor 𝑓
identifies any pair of distinct points, then 𝑔𝑓 does not either. Before reading further,
you should express these observations formally as logical implications and try to prove
them.

Proposition 4.35. Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 be mappings.
(i) If 𝑓 and 𝑔 are surjective, then 𝑔𝑓 is surjective.
(ii) If 𝑓 and 𝑔 are injective, then 𝑔𝑓 is injective.

Proof. (i) Suppose 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 are surjective. Let 𝑐 in 𝐶 be arbitrary.
Because 𝑔 is surjective, there exists a 𝑏 in 𝐵 such that 𝑔(𝑏) = 𝑐. Since 𝑓 is surjective,
there is an 𝑎 in 𝐴 such that 𝑓(𝑎) = 𝑏. But (𝑔𝑓)(𝑎) = 𝑔(𝑓(𝑎)) = 𝑔(𝑏) = 𝑐. We have
shown that for every 𝑐 in 𝐶, there exists an 𝑎 in 𝐴 such that (𝑔𝑓)(𝑎) = 𝑐, which by
definition means 𝑔𝑓 is surjective.

(ii) Exercise 4.4 (a). □

Conversely, suppose we know that 𝑔𝑓 is surjective, or that 𝑔𝑓 is injective. What
can we deduce about 𝑓 and 𝑔?

In our cooperation metaphor, if 𝑔𝑓 achieves every value in 𝐶, then 𝑔 itself must as
well, since any value not achieved by 𝑔 is certainly not achieved by 𝑔𝑓. Thus, if 𝑔𝑓 is
surjective, then 𝑔 is surjective.

Similarly, if 𝑓 identifies some pair of points, then 𝑔𝑓 identifies that pair as well,
since 𝑔 cannot split asunder what 𝑓 has joined. Formally, if 𝑔𝑓 is injective, then 𝑓 is
injective, Exercise 4.4 (b).

The following examples show that nothing more can be deduced.

Example 4.36. Let𝑓 ∶ [−1, 1] → 𝐑 and 𝑔 ∶ 𝐑 → [−1, 1] be defined by𝑓(𝑥) = arcsin 𝑥,
𝑔(𝑥) = sin 𝑥. Themapping𝑓 is injective but not surjective (why?), 𝑔 is surjective but not
injective (why?), while 𝑔𝑓 ∶ [−1, 1] → [−1, 1] is the identity map (which is bijective),
and 𝑓𝑔 ∶ 𝐑 → 𝐑 is neither injective nor surjective.
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Example 4.37. An arbitrary mapping 𝑓 ∶ 𝐴 → 𝐵 can be “factored” into the composi-
tion of an injection followed by a surjection. Define 𝛾𝑓 ∶ 𝐴 → 𝐴×𝐵 and 𝜋2 ∶ 𝐴×𝐵 → 𝐵
by

𝛾𝑓(𝑎) = (𝑎, 𝑓(𝑎)), 𝜋2(𝑎, 𝑏) = 𝑏.
Geometrically, “𝛾𝑓 lifts 𝑎 to the graph of 𝑓” and “𝜋2 projects 𝐴×𝐵 onto the second fac-
tor”. Clearly, 𝑓 = 𝜋2 ∘ 𝛾𝑓 ∶ 𝐴 → 𝐵, 𝛾𝑓 is injective, and 𝜋2 is surjective.

Inversion of Mappings. In algebra, “inversion” generally refers to undoing. For
addition, inversion means subtraction. For multiplication, inversion refers to division.
For mappings, inversion refers to composition.

Definition 4.38. Let 𝐴 and 𝐵 be sets. A mapping 𝑓 ∶ 𝐴 → 𝐵 is invertible if there exists
a mapping 𝑔 ∶ 𝐵 → 𝐴 that inverts 𝑓, i.e., such that 𝑔 ∘ 𝑓 is the identity map of 𝐴 and
𝑓 ∘ 𝑔 is the identity map of 𝐵.
Remark 4.39. If 𝑓 ∶ 𝐴 → 𝐵 is invertible and the mapping 𝑔 ∶ 𝐵 → 𝐴 inverts 𝑓, then
(𝑔 ∘ 𝑓)(𝑎) = 𝑎 for all 𝑎 in 𝐴 and (𝑓 ∘ 𝑔)(𝑏) = 𝑏 for all 𝑏 in 𝐵. That is,

For all 𝑎 in 𝐴 and all 𝑏 in 𝐵, 𝑔(𝑏) = 𝑎 if and only if 𝑓(𝑎) = 𝑏.
Proposition 4.40. Let 𝐴 and 𝐵 be sets, and let 𝑓 ∶ 𝐴 → 𝐵 a mapping.
(i) 𝑓 is invertible if and only if 𝑓 is bijective.
(ii) If 𝑓 is invertible, there exists a unique map inverting 𝑓.
Remark 4.41. Both conclusions hold (with essentially vacuous proof) if either 𝐴 or 𝐵
is the empty set. It suffices to assume 𝐴, 𝐵 are non-empty.

Proof. (i) Assume 𝑓 is invertible, and let 𝑔 be a mapping that inverts 𝑓, i.e., that satis-
fies 𝑔𝑓 = 𝐼𝐴 and 𝑓𝑔 = 𝐼𝐵. If 𝑓(𝑎1) = 𝑓(𝑎2) for some 𝑎1 and 𝑎2 in 𝐴, applying 𝑔 to both
sides gives 𝑎1 = 𝑎2, so 𝑓 is injective. If 𝑏 is an arbitrary element of 𝑏, and if 𝑎 = 𝑔(𝑏),
then 𝑓(𝑎) = (𝑓𝑔)(𝑏) = 𝑏, so 𝑓 is surjective.

Conversely, suppose 𝑓 is bijective: For each 𝑏 in 𝐵, there exists a unique 𝑎 in 𝐴
such that 𝑏 = 𝑓(𝑎). Define 𝑔(𝑏) = 𝑎. This prescription defines a mapping 𝑔 ∶ 𝐵 → 𝐴
that satisfies the condition in Remark 4.39, so 𝑓 is invertible.

(ii) If 𝑔1, 𝑔2 ∶ 𝐵 → 𝐴 invert 𝑓, then
𝑔1 = 𝑔1 ∘ 𝐼𝐵 = 𝑔1 ∘ (𝑓 ∘ 𝑔2) = (𝑔1 ∘ 𝑓) ∘ 𝑔2 = 𝐼𝐵 ∘ 𝑔2 = 𝑔2. □

A mapping 𝑓 is invertible if and only if 𝑓 is injective and surjective. We now con-
sider what happens if each condition holds individually.

Left Inverses. Assume 𝑓 is one-to-one; not every element of 𝐵 need be a value of 𝑓,
but every value (every element of 𝑓(𝐴), the image of 𝐴 under 𝑓) is achieved exactly
once. We may define ℎ ∶ 𝑓(𝐴) → 𝐴 analogously to Remark 4.39: For all 𝑏 in 𝑓(𝐴),
ℎ(𝑏) = 𝑎 if and only if 𝑓(𝑎) = 𝑏.

If we apply 𝑓 to 𝑎 in 𝐴, then apply ℎ to 𝑏 = 𝑓(𝑎), we find
(ℎ𝑓)(𝑎) = ℎ(𝑓(𝑎)) = ℎ(𝑏) = 𝑎 for all 𝑎 in 𝐴.
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That is, ℎ𝑓 = 𝐼𝐴, the identity map on 𝐴; ℎ is a left inverse of 𝑓.1
In order to obtain a mapping 𝑔 ∶ 𝐵 → 𝐴 satisfying 𝑔𝑓 = 𝐼𝐴, we must “enlarge”

the domain of ℎ; any convenient “rule” will do. For example, pick an element 𝑎0 in 𝐴
arbitrarily, and define, for 𝑏 in 𝐵,

𝑔(𝑏) = {𝑎 if 𝑏 = 𝑓(𝑎) for some 𝑎 in 𝐴,
𝑎0 otherwise.

The easy verification that 𝑔𝑓 = 𝐼𝐴 is left to you.

Example 4.42. Define 𝑓 ∶ 𝐑 → 𝐑 by 𝑓(𝑥) = 𝑒𝑥; see Figure 4.6, left. For each 𝑦 > 0
(namely, for each 𝑦 in the image of 𝑓), we have 𝑦 = 𝑒𝑥 if and only if 𝑥 = ln 𝑦. Define

𝑔(𝑦) = {ln 𝑦 if 𝑦 > 0,
0 if 𝑦 ≤ 0;

see Figure 4.6, right. Then (𝑔𝑓)(𝑥) = 𝑔(𝑓(𝑥)) = 𝑥 for all 𝑥; what about 𝑓(𝑔(𝑦))?

x

y

y

x

Figure 4.6. A left inverse of 𝑓(𝑥) = 𝑒𝑥.

Right Inverses. Assume 𝑓 is onto; every element of 𝐵 is a value of 𝑓, but some
values 𝑏may be achieved at distinct points: 𝑓(𝑎1) = 𝑓(𝑎2) but 𝑎1 ≠ 𝑎2. Define 𝑔 ∶ 𝐵 →
𝐴 by the following prescription: For each 𝑏 in 𝐵, use the Axiom of Choice to pick an 𝑎
in 𝐴 such that 𝑓(𝑎) = 𝑏, and define 𝑔(𝑏) = 𝑎.2

It is straightforward to check that 𝑓𝑔 = 𝐼𝐵, the identitymap on𝐵.3 Any particular 𝑔
defined this way is called a branch of 𝑓−1.

1In general, 𝑓ℎ ≠ 𝐼𝐵 , the identity map on 𝐵, since (i) ℎ is defined only on the image of 𝑓, and (ii) the image of 𝑓ℎ,
which is a subset of the image of 𝑓, may be a proper subset of 𝐵.

2The Axiom of Choice asserts that if {𝑆𝑖}𝑖∈𝐼 is a collection of non-empty sets indexed by a set 𝐼, it is possible to choose,
for each 𝑖 in 𝐼, an element 𝑥𝑖 of 𝑆𝑖 .

3In general, 𝑔𝑓 ≠ 𝐼𝐴, the identitymap on𝐴, since if𝑓(𝑎1) = 𝑏 = 𝑓(𝑎2) for𝑎1 ≠ 𝑎2, we cannot have both 𝑔(𝑏) = 𝑎1
and 𝑔(𝑏) = 𝑎2.



58 4. Mappings and Relations

x

y

x = +
√
y

x = −√
y

y

x

Figure 4.7. Right inverses of 𝑓(𝑥) = 𝑥2.

Example 4.43. Define 𝑓 ∶ 𝐑 → [0,∞) by 𝑓(𝑥) = 𝑥2; see Figure 4.7, left. For each
𝑦 > 0, there exist two real 𝑥 such that 𝑓(𝑥) = 𝑦, namely 𝑥 = ±√𝑦. In particular, there
are two “obvious” branches of 𝑓−1, defined by 𝑔±(𝑦) = ±√𝑦 for 𝑦 ≥ 0; see Figure 4.7,
right. (There are infinitely many other choices, though all are discontinuous.) For any
such choice, (𝑓𝑔)(𝑦) = 𝑓(𝑔(𝑦)) = 𝑦 for all 𝑦 ≥ 0. What about 𝑔(𝑓(𝑥))?

4.4. Equivalence Relations

Definition 4.44. Let 𝐴 be a non-empty set. A relation on 𝐴 is a subset 𝑅 ⊆ 𝐴×𝐴.
Elements 𝑎 and 𝑏 of 𝐴 are 𝑅-related, written 𝑎𝑅𝑏, if (𝑎, 𝑏) ∈ 𝑅.
Remark 4.45. A binary relation is naturally associated to the Boolean (true/false-
valued) function 𝜌 ∶ 𝐴 × 𝐴 → {𝑇, 𝐹} defined by 𝜌(𝑎, 𝑏) = 𝑎𝑅𝑏.
Example 4.46. Equality on 𝐴 is the diagonal 𝑅 = Δ = {(𝑎, 𝑎) ∶ 𝑎 ∈ 𝐴}.

A× A

a

c

b

(a, c) ∈ R

(a, b) �∈ R

A× A

a

c

b

(a, c) �∈ R

(a, b) ∈ R

Figure 4.8. Equality and inequality: 𝑎 ≠ 𝑏 and 𝑎 = 𝑐.

Example 4.47. The inequality relation ≠ is the complement of the equality relation,
𝐴×𝐴 ⧵ Δ = {(𝑎1, 𝑎2) ∶ 𝑎1 ≠ 𝑎2}, Figure 4.8, right.
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Remark 4.48. Generally, if 𝑅2 = 𝐴×𝐴 ⧵ 𝑅1, the relations 𝑅1 and 𝑅2 are logical oppo-
sites: One relation holds for a pair of elements if and only if the other fails for the same
pair.

Example 4.49. Let 𝐴 = 𝐙 be the set of integers. The less-than relation is the set 𝑅 =
{(𝑛1, 𝑛2) ∶ 𝑛1 < 𝑛2}, Figure 4.9, left.
Example 4.50. Let 𝐴 be the set 𝐙 of integers. The parity relation on 𝐙 is the set 𝑅 =
{(𝑛1, 𝑛2) ∶ 𝑛2 − 𝑛1 is even}. Two integers are related if and only if they are both even
or both odd, Figure 4.9, right.

Example 4.51. Let 𝑓 ∶ 𝐴 → 𝐴 be a mapping. Viewing 𝑓 as a subset of 𝐴×𝐴 defines
the maps-to-under-𝑓 relation on 𝐴: 𝑎𝑅𝑏 if and only if 𝑓(𝑎) = 𝑏, if and only if 𝑎 maps
to 𝑏 under 𝑓.
Definition 4.52. Let 𝑅 be a relation on a set 𝐴. We say 𝑅 is

• reflexive if 𝑎𝑅𝑎 for all 𝑎 in 𝐴;
• symmetric if, for all 𝑎 and 𝑏 in 𝐴, 𝑎𝑅𝑏 implies 𝑏𝑅𝑎;
• transitive if, for all 𝑎, 𝑏, and 𝑐 in 𝐴, 𝑎𝑅𝑏 and 𝑏𝑅𝑐 imply 𝑎𝑅𝑐.

Example 4.53. Though not a formal example, the “friendship” relation may help you
assimilate the conditions in the preceding definition. Let 𝐴 be some set of people, and
let 𝑎𝑅𝑏mean “𝑏 is a friend of 𝑎”.

𝑅 is reflexive if and only if every person is their own friend; 𝑅 is symmetric if and
only if all friendships are mutual; 𝑅 is transitive if and only if every friend-of-a-friend
is a friend.

Definition 4.54. A reflexive, symmetric, and transitive relation is an equivalence rela-
tion.

If 𝑅 is an equivalence on 𝐴 and 𝑎 ∈ 𝐴, the equivalence class of 𝑎 is the set
[𝑎] = {𝑥 in 𝐴 ∶ 𝑎𝑅𝑥} ⊆ 𝐴

comprising all elements related to 𝑎.

(0, 0) (0, 0)

Figure 4.9. Less-than and parity on 𝐙.
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Example 4.55. Equality is an equivalence relation on an arbitrary set: For all 𝑎, 𝑏,
and 𝑐, we have 𝑎 = 𝑎 (reflexivity), 𝑎 = 𝑏 implies 𝑏 = 𝑎 (symmetry), and if 𝑎 = 𝑏 and
𝑏 = 𝑐, then 𝑎 = 𝑐 (transitivity).

Inequality is symmetric, but neither reflexive nor transitive.

Example 4.56. Less-than is transitive (if 𝑎 < 𝑏 and 𝑏 < 𝑐, then 𝑎 < 𝑐), but neither
reflexive nor symmetric.

Example 4.57. The parity relation is an equivalence relation: For all integers 𝑎, 𝑏,
and 𝑐, 𝑎 − 𝑎 is even (reflexivity), if 𝑏 − 𝑎 is even (𝑎𝑅𝑏), then 𝑎 − 𝑏 is even (𝑏𝑅𝑎), and if
𝑏 − 𝑎 and 𝑐 − 𝑏 are even (𝑎𝑅𝑏 and 𝑏𝑅𝑐), then 𝑐 − 𝑎 = (𝑐 − 𝑏) + (𝑏 − 𝑎) is even (𝑎𝑅𝑐).

Equivalence Relations and Partitions. Let 𝐴 be a non-empty set. Recall that a
partition of 𝐴 is a collection of non-empty, disjoint subsets whose union is 𝐴. Parti-
tions and equivalence relations are two ways of viewing a single mathematical struc-
ture: Every equivalence relation gives rise to a partition, every partition gives rise to an
equivalence relation, and these associations are inverse to each other.

Proposition 4.58. Let 𝑅 be an equivalence relation on 𝐴. The equivalence classes of 𝑅
partition 𝐴.

Proof. Since 𝑎 ∈ [𝑎] for each 𝑎, every element of 𝐴 lies in at least one equivalence
class. It remains to prove that two arbitrary equivalence classes [𝑎] and [𝑏] are either
disjoint or identical. To prove this it suffices to show that if [𝑎] ∩ [𝑏] ≠ ∅ (i.e., the
classes are not disjoint), then [𝑎] = [𝑏].

Let’s first run through the argument using the friendshipmetaphor. If 𝑎 and 𝑏have
a friend in common, then 𝑎 and 𝑏 are themselves friends (transitivity). Consequently,
every friend of 𝑎 is a friend of 𝑏 (transitivity again) and vice versa, so 𝑎 and 𝑏have exactly
the same set of friends.

Formally, if [𝑎]∩[𝑏] ≠ ∅, there exists a 𝑐 in𝐴 such that 𝑐 ∈ [𝑎]∩[𝑏]. Consequently,
𝑎𝑅𝑐 and 𝑏𝑅𝑐. By symmetry of 𝑅, 𝑎𝑅𝑐 and 𝑐𝑅𝑏, and by transitivity 𝑎𝑅𝑏. This means
𝑎 ∈ [𝑏] and 𝑏 ∈ [𝑎].

It is now easy to prove [𝑎] ⊆ [𝑏] and [𝑏] ⊆ [𝑎]: If 𝑥 ∈ [𝑎], then 𝑥𝑅𝑎, and since 𝑎𝑅𝑏,
transitivity guarantees 𝑥𝑅𝑏, meaning 𝑥 ∈ [𝑏]. Reversing the roles of 𝑎 and 𝑏 completes
the argument.

We have shown that non-disjoint equivalence classes are identical, so the set of
equivalence classes of 𝑅 is indeed a partition of 𝐴. □
Remark 4.59. Conversely, if 𝐴 is partitioned into subsets {𝐴𝑖}𝑖∈𝐼 , there is an induced
equivalence relation definedby𝑎𝑅𝑏 if and only if there exists an index 𝑖 such that𝑎 ∈ 𝐴𝑖
and 𝑏 ∈ 𝐴𝑖. Informally, 𝑎𝑅𝑏 if and only if both elements lie in the same subset of the
partition. Be sure to convince yourself that 𝑅 is an equivalence relation, and that the
partition induced by 𝑅 is the original partition.
Example 4.60. The equivalence classes of the equality relation are the singletons, sets
having one element: [𝑎] = {𝑎} for each 𝑎 in 𝐴.
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Example 4.61. The parity relation on 𝐙 has two equivalence classes: [0] = 2𝐙 and
[1] = 2𝐙 + 1.

Partitions and Prejudice. Our minds organize the external world by catego-
rizing, unconsciously identifying people, objects, or phenomena that share some at-
tribute, or conversely, sharply distinguishing things that are nearly identical.
Example 4.62. A physicist, a statistician, and a mathematician saw a flock of 100
sheep, of which one was black. The physicist said, “We can deduce that one in 100
sheep is black.” The statistician said, “No, only that in this sample of 100 sheep, one is
black.” The mathematician corrected, “No, we can only deduce that one sheep in this
sample is black on one side.”

Often we cope fluently with such hierarchies: a particular mandarin orange, man-
darin oranges, oranges, citrus fruit, fruit. . . . At other times, prejudice deceives us into
identifying individuals according to superficial characteristics (such as gender, ethnic-
ity, religion, or scientific field) and incorrectly presuming “all such people are alike”.

In mathematics, we can sometimes turn prejudice to good use. Perhaps we don’t
care which integer we’re dealing with, but only if it’s even or odd, or if it leaves a re-
mainder of 5 on division by 12. Maybe we’re dealing with pairs of points in the plane,
but don’t carewhere they’re located, only that the second is located one unit to the right
of the first. In such cases, an equivalence relation allows us to formalize our prejudice
and discard irrelevant information.

Let 𝐴 be a set, 𝑅 an equivalence relation on 𝐴, and {𝐴𝑖}𝑖∈𝐼 the partition of 𝐴 into
equivalence classes. Each “index” 𝑖 is associated with the non-empty set 𝐴𝑖 ⊆ 𝐴, and
the index set 𝐼 is in bijective correspondence with the set of equivalence classes. We
call the set of equivalence classes the quotient of 𝐴 by 𝑅, denoted 𝐼 = 𝐴/𝑅 and read as
“𝐴modulo 𝑅” (or “𝐴mod 𝑅” for short). Elements of 𝐴/𝑅 are collections of objects in 𝐴.
The equivalence relation 𝑅 is “unable to distinguish” elements of 𝐴𝑖, so when 𝑅 “looks
at” 𝐴 it “sees” 𝐼 = 𝐴/𝑅.
Example 4.63. Two real numbers 𝜃1 and 𝜃2 determine the same longitude on the earth
if and only if their difference is amultiple of one full turn, say 360∘. To formalize this in
the language of quotients, let𝐴 = 𝐑 be the set of real numbers (a.k.a. the number line),
and define the relation 𝑅 by 𝜃1𝑅𝜃2 if and only if 𝜃2−𝜃1 is an integer multiple of 360. By
an argument entirely similar to that given for the parity relation in Example 4.55, 𝑅 is
an equivalence relation.
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Figure 4.10. The number line, and the space of angles.
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The set of equivalence classes is indexed by the half-open interval [0, 360), since
every angle is equivalentmod 𝑅 to a unique number between 0 and 360 (excluding 360,
which is equivalent to 0). We call this set the “space of angles”, Figure 4.10.

Mappings and Equivalence Classes. Let 𝐴 be non-empty, 𝑅 an equivalence re-
lation on 𝐴, and 𝑓 ∶ 𝐴 → 𝐵 a mapping. We will often be interested in trying to define
an “induced” map ̄𝑓 from the quotient set ̄𝐴 = 𝐴/𝑅 to 𝐵.

Think of the elements of an equivalence class [𝑎] as a clique of friends who are
polled by 𝑓, the question being “Which element of 𝐵 do you map to?” If the clique
responds unanimously (“We all map to 𝑏”), then by fiat ̄𝑓 maps [𝑎] in ̄𝐴 to 𝑏 in 𝐵. If
every clique reaches a unanimous decision, there is a mapping ̄𝑓 ∶ 𝐴/𝑅 → 𝐵 defined
by ̄𝑓([𝑎]) = 𝑓(𝑎).

If the responses aremixed for some clique [𝑎], then ̄𝑓 is undefined; amappingmust
be single-valued for every input, but the members of [𝑎] do not decide unanimously
where to be mapped by 𝑓.

Definition 4.64. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping, and 𝑅 an equivalence relation on 𝐴.
If 𝑎𝑅𝑎′ implies 𝑓(𝑎) = 𝑓(𝑎′), we say 𝑓 is constant on equivalence classes of 𝑅, or 𝑓 is
well-definedmodulo 𝑅. If 𝑓 is well-defined modulo 𝑅, we define the induced mapping
̄𝑓 ∶ 𝐴/𝑅 → 𝐵 by ̄𝑓([𝑎]) = 𝑓(𝑎) for each 𝑎 in 𝐴.

Remark 4.65. If 𝑅 is an equivalence relation on 𝐴, there is a “quotient mapping” Π ∶
𝐴 → 𝐴/𝑅 defined by Π(𝑎) = [𝑎]. If 𝑓 ∶ 𝐴 → 𝐵 is well-defined modulo 𝑅 and ̄𝑓 ∶
𝐴/𝑅 → 𝐵 denotes the induced mapping, then 𝑓 = ̄𝑓 ∘Π. We say “𝑓 factors through the
quotient 𝐴/𝑅”.

Example 4.66. Let 𝐴 = 𝐙 be the set of integers, 𝑅 the parity relation, and 𝑓 ∶ 𝐙 →
{1, −1} the mapping defined by 𝑓(𝑎) = (−1)𝑎. Under 𝑓, every even integer maps to 1
and every odd integer maps to −1, so 𝑓 is well-defined modulo parity. Intuitively, to
compute (−1)𝑎 for some integer 𝑎, we only need to know whether 𝑎 is even or odd.

The quotient space 𝐴/𝑅 = {[0], [1]} = {2𝐙, 2𝐙 + 1} is a set having two elements,
and the induced map ̄𝑓 ∶ 𝐴/𝑅 = {2𝐙, 2𝐙 + 1} → {1, −1}, defined by

̄𝑓([0]) = (−1)0 = 1, ̄𝑓([1]) = (−1)1 = −1,
is bijective.

Example 4.67. Let 𝐴 = 𝐙, 𝑅 the parity relation, and 𝑓 ∶ 𝐙 → 𝐙 defined by 𝑓(𝑎) = 𝑎2.
The integers 0 and 2 are elements of [0], but 𝑓(0) = 0 ≠ 4 = 𝑓(2). Thus 𝑓 is not
well-defined modulo parity.

This should be no surprise: To compute the square of an integer 𝑎, it is not enough
to know whether 𝑎 is even or odd.

Example 4.68. Let 𝐴 = 𝐑 be the set of real numbers, 𝑅 the “longitude” relation, and
define 𝑓 ∶ 𝐑 → 𝐑2 by 𝑓(𝑡) = (cos 𝑡, sin 𝑡), the standard trigonometric parametrization
of the circle, with trig functions in “degrees mode”.
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Figure 4.11. The space of angles as a circle.

If 𝜃2 − 𝜃1 is an integer multiple of 360, then cos 𝜃1 = cos 𝜃2 and sin 𝜃1 = sin 𝜃2, so
𝑓(𝜃1) = 𝑓(𝜃2). Consequently, there is an induced mapping from the space of angles to
the unit circle in the plane. In words, 𝑓 factors through locations on the earth.

Since cos 𝜃1 = cos 𝜃2 and sin 𝜃1 = sin 𝜃2 if and only if 𝜃2−𝜃1 is an integer multiple
of 360, the mapping ̄𝑓 is bijective, so the space of angles may be regarded as the unit
circle. Geometrically, each equivalence class [𝜃] corresponds to a unique point of the
unit circle, Figure 4.11

Exercises

Exercise 4.1. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping, and let𝑈 and 𝑉 be subsets of 𝐴. Prove the
following:
(a) If 𝑈 ⊆ 𝑉 , then 𝑓(𝑈) ⊆ 𝑓(𝑉).
(b) If 𝑓 is injective and 𝑓(𝑈) ⊆ 𝑓(𝑉), then 𝑈 ⊆ 𝑉 .
Exercise 4.2. Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 be mappings, and assume 𝑆 ⊆ 𝐴, 𝑇 ⊆ 𝐶.
(a) Prove 𝑔(𝑓(𝑆)) = (𝑔𝑓)(𝑆).
(b) Prove 𝑓−1(𝑔−1(𝑇)) = (𝑔𝑓)−1(𝑇).
Exercise 4.3. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping.
(a) Assume 𝑇 ⊆ 𝐵 is arbitrary. Prove 𝑓(𝑓−1(𝑇)) ⊆ 𝑇, and that equality holds if 𝑓 is

surjective. Give an example of a mapping 𝑓 and a set 𝑇 for which the inclusion is
proper.

(b) Assume 𝑆 ⊆ 𝐴 is arbitrary. Prove 𝑆 ⊆ 𝑓−1(𝑓(𝑆)), and that equality holds if 𝑓 is
injective. Give an example of a mapping 𝑓 and a set 𝑆 for which the inclusion is
proper.
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Exercise 4.4. (a) Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 be injective mappings. Prove 𝑔𝑓 is
injective. (This is the second assertion of Proposition 4.35.)

(b) Suppose 𝑔𝑓 is injective. Prove 𝑓 is injective.
Suggestion: Prove the contrapositive.

Exercise 4.5. Let𝑚, 𝑛, and 𝑞 be positive integers.

(a) Let 𝐴 be a set containing𝑚 elements, 𝐵 a set containing 𝑛 elements, and assume
𝑚 > 𝑛𝑞. Prove that if 𝑓 ∶ 𝐴 → 𝐵 is a mapping, then there exists a 𝑏 in 𝐵 such that
𝑓−1({𝑏}) contains at least 𝑞 + 1 elements. (This result is known as the Pigeonhole
Principle. If you distribute 𝑚 > 𝑛𝑞 pigeons among 𝑛 holes, then some hole con-
tains more than 𝑞 pigeons.)
Suggestion: Write 𝐵 as a union of singleton sets, and use Proposition 4.14. The
contrapositive may be more natural to prove.

(b) With the same notation, let 𝑓 ∶ 𝐴 → 𝐵 be a mapping. Prove that if 𝑓 is injective,
then 𝑚 ≤ 𝑛, and that if 𝑓 is surjective, then 𝑚 ≥ 𝑛. Show by example that both
converse statements are false.

(c) With the same notation, assume𝑚 = 𝑛, and let 𝑓 ∶ 𝐴 → 𝐵 be a mapping. Prove
that 𝑓 is injective if and only if 𝑓 is surjective. (Suggestion: Use part (b) to prove
that 𝑓 is injective if and only if 𝑓(𝐴) contains 𝑚 elements, if and only if 𝑓 is sur-
jective.)

Exercise 4.6. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping. If 𝑆 ⊆ 𝐴, define the restriction of 𝑓 to 𝑆 to
be the mapping 𝑓|𝑆 ∶ 𝑆 → 𝐵 defined by 𝑓|𝑆(𝑎) = 𝑓(𝑎) for all 𝑎 in 𝑆.

(a) Prove that 𝑓 is injective if and only if 𝑓|𝑆 is injective for every subset 𝑆 of 𝐴.
(b) Assume 𝑓 is a bijection. Prove that if 𝑆 is a non-empty subset of 𝐴, then the re-

striction 𝑓|𝑆 is a bijection from 𝑆 to 𝑓(𝑆) and the restriction 𝑓|𝐴⧵𝑆 is a bijection
from 𝐴 ⧵ 𝑆 to 𝐵 ⧵ 𝑓(𝑆).

Exercise 4.7. Let 𝑚 and 𝑏 be integers, and define a mapping 𝑓 ∶ 𝐙 → 𝐙 by 𝑓(𝑥) =
𝑚𝑥 + 𝑏.

(a) Prove 𝑓 is injective if and only if𝑚 ≠ 0.
(b) Find necessary and sufficient conditions on𝑚 and 𝑏 for 𝑓 to be surjective. If 𝑓 is

bijective, find a formula for the inverse mapping.

Exercise 4.8. Let 𝑓 ∶ 𝐴 → 𝐵 be an arbitrary mapping, and define mappings Γ𝑓 ∶ 𝐴 →
𝐴×𝐵 and Π ∶ 𝐴×𝐵 → 𝐵 by

Γ𝑓(𝑎) = (𝑎, 𝑓(𝑎)), Π(𝑎, 𝑏) = 𝑏.

Prove that Γ𝑓 is injective, Π is surjective, and 𝑓 = Π ∘ Γ𝑓. Illustrate with a sketch. (In
other words, every mapping factors as an injection followed by a surjection.)
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Exercise 4.9. Define 𝑓 ∶ 𝐂 → 𝐂 by 𝑓(𝑧) = 𝑧2.
(a) By writing 𝑧 = 𝑥 + 𝑖𝑦 with 𝑥 and 𝑦 real, calculate the real and imaginary parts

of 𝑓(𝑧).
(b) By writing 𝑧 = 𝑟𝑒𝑖𝜃 with 𝑟 ≥ 0 and 𝜃 real, re-calculate 𝑓(𝑧), and use your result to

describe the geometric action of the mapping 𝑓.
(c) Find the preimages of the singletons {1}, {−1}, {𝑖}, and {𝜌𝑒𝑖𝜙}.
(d) Let 𝐴 = {𝑧 in 𝐂 ∶ Re 𝑧 > 0} ∪ {𝑧 in 𝐂 ∶ Re 𝑧 = 0, 0 ≤ Im𝑧}. Show that 𝑓 maps 𝐴

bijectively to 𝐂.
(e) By part (d), there exists a branch of inverse 𝑔 ∶ 𝐂 → 𝐴 of 𝑓. Give a formula for 𝑔(𝑧)

assuming 𝑧 = 𝑟𝑒𝑖𝜃 (specify necessary restrictions on 𝜃), and show ℎ(𝑧) = −𝑔(𝑧) is
another branch of 𝑓−1.

Exercise 4.10. Repeat parts (a)–(c) of the preceding exercise for the mapping 𝑓 ∶ 𝐂 →
𝐂 defined by 𝑓(𝑧) = 𝑧3.
Exercise 4.11. Let 𝑛 > 1 be an integer, and define 𝑓 ∶ 𝐂 → 𝐂 by 𝑓(𝑧) = 𝑧𝑛. By writing
𝑧 = 𝑟𝑒𝑖𝜃, describe the geometric action of 𝑓, and find the preimage of {𝜌𝑒𝑖𝜙}. If 𝜌 > 0,
howmany points are in the preimage, and how are these points situated geometrically
in 𝐂?
Exercise 4.12. Let 𝑈5 = {𝑒2𝜋𝑘𝑖/5 ∶ 0 ≤ 𝑘 ≤ 4} be the set of fifth roots of unity. Show
that the formula 𝑓(𝑧) = 𝑧2 defines a mapping 𝑓 ∶ 𝑈5 → 𝑈5, find the image of 𝑓, and
determine whether or not 𝑓 is bijective.
Exercise 4.13. Let 𝑈6 = {𝑒2𝜋𝑘𝑖/6 ∶ 0 ≤ 𝑘 ≤ 5} be the set of sixth roots of unity. Show
that the formula 𝑓(𝑧) = 𝑧2 defines a mapping 𝑓 ∶ 𝑈6 → 𝑈6, find the image of 𝑓, and
determine whether or not 𝑓 is bijective.
Exercise 4.14. Show that the mapping 𝑓 ∶ [−1, 1] → (−1, 1) defined by

𝑓(𝑥) = {
𝑥
2

𝑥 = ±2−𝑛 for some integer 𝑛 ≥ 0,
𝑥 otherwise

is a bijection, and sketch the graph.
Exercise 4.15. Let 𝑔 ∶ 𝐑 → 𝐑 be a real-valued function of one real variable. We say
that 𝑔 is even if 𝑔(−𝑥) = 𝑔(𝑥) for all 𝑥 in 𝐑, and that 𝑔 is odd if 𝑔(−𝑥) = −𝑔(𝑥) for all 𝑥
in 𝐑. (Analogous formulas define the notions of “even” and “odd” functions whose
domain and/or codomain is 𝐙 or any other set in which negatives are defined.)
(a) Find all functions that are both even and odd.
(b) Let 𝑓 ∶ 𝐑 → 𝐑 be an arbitrary function. Show that the functions

𝑓even(𝑥) =
1
2
[𝑓(𝑥) + 𝑓(−𝑥)], 𝑓odd(𝑥) =

1
2
[𝑓(𝑥) − 𝑓(−𝑥)]

are even and odd, respectively.
(c) Suppose there exist an even function 𝐸 and an odd function 𝑂 such that 𝑓(𝑥) =

𝐸(𝑥) + 𝑂(𝑥) for all real 𝑥. Find formulas for 𝐸 and 𝑂. Hint: Compute 𝑓(−𝑥).



66 4. Mappings and Relations

(d) Prove that every function 𝑓 ∶ 𝐑 → 𝐑 can be written uniquely as the sum of an
even function and an odd function. These functions are called the even part and
odd part of 𝑓.

(e) Find the even and odd parts of𝑓(𝑥) = 𝑥3−2𝑥2+𝑥+1, 𝑔(𝑥) = 𝑒𝑥, and ℎ(𝑥) = cos 𝑥.
Exercise 4.16. Suppose 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 is a polynomial.
(a) Prove the following are equivalent: (i) 𝑝 is even. (ii) 𝑎2𝑘+1 = 0 for all 𝑘. (iii) There

exists a polynomial 𝑞 such that 𝑝(𝑥) = 𝑞(𝑥2).
(b) State and prove a similar characterization of odd polynomials.

Exercise 4.17. The hyperbolic functions cosh and sinh are defined by

cosh 𝑥 = 1
2
(𝑒𝑥 + 𝑒−𝑥), sinh 𝑥 = 1

2
(𝑒𝑥 − 𝑒−𝑥), 𝑥 real.

(a) Show that cosh2 −sinh2 = 1. Carefully sketch the graphs of cosh and sinh on a
single set of axes. Suggestion: First calculate cosh± sinh.

(b) Show that for all real 𝑥,
cosh(2𝑥) = cosh2 𝑥 + sinh2 𝑥, sinh(2𝑥) = 2 cosh 𝑥 sinh 𝑥.

(c) Show that cosh′ = sinh and sinh′ = cosh.
(d) Find algebraic formulas for sinh−1, and for two branches of cosh−1. Use algebra

to show that the branches of cosh−1 differ by a sign.
Hint: Solve (e.g.) 𝑦 = sinh 𝑥 for 𝑥 by multiplying through by 𝑒𝑥 and rearranging
to get a quadratic in 𝑒𝑥; then use the quadratic formula.

Exercise 4.18. The hyperbolic tangent and hyperbolic secant functions are

tanh = sinh
cosh , sech = 1

cosh2
.

(a) Carefully sketch the graphs of tanh and sech on a single set of axes. Show that
tanh2 = 1 + sech2, and find formulas for tanh′ and sech′.

(b) Find an algebraic formula for the inverse function tanh−1. Hint: Solve 𝑦 = tanh 𝑥
for 𝑥 by cross-multiplying and rearranging.

Exercise 4.19. Let 𝑥 and 𝑦 be arbitrary real numbers. Show that
cosh(𝑥 + 𝑦) = cosh 𝑥 cosh 𝑦 + sinh 𝑥 sinh 𝑦,
sinh(𝑥 + 𝑦) = sinh 𝑥 cosh 𝑦 + cosh 𝑥 sinh 𝑦,

tanh(𝑥 + 𝑦) = tanh𝑥 + tanh 𝑦
1 + tanh 𝑥 tanh 𝑦 .

Exercise 4.20. Let 𝜙 be a real number, and recall Euler’s formula
𝑒𝑖𝜙 = cos 𝜙 + 𝑖 sin 𝜙.

(a) Express 𝑒−𝑖𝜙 in terms of cos 𝜙 and sin 𝜙.
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(b) Show that

cos 𝜙 = 𝑒𝑖𝜙 + 𝑒−𝑖𝜙
2 , sin 𝜙 = 𝑒𝑖𝜙 − 𝑒−𝑖𝜙

2𝑖 .
(c) Show that for all real 𝜙,

cosh(𝑖𝜙) = cos 𝜙, sinh(𝑖𝜙) = 𝑖 sin 𝜙.
(The hyperbolic functions are defined in Exercise 4.17.)

Exercise 4.21. Let 𝐴 be a non-empty set, and let 𝑅 = ∅ ⊆ 𝐴×𝐴. Prove 𝑅 is symmetric
and transitive, but not reflexive.

Exercise 4.22. Let 𝐴 be a set of people, and define a binary relation 𝑅 by 𝑎𝑅𝑏 if and
only if 𝑎 trusts 𝑏. What does it mean to say that 𝑅 is reflexive? 𝑅 is symmetric? 𝑅 is
transitive?

Exercise 4.23. Define a relation 𝑅 on 𝐙 by 𝑎𝑅𝑏 if and only if |𝑎| = |𝑏|.
(a) Prove 𝑅 is an equivalence relation.
(b) Let 𝑓 ∶ 𝐙 → 𝐙 be defined by 𝑓(𝑎) = 𝑎2. Is 𝑓 well-defined mod 𝑅?
(c) Let 𝑔 ∶ 𝐙 → 𝐙 be defined by 𝑔(𝑎) = 3𝑎. Is 𝑔 well-defined mod 𝑅?
(d) Prove 𝑓 ∶ 𝐙 → 𝐙 is well-defined mod 𝑅 if and only if 𝑓 is an even function; see

Exercise 4.15.

Exercise 4.24. Let 𝐴 = 𝐙, and define a relation 𝑅 by 𝑎𝑅𝑏 if and only if 𝑏 − 𝑎 is an
integer multiple of 4.
(a) Prove 𝑅 is an equivalence relation; describe the equivalence classes of 𝑅 and the

quotient 𝐙/𝑅.
(b) Let 𝑓 ∶ 𝐙 → 𝐂 be defined by 𝑓(𝑎) = (−1)𝑎. Prove 𝑓 is well-defined mod 𝑅. Is ̄𝑓

injective?
(c) Let 𝑔 ∶ 𝐙 → 𝐂 be defined by 𝑔(𝑎) = 𝑖𝑎. Is 𝑔 well-defined mod 𝑅? If so, is ̄𝑔

injective?

Exercise 4.25. Fix an integer 𝑛 ≥ 1, and define a relation 𝑅 on 𝐙 by 𝑎𝑅𝑏 if and only if
𝑏 − 𝑎 is an integer multiple of 𝑛.
(a) Show that 𝑅 is an equivalence relation.
(b) Show that the equivalence classes of 𝑅 are precisely the sets 𝐴𝑘 = [𝑘]𝑛 of Exer-

cise 3.15.
(c) For each 𝑛 with 3 ≤ 𝑛 ≤ 7, write out the integers from −10 to 10 inclusive,

and using 𝑛 colors or 𝑛 symbols of your choosing, mark each integer in your list
according to its equivalence class mod 𝑛.

Exercise 4.26. Let 𝑓 ∶ 𝐴 → 𝐴 be a mapping, and suppose the “maps-to” relation, 𝑎𝑅𝑏
if and only if 𝑏 = 𝑓(𝑎), is an equivalence relation. What can you say about 𝑓?
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Exercise 4.27. If 𝑅1 and 𝑅2 are equivalence relations on a set 𝐴, we say 𝑅1 is finer
than 𝑅2 if for all 𝑎 and 𝑎′ in 𝐴, 𝑎𝑅1𝑎′ implies 𝑎𝑅2𝑎′.

(a) Show that 𝑅1 is finer than 𝑅2 if and only if 𝑅1 ⊆ 𝑅2, if and only if “𝑅1 is more
discriminating than 𝑅2”.

(b) If 𝑅 is an equivalence relation on 𝐴 and 𝑓 ∶ 𝐴 → 𝐵 is a mapping, prove that
𝑓 is well-defined mod 𝑅 if and only if 𝑅 is finer than the “identified by 𝑓” relation
𝑎1𝑅𝑎2 if and only if 𝑓(𝑎1) = 𝑓(𝑎2).

Exercise 4.28. Let 𝑅 be an equivalence relation on 𝐴. If 𝑓 ∶ 𝐴 → 𝐵 is a mapping
such that 𝑎1𝑅𝑎2 if and only if 𝑓(𝑎1) = 𝑓(𝑎2), i.e., whose level sets are precisely the
equivalence classes of 𝑅, prove that the induced mapping ̄𝑓 ∶ 𝐴/𝑅 → 𝐵 is injective.

Exercise 4.29. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping, and define a relation on 𝐴 by 𝑎1𝑅𝑎2 if
and only if 𝑓(𝑎1) = 𝑓(𝑎2); see also Exercise 4.27.

(a) Prove 𝑅 is an equivalence relation, and the equivalence classes of 𝑅 are preimages
of singletons, namely level sets of 𝑓: 𝑓−1({𝑏}) for some 𝑏 in 𝐵.

(b) Let 𝑓 ∶ 𝐑 → 𝐑 be defined by 𝑓(𝑥) = 𝑥2. Describe the equivalence classes of 𝑓.
(c) Let 𝑓 ∶ 𝐑2 → 𝐑 be defined by 𝑓(𝑥, 𝑦) = 𝑥2 +𝑦2. Describe the equivalence classes

of 𝑓.

Exercise 4.30. Let 𝑓 ∶ 𝐴 → 𝐵 be a mapping. A mapping 𝑔 ∶ 𝐴 → 𝐵 is said to be
constant on the level sets of 𝑓 if 𝑓(𝑎1) = 𝑓(𝑎2) implies 𝑔(𝑎1) = 𝑔(𝑎2). (Compare the
preceding three exercises.)

(a) Define 𝑓 ∶ 𝐑2 → 𝐑 by 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2. Which of the following are constant on
the level sets of 𝑓?

𝑔1(𝑥, 𝑦) = (1 − √𝑥2 + 𝑦2)2, 𝑔2(𝑥, 𝑦) = 𝑥2 − 𝑦2, 𝑔3(𝑥, 𝑦) = 1.

(b) For a general mapping 𝑓 ∶ 𝐴 → 𝐵, prove the following are equivalent: (i) 𝑔 is
constant on the level sets of 𝑓. (ii) There exists a mapping 𝜙 ∶ 𝐵 → 𝐵 such that
𝑔 = 𝜙 ∘ 𝑓.

Exercise 4.31. Fix an integer 𝑛 ≥ 2, let 𝑅 be congruence mod 𝑛, the relation of Exer-
cise 4.25, let 𝐙𝑛 = 𝐙/𝑅 denote the set of equivalence classes of 𝑅, and let Π ∶ 𝐙 → 𝐙𝑛
be the quotient map.

(a) If 𝑎 is an integer, show the mapping 𝑓𝑎 ∶ 𝐙 → 𝐙𝑛 defined by 𝑓𝑎(𝑥) = Π(𝑎𝑥) is
well-defined mod 𝑅. (In other words, if 𝑥𝑅𝑦, then (𝑎𝑥)𝑅(𝑎𝑦).)

(b) Show there is a mapping ̄𝑓𝑎 ∶ 𝐙𝑛 → 𝐙𝑛 satisfying ̄𝑓𝑎(Π(𝑥)) = 𝑓𝑎(𝑥) for all inte-
gers 𝑥.

(c) If 𝑛 = 8, tabulate the values 𝑓𝑎(𝑥) for 0 ≤ 𝑥 < 8 and 1 ≤ 𝑎 ≤ 5.
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Exercise 4.32. In each part, either show that the indicated mapping exists or explain
why themapping does not exist. (Themain point to check iswhether the given formula
is well-defined, i.e., returns a single value for a single input. This is an issue because a
single input may have multiple representations.)
(a) 𝑓 ∶ 𝐙6 → 𝐙3 defined by 𝑓([𝑥]6) = [𝑥]3.
(b) 𝑓 ∶ 𝐙6 → 𝐙4 defined by 𝑓([𝑥]6) = [𝑥]4.
(c) 𝑓 ∶ 𝐙6 → 𝐙4 defined by 𝑓([𝑥]6) = [2𝑥]4.
(d) 𝑓 ∶ 𝐙3 → 𝐙6 defined by 𝑓([𝑥]3) = [𝑥]6.
(e) 𝑓 ∶ 𝐙3 → 𝐙6 defined by 𝑓([𝑥]3) = [2𝑥]6.
(e) 𝑓 ∶ 𝐙3 → 𝐙6 defined by 𝑓([𝑥]3) = [3𝑥]6.
Exercise 4.33. Let 𝐼1 and 𝐼2 be intervals of real numbers. A mapping 𝑓 ∶ 𝐼1 → 𝐼2 is
increasing if, for all 𝑥 and 𝑦 in 𝐼1, 𝑥 < 𝑦 implies 𝑓(𝑥) < 𝑓(𝑦).
(a) Prove that a composition of increasing mappings is increasing.
(b) Prove that if 𝑓 is an increasing bijection, then the inverse 𝑓−1 is an increasing

bijection.

Exercise 4.34. Let 𝒫(𝐂) denote the set of complex paths, i.e., mappings from some
closed, bounded real interval 𝐼 to 𝐂. We say two paths 𝛾1 ∶ 𝐼1 → 𝐂 and 𝛾2 ∶ 𝐼2 → 𝐂 are
reparametrizations, and write 𝛾1 ∼ 𝛾2, if there exists an increasing bijection 𝜏 ∶ 𝐼1 → 𝐼2
such that 𝛾1 = 𝛾2∘𝜏. Prove that∼ is an equivalence relation on𝒫(𝐂), and that equivalent
paths have the same image.

Exercise 4.35. Imagine a world where the natural numbers are known, but the inte-
gers are not. For example, 2 = 1+𝑥 “has a solution”, but 1 = 2+𝑥 “has no solution”. For
a time, mathematicians cope by inventing symbols, such as “−1”, to denote “negative”
numbers. These fictitious entities turn out to be so useful that logical care demands
they be placed on a firm logical foundation.

This exercise outlines an implementation, taking its cue from the equation 𝑛1 =
𝑛2 + 𝑥. The goal is to construct—using only natural numbers and operations of set
theory—a larger collection of “numbers” that contains a copy of 𝐍 and in which the
equation𝑚 = 𝑛+𝑥 has a solution when𝑚 and 𝑛 are numbers of the more general type.

Intuitively, an integer will be an ordered pair of natural numbers. The pair 𝑥 =
(𝑛1, 𝑛2) corresponds to the solution of 𝑛1 = 𝑛2 + 𝑥. For example, the pair (1, 2) corre-
sponds to the solution of 1 = 2 + 𝑥, namely to the integer 𝑥 = −1.

Many different pairs represent the same number; (4, 1), (9, 6), and (1968, 1965) all
correspond to 3. Two pairs (𝑛1, 𝑛2) and (𝑚1, 𝑚2) represent the same number exactly
when 𝑛1 − 𝑛2 = 𝑚1 − 𝑚2, that is, when 𝑛1 + 𝑚2 = 𝑛2 + 𝑚1. We are therefore led to
define the relation
(4.1) (𝑚1, 𝑚2) ∼ (𝑛1, 𝑛2) if and only if 𝑛1 +𝑚2 = 𝑛2 +𝑚1.
(a) Prove that (4.1) defines an equivalence relation on the set 𝑋 = 𝐍×𝐍.

(An integer is an equivalence class of𝐍×𝐍 with respect to (4.1).)
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(b) Define the sum of two integers by adding representatives:
(𝑚1, 𝑚2) ⊕ (𝑛1, 𝑛2) = (𝑚1 + 𝑛1, 𝑚2 + 𝑛2).

Show that “addition” ⊕ is well-defined modulo (4.1). Explicitly, if (𝑚1, 𝑚2) ∼
(𝑚′

1, 𝑚′
2) and (𝑛1, 𝑛2) ∼ (𝑛′1, 𝑛′2), then

(𝑚1, 𝑚2) ⊕ (𝑛1, 𝑛2) ∼ (𝑚′
1, 𝑚′

2) ⊕ (𝑛′1, 𝑛′2).
(c) Motivated by the idea that (𝑚1, 𝑚2) and (𝑛1, 𝑛2) represent 𝑚1 − 𝑚2 and 𝑛1 − 𝑛2,

define the product of two integers by
(𝑚1, 𝑚2) ⊙ (𝑛1, 𝑛2) = (𝑚1𝑛1 +𝑚2𝑛2, 𝑚1𝑛2 + 𝑛1𝑚2).

Show that “multiplication”⊙ is well-defined modulo (4.1).
(d) Using commutativity and associativity of addition and multiplication of natural

numbers, verify that⊕ and⊙ are commutative and associative.
(e) Show that if𝑚 and 𝑛 are natural numbers, then

(𝑚, 0) ⊕ (𝑛, 0) = (𝑚 + 𝑛, 0),
(𝑚, 0) ⊙ (𝑛, 0) = (𝑚𝑛, 0).

That is, the equivalence class [(𝑛, 0)] corresponds to the natural number 𝑛, so we
have succeeded in building a copy of𝐍 inside 𝐙.

(f) Show that 𝑚 = 𝑛 + 𝑥, i.e., (𝑚1, 𝑚2) = (𝑛1, 𝑛2) ⊕ (𝑥1, 𝑥2), has a solution for all
integers𝑚 and 𝑛.
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