
Chapter 2

Congruences

We study the basic facts concerning congruences in this chapter. After introducing the
notion of congruence, we investigate residue classes, residue systems, and Euler’s func-
tion 𝜑. We prove the theorems of Euler–Fermat and Wilson, using linear congruences
for the latter one. Related to linear congruences, we treat also simultaneous systems
of congruences. We shall learn more about congruences in Chapters 3 and 4.

2.1. Elementary Properties

We often see in divisibility problems that only the remainder matters, i.e. two integers
behave identically if their remainders are the same. This (too) underlines the introduc-
tion of the notion below:

Definition 2.1.1. Let 𝑎 and 𝑏 be integers and 𝑚 a positive integer. We say that 𝑎 is
congruent to 𝑏modulo𝑚 if𝑚 ∣ 𝑎 − 𝑏. ♣

Notation: 𝑎 ≡ 𝑏 (mod 𝑚) or just 𝑎 ≡ 𝑏 (𝑚). The number𝑚 is called themodulus
and is kept fixed, in general. As𝑚 ∣ 𝑎 − 𝑏 if and only if𝑚 ∣ 𝑏 − 𝑎, therefore

𝑎 ≡ 𝑏 (mod 𝑚) ⟺ 𝑏 ≡ 𝑎 (mod 𝑚) ,

and sowemay say also that “𝑎 and 𝑏 are congruentmodulo𝑚”. (Instead of “modulo𝑚”,
we can use the expressions “mod 𝑚,” or “with respect to the modulus 𝑚,” or “related
to the modulus𝑚,” as well.)

Clearly, 𝑎 and 𝑏 are congruent modulo 𝑚 if and only if 𝑎 and 𝑏 give the same
(least non-negative) remainder when they are divided by 𝑚. (The same holds for the
remainder of least absolute value.)

If 𝑎 and 𝑏 are not congruent modulo𝑚, we write 𝑎 ≢ 𝑏 (mod 𝑚), and we say that
𝑎 and 𝑏 are incongruentmodulo𝑚 (or 𝑎 is incongruent to 𝑏modulo𝑚).

Example. 11 ≡ 5 (mod 3), 32 ≡ −1 (mod 11), 21 ≢ 6 (mod 10).
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38 2. Congruences

Clearly, any two integers are congruent with respect to the modulus𝑚 = 1.
The definition of congruence can trivially be extended for𝑚 < 0, butwe can ignore

it since𝑚 ∣ 𝑎 − 𝑏 if and only if −𝑚 ∣ 𝑎 − 𝑏.

Theorem 2.1.2. (i) 𝑎 ≡ 𝑎 (mod 𝑚) for every 𝑎.
(ii) 𝑎 ≡ 𝑏 (mod 𝑚)⟹ 𝑏 ≡ 𝑎 (mod 𝑚).
(iii) 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑏 ≡ 𝑐 (mod 𝑚)⟹ 𝑎 ≡ 𝑐 (mod 𝑚).
(iv) 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚)⟹ 𝑎+𝑐 ≡ 𝑏+𝑑 (mod 𝑚) and 𝑎−𝑐 ≡ 𝑏−𝑑

(mod 𝑚).
(v) 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚)⟹ 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑚). ♣

Proof. All the assertions follow easily from the definition of congruence and the ele-
mentary properties of divisibility, hence we verify only property (v) as an illustration.

We rewrite the assumptions as𝑚 ∣ 𝑎 − 𝑏 and𝑚 ∣ 𝑐 − 𝑑 which imply
𝑚 ∣ 𝑐(𝑎 − 𝑏) + 𝑏(𝑐 − 𝑑) = 𝑎𝑐 − 𝑏𝑑, so 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑚) . □

Properties (i), (ii), and (iii) express that congruence is reflexive, symmmetric, and
transitive, hence it is an equivalence relation. We can thus divide the integers into (pair-
wise) disjoint sets of numbers congruent to each other, i.e. those that give the same
remainder when divided by𝑚. (Properties (i)–(iii) guarantee that the expression “con-
gruent to each other”makes sense.) These sets are called residue classesmodulo𝑚. We
shall study them in Section 2.2.

By (iv) and (v), congruences (with the same modulus) can be added, subtracted,
and multiplied. This implies immediately that we can add the same number to both
sides of a congruence, and this holds also for subtraction and multiplication. Further,
a congruence can be multiplied by itself arbitrarily many times, so we may raise a con-
gruence to a power with a positive integer exponent:

(vi) 𝑎 ≡ 𝑏 (mod 𝑚)⟹ 𝑎+ 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑚) and 𝑎 − 𝑐 ≡ 𝑏 − 𝑐 (mod 𝑚).
(vii) 𝑎 ≡ 𝑏 (mod 𝑚)⟹ 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑚).
(viii) 𝑎 ≡ 𝑏 (mod 𝑚)⟹ 𝑎𝑛 ≡ 𝑏𝑛 (mod 𝑚).

The repeated application of these relations yields the useful law:

(ix) Let 𝑓 be a polynomial with integer coefficients. Then
𝑎 ≡ 𝑏 (mod 𝑚)⟹ 𝑓(𝑎) ≡ 𝑓(𝑏) (mod 𝑚) .

We illustrate the efficiency of the above rules with a few examples.

Examples. E1 Demonstrate that any natural number 𝑛 satisfies
17 ∣ 33𝑛+152𝑛+1 + 25𝑛+111𝑛.

Solution: We have to show

33𝑛+152𝑛+1 + 25𝑛+111𝑛 ≡ 0 (mod 17) .
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We replace the left-hand side with congruent expressions till we obtain 0:

33𝑛+152𝑛+1 + 25𝑛+111𝑛 = 3 ⋅ 27𝑛 ⋅ 5 ⋅ 25𝑛 + 2 ⋅ 32𝑛 ⋅ 11𝑛 ≡
≡ 15(−7)𝑛8𝑛 + 2(−2)𝑛(−6)𝑛 =
= 15(−56)𝑛 + 2(12)𝑛 ≡ 15(−5)𝑛 + 2(−5)𝑛 =
= 17(−5)𝑛 ≡ 0 (mod 17) .

E2 Give a new proof for the divisibility 𝑎 − 𝑏 ∣ 𝑎𝑛 − 𝑏𝑛.
Solution: Clearly, we can restrict ourselves to the case 𝑎 − 𝑏 > 0. Applying (viii),
we have

𝑎 ≡ 𝑏 (mod 𝑎 − 𝑏)⟹ 𝑎𝑛 ≡ 𝑏𝑛 (mod 𝑎 − 𝑏) .

E3 Verify that 232+1 is a composite number. (Cf. with Exercise 1.4.4 and Section 5.2.)
Solution: We establish the divisibility 641 ∣ 232 + 1 relying on

641 = 54 + 24 = 5 ⋅ 27 + 1.

We infer

−1 ≡ 5 ⋅ 27 (mod 641) and 54 ≡ −24 (mod 641) .

Raising the first congruence to the fourth power and substituting the result into
the second one, we obtain

1 = (−1)4 ≡ 54 ⋅ 228 ≡ −24 ⋅ 228 = −232 (mod 641) ,

so 641 ∣ 232 + 1.

We have seen that concerning addition, subtraction, and multiplication, congru-
ences behave like equalities. There is a big difference for division, however; two con-
gruencesmust not be divided. First of all, the results of the divisions are not always
integers, and then the congruence between the fractional quotients makes no sense
since only integers can appear in congruences. But even if the quotients are integers,
the congruence obtained after the division will not necessarily be true. For example,

28 ≡ 46 (mod 6) and 2 ≡ 2 (mod 6) but 14 ≢ 23 (mod 6) .

Concerning division of congruences, we should be aware that also a fraction means a
division. Therefore we must not replace the numerator or denominator of a fraction
with an integer value even when the new fraction is an integer. E.g.

45 ≡ 35 (mod 10) and 15 ≡ 5 (mod 10) but 3 = 45
15 ≢

35
5 = 7 (mod 10) .

After clarifying what is forbidden, let us see what we are allowed to do. We shall deal
only with the special case when division is just cancellation. The following theorem
states that in performing the cancellation, we have to change the modulus:

Theorem 2.1.3. Let 𝑑 = (𝑐,𝑚). Then 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑚) if and only if 𝑎 ≡ 𝑏 (mod 𝑚
𝑑 ).
♣
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Proof. By the definition of congruence, we have

𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑚) ⟺ 𝑚 ∣ (𝑎 − 𝑏)𝑐,

which is equivalent to the divisibility

(2.1.1) 𝑚
𝑑
|| (𝑎 − 𝑏) 𝑐𝑑 .

Since (𝑚/𝑑, 𝑐/𝑑) = 1, (2.1.1) holds if and only if
𝑚
𝑑
|| 𝑎 − 𝑏, i.e. 𝑎 ≡ 𝑏 (mod 𝑚

𝑑 ) . □

An important special case of Theorem 2.1.3 is when 𝑐 and the modulus are co-
prime. Then the congruence remains valid with the same modulus after cancellation
by 𝑐:

Theorem 2.1.3A.

𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑚) , (𝑐,𝑚) = 1⟹ 𝑎 ≡ 𝑏 (mod 𝑚) .

Exercises 2.1

1. Prove 23 ∣ 61𝑘+1 + 11𝑘72𝑘33𝑘25𝑘+3.

2. What are the last three digits of 999777888 (in decimal representation)?

3. Give a new proof using congruences for the divisibility rules by 9 and 11 (Exer-
cise 1.1.14) and for their generalizations in other number systems (Exercise 1.2.14).

4. True or false?

(a) 𝑘 ∣ 𝑛, 𝑎 ≡ 𝑏 (mod 𝑛)⟹ 𝑎 ≡ 𝑏 (mod 𝑘).
(b) 𝑘 ∣ 𝑛, 𝑎 ≡ 𝑏 (mod 𝑘)⟹ 𝑎 ≡ 𝑏 (mod 𝑛).
(c) 𝑎 ≡ 𝑏 (mod 𝑛), 𝑎 ≡ 𝑏 (mod 𝑘) ⟺ 𝑎 ≡ 𝑏 (mod 𝑘𝑛).
(d) 𝑎 ≡ 𝑏 (mod 𝑛), 𝑎 ≡ 𝑏 (mod 𝑘) ⟺ 𝑎 ≡ 𝑏 (mod [𝑘, 𝑛]).
(e) 𝑎 ≡ 𝑏 (mod 𝑛) ⟺ 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑘𝑛).
(f) 𝑎 ≡ 𝑏 (mod 𝑛), 𝑐 ≡ 𝑑 (mod 𝑘)⟹ 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑘𝑛).
(g) 𝑎2 ≡ 𝑏2 (mod 𝑛)⟹ 𝑎 ≡ ±𝑏 (mod 𝑛).
(h) 𝑎2 ≡ 𝑏2 (mod 101)⟹ 𝑎 ≡ ±𝑏 (mod 101).

5. There are several digits that can not be the last one in the decimal representation
of a square. Howmany such digits can be found in the number system of base 101?

6. Comment on the following “theorem” and “proof” of Professor Donkey Monkey:
“Theorem: For any integer 𝑛 > 3, we have (𝑛4) ≡ (𝑛+14 ) (mod 4).
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Proof: Since 𝑛 + 1 ≡ 𝑛 − 3 (mod 4) holds for every 𝑛,

(𝑛4) =
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

1 ⋅ 2 ⋅ 3 ⋅ 4 ≡

≡ 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 + 1)
1 ⋅ 2 ⋅ 3 ⋅ 4 = (𝑛 + 1

4 ) (mod 4) .”

7. Verify: 𝑚 ∣ 𝑎 − 𝑏⟹𝑚2 ∣ 𝑎𝑚 − 𝑏𝑚.
8. Assuming 3 ∤ 𝑎 and (6, 𝑛) = 1, prove 𝑎𝑛 ≡ 𝑏𝑛 (mod 3𝑛)⟹ 𝑎 ≡ 𝑏 (mod 3𝑛).
9. Let𝑝 > 2 be a prime and 1 ≤ 𝑘 ≤ 𝑝−1. Verify the following congruencesmodulo𝑝:

(a) (𝑝𝑘) ≡ 0
(b) (𝑝−1𝑘 ) ≡ (−1)𝑘

(c) (𝑝−2𝑘 ) ≡ (−1)𝑘(𝑘 + 1).

10. Determine all primes 𝑝 for which the remainder of (3𝑝𝑝 )when divided by 𝑝 is 𝑝−2.

* 11. Let 𝑝 be a prime. Prove the following congruences modulo 𝑝:

(a) (𝑛𝑝) ≡ ⌊𝑛𝑝 ⌋
(b) ( 𝑛𝑘𝑝) ≡ (⌊𝑛/𝑝⌋𝑘 )

(c) ( 𝑛𝑝𝑘) ≡ ⌊ 𝑛
𝑝𝑘 ⌋.

2.2. Residue Systems and Residue Classes

Wementioned the notion of a residue class modulo𝑚 after Theorem 2.1.2: it is the set
of all integers giving the same remainder when divided by𝑚.

Definition 2.2.1. Given themodulus𝑚, the set of integers congruent to 𝑎 is called the
residue class represented by 𝑎. ♣

Notation: (𝑎)𝑚. If there is no ambiguity, we can omit the index𝑚 referring to the
modulus.

Thus, the residue class (𝑎)𝑚 is an infinite arithmetic progression in both directions
with difference𝑚 and 𝑎 being one of its elements. There are𝑚 residue classes mod𝑚,
and each contains infinitely many numbers. By the definition, (𝑎)𝑚 = (𝑐)𝑚 if and only
if 𝑎 ≡ 𝑐 (mod 𝑚).

Example. (23)7 = {. . . , −5, 2, 9, 16, 23, 30, . . . } = (100)7.

Definition 2.2.2. Given the modulus 𝑚, choosing one element from each residue
class, we obtain a complete residue systemmodulo𝑚. ♣

Example. {33, −5, 11, −11, −8} is a complete residue system modulo 5.

We use mostly the following complete residue systems:

(A) Least non-negative residues: 0, 1, . . . ,𝑚− 1.
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(B) Residues of least absolute value:

0, ±1, ±2, . . . , ±𝑚 − 1
2 , for𝑚 odd

and
0, ±1, ±2, . . . , ±𝑚 − 2

2 , 𝑚2 , for𝑚 even

(in the latter,𝑚/2 can be replaced by −𝑚/2).
We can apply the following simple criterion to check whether or not given numbers
form a complete residue system:

Theorem 2.2.3. A set of integers forms a complete residue system modulo𝑚 if and only
if

(i) their number is𝑚 and

(ii) they are pairwise incongruent modulo𝑚. ♣

Proof. Let 𝐶𝑚 be a complete residue system modulo 𝑚. Since there are 𝑚 residue
classes and we picked one element from each class, 𝐶𝑚 contains exactly 𝑚 numbers.
Further, we took each number from a different residue class, hence the elements of 𝐶𝑚
are pairwise incongruent modulo𝑚.

Conversely, consider 𝑚 integers pairwise incongruent modulo 𝑚. Then they be-
long to distinct residue classes. Since their number is 𝑚, they represent 𝑚 residue
classes, i.e. all classes are represented. Thus, these integers form a complete residue
system modulo𝑚. □

Multiplying a complete residue system by an integer coprime to the modulus and
then adding an arbitrary integer yields a complete residue system again:

Theorem 2.2.4. If 𝑟1, 𝑟2, . . . , 𝑟𝑚 is a complete residue system modulo𝑚, (𝑎,𝑚) = 1, and
𝑏 is any integer, then

𝑎𝑟1 + 𝑏, 𝑎𝑟2 + 𝑏, . . . , 𝑎𝑟𝑚 + 𝑏
is a complete residue system modulo𝑚. ♣

Proof. Since the new system has𝑚 elements, it is enough to show, by Theorem 2.2.3,
that the elements are pairwise incongruent mod 𝑚. We have to prove that 𝑎𝑟𝑖 + 𝑏 ≡
𝑎𝑟𝑗 + 𝑏 (mod 𝑚) implies 𝑖 = 𝑗. Subtracting 𝑏 from both sides, we obtain 𝑎𝑟𝑖 ≡ 𝑎𝑟𝑗
(mod 𝑚). Since (𝑎,𝑚) = 1, by Theorem 2.1.3A, we can cancel 𝑎: 𝑟𝑖 ≡ 𝑟𝑗 (mod 𝑚), and
so 𝑖 = 𝑗, indeed. □

Note that for (𝑎,𝑚) ≠ 1, the integers 𝑎𝑟𝑖+𝑏 never form a complete residue system;
see Exercise 2.2.11.

We examine now the distribution of the integers coprime to the modulus in the
residue classes. It turns out that in a residue class, either all elements, or no elements
are coprime to the modulus:

Let 𝑎 ≡ 𝑏 (mod 𝑚). Then (𝑎,𝑚) = 1 if and only if (𝑏,𝑚) = 1.
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We prove a stronger assertion in the next theorem:

Theorem 2.2.5.
𝑎 ≡ 𝑏 (mod 𝑚)⟹ (𝑎,𝑚) = (𝑏,𝑚). ♣

Proof. By the assumption, 𝑏 = 𝑎 +𝑚𝑐 for some integer 𝑐.
On the right-hand side, both 𝑎 and𝑚 are divisible by (𝑎,𝑚), hence (𝑎,𝑚) ∣ 𝑏. This

means that (𝑎,𝑚) is a common divisor of 𝑏 and𝑚, hence (𝑎,𝑚) ∣ (𝑏,𝑚).
We get the converse divisibility (𝑏,𝑚) ∣ (𝑎,𝑚) similarly, and so (𝑎,𝑚) = (𝑏,𝑚). □

The residue classes with elements coprime to the modulus play an important role
in the sequel:

Definition 2.2.6. A residue class (𝑎)𝑚 is called a reduced residue class (mod 𝑚) if
(𝑎,𝑚) = 1. ♣

As mentioned previously, Theorem 2.2.5 implies that if some element of a residue
class is coprime to the modulus, then every element in the residue class has this prop-
erty. Therefore Definition 2.2.6 does not depend on which number was picked to rep-
resent the residue class (𝑎)𝑚.

We introduce now one of the most important functions in number theory:

Definition 2.2.7 (Euler’s function 𝜑). For 𝑛 given, 𝜑(𝑛) counts how many integers of
1, 2, . . . , 𝑛 are coprime to 𝑛. ♣
Example. 𝜑(1) = 1, 𝜑(10) = 4, 𝜑(𝑛) = 𝑛 − 1 if and only if 𝑛 is a prime.

Clearly, 𝜑(𝑛) is also the number of reduced residue classes modulo 𝑛.
We can easily compute 𝜑(𝑛) from the standard form of 𝑛; we shall discuss this

formula in Section 2.3.
Next, we define the notion of a reduced residue systemanalogously to the complete

residue system:

Definition 2.2.8. Given the modulus 𝑚, choosing one element from each reduced
residue class, we obtain a reduced residue systemmodulo𝑚. ♣
Example. {17, −5, 11, −11} is a reduced residue system modulo 12.

The simplest way to obtain a reduced residue system is to select the elements co-
prime to the modulus from the least non-negative remainders or from the remainders
of least absolute value.

Now, we prove the analogues of Theorems 2.2.3 and 2.2.4 for reduced residue sys-
tems.

Theorem 2.2.9. A set of integers forms a reduced residue system modulo𝑚 if and only
if

(i) their number is 𝜑(𝑚)
(ii) they are pairwise incongruent modulo𝑚 and
(iii) each of them is coprime to𝑚. ♣
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Proof. Let 𝑅𝑚 be a reduced residue system modulo 𝑚. Since there are 𝜑(𝑚) reduced
residue classes and we picked one element from each, 𝑅𝑚 contains exactly 𝜑(𝑚) el-
ements. Further, because we took each element from a different residue class, the
elements of 𝑅𝑚 are pairwise incongruent modulo 𝑚. Finally, every element of 𝑅𝑚 is
coprime to𝑚, since they were chosen from reduced residue classes.

Conversely, consider 𝜑(𝑚) pairwise incongruent integers modulo 𝑚 that are co-
prime to𝑚. The pairwise incongruence and the relative primeness guarantee that they
belong to distinct reduced residue classes. Since their number is 𝜑(𝑚), they represent
𝜑(𝑚) reduced residue classes, i.e. all classes are represented. Thus, these integers form
a reduced residue system modulo𝑚. □

Theorem2.2.10. If 𝑟1, 𝑟2, . . . , 𝑟𝜑(𝑚) is a reduced residue systemmodulo𝑚 and (𝑎,𝑚) = 1,
then

𝑎𝑟1, 𝑎𝑟2, . . . , 𝑎𝑟𝑚
is also a reduced residue system modulo𝑚. ♣

Proof. We check criteria (i)–(iii) of Theorem 2.2.9.

(i) The new system has 𝜑(𝑚) elements.
(ii) 𝑎𝑟𝑖 ≡ 𝑎𝑟𝑗 (mod 𝑚), (𝑎,𝑚) = 1⟹ 𝑟𝑖 ≡ 𝑟𝑗 (mod 𝑚)⟹ 𝑖 = 𝑗.
(iii) (𝑎,𝑚) = 1, (𝑟𝑖, 𝑚) = 1⟹ (𝑎𝑟𝑖, 𝑚) = 1. □

Note that for (𝑎,𝑚) ≠ 1, the integers 𝑎𝑟𝑖 never form a reduced residue system, and
moreover none of them is coprime to𝑚.

Adding an integer 𝑏 to the elements of a reduced residue system will not, in gen-
eral, yield a reduced residue system, a significant difference from the complete residue
systems. See Exercise 2.2.12.

Exercises 2.2

We assume everywhere that the modulus𝑚 ≥ 2.
1. Determine the modulus 𝑚 knowing that the integers below are elements of a re-

duced residue system:
(a) 2 and 14
(b) 18, 78, and 178
(c) 𝑎 and −𝑎.

2. In how many (a) complete (b) reduced residue systems does every element 𝑎𝑖 sat-
isfy 0 ≤ 𝑎𝑖 ≤ 5𝑚 + 1?

3. Given𝑚, characterize those arithmetic progressions that are infinite in both direc-
tions and contain modulo𝑚
(a) a residue class
(b) a complete residue system?
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4. For which𝑚 ≥ 2 can we find a complete residue system consisting of

(a) odd numbers
(b) composite numbers
(c) squares
(d) integers ending with 1357 (in decimal representation)
(e) consecutive elements of a geometric series

S* (f) repunits (i.e. every digit is 1 in decimal system)
S* (g) powers?

5. For which𝑚 ≥ 2 can we find a reduced residue system consisting of

(a) multiples of 15
(b) numbers not divisible by 15
(c) squares
(d) integers ending with 1357 (in decimal representation)
(e) powers?

6. True or false?

(a) If 𝑟1, 𝑟2, . . . , 𝑟𝑘 is a reduced residue system modulo 7, then it is a reduced
residue system modulo 14.

(b) If 𝑟1, 𝑟2, . . . , 𝑟𝑘 is a reduced residue system modulo 14, then it is a reduced
residue system modulo 7.

7. (a) What is the remainder of the sum of elements of a complete residue system
modulo𝑚?

(b) Let𝑚 be even, and 𝑎1, 𝑎2, . . . , 𝑎𝑚 and 𝑏1, 𝑏2, . . . , 𝑏𝑚 be two complete residue
systemsmodulo𝑚. Prove that 𝑎1+𝑏1, . . . , 𝑎𝑚+𝑏𝑚 never is a complete residue
system modulo𝑚. What can we say for𝑚 odd?

(c) Examine the analogous questions for reduced residue systems instead of com-
plete residue systems.

S 8. (a) There are𝑚 trees around a circular clearing with a squirrel in each tree. The
squirrels want to get together in one tree, but they are allowed to move only
the following way: every minute, any two squirrels may jump to an adjacent
tree. For which values of𝑚 can they gather in one tree?

(b) What happens if we modify the admissible step so that the two squirrels must
jump to the adjacent trees in opposite directions (i.e. one of them clockwise,
and the other counterclockwise).

* 9. (a) Determine all𝑚 for which 0, 0+1, 0+1+2, . . . , 0+1+2+⋯+(𝑚−1) form
a complete residue system mod𝑚.

(b) For which𝑚 does there exist a complete residue system 𝑎1, . . . , 𝑎𝑚 mod𝑚 so
that 𝑎1, 𝑎1 + 𝑎2, 𝑎1 + 𝑎2 + 𝑎3, . . . , 𝑎1 + 𝑎2 + 𝑎3 +⋯ + 𝑎𝑚 is also a complete
residue system mod𝑚?
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10. Let 𝑘 ∣ 𝑚. True or false?
(a) Every residue class mod 𝑘 is the union of residue classes mod𝑚.
(b) Every reduced residue class mod 𝑘 is the union of reduced residue classes

mod𝑚.
* (c) Every reduced residue class mod 𝑘 contains a subset that is a reduced residue

class mod𝑚.
(d) Every reduced residue system mod 𝑘 can be extended to a reduced residue

system mod𝑚.
* (e) Every reduced residue systemmod𝑚 contains a reduced residue systemmod𝑘.

11. Let 𝑟1, 𝑟2, . . . , 𝑟𝑚 be a complete residue systemmodulo𝑚, (𝑎,𝑚) ≠ 1, and 𝑏 arbitrary.
(a) Prove that 𝑎𝑟1 + 𝑏, . . . , 𝑎𝑟𝑚 + 𝑏 is never a complete residue system modulo𝑚.
(b) Howmany residue classes modulo𝑚 are represented by the elements 𝑎𝑟1+𝑏,

. . . , 𝑎𝑟𝑚 + 𝑏 altogether?
S* 12. Let 𝑟1, 𝑟2, . . . , 𝑟𝜑(𝑚) be a reduced residue system modulo𝑚.

(a) Determine all integers 𝑎 such that the numbers 𝑎𝑟1, . . . , 𝑎𝑟𝜑(𝑚) are pairwise
incongruent modulo𝑚.

(b) Find all integers 𝑏 such that the numbers 𝑟1 + 𝑏, . . . , 𝑟𝜑(𝑚) + 𝑏 form a reduced
residue system modulo𝑚.

S* 13. For which integers 𝑚 and 𝑘 do there exist a complete residue system 𝑎1, . . . , 𝑎𝑚
modulo𝑚 and a complete residue system 𝑏1, . . . , 𝑏𝑘 modulo 𝑘 so that the numbers
𝑎𝑖𝑏𝑗 form a complete residue system modulo𝑚𝑘?

S 14. Let 𝑎 and 𝑏 be positive integers.
(a) Prove that

𝑇 = { 𝑖𝑏 + 𝑗𝑎 ∣ 𝑖 = 1, 2, . . . , 𝑎, 𝑗 = 1, 2, . . . , 𝑏 }
is a complete residue system modulo 𝑎𝑏 if and only if (𝑎, 𝑏) = 1.

(b) Let 𝑟1, . . . , 𝑟𝜑(𝑎) and 𝑠1, . . . , 𝑠𝜑(𝑏) be reduced residue systems modulo 𝑎 and
modulo 𝑏. Prove that

𝑅 = { 𝑟𝑖𝑏 + 𝑠𝑗𝑎 ∣ 𝑖 = 1, 2, . . . , 𝜑(𝑎), 𝑗 = 1, 2, . . . , 𝜑(𝑏) }
is a reduced residue system modulo 𝑎𝑏 if and only if (𝑎, 𝑏) = 1.

(c) Demonstrate that if (𝑎, 𝑏) = 1, then 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏).

2.3. Euler’s Function 𝜑

We introduced Euler’s function 𝜑 in Definition 2.2.7: If 𝑛 is a positive integer, then 𝜑(𝑛)
is the number of integers coprime to 𝑛 among the integers 1, 2, . . . , 𝑛.

This implies immediately that there are 𝜑(𝑚) reduced residue classes modulo 𝑚
and a reduced residue system consists of 𝜑(𝑚) integers.
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We prove now a formula for 𝜑(𝑛) from the standard form of 𝑛:

Theorem 2.3.1. Let the standard form of 𝑛 be

𝑛 = 𝑝𝛼11 𝑝𝛼22 . . . 𝑝𝛼𝑟𝑟 =
𝑟
∏
𝑖=1

𝑝𝛼𝑖𝑖 , where 𝛼𝑖 > 0.

Then

𝜑(𝑛) = (𝑝𝛼11 − 𝑝𝛼1−11 ) . . . (𝑝𝛼𝑟𝑟 − 𝑝𝛼𝑟−1𝑟 ) =
𝑟
∏
𝑖=1

(𝑝𝛼𝑖𝑖 − 𝑝𝛼𝑖−1𝑖 ) . ♣

This formula for 𝜑(𝑛) is valid only if the exponents 𝛼𝑖 in the standard form of 𝑛
are positive (in contrast e.g. to the formula for 𝑑(𝑛) in Theorem 1.6.3 which remains
valid even if we allow 0 to occur among the exponents 𝛼𝑖). Some equivalent forms of
the formula are:

𝜑(𝑛) =
𝑟
∏
𝑖=1

𝑝𝛼𝑖−1𝑖 (𝑝𝑖 − 1) = 𝑛
𝑟
∏
𝑖=1

(1 − 1
𝑝𝑖
) = 𝑛 ∏

𝑝∣𝑛
𝑝 prime

(1 − 1
𝑝) .

We give two proofs of Theorem 2.3.1. A third one can be derived from Exercise 6.5.4b.
Also, Exercises 2.2.14 and 2.6.10 contain two further verifications of assertion II which
is the key step in the first proof.

First proof. We infer the theorem from the two propositions below:

(I) If 𝑝 is a prime (and 𝛼 > 0), then 𝜑(𝑝𝛼) = 𝑝𝛼 − 𝑝𝛼−1.

(II) If (𝑎, 𝑏) = 1, then 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏).

These imply the theorem: It follows from II by induction on the number of factors
that if the integers 𝑎1, . . . , 𝑎𝑟 are pairwise coprime, then 𝜑(𝑎1 . . . 𝑎𝑟) = 𝜑(𝑎1) . . . 𝜑(𝑎𝑟).
Applying this for 𝑎𝑖 = 𝑝𝛼𝑖𝑖 and substituting the value for 𝜑(𝑝𝛼𝑖𝑖 ) obtained in I, we arrive
at the desired formula.

We start with the verification of I. An integer is coprime to 𝑝𝛼 if and only if it is not
divisible by 𝑝. Hence, we obtain the coprime integers to 𝑝𝛼 among 1, 2, . . . , 𝑝𝛼, if we
discard the multiples of 𝑝. We thus discard 𝑝, 2𝑝, . . . , 𝑝𝛼−1𝑝, which are 𝑝𝛼/𝑝 = 𝑝𝛼−1
numbers. This implies that 𝜑(𝑝𝛼) = 𝑝𝛼 − 𝑝𝛼−1 integers remain.

Now, we turn to the proof of II. (As indicated earlier, two other methods are avail-
able in Exercises 2.2.14 and 2.6.10.)

The number 𝜑(𝑎𝑏) is the number of positive integers not greater than 𝑎𝑏 that are
coprime to 𝑎𝑏, i.e. are relatively prime to both 𝑎 and 𝑏.

Denoting the smallest positive elements of the reduced residue classes modulo 𝑎
by 𝑟1, 𝑟2, . . . , 𝑟𝜑(𝑎), we enumerate all positive integers not greater than 𝑎𝑏 and coprime
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to 𝑎:

(2.3.1)

𝑟1 𝑟2 . . . 𝑟𝜑(𝑎)
𝑎 + 𝑟1 𝑎 + 𝑟2 . . . 𝑎 + 𝑟𝜑(𝑎)
2𝑎 + 𝑟1 2𝑎 + 𝑟2 . . . 2𝑎 + 𝑟𝜑(𝑎)

⋮ ⋮ ⋮
(𝑏 − 1)𝑎 + 𝑟1 (𝑏 − 1)𝑎 + 𝑟2 . . . (𝑏 − 1)𝑎 + 𝑟𝜑(𝑎)

We have to select those numbers from (2.3.1) that are coprime also to 𝑏.
Consider an arbitrary column of the table. For example, the integers in column 𝑖

are

(2.3.2) 𝑟𝑖, 𝑎 + 𝑟𝑖, 2𝑎 + 𝑟𝑖, . . . , (𝑏 − 1)𝑎 + 𝑟𝑖.

These numbers were obtained from the complete residue system 0, 1, . . . , 𝑏 − 1
modulo 𝑏 by multiplying the elements by 𝑎 coprime to 𝑏 and then adding 𝑟𝑖. By The-
orem 2.2.4, (2.3.2) is a complete residue system modulo 𝑏, so every column of table
(2.3.1) is a complete residue system modulo 𝑏.

Since a complete residue system modulo 𝑏 contains 𝜑(𝑏) elements coprime to 𝑏,
there are 𝜑(𝑏) numbers relatively prime to 𝑏 in each column of (2.3.1).

The number of columns in (2.3.1) is 𝜑(𝑎), so the table has altogether 𝜑(𝑎)𝜑(𝑏) ele-
ments coprime to 𝑏.

This means that there are 𝜑(𝑎)𝜑(𝑏) numbers among the positive integers not
greater than 𝑎𝑏 that are coprime both to 𝑎 and 𝑏, i.e. to 𝑎𝑏. By definition, this value
equals 𝜑(𝑎𝑏), hence 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏), indeed. □

Second proof. We use the Inclusion and Exclusion formula.
We have to determine, howmany numbers are coprime to 𝑛 among 1, 2, . . . , 𝑛, that

is, how many are divisible by none of the primes 𝑝1, 𝑝2, . . . , 𝑝𝑟.
Thus we have to delete those “bad” numbers from 1, 2, . . . , 𝑛 which are divisible

by one or more primes 𝑝𝑗 .
Consider first those elements that aremultiples of a given𝑝𝑗 (disregardingwhether

or not they are divisible by some other prime factors of 𝑛). Clearly, there are 𝑛/𝑝𝑗 such
integers.

Now we count those numbers that are divisible by a given set of primes 𝑝𝑗 (not
caring again whether or not they are multiples of some other prime factors of 𝑛). An
integer is divisible by both of two (distinct) primes if and only if it is divisible by their
product. Hence, 𝑛/(𝑝1𝑝2) elements are divisible by both 𝑝1 and 𝑝2, 𝑛/(𝑝1𝑝3𝑝7) ele-
ments are divisible by each of 𝑝1, 𝑝3, and 𝑝7, etc.

Thus, the Inclusion and Exclusion formula yields

(2.3.3) 𝜑(𝑛) = 𝑛− 𝑛
𝑝1

− 𝑛
𝑝2

−⋯− 𝑛
𝑝𝑟

+ 𝑛
𝑝1𝑝2

+ 𝑛
𝑝1𝑝3

+⋯+ 𝑛
𝑝𝑟−1𝑝𝑟

− 𝑛
𝑝1𝑝2𝑝3

− . . .
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A simple direct calculation verifies that the right-hand side of (2.3.3) is equal to the
product

𝑛
𝑟
∏
𝑖=1

(1 − 1
𝑝𝑖
) ,

which is an alternative version of the formula in the theorem. □

Exercises 2.3

1. Verify that 𝜑(𝑛) is even for every 𝑛 > 2.
2. Find all values of 𝑛 for which 𝜑(𝑛) is (a) 2 (b) 4 (c) 14 (d) 60.
3. Which is the smallest 𝑛 for which 𝜑(𝑛) is divisible by

(a) 210
(b) 310?

4. Determine all possible values of 𝜑(100𝑛)/𝜑(𝑛) for 𝑛 a positive integer.
5. Prove the following propositions.

(a) 𝑘 ∣ 𝑛⟹ 𝜑(𝑘) ∣ 𝜑(𝑛).
(b) 𝜑((𝑎, 𝑏)) || (𝜑(𝑎), 𝜑(𝑏)) and [𝜑(𝑎), 𝜑(𝑏)] || 𝜑([𝑎, 𝑏]).
(c) 𝜑((𝑎, 𝑏)) = (𝜑(𝑎), 𝜑(𝑏)) ⟺ [𝜑(𝑎), 𝜑(𝑏)] = 𝜑([𝑎, 𝑏]).

6. Show that 𝜑(𝑎)/𝜑(𝑏) = 𝑎/𝑏 holds if and only if 𝑎 and 𝑏 have exactly the same prime
factors.

7. Let 𝑛 > 2. True or false?
(a) If (𝑛, 𝜑(𝑛)) = 1, then 𝑛 is an odd squarefree number.
(b) If 𝑛 is an odd squarefree number, then (𝑛, 𝜑(𝑛)) = 1.

* 8. Prove that for every positive integer 𝑘 there exists an 𝑛 satisfying (𝑛, 𝜑(𝑛)) = 𝑘.
9. Verify that 𝜑(𝑛) + 𝑑(𝑛) ≤ 𝑛 + 1 holds for every 𝑛. When do we have equality?
10. (a) Demonstrate that if (𝑎, 𝑏) ≠ 1, then 𝜑(𝑎𝑏) > 𝜑(𝑎)𝜑(𝑏) (thus equality is never

true in this case).
(b) In the first proof of Theorem 2.3.1, the key step was the verification of II, i.e. of

(𝑎, 𝑏) = 1⟹ 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏). Where does the argument fail if 𝑎 and 𝑏 are
not coprime?

(c) Show that
𝜑(𝑎𝑏)𝜑((𝑎, 𝑏)) = (𝑎, 𝑏)𝜑(𝑎)𝜑(𝑏)

holds for every 𝑎 and 𝑏.
11. (a) Prove that 𝑛 − 𝜑(𝑛) ≥ √𝑛 if 𝑛 is composite. When is equality true?

(b) Find those 𝑛 for which 𝑛 − 𝜑(𝑛) is
(b1) 1
(b2) 6
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(b3) 7
(b4) 10.

12. Which integers occur in the range of the function 𝑛/𝜑(𝑛)?
13. Prove that 𝜑(𝑛2) = 𝜑(𝑘2) holds only for 𝑛 = 𝑘.
14. Verify∑𝑑∣𝑛 𝜑(𝑑) = 𝑛.
15. Show that 𝜑(𝑛) → ∞ if 𝑛 → ∞.

* 16. Demonstrate that for every positive integer 𝑘 there exists an 𝑛 satisfying 𝜑(𝑛) =
𝜑(𝑛 + 𝑘).

* 17. Exhibit 1000 distinct integers where the function 𝜑 assumes the same value.
S* 18. Determine all 𝑛 satisfying 𝜑(𝑛! ) = 𝑘! for some 𝑘.
S* 19. For which𝑚 can a reduced residue systemmod𝑚 form an arithmetic progression?

2.4. The Euler–Fermat Theorem

Theorem 2.4.1 (Euler–Fermat Theorem).
(𝑎,𝑚) = 1⟹ 𝑎𝜑(𝑚) ≡ 1 (mod 𝑚) . ♣

Proof. Let 𝑟1, 𝑟2, . . . , 𝑟𝜑(𝑚) be a reduced residue system modulo𝑚.
Since (𝑎,𝑚) = 1, 𝑎𝑟1, . . . , 𝑎𝑟𝜑(𝑚) is also a reduced residue system modulo𝑚.
This means that to every 1 ≤ 𝑖 ≤ 𝜑(𝑚), there exists exactly one 1 ≤ 𝑗 ≤ 𝜑(𝑚)

satisfying 𝑎𝑟𝑖 ≡ 𝑟𝑗 (mod 𝑚). Denote this 𝑟𝑗 by 𝑠𝑖:

(2.4.1)

𝑎𝑟1 ≡ 𝑠1 (mod 𝑚) ,
𝑎𝑟2 ≡ 𝑠2 (mod 𝑚) ,

⋮
𝑎𝑟𝜑(𝑚) ≡ 𝑠𝜑(𝑚) (mod 𝑚) .

Here 𝑠1, . . . , 𝑠𝜑(𝑚) is a permutation of the numbers 𝑟1, . . . , 𝑟𝜑(𝑚).
Multiplying the congruences in (2.4.1), we obtain

𝑎𝜑(𝑚)𝑟1𝑟2 . . . 𝑟𝜑(𝑚) ≡ 𝑠1𝑠2 . . . 𝑠𝜑(𝑚) (mod 𝑚) ,
or

(2.4.2) 𝑎𝜑(𝑚)𝑟1𝑟2 . . . 𝑟𝜑(𝑚) ≡ 𝑟1𝑟2 . . . 𝑟𝜑(𝑚) (mod 𝑚) .
Wecan cancel every 𝑟𝑖 in (2.4.2) , since (𝑟𝑖, 𝑚) = 1, which yields the desired congruence
𝑎𝜑(𝑚) ≡ 1 (mod 𝑚). □

An important special case is when the modulus is a prime 𝑝. Then 𝜑(𝑝) = 𝑝 − 1
and we obtain:

Theorem2.4.1A (First form of Fermat’s Little Theorem). If𝑝 is a prime and (𝑎, 𝑝) = 1,
then 𝑎𝑝−1 ≡ 1 (mod 𝑝).
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Note that for a prime 𝑝, the conditions (𝑎, 𝑝) = 1, 𝑝 ∤ 𝑎, and 𝑎 ≢ 0 (mod 𝑝) are
equivalent.

From Theorem 2.4.1A, it is easy to get a congruence valid for every 𝑎:

Theorem2.4.1B (Second form of Fermat’s Little Theorem). If𝑝 is a prime, then 𝑎𝑝 ≡ 𝑎
(mod 𝑝) holds for every 𝑎.

Proof. If 𝑝 ∤ 𝑎, then 𝑎𝑝−1 ≡ 1 (mod 𝑝) by Theorem 2.4.1A. Multiplying this congru-
ence by 𝑎, we obtain the desired 𝑎𝑝 ≡ 𝑎 (mod 𝑝).

If 𝑝 ∣ 𝑎, then 𝑎 ≡ 0 (mod 𝑝). Raising this to the 𝑝th power (or multiplying it by
𝑎𝑝−1), we get 𝑎𝑝 ≡ 0 (mod 𝑝), hence also 𝑎𝑝 ≡ 𝑎 (mod 𝑝) holds. □

Remarks: (1) The converse of the Euler–Fermat Theorem (Theorem2.4.1) is also true,
i.e. (𝑎,𝑚) = 1 is not only a sufficient, but also a necesssary condition for 𝑎𝜑(𝑚) ≡
1 (mod 𝑚). In fact, the following stronger proposition holds: There exists an
exponent 𝑘 > 0 such that 𝑎𝑘 ≡ 1 (mod 𝑚) only if 𝑎 and𝑚 are coprime. Namely,
𝑎𝑘 ≡ 1 (mod 𝑚) implies (𝑎𝑘, 𝑚) = (1,𝑚) = 1 by Theorem 2.2.5, hence also
(𝑎,𝑚) = 1must hold.

(2) The second form of Fermat’s Little Theorem (Theorem 2.4.1B) has no natural gen-
eralization for arbitrary modulus𝑚, i.e. there exists no simple variant of the gen-
eral Euler–Fermat Theorem that would be valid for every 𝑎 (see Exercise 2.4.15).

(3) As their names indicate, Theorems 2.4.1A and B are due to Fermat. Both variants
can be verified directly, without relying on Theorem 2.4.1. Form B can be proven
by induction (on𝑎), and formA follows easily (see Exercise 2.4.16). Theorem2.4.1
was found by Euler as a generalization of Fermat’s Little Theorem.

(4) The adjective “little” serves to distinguish this result from Fermat’s Last Theorem
which is a very famous and only recently solved problem of mathematics. We
shall treat this topic in Chapter 7.

Exercises 2.4

1. Prove 𝑛 ∣ 2𝑛! − 1 for any odd 𝑛.
2. Determine the last two digits of 17938642 (in decimal representation).
3. Verify that 𝑛20 + 4𝑛44 + 8𝑛80 is a multiple of 13 for every 𝑛.
4. Show that if 𝑛 is any integer, then at least one of 𝑛6+13 and 𝑛2+21 is a composite

number.

5. Prove 1703601900 ∣ 𝑎62 − 𝑎2 for every 𝑎.
6. Verify the following propositions:

(a) 11 ∣ 𝑎30 + 𝑏30 + 𝑐30 ⟹1130 ∣ 𝑎30 + 𝑏30 + 𝑐30.
(b) 9 ∣ 𝑎30 + 𝑏30 + 𝑐30 ⟹ 915 ∣ 𝑎30 + 𝑏30 + 𝑐30.
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7. Show that 𝑎88 − 𝑏88 is not divisible by 23 if and only if exactly one of 𝑎 and 𝑏 is
divisible by 23.

8. Let 𝑝 be a prime and 𝑟1, . . . , 𝑟𝑝 be a complete residue systemmod 𝑝. Prove that also
𝑟2𝑝−31 , . . . , 𝑟2𝑝−3𝑝 is a complete residue system mod 𝑝.

9. (a) Let 𝑝 be a prime, 𝑎 an integer, and 𝑖 and 𝑗 positive integers satisfying 𝑖 ≡ 𝑗
(mod 𝑝 − 1). Prove 𝑎𝑖 ≡ 𝑎𝑗 (mod 𝑝).

(b) How canwe generalize the assertion in (a) for arbitrary𝑚 (instead of primes)?
10. True or false? (With decimal notation and powerswith positive integer exponents.)

(a) Infinitely many powers of 133 terminate with the string 133.
(b) Infinitely many powers of 134 terminate with the string 134.
(c) Infinitely many powers of 136 terminate with the string 136.

11. Show that an infinite arithmetic progression of distinct positive integers𝑎, 𝑎+𝑑, . . . ,
𝑎 + 𝑘𝑑, . . . contains infinitely many powers of 𝑎 (with positive integer exponents)
if and only if 𝑑/(𝑎, 𝑑) and 𝑎 are coprime.

12. Give a new solution to Exercise 1.3.12a using the Euler–Fermat Theorem.
13. Verify that every positive odd divisor of 𝑛2 + 1 is of the form 4𝑘 + 1.
14. Assume that 19 divides 𝑎40 + 𝑏40. Show that then 19must divide both 𝑎 and 𝑏, as

well.
15. Verify the following propositions and investigate their relation to Fermat’s Little

Theorem.
(a) 𝑎𝜑(𝑚)+1 ≡ 𝑎 (mod 𝑚) holds for every 𝑎 if and only if𝑚 is squarefree.
(b) 𝑎𝑚 ≡ 𝑎𝑚−𝜑(𝑚) (mod 𝑚) holds for every𝑚 and 𝑎.
(c) 𝑎1729 ≡ 𝑎 (mod 1729) holds for every 𝑎.

16. Give a direct proof of both versions of Fermat’s Little Theorem: First verify Theo-
rem 2.4.1B by induction and then deduce Theorem 2.4.1A.

2.5. Linear Congruences

This section deals with the simplest type of congruences with variables (or congruence
equations), the linear congruences.

Definition 2.5.1. Let 𝑎 and 𝑏 be integers and 𝑚 a positive integer. The congruence
𝑎𝑥 ≡ 𝑏 (mod 𝑚) is called a linear congruence, and by a solution of it we mean an
integer 𝑠 which substituted into 𝑥makes the congruence valid. ♣

Clearly, if 𝑠 is a solution, then every other element of the residue class (𝑠)𝑚 is a
solution, too. Hence, to find all solutions, it is enough to check a complete residue
system to see which elements of it satisfy the congruence; then all solutions are the
integers congruent to them.

Therefore the number of solutions of a linear congruence is defined as how many
pairwise incongruent integers satisfy the congruence, i.e. what is the number of residue
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classes the solutions come from, or (again in a slightly different formulation) howmany
elements of a complete residue system make the congruence valid. The same applies
for congruences of higher degree as well, thus we define this convention immediately
for the general case.

Definition 2.5.2. Let 𝑓 be a polynomial with integer coefficients. The number of so-
lutions of the congruence 𝑓(𝑥) ≡ 0 (mod 𝑚) is how many elements 𝑠 of a complete
residue system modulo𝑚 satisfy 𝑓(𝑠) ≡ 0 (mod 𝑚). ♣

Since 𝑢 ≡ 𝑣 (mod 𝑚) ⟹ 𝑓(𝑢) ≡ 𝑓(𝑣) (mod 𝑚), this notion does not depend on
which complete residue system modulo𝑚 we considered.

Returning to linear congruences, we want to answer the following questions aris-
ing for equations in general:

(i) What is a necessary and sufficient condition for solvability?

(ii) How many solutions do we have?

(iii) How can we describe or characterize all solutions?

(iv) Which methods yield these solutions?

We discuss solvability first.

Theorem2.5.3. The congruence𝑎𝑥 ≡ 𝑏 (mod 𝑚) is solvable if and only if (𝑎,𝑚) ∣ 𝑏. ♣

Proof. The solvability of 𝑎𝑥 ≡ 𝑏 (mod 𝑚)means that 𝑎𝑠 ≡ 𝑏 (mod 𝑚) for some 𝑠.
This is equivalent to the existence of an integer 𝑡 satisfying 𝑎𝑠 + 𝑚𝑡 = 𝑏, i.e. 𝑠 and

𝑡 are a solution of the linear Diophantine equation 𝑎𝑥 + 𝑚𝑦 = 𝑏.
Hence, the linear congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑚) is solvable if and only if the linear

Diophantine equation 𝑎𝑥 + 𝑚𝑦 = 𝑏 is solvable.
The necessary and sufficient condition for the solvability of the latter is

(𝑎,𝑚) ∣ 𝑏, by Theorem 1.3.6. Thus the same criterion applies for the solvability of
𝑎𝑥 ≡ 𝑏 (mod 𝑚). □

We see from the proof that the linear congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑚) and the linear
Diophantine equation 𝑎𝑥 + 𝑚𝑦 = 𝑏 can be deduced from each other. (Moreover, the
linear Diophantine equation 𝑎𝑥 + 𝑚𝑦 = 𝑏 can also be transformed into the linear
congruence𝑚𝑦 ≡ 𝑏 (mod |𝑎|) if 𝑎 ≠ 0.)

Based on this, every result obtained for linear congruences can be used also for
linear Diophantine equations and vice versa.

We should be aware, however, of the significant differences: The solutions of a lin-
ear congruence are integers (or rather residue classes), whereas the solutions of a linear
Diophantine equation are pairs of integers; the number of solutions of a congruence is
finite, but a linear Diophantine equation has infinitely many solutions, etc.

In the next theorem, we determine the number of solutions of a linear congruence,
and also see how we can get all solutions from a given one.
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Theorem 2.5.4. (I) If 𝑎𝑥 ≡ 𝑏 (mod 𝑚) is solvable, then there are (𝑎,𝑚) solutions.
(II) Let (𝑎,𝑚) = 𝑑,𝑚 = 𝑑𝑚1, and 𝑠 be a solution of 𝑎𝑥 ≡ 𝑏 (mod 𝑚). Then
(2.5.1) 𝑠, 𝑠 + 𝑚1, 𝑠 + 2𝑚1, . . . , 𝑠 + (𝑑 − 1)𝑚1

are pairwise incongruent modulo 𝑚, satisfy the congruence, and every solution is
congruent to one of them modulo𝑚. ♣

Proof. We verify the two assertions simultaneously.
We assumed that 𝑠 was a solution, so

(2.5.2) 𝑎𝑠 ≡ 𝑏 (mod 𝑚) .
An integer 𝑡 is a solution if and only if
(2.5.3) 𝑎𝑡 ≡ 𝑏 (mod 𝑚) .
Using (2.5.2), formula (2.5.3) is equivalent to
(2.5.4) 𝑎𝑡 ≡ 𝑎𝑠 (mod 𝑚) .
By Theorem 2.1.3, (2.5.4) is equivalent to

𝑡 ≡ 𝑠 (mod 𝑚
(𝑚, 𝑎)) or 𝑡 ≡ 𝑠 (mod 𝑚1) .

We can rewrite this as
(2.5.5) 𝑡 = 𝑠 + 𝑘𝑚1,
with some integer 𝑘.

This means that the numbers 𝑡 in (2.5.5) give all solutions of 𝑎𝑥 ≡ 𝑏 (mod 𝑚).
Thus, we have to prove that these integers 𝑡 in (2.5.5) belong to 𝑑 distinct residue

classes and (2.5.1) lists a representative from each class.
When do two such 𝑡 fall into the same residue class modulo𝑚? Let

𝑡′ = 𝑠 + 𝑘′𝑚1 and 𝑡″ = 𝑠 + 𝑘″𝑚1.
Then
(2.5.6) 𝑡′ ≡ 𝑡″ (mod 𝑚) ⟺ 𝑘′𝑚1 ≡ 𝑘″𝑚1 (mod 𝑚) ⟺ 𝑘′ ≡ 𝑘″ (mod 𝑑) .
Here, we first subtracted 𝑠 from 𝑡′ ≡ 𝑡″ (mod 𝑚), then cancelled 𝑚1 and changed the
modulus to𝑚/(𝑚1, 𝑚) = 𝑚/𝑚1 = 𝑑, according to Theorem 2.1.3.

Implication (2.5.6) means that two integers 𝑡 fall into the same residue class mod-
ulo𝑚 if and only if the relevant two integers 𝑘 are congruent modulo 𝑑.

Thus, if 𝑘 assumes the values 0, 1, . . . , 𝑑 − 1, then the integers
𝑡 = 𝑠 + 𝑘𝑚1, or 𝑠, 𝑠 + 𝑚1, . . . , 𝑠 + (𝑑 − 1)𝑚1

occurring in (2.5.1) are just the representatives of the relevant residue classes mod-
ulo𝑚. □

Themost important special case of the linear congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑚) is when
(𝑎,𝑚) = 1. Then (𝑎,𝑚) ∣ 𝑏 holds automatically, so the congruence is solvable, by The-
orem 2.5.3, and it has (𝑎,𝑚) = 1 (pairwise incongruent) solutions, by Theorem 2.5.4.
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We state this important result as a theorem:

Theorem 2.5.5. If (𝑎,𝑚) = 1, then the congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑚) is solvable for every
𝑏 and the number of solutions is 1. ♣

We make some general preliminary remarks concerning methods for finding the
solutions.

(A) In general, it is advisable to check by the criterion of Theorem 2.5.3 whether the
congruence is solvable at all.

(B) If (𝑎,𝑚) = 1, then the congruence is satisfied by the elements of just one residue
class, so if we find somehow a solution, then we are done. Also, in the general
case, it is sufficient to guess a single solution because we can easily obtain all
solutions by Theorem 2.5.4/II.

(C) In most cases, the best start is to reduce the original linear congruence to one
where the coefficient of 𝑥 and themodulus are coprime. We can do this as follows.
If 𝑎𝑥 ≡ 𝑏 (mod 𝑚) is solvable, then (𝑎,𝑚) ∣ 𝑏. Let 𝑑 = (𝑎,𝑚), then

𝑎 = 𝑑𝑎1, 𝑚 = 𝑑𝑚1, 𝑏 = 𝑑𝑏1, and (𝑎1, 𝑚1) = 1.
Hence, we can divide the congruence by 𝑑 (including also the modulus): 𝑎𝑥 ≡ 𝑏
(mod 𝑚) is equivalent to 𝑎1𝑥 ≡ 𝑏1 (mod 𝑚1) and here (𝑎1, 𝑚1) = 1. (Looking at
the corresponding Diophantine equations, this just means that 𝑎𝑥 + 𝑚𝑦 = 𝑏 is
divided by 𝑑 to yield 𝑎1𝑥 + 𝑚1𝑦 = 𝑏1.)
The word “equivalent” in the previous paragraph should remind us that though

the two congruences are satisfied by the same integers, we have to group them into
residue classes of different moduli: mod 𝑚 at the first congruence and mod 𝑚1 at the
second one. As a consequence, the two congruences will differ also in the number of
solutions (for 𝑑 > 1).

We turn now to the detailed discussion of a few methods for finding the solutions
of a linear congruence. Each will be illustrated by an example.
M1 Trial. We check each element of a complete residue system modulo 𝑚 to see if it
satisfies the congruence. (This should be applied only for very small moduli.)
E1 23𝑥 ≡ 11 (mod 5). To make calculations simpler, it is worthwhile to replace the
coefficients with congruent numbers having smaller (absolute) value before substitut-
ing into 𝑥: 3𝑥 ≡ 1 (mod 5) or −2𝑥 ≡ 1 (mod 5). Testing the numbers 0, 1, 2, 3, 4 (or
0, ±1, ±2), we obtain that the residue class 𝑥 ≡ 2 (mod 5) is the only solution. (Since
(23, 5) = 1 implies that there is only one solution, after finding it we do not have to
check more numbers.)
M2Diophantine equation. We reduce the linear congruence to a Diophantine equation
as seen in the proof of Theorem 2.5.3, and then reconstitute its solutions into solutions
of the congruence.
E2 18𝑥 ≡ 38 (mod 28). The corresponding Diophantine equation is 18𝑥 + 28𝑦 = 38.
Dividing by 2, we obtain 9𝑥+14𝑦 = 19. Following the proof of Theorem 1.3.6, we write
the gcd of 9 and 14 in form 9𝑢+14𝑣. From the Euclidean algorithm or after a few trials,
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we have 9 ⋅ (−3) + 14 ⋅ 2 = 1. Multiplying by 19, we obtain 9 ⋅ (−57) + 14 ⋅ 38 = 19, so
𝑥 = −57, 𝑦 = 38 is a solution of the equation 9𝑥 + 14𝑦 = 19.

Returning to the congruence 18𝑥 ≡ 38 (mod 28), this means that 𝑥 = −57 is a
solution. We find all solutions by Theorem 2.5.4/II: 𝑥 ≡ −57 (mod 28) and 𝑥 ≡ −43
(mod 28). (The representatives −57 and −43 can be replaced by any others, e.g. by −1
and 13.)

Note that to solve a linear Diophantine equation, it is more convenient to apply
the procedure described in Section 7.1 that characterizes all solutions immediately in
a parametric form. (Actually, also this is a variant of the Euclidean algorithm.)
M3 Euler–Fermat Theorem. We reduce the congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑚) to 𝑎1𝑥 ≡ 𝑏1
(mod 𝑚1) where (𝑎1, 𝑚1) = 1, as seen in remark (C). T hen 𝑎𝜑(𝑚1)

1 ≡ 1 (mod 𝑚1) by
the Euler–Fermat Theorem. Therefore 𝑥 = 𝑎𝜑(𝑚1)−1

1 𝑏1 is a solution:

𝑎1 ⋅ 𝑎
𝜑(𝑚1)−1
1 𝑏1 = 𝑎𝜑(𝑚1)

1 𝑏1 ≡ 𝑏1 (mod 𝑚1) .

Hence, 𝑥 = 𝑎𝜑(𝑚1)−1
1 𝑏1 is a solution of the original congruence, too. Finally, we can

obtain all solutions from Theorem 2.5.4/II.
E3 36𝑥 ≡ 81 (mod 21). Here (36, 21) = 3, hence we can reduce the problem to the
congruence 12𝑥 ≡ 27 (mod 7). Decreasing the coefficients, we obtain −2𝑥 ≡ −1
(mod 7). Its solution is 𝑥 = (−2)6−1(−1) ≡ 4 (mod 7). Thus, all solutions of the
original congruence are 𝑥 ≡ 4, 11, 18 (mod 21).

Reducing the coefficients in the congruence 12𝑥 ≡ 27 (mod 7), we may choose
the least non-negative remainders instead of the ones with least absolute value. Then
we get 5𝑥 ≡ 6 (mod 7) and 𝑥 ≡ 55 ⋅ 6 (mod 7).

Since (12, 7) = 1, 12𝑥 ≡ 27 (mod 7) has a unique solution modulo 7, i.e. 55 ⋅ 6 ≡ 4
(mod 7) For a direct verification, one should not compute the actual value of 55 but
rather take the remainders modulo 7 while raising to powers:

52 = 25 ≡ 4 (mod 7) , 54 ≡ 42 ≡ 2 (mod 7) , 55 ≡ 5 ⋅ 2 ≡ 3 (mod 7) ,

hence 6 ⋅ 55 ≡ 6 ⋅ 3 ≡ 4 (mod 7).
M4 Tricks. Multiplying or dividing the congruence by well-chosen integers coprime
to the modulus, we get equivalent congruences till finally we can easily read the solu-
tion(s).
E4 Consider 80𝑥 ≡ 32 (mod 108). Here (80, 108) = 4, so we can reduce the problem
to solve 20𝑥 ≡ 8 (mod 27).

As (4, 27) = 1, cancelling 4 yields an equivalent congruence: 5𝑥 ≡ 2 (mod 27).
We show two methods of how to get rid of the coefficient 5 in 5𝑥 ≡ 2 (mod 27).
I. Division: We can replace 2 on the right-hand side by −25: 5𝑥 ≡ −25 (mod 27).

Since (5, 27) = 1, we can cancel the 5: 𝑥 ≡ −5 (mod 27).
II. Multiplication: Wemultiply by a suitable number to change the coefficient of 𝑥

into an integer congruent to 1 (or−1)modulo 27. (Thismultiplier is then automatically
coprime to 27 guaranteeing equivalence.) We can multiply our congruence 5𝑥 ≡ 2
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(mod 27) by 11: 55𝑥 ≡ 22 (mod 27) and since 55 ≡ 1 (mod 27)weobtain𝑥 ≡ 22(≡ −5)
(mod 27).

So the solutions of the original congruence are 𝑥 ≡ −5, 22, 49, 76 (mod 108).
Comparing the above methods, M3 or M4 could seem to be the easiest to apply at

first sight. It turns out, however, that only M2 works for large moduli. This will be
treated in Section 5.7.

Exercises 2.5

1. Solve Examples E1–E4 with every method M2–M4.

2. Solve the following congruences:

(a) 24𝑥 ≡ 60 (mod 51)
(b) 100𝑥 ≡ 88 (mod 116)
(c) 555𝑥 ≡ 5555 (mod 55555)
(d) (2𝑘 + 1)𝑥 ≡ 2𝑘+1 + 1 (mod 2𝑘+2 + 1)
(e) 10𝑥39 + 8𝑥20 + 9𝑥3 + 7𝑥 ≡ 0 (mod 19)
(f) 13𝑥41 ≡ 27 (mod 100).

3. Determine the two smallest positive integers which when multiplied by 13 will
have last digit 3 and next to last digit 4 in the number system of base seven.

4. Compute the last two digits of 3279 (in decimal representation).

5. Check (each of) the following conditions to see if they are sufficient for the solv-
ability of the congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑚).

(a) (𝑎,𝑚) ∣ (𝑎, 𝑏)
(b) (𝑎, 𝑏) ∣ (𝑎,𝑚)
(c) 𝑎,𝑚, 𝑏 is an arithmetic progression
(d) 𝑎,𝑚, 𝑏 is a geometric series
(e) 𝑎, 𝑏,𝑚 is an arithmetic progression
(f) 𝑎, 𝑏,𝑚 is a geometric series.

6. True or false?

(a) The number of solutions of 𝑎𝑥 ≡ 𝑏 (mod 𝑚) is at most 𝑏 if 𝑏 > 0.
(b) If 𝑎𝑥 ≡ 𝑏 (mod 𝑚) is solvable, then 𝑎2𝑥 ≡ 𝑏2 (mod 𝑚2) is solvable.
(c) If both 𝑎1𝑥 ≡ 𝑏1 (mod 𝑚1) and 𝑎2𝑥 ≡ 𝑏2 (mod 𝑚2) are solvable, then 𝑎1𝑎2𝑥 ≡

𝑏1𝑏2 (mod 𝑚1𝑚2) is solvable.

S 7. Let 𝑎 and 𝑚 be fixed and denote the number of solutions of 𝑎𝑥 ≡ 𝑏 (mod 𝑚) by
𝑓(𝑏). Compute∑𝑚

𝑏=1 𝑓(𝑏).
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2.6. Simultaneous Systems of Congruences

A simultaneous system of congruencesmeans that several congruence conditions with
different moduli are imposed on the same variable:

𝑓1(𝑥) ≡ 0 (mod 𝑚1) , 𝑓2(𝑥) ≡ 0 (mod 𝑚2) , . . . , 𝑓𝑘(𝑥) ≡ 0 (mod 𝑚𝑘)
where 𝑓1, . . . , 𝑓𝑘 are polynomials with integer coefficients.

Clearly, a necessary condition for the solvability of such a system is that each con-
gruence should be solvable. Thus, after solving the individual congruences, we have
to study only the (special linear) systems of the form

𝑥 ≡ 𝑐1 (mod 𝑚1) , 𝑥 ≡ 𝑐2 (mod 𝑚2) , . . . , 𝑥 ≡ 𝑐𝑘 (mod 𝑚𝑘) .
We consider first systems with two congruences.

Theorem 2.6.1. (I) The simultaneous system of congruences

(2.6.1)
𝑥 ≡ 𝑐1 (mod 𝑚1)
𝑥 ≡ 𝑐2 (mod 𝑚2)

is solvable if and only if
(𝑚1, 𝑚2) ∣ 𝑐1 − 𝑐2.

(II) If solvable, the solutions form a residue class modulo [𝑚1, 𝑚2]. Or, putting it into
another form: if 𝑠 is a solution, then all solutions 𝑡 are given by
𝑡 ≡ 𝑠 (mod [𝑚1, 𝑚2]) , or 𝑡 = 𝑠 + 𝑘[𝑚1, 𝑚2], where 𝑘 is an integer. ♣

The proof will yield a method for finding the solutions; one has to solve a linear
Diophantine equation (or, equivalently, a linear congruence).

Proof. I. By the definition of congruences, (2.6.1) can be transformed into
(2.6.2) 𝑥 = 𝑐1 + 𝑧1𝑚1, 𝑥 = 𝑐2 + 𝑧2𝑚2

where 𝑧1 and 𝑧2 are integers.
Condition (2.6.2) is equivalent to

(2.6.3) 𝑐1 + 𝑧1𝑚1 = 𝑐2 + 𝑧2𝑚2.
Rearranging (2.6.3), we obtain
(2.6.4) 𝑐1 − 𝑐2 = 𝑧2𝑚2 − 𝑧1𝑚1.

This means that the system of congruences (2.6.1) can be reduced to the linear
Diophantine equation (2.6.4).

By Theorem 1.3.6, it is solvable if and only if (𝑚1, 𝑚2) ∣ 𝑐1 − 𝑐2, hence the same
applies for (2.6.1).

As we indicated before the proof, we also obtained a method of finding the solu-
tions: we have to solve Diophantine equation (2.6.4) or a corresponding congruence.

II. Let 𝑠 be a solution so

(2.6.5)
𝑠 ≡ 𝑐1 (mod 𝑚1) ,
𝑠 ≡ 𝑐2 (mod 𝑚2) .
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An integer 𝑡 is a solution if and only if

(2.6.6)
𝑡 ≡ 𝑐1 (mod 𝑚1) ,
𝑡 ≡ 𝑐2 (mod 𝑚2) .

Using (2.6.5), condition (2.6.6) is equivalent to

(2.6.7)
𝑡 ≡ 𝑠 (mod 𝑚1)
𝑡 ≡ 𝑠 (mod 𝑚2) .

Rewrite (2.6.7) as divisibilities and apply the properties of lcm (Theorem 1.6.6/II):
𝑚1 ∣ 𝑡 − 𝑠
𝑚2 ∣ 𝑡 − 𝑠} ⟺ [𝑚1, 𝑚2] ∣ 𝑡 − 𝑠 ⟺ 𝑡 ≡ 𝑠 (mod [𝑚1, 𝑚2]) . □

The most importamt special case is when the moduli𝑚1 and𝑚2 in system (2.6.1)
are coprime. Then (𝑚1, 𝑚2) ∣ 𝑐1−𝑐2 holds automatically, so the system of congruences
is solvable and the solutions form a unique residue class modulo 𝑚1𝑚2. We state this
important result as a theorem:

Theorem 2.6.1A. If (𝑚1, 𝑚2) = 1, then the simultaneous system of congruences
𝑥 ≡ 𝑐1 (mod 𝑚1)
𝑥 ≡ 𝑐2 (mod 𝑚2)

is solvable for arbitrary 𝑐1 and 𝑐2, and the solutions form a single residue class modulo
𝑚1𝑚2.

Theorem 2.6.1A implies that if 𝑚1 and 𝑚2 are coprime, then the remainder of a
numberwhen divided by𝑚1 is independent of its remaindermod𝑚2. For example, the
last digits of an integer give its remainder modulo a power of 10 and they provide no
information on the remainder, say, modulo 3, 7, or 13, since these moduli are coprime
to 10.

Turning to systems consisting ofmore than two congruences, we deal onlywith the
case when the moduli are pairwise coprime (see Exercise 2.6.13 for the general case).
This result was known by the Chinesemathematician Sun Tsu about 2000(!) years ago,
therefore it is generally referred to as the Chinese Remainder Theorem.

Theorem 2.6.2 (Chinese Remainder Theorem). Let 𝑚1, . . . , 𝑚𝑘 be pairwise coprime.
Then the system of congruences

(2.6.8)

𝑥 ≡ 𝑐1 (mod 𝑚1)
𝑥 ≡ 𝑐2 (mod 𝑚2)
⋮

𝑥 ≡ 𝑐𝑘 (mod 𝑚𝑘)
is solvable for any integers 𝑐1, . . . , 𝑐𝑘, and the solutions form one residue class modulo
𝑚1𝑚2 . . . 𝑚𝑘. ♣

First proof. We can easily obtain the result from Theorem 2.6.1A by induction on 𝑘.
The case 𝑘 = 2 is just Theorem 2.6.1A.
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Assume now that the statement is true for systems of 𝑘 − 1 congruences, and
consider the system (2.6.8) of 𝑘 congruences. The integers satsifying the first 𝑘 − 1
congruences constitute one residue class modulo 𝑚1𝑚2 . . . 𝑚𝑘−1 by the induction hy-
pothesis, so we can replace the first 𝑘 − 1 congruences by the congruence 𝑥 ≡ 𝑐
(mod 𝑚1𝑚2 . . . 𝑚𝑘−1)with a suitable integer 𝑐. Thus, (2.6.8) is equivalent to the system

(2.6.9)
𝑥 ≡ 𝑐 (mod 𝑚1𝑚2 . . . 𝑚𝑘−1)
𝑥 ≡ 𝑐𝑘 (mod 𝑚𝑘)

Applying Theorem 2.6.1A to (2.6.9), we obtain just the statement for 𝑘. □

Second proof. We show a new argument for solvability and we produce a solution in
an explicit form (in a certain sense).

The procedure reminds us somewhat of the construction of the interpolation poly-
nomials by Lagrange.

We consider first the special case of (2.6.8) when one 𝑐𝑖 is 1 and all other 𝑐𝑗 are 0,
and then use this result to solve the general case.

Let us see the details. Let

𝑀 = 𝑚1 . . . 𝑚𝑘 and 𝑀𝑖 =
𝑀
𝑚𝑖

, 𝑖 = 1, 2, . . . , 𝑘.

Since the moduli𝑚1, . . . ,𝑚𝑘 are pairwise coprime,

(2.6.10) (𝑀𝑖, 𝑚𝑖) = 1, 𝑖 = 1, 2, . . . , 𝑘.
I. We fix an index 1 ≤ 𝑖 ≤ 𝑛 and solve the problem in the special case when 𝑐𝑖 = 1 and
𝑐𝑗 = 0 for 𝑗 ≠ 𝑖 in (2.6.8).

The congruences 𝑥 ≡ 0 (mod 𝑚𝑗)mean that 𝑥 is a multiple of every𝑚𝑗 with 𝑗 ≠ 𝑖.
The moduli𝑚𝑗 are pairwise coprime, hence equivalently 𝑥 is a multiple of the product
𝑀𝑖 of the numbers𝑚𝑗 : 𝑥 = 𝑀𝑖𝑧.

Substituting this in the remaining congruence 𝑥 ≡ 1 (mod 𝑚𝑖), we obtain
(2.6.11) 𝑀𝑖𝑧 ≡ 1 (mod 𝑚𝑖) .

This a linear congruence for 𝑧 that is solvable by (2.6.10).
Let 𝑏𝑖 be a solution of (2.6.11). Then 𝑥 = 𝑏𝑖𝑀𝑖 is a solution of (2.6.8).
II. We consider now the general case with arbitrary 𝑐𝑖 in (2.6.8). We show that

(2.6.12) 𝑥 = 𝑐1𝑏1𝑀1 +⋯+ 𝑐𝑘𝑏𝑘𝑀𝑘 (where𝑀𝑖𝑏𝑖 ≡ 1 (mod 𝑚𝑖), 𝑖 = 1, . . . , 𝑘)
is a solution of (2.6.8).

Let us check for example the congruence 𝑥 ≡ 𝑐3 (mod 𝑚3). Since 𝑏3𝑀3 ≡ 1
(mod 𝑚3) and all the other 𝑀𝑗 are divisible by 𝑚3, therefore the right-hand side of
(2.6.12)

𝑐1𝑏1𝑀1 +⋯+ 𝑐𝑘𝑏𝑘𝑀𝑘 ≡ 𝑐3𝑏3𝑀3 ≡ 𝑐3 (mod 𝑚3) . □

An important corollary of Theorem 2.6.2 is that any congruence with a composite
modulus can be reduced to congruences with prime power moduli. If the standard
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form of𝑚 is𝑚 = 𝑝𝛼11 . . . 𝑝𝛼𝑟𝑟 , then the congruence
(2.6.13) 𝑓(𝑥) ≡ 0 (mod 𝑚)
is equivalent to the system

(2.6.14)

𝑓(𝑥) ≡ 0 (mod 𝑝𝛼11 )
𝑓(𝑥) ≡ 0 (mod 𝑝𝛼22 )

⋮
𝑓(𝑥) ≡ 0 (mod 𝑝𝛼𝑟𝑟 ) .

We solve every congruence of (2.6.14) separately. If some of them are not solvable,
then (2.6.13) is not solvable either. If all of them are solvable, then consider a solution
of each, say ℎ1, . . . , ℎ𝑟. Now, solving the system

𝑥 ≡ ℎ1 (mod 𝑝𝛼11 )
𝑥 ≡ ℎ2 (mod 𝑝𝛼22 )
⋮

𝑥 ≡ ℎ𝑟 (mod 𝑝𝛼𝑟𝑟 ) ,
we get a solution of the original congruence (2.6.13). We obtain all solutions by con-
sidering all possible solution systems ℎ1, . . . , ℎ𝑟 for the congruences (2.6.14).

Example E1. Solve the congruence
(2.6.15) 10𝑥84 + 3𝑥 + 7 ≡ 0 (mod 245) .
By the above, (2.6.15) is equivalent to the system

10𝑥84 + 3𝑥 + 7 ≡ 0 (mod 5)(2.6.16)
10𝑥84 + 3𝑥 + 7 ≡ 0 (mod 49) .(2.6.17)

(2.6.16) is identical to 3𝑥 + 7 ≡ 0 (mod 5) since 10 ≡ 0 (mod 5). The only solution of
this linear congruence is
(2.6.16a) 𝑥 ≡ 1 (mod 5) .

In looking for the solutions of (2.6.17), we distinguish two cases:

(i) (𝑥, 49) = 1
(ii) (𝑥, 49) ≠ 1.
In case (i),

𝑥84 = 𝑥2𝜑(49) ≡ 1 (mod 49) ,
by the Euler–Fermat Theorem. Thus (2.6.17) is equivalent to 3𝑥 + 17 ≡ 0 (mod 49) in
this case. This has one solution
(2.6.17a) 𝑥 ≡ −22 (mod 49) .

In case (ii), 7 ∣ 𝑥. Then 𝑥84 ≡ 0 (mod 49). Thus (2.6.17) is equivalent to 3𝑥+7 ≡ 0
(mod 49) in this case. The only solution (satisfying also the condition 7 ∣ 𝑥) is
(2.6.17b) 𝑥 ≡ 14 (mod 49) .
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Thus, the solutions of (2.6.15) are obtained from the systems

𝑥 ≡ 1 (mod 5) .(2.6.16a)
𝑥 ≡ −22 (mod 49) .(2.6.17a)

and

𝑥 ≡ 1 (mod 5) .(2.6.16a)
𝑥 ≡ 14 (mod 49) .(2.6.17b)

To determine the solutions, we canuse the procedure in the proof of Theorem2.6.1,
but it is often more convenient to apply the following method.

From the congruence (2.6.17a)—using the larger modulus—-we have:

(2.6.18) 𝑥 = 49𝑧 − 22.

Substituting (2.6.18) into (2.6.16a), we get

49𝑧 − 22 ≡ 1 (mod 5) .

We find that

(2.6.19) 𝑧 ≡ 2 (mod 5) so 𝑧 = 5𝑤 + 2.

Substituting (2.6.19) back into (2.6.18), we obtain 𝑥 = 245𝑤 + 76. Thus the solution of
the first system of congruences is 𝑥 ≡ 76 (mod 245).

Proceeding similarly, the solution of the second system is 𝑥 ≡ 161 (mod 245).
Thus all solutions of (2.6.15) are

𝑥 ≡ 76 (mod 245) and 𝑥 ≡ 161 (mod 245) .

Finally, we discuss an application of the Chinese Remainder Theorem in computer
science. Many operations in computers are composed of a sequence of additions, sub-
tractions, andmultiplications of integers. Therefore, it is essential to knowhowquickly
these basic steps can be performed.

Consider e.g. addition. Using the usual representation in a number system, the
addition of digits cannot be done independently since overflows influence the result
significantly. In the so-called remainder number systems, however, we can perform the
operations with the “digits.” i.e. remainders, absolutely independently. This is mostly
used if there are many parallel processors available.

The main point of the method is the following. Assume that only integers with
absolute value less than 𝑁 can occur during the operations. (This is no restriction
since every computer can display and work with numbers only up to a given limit.)
Let 𝑚 = 𝑝1 . . . 𝑝𝑟 be the product of the first 𝑟 (positive) primes, and choose 𝑟 to satisfy
𝑚 > 2𝑁.

Then every integer with absolute value less than𝑁 is equal to its remainder of least
absolute value modulo 𝑚. And this can be represented by the system of remainders
modulo 𝑝𝑖, which will be the digits in the remainder number system.
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The digits actually are a simultaneous system of congruences where the moduli 𝑝𝑖
are pairwise coprime, hence the remainder modulo 𝑚, i.e. the original number itself,
can be uniquely reconstructed.

Adding or multiplying two numbers, we have to add or multiply the correspond-
ing remainders (i.e. digits), there is no overflow, and the operations can be performed
independently for the various moduli. From the system of the remainders modulo 𝑝𝑖
thus obtained, we have to determine the remainder modulo𝑚, i.e. the number itself.

ExampleE2. As an illustration, let𝑁 = 1000, andwe execute themultiplication 27⋅34
in the remainder number system.

We can take
𝑚 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 = 2310.

The remainders of 27 when divided by the primes 2, 3, 5, 7, and 11 are 1, 0, 2, 6, and 5,
so the representation of 27 in the remainder number system is

27 = (1, 0, 2, 6, 5).
Similarly,

34 = (0, 1, 4, 6, 1).
To do the multiplication 27 ⋅ 34, we multiply the corresponding digits (there is no over-
flow), reduce the products modulo 𝑝𝑖, and solve the resulting system of congruences:

27 ⋅ 34 = (1 ⋅ 0, 0 ⋅ 1, 2 ⋅ 4, 6 ⋅ 6, 5 ⋅ 1) = (0, 0, 3, 1, 5).
The solution of the system

𝑥 ≡ 0 (mod 2)
𝑥 ≡ 0 (mod 3)
𝑥 ≡ 3 (mod 5)
𝑥 ≡ 1 (mod 7)
𝑥 ≡ 5 (mod 11)

is
𝑥 ≡ 918 (mod 2310) .

Thus, 27 ⋅ 34 = 918.

If we performmore operations, we can keep working with the form in the remain-
der number system and convert only the final result into the usual representation of
numbers.

We mention that systems of congruences can similarly be applied also to solve
systems of linear equations (with rational coefficients). The main point of the method
is that the system of equations is handled modulo various prime moduli, and from
the solutions obtained we determine the solution modulo the product of these primes.
This yields the solution wanted if certain conditions are satisfied and sufficiently many
moduli are used. The advantage of themethod in contrastwith the traditionalGaussian
elimination is that no too large (or too small) numbers can occur here, and thus there
is no danger of overflow.
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Exercises 2.6

(We use decimal representation unless stated otherwise.)

1. (a) A centipedewants to count its feet knowing that their number does not exceed
250. Counting them in elevens and in fifteens, 5 and 3 are left out. Howmany
feet has the centipede?

(b) Another centipede tries this method, too. It counts its feet by twelves and
fifteens and finds that 4 and 8 are left out. Prove that it made amiscalculation.

2. The last digit of an integer in number system with base 20 is “eleven”. What can
be its last digit with base (a) 9 (b) 8?

3. Solve the congruences:

(a) 2𝑥20 + 3𝑥 + 4 ≡ 0 (mod 176)
(b) 21𝑥66 + 16𝑥30 + 11𝑥 + 6 ≡ 0 (mod 333)
(c) 3𝑥9 + 5𝑥 + 7 ≡ 0 (mod 105).

4. Let 𝑎, 𝑏, and 𝑐 be pairwise coprime integers greater than 1. What is the remainder

(a) of 𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) modulo 𝑎𝑏
(b) of 𝑎𝜑(𝑏𝑐) + 𝑏𝜑(𝑎𝑐) + 𝑐𝜑(𝑎𝑏) modulo 𝑎𝑏𝑐?

5. Determine the last three digits of 12349876.
6. I thought of an integer between 200 and 2000. Adding its 501st and 201st power to

the original number, the sumwill terminate in 998. Which number did I think of?

7. Which are those (a) two digit (b) three digit positive integers whose squares termi-
nate in the same two and three digits, respectively?

8. (a) How many 21-digit positive integers have the property that every power of
them terminates with the same 20 digits as the original number?

(b) How many 21-digit positive integers have the property that every odd power
of them terminates with the same 20 digits as the original number?

S 9. What will be the exact time (in hours and minutes) 393837 minutes after midnight?
10. (a) Let (𝑎, 𝑏) = 1, and 𝑟1, . . . , 𝑟𝜑(𝑎) and 𝑠1, . . . , 𝑠𝜑(𝑏) be reduced residue systems

modulo 𝑎 and modulo 𝑏. For 𝑖 = 1, . . . , 𝜑(𝑎), 𝑗 = 1, . . . , 𝜑(𝑏), denote by 𝑐𝑖𝑗 a
solution of the system

𝑥 ≡ 𝑟𝑖 (mod 𝑎)
𝑥 ≡ 𝑠𝑗 (mod 𝑏) .

Show that the 𝑐𝑖𝑗 form a reduced residue system modulo 𝑎𝑏. Use only the
definition of the reduced residue system (Definition 2.2.8) during the proof,
and do not rely on Theorem 2.2.9 or on part (b) of this exercise.

(b) Give a new proof for (𝑎, 𝑏) = 1⟹ 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏).
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11. Verify that there are arbitrarily large gaps in the sequence of squarefree numbers.
That is, for any 𝐾, there exist 𝐾 consecutive positive integers none of which is
squarefree.

* 12. (a) Prove that the following two systems are solvable for any positive integers 𝑎,
𝑏, and 𝑐.
(a1) 𝑥 ≡ 𝑎 + 𝑏 (mod 𝑐)

𝑥 ≡ 𝑏 + 𝑐 (mod 𝑎)
𝑥 ≡ 𝑐 + 𝑎 (mod 𝑏)

(a2) 𝑥 ≡ 𝑎𝑏 (mod 𝑐)
𝑥 ≡ 𝑏𝑐 (mod 𝑎)
𝑥 ≡ 𝑐𝑎 (mod 𝑏) .

(b) Show that

𝑥 ≡ 𝑏 (mod 𝑐) , 𝑥 ≡ 𝑐 (mod 𝑎) , 𝑥 ≡ 𝑎 (mod 𝑏)

is solvable if and only if (𝑎, 𝑏) = (𝑏, 𝑐) = (𝑐, 𝑎).

* 13. Demonstrate that the system

𝑥 ≡ 𝑐1 (mod 𝑚1) , 𝑥 ≡ 𝑐2 (mod 𝑚2) , . . . , 𝑥 ≡ 𝑐𝑘 (mod 𝑚𝑘)

(where the moduli𝑚𝑖 are not necessarily pairwise coprime) is solvable if and only
if (𝑚𝑖, 𝑚𝑗) ∣ 𝑐𝑖 − 𝑐𝑗 for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑘.

14. Does there exist a polynomial 𝑓(𝑥) with integer coefficients for which the congru-
ence 𝑓(𝑥) ≡ 0 (mod 30) has exactly 14 solutions?

15. (a) Prove that there exist integers forming both a complete residue system mod-
ulo 𝑛 and a reduced residue system modulo 𝑘 if and only if 𝜑(𝑘) = 𝑛 and
(𝑘, 𝑛) = 1.

** (b) Prove that there exist integers forming a reduced residue system both mod-
ulo 𝑛 and modulo 𝑘 if and only if 𝜑(𝑛) = 𝜑(𝑘).

16.* (a) Verify that for any distinct integers 𝑎1, 𝑎2, and 𝑎3, there exist infinitely many
positive numbers 𝑛 such that 𝑎1 +𝑛, 𝑎2 +𝑛, and 𝑎3 +𝑛 are pairwise coprime.

(b) Find distinct integers 𝑎1, 𝑎2, 𝑎3, and 𝑎4 such that the numbers 𝑎𝑖 + 𝑛, 𝑖 =
1, 2, 3, 4 are not pairwise coprime for any 𝑛.

* (c) Demonstrate that for any distinct integers 𝑎1, 𝑎2, 𝑎3, and 𝑎4, there exist infin-
itely many positive numbers 𝑛 such that (𝑎𝑖 + 𝑛, 𝑎𝑗 + 𝑛) ≤ 2 for every 𝑖 ≠ 𝑗.

* (d) Verify that for any distinct integers 𝑎1, 𝑎2, 𝑎3, and 𝑎4, there exist infinitely
many positive numbers 𝑛 such that (𝑎𝑖 + 𝑛, 𝑎𝑗 + 𝑛, 𝑎𝑘 + 𝑛) = 1 for all 1 ≤ 𝑖 <
𝑗 < 𝑘 ≤ 4.

* (e) Do the statements in (c) and (d) remain valid if we increase the number of
integers 𝑎𝑖 from four to five or six?
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2.7. Wilson’s Theorem

Theorem2.7.1 (Wilson’s Theorem). If𝑝 is a (positive) prime, then (𝑝−1)! ≡ −1 (mod 𝑝).
♣

Since the numbers 1, 2, . . . , 𝑝 − 1 form a reduced residue system modulo 𝑝 and
the product of the elements of every reduced residue system gives the same remainder
modulo 𝑝, we can rewrite Wilson’s Theorem in the following form:

If 𝑝 is a (positive) prime, then the product of the elements of a reduced residue
system is congruent to −1modulo 𝑝.

We discuss generalizations for composite moduli and connections with group the-
ory in Exercise 2.7.1 and in Section 2.8.

Proof. The theorem is clearly true for 𝑝 = 2 and 𝑝 = 3.
We show that for 𝑝 ≥ 5, the numbers 2, 3, . . . , 𝑝 − 2 can be paired so that the

product of the two elements in every pair is congruent to 1modulo 𝑝. This implies the
theorem since then 2 ⋅ 3 ⋅ ⋯ ⋅ (𝑝 − 2) ≡ 1 (mod 𝑝), hence

(𝑝 − 1)! = 2 ⋅ 3 ⋅ ⋯ ⋅ (𝑝 − 2) ⋅ 1 ⋅ (𝑝 − 1) ≡ 1 ⋅ 1 ⋅ (𝑝 − 1) ≡ −1 (mod 𝑝) .
We illustrate the pairing first for𝑝 = 11. Themate of 2 is obtained from the congruence
2𝑥 ≡ 1 (mod 11). Its only solution is 𝑥 ≡ 6 (mod 11), so 2 is matched with 6. Here, 2
and 6 correspond to each other mutually as 2 ⋅ 6 = 6 ⋅ 2 ≡ 1 (mod 11).

Continuing similarly, we obtain the pairs 3–4, 5–9, and 7–8. Thus
10!= (2 ⋅ 6) ⋅ (3 ⋅ 4) ⋅ (5 ⋅ 9) ⋅ (7 ⋅ 8) ⋅ 1 ⋅ 10 ≡ 1 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ (−1) = −1 (mod 11) .

Let us see how this works in general. We have to verify the following facts to obtain a
perfect match:
(i) To every integer 2 ≤ 𝑎 ≤ 𝑝 − 2, there exists exactly one 𝑏 = 𝑓(𝑎) satisfying

𝑎𝑏 ≡ 1 (mod 𝑝) and 2 ≤ 𝑏 ≤ 𝑝 − 2.

(ii) If 𝑓(𝑎) = 𝑏, then 𝑓(𝑏) = 𝑎, so 𝑎 and 𝑏 are assigned mutually to each other.
(iii) 𝑓(𝑎) ≠ 𝑎, so no element is the partner of itself.

(i) Since (𝑎, 𝑝) = 1, the congruence 𝑎𝑥 ≡ 1 (mod 𝑝) is solvable and has exactly
one solution 𝑏 in the complete residue system 0, 1, 2, . . . , 𝑝 − 1. If 𝑥 = 0, 1, or 𝑝 − 1,
then 𝑎𝑥 ≡ 0, 𝑎, or −𝑎 (mod 𝑝), thus 𝑎𝑥 ≢ 1 (mod 𝑝) for these values of 𝑥. Hence, 𝑏
falls in the interval 2 ≤ 𝑏 ≤ 𝑝 − 2, as required.

(ii) The condition 𝑓(𝑎) = 𝑏means 𝑎𝑏 ≡ 1 (mod 𝑝). The value of 𝑓(𝑏) is the solu-
tion of the congruence 𝑏𝑦 ≡ 1 (mod 𝑝). Clearly, 𝑦 = 𝑎 is a solution and we know from
(i) that there is exactly one solution in the interval 2 ≤ 𝑦 ≤ 𝑝 − 2. Hence, necessarily
𝑓(𝑏) = 𝑎.

(iii) The condition 𝑏 = 𝑎 would mean 𝑎2 ≡ 1 (mod 𝑝). Considering the corre-
sponding divisibility and using the prime property of 𝑝, we obtain

𝑝 ∣ (𝑎 − 1)(𝑎 + 1)⟹ 𝑝 ∣ 𝑎 − 1 or 𝑝 ∣ 𝑎 + 1⟹ 𝑎 ≡ ±1 (mod 𝑝) .
This, however, contradicts the condition 2 ≤ 𝑎 ≤ 𝑝 − 2. □
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For further proofs of Wilson’s Theorem, see the note after Theorem 3.1.2 and Ex-
ercise 3.3.6.

Exercises 2.7

(Primes are assumed to be positive.)

1. Generalizations of Wilson’s Theorem for composite moduli. Let 𝑚 be composite.
What is the remainder modulo𝑚 of

(a) (𝑚 − 1)!
* (b) (𝜑(𝑚))!
* (c) the product of all elements of a reduced residue system?

2. Which integers𝑚 > 6 satisfy (𝑚 − 6)! ≡ 1 (mod 𝑚)?

3. Let 𝑎1, . . . , 𝑎𝑚 and 𝑏1, . . . , 𝑏𝑚 be any two permutations of 1, 2, . . . ,𝑚.

(a) Show that if𝑚 > 2 is a prime, then there exist 𝑖 and 𝑗, 𝑖 ≠ 𝑗 satisfying

𝑚 ∣ 𝑎𝑖𝑏𝑖 − 𝑎𝑗𝑏𝑗 .

* (b) Prove the same assertion if𝑚 is composite.

4. Let 𝑝 be a prime of the form 4𝑘 − 1. Prove

(𝑝 − 1
2 )! ≡ ±1 (mod 𝑝) .

5. Verify
𝑝𝑝 ∣ (𝑝2 − 1)! −𝑝𝑝−1

for any prime 𝑝.

6. Let 𝑝 > 3 be a prime. What is the remainder of 3(𝑝 − 3)!modulo 𝑝?

7. What is the remainder of 99! when divided by 10100?

8. Compute the possible values of (𝑛! +3, (𝑛 + 2)! +6) if 𝑛 is a positive integer.

9. For which𝑚 does there exist a (a) complete (b) reduced residue system of numbers
of the form 𝑘!?

10. Let 𝑎1, . . . , 𝑎30 be a reduced residue system modulo 31. Prove

31 ∣ (𝑎1𝑎2𝑎3)3 + (𝑎4𝑎5 . . . 𝑎30)27.

11. Let 𝑝 > 2 be a prime and construct an arithmetic progression of 𝑝 − 1 integers.
What can the remainder of the product of its elements modulo 𝑝 be?

12. Solve the congruence 𝑥! (𝑧 − 𝑥)! ≡ 1 (mod 𝑧) where 0 < 𝑥 < 𝑧 are integers.

* 13. For which primes 𝑝 is (𝑝 − 1)! +1 a power of 𝑝 (with positive integer exponents)?
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2.8. Operations with Residue Classes

We define an addition and a multiplication for residue classes modulo 𝑚 and investi-
gate their properties. We assume throughout that the modulus𝑚 > 1 is fixed.

Definition 2.8.1. The sum and product of the residue classes (𝑎)𝑚 and (𝑏)𝑚 are the
residue classes (𝑎 + 𝑏)𝑚 and (𝑎𝑏)𝑚, i.e.

(𝑎)𝑚 + (𝑏)𝑚 = (𝑎 + 𝑏)𝑚 and (𝑎)𝑚(𝑏)𝑚 = (𝑎𝑏)𝑚. ♣

We have to verify that we have defined the operations so that both addition and
multiplication assign a unique residue class to any two given residue classes.

The difficulty is that addition and multiplication of residue classes were defined
using representatives, thus we have to clarify that the resulting residue classes do not
depend on which representatives in the initial two classes were chosen.

Consider addition. We have to show that if (𝑎)𝑚 = (𝑎′)𝑚 and (𝑏)𝑚 = (𝑏′)𝑚, then
(𝑎 + 𝑏)𝑚 = (𝑎′ + 𝑏′)𝑚. This holds since

(𝑎)𝑚 = (𝑎′)𝑚 ⟹ 𝑎 ≡ 𝑎′ (mod 𝑚)
(𝑏)𝑚 = (𝑏′)𝑚 ⟹ 𝑏 ≡ 𝑏′ (mod 𝑚)}⟹ 𝑎+ 𝑏 ≡ 𝑎′ + 𝑏′ (mod 𝑚)

⟹ (𝑎 + 𝑏)𝑚 = (𝑎′ + 𝑏′)𝑚.
We can argue similarly about multiplication.

We must be aware that there are many operations on the integers that cannot be
defined for residue classes using representatives. We illustrate this by an example; for
some further examples see Exercise 2.8.6.

Let 𝑎 and 𝑏 be integers and denote by max(𝑎, 𝑏) the larger one (or their common
value if 𝑎 = 𝑏). This maximum assigns a unique integer to any two integers, so it is a
well defined operation on the integers.

Among the residue classes modulo𝑚, however, the specificationmax((𝑎)𝑚, (𝑏)𝑚)
= (max(𝑎, 𝑏))𝑚 does not define an operation, since the right-hand side of the equality
(may) give different residue classes if we represent (𝑎)𝑚 and/or (𝑏)𝑚 with another el-
ement. For example, let the modulus be 𝑚 = 9 and consider the two residue classes
𝐴 = (3)9 = (12)9 and 𝐵 = (10)9 = (1)9. Then max(𝐴, 𝐵) would be (max(3, 10))9 =
(10)9 on the one hand and (max(12, 1))9 = (12)9 on the other hand but (10)9 ≠ (12)9.

We turn now to study themost important properties of addition andmultiplication
defined on the residue classes.

We can easily derive that most properties valid among the integers hold also for
the residue classes:

Theorem 2.8.2. Among the residue classes modulo𝑚,
• addition is associative and commutative
• (0)𝑚 is a zero element, i.e. (0)𝑚 + (𝑎)𝑚 = (𝑎)𝑚 + (0)𝑚 = (𝑎)𝑚 holds for every (𝑎)𝑚
• the negative of (𝑎)𝑚 is (−𝑎)𝑚, i.e. (−𝑎)𝑚 + (𝑎)𝑚 = (𝑎)𝑚 + (−𝑎)𝑚 = (0)𝑚
• multiplication is associative and commutative
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• (1)𝑚 is an identity element, i.e. (1)𝑚(𝑎)𝑚 = (𝑎)𝑚(1)𝑚 = (𝑎)𝑚 holds for every (𝑎)𝑚
• the distributive law is valid. ♣

Proof. Each statement follows immediately from the definition of the operations and
from the corresponding property of the integers. We illustrate this for the commutative
law for addition:

(𝑎)𝑚 + (𝑏)𝑚 = (𝑎 + 𝑏)𝑚 = (𝑏 + 𝑎)𝑚 = (𝑏)𝑚 + (𝑎)𝑚
(we applied the definition of addition for residue classes in the first and third equalities
and the commutative law for the addition of integers in the second equality). □

Summarizing the properties listed in Theorem 2.8.2, the residue classes modulo𝑚
form a commutative ring with identity element with respect to addition and multiplica-
tion.

We mention that—as in every ring—also subtraction can be performed for residue
classes, i.e. to any (𝑎)𝑚 and (𝑏)𝑚, there exists exactly one (𝑐)𝑚 satisfying (𝑎)𝑚 = (𝑏)𝑚+
(𝑐)𝑚; we obtain this (𝑐)𝑚 as (𝑎)𝑚 + (−𝑏)𝑚. (We can verify the existence of subtraction
also by relying on subtraction among the integers; then we have (𝑐)𝑚 = (𝑎 − 𝑏)𝑚.)

We examine now which residue classes have a multiplicative inverse (or “recipro-
cal”), i.e. for which (𝑎)𝑚 does there exist a residue class (𝑐)𝑚 satisfying
(2.8.1) (𝑐)𝑚(𝑎)𝑚 = (𝑎)𝑚(𝑐)𝑚 = (1)𝑚?
Condition (2.8.1) is equivalent to (𝑎𝑐)𝑚 = (1)𝑚, i.e. to 𝑎𝑐 ≡ 1 (mod 𝑚) which means
that the linear congruence 𝑎𝑥 ≡ 1 (mod 𝑚) is solvable. By Theorem 2.5.3, this holds
if and only if (𝑎,𝑚) ∣ 1, or (𝑎,𝑚) = 1. This is exactly the case when (𝑎)𝑚 is a reduced
residue class. Thus, we have proved:

Theorem2.8.3. Among the residue classesmodulo𝑚, exactly the reduced residue classes
have a multiplicative inverse. ♣

We note that for any associative operation, every element can have only one in-
verse. Thus, the inverse of a reduced residue class is unique, as well. (This follows also
from Theorem 2.5.5.)

A field is a commutative ring (with at least two elements) that has an identity ele-
ment and every non-zero element has an inverse. By Theorem 2.8.3, the residue classes
satisfy these requirements if and only if every non-zero residue class is reduced, i.e.𝑚
is a prime. This gives the result:

Theorem2.8.4. The residue classesmodulo𝑚 formafield if and only if𝑚 is a prime. ♣

It can occur that the product of two non-zero residue classes is the zero residue
class, e.g. (5)10(4)10 = (0)10. A residue class (𝑎)𝑚 ≠ (0)𝑚 is called a zero divisor if
(2.8.2) there exists some (𝑏)𝑚 ≠ (0)𝑚 satisfying (𝑎)𝑚(𝑏)𝑚 = (0)𝑚.
Thus, (4)10 and (5)10 are zero divisors in the previous example.
Theorem 2.8.5. A residue class (𝑎)𝑚 ≠ (0)𝑚 is a zero divisor if and only if (𝑎)𝑚 is not a
reduced residue class, i.e. (𝑎,𝑚) ≠ 1. ♣
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The condition (𝑎)𝑚 ≠ (0)𝑚 means𝑚 ∤ 𝑎 or (𝑎,𝑚) < 𝑚 for the representative 𝑎.

Proof. Rephrasing the definition in (2.8.2), the residue class (𝑎)𝑚 ≠ (0)𝑚 is a zero
divisor if and only if
(2.8.3) there exists some 𝑏 ≢ 0 (mod 𝑚) satisfying 𝑎𝑏 ≡ 0 (mod 𝑚).
Since 𝑥 ≡ 0 (mod 𝑚) is always a solution of 𝑎𝑥 ≡ 0 (mod 𝑚), (2.8.3)means that 𝑎𝑥 ≡ 0
(mod 𝑚) has more solutions. The number of solutions is (𝑎,𝑚), hence (𝑎)𝑚 ≠ (0)𝑚 is
a zero divisor if and only if (𝑎,𝑚) > 1. □

We see from Theorem 2.8.5 that residue classes modulo𝑚 contain a zero divisor if
and only if𝑚 is composite.

Finally, we touch briefly some group theoretic connections of the residue classes.
A set 𝐺 is called a group if an associative operation with an identity element is

defined on 𝐺 and every element has an inverse. If the operation is commutative we
have a commutative or Abelian group.

Thus, the residue classes modulo 𝑚 form a commutative group under addition,
and the same is true for the reduced residue classes with respect to multiplication (this
follows from the fact that the product of two reduced classes and the inverse of a re-
duced class is a reduced class again).

The Euler–Fermat Theorem can be considered as a special case of a general theo-
rem for groups: For any element𝑎 of a finite group𝐺, 𝑎|𝐺| is the identity element (where
|𝐺| denotes the number of elements in the group). This general result can be verified
similarly to the Euler–Fermat Theorem for commutative groups (see Exercise 2.8.7)
and follows from Lagrange’s Theorem for arbitrary 𝐺.

GeneralizingWilson’s theorem, we can ask which element of a finite commutative
group will be equal to the product of all its elements (see Exercise 2.8.8).

Exercises 2.8

1. For which𝑚 does there exist a non-zero residue class that is the negative of itself?
2. Consider the ring of the residue classes modulo 100.

(a) What is the multiplicative inverse of the residue class (13)?
(b) What is the number of zero divisors?
(c) How many zero divisor pairs belong to (40), i.e. how many residue classes

(𝑏) ≠ (0) satisfy (40)(𝑏) = (0)?
(d) Does there exist a residue class (𝑐) satisfying (35)(𝑐) = (90)?

3. How many residue classes modulo𝑚 are their own multiplicative inverses if𝑚 is
(a) 47
(b) 30
(c) 800

* (d) arbitrary?
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4. Consider the ring of residue classes modulo a composite𝑚.
(a) Show that if (𝑎) is a zero divisor, then (𝑎)(𝑐) is a zero divisor or (0) for any (𝑐).
(b) Demonstrate that if (𝑎)(𝑐) is a zero divisor, then at least one of (𝑎) and (𝑐) is a

zero divisor.
(c) Determine all 𝑚 where the sum of any two zero divisors is a zero divisor or

(0).
(d) Compute the sum and product of all zero divisors.
(e) For which𝑚 does there exist an (𝑎) ≠ (0) satisfying (𝑎)2 = (0)?

5. (a) Let 𝐻 be the set of those residue classes modulo 20 that are “divisible” by 4,
i.e.

𝐻 = {(0)20, (4)20, (8)20, (12)20, (16)20}.
Prove that𝐻 is a field under the addition andmultiplication of residue classes.

(b) Let 𝐾 be the set of those residue classes modulo 40 that are divisible by 4, i.e.
𝐾 = {(0)40, (4)40, . . . , (36)40}.

Verify that 𝐾 is a commutative ring under the addition and multiplication of
residue classes, but it is not a field, it has no identity element, and every non-
zero element is a zero divisor.

S* (c) Generalize the problem (as far as possible).
6. Examine in detail whether it is possible to define the following operations for

residue classes modulo𝑚 using their positive representatives.
(a) Gcd: gcd((𝑎)𝑚, (𝑏)𝑚) = (gcd(𝑎, 𝑏))𝑚
(b) Third power: (𝑎)3𝑚 = (𝑎3)𝑚
(c) Cube root: 3√(𝑎)𝑚 = (3√𝑎)𝑚
(d) Arithmetic mean: ((𝑎)𝑚 + (𝑏)𝑚)/2 = ((𝑎 + 𝑏)/2)𝑚
(e) Exponentiation: (𝑎)(𝑏)𝑚𝑚 = (𝑎𝑏)𝑚.

7. Generalization of the Euler–Fermat Theorem. In a finite commutative group 𝐺, let
|𝐺| denote the number of elements and 𝑒 be the identity element. Prove that 𝑎|𝐺| =
𝑒 holds for any 𝑎 ∈ 𝐺.

* 8. Generalization of Wilson’s Theorem. In a finite commutative group 𝐺, let 𝑒 be the
identity element and 𝑃 the product of all elements. Show that if𝐺 contains exactly
one element 𝑐 ≠ 𝑒 satisfying 𝑐2 = 𝑒, then 𝑃 = 𝑐, and 𝑃 = 𝑒 in all other cases.


