
Solutions, Chapters 1�4

1. Basic Notions

• 1.1.18 Since there are only finitely many possible “games” for any n, and
each ends with one of the players winning the game, therefore one of the
players must have a winning strategy. We show that this is always the first
player. For a proof by contradiction, assume that the second player, Juliet
has a winning strategy for some n. This includes that if Romeo starts with
d1 = 1, then Juliet can say d2 = r and continue the game so that she wins.
But then Romeo can win starting with d1 = r and playing as Juliet did before
(the number 1 could be the only difference to the previous game, but 1 cannot
be chosen in any later step as it divides already d1 = r). This contradiction
proves that the first player has a winning strategy for every n > 1. — Observe
that the proof yields only the fact that the first player can win, but gives no
information about the concrete strategy. For numbers n having a complicated
structure, it is not known, how Romeo should play (and even a computer
cannot help him due to the extremely large number of possible games).

• 1.1.22 (f) Since 1 +
√
2 is a unit and the negative and every power of a

unit (to an integer exponent) is a unit again, therefore the given numbers
are units, indeed. We prove the converse by contradiction. Assume that there
exists a unit ε not listed above. If necessary, we multiply it by −1 to get a unit
δ > 0. Then there exists an integer k satisfying (1+

√
2)k < δ < (1+

√
2)k+1.

Multiplying the inequality by the unit (1 +
√
2)−k, we obtain a unit u+ v

√
2

with 1 < u + v
√
2 < 1 +

√
2. Obviously, u and v cannot have the same sign

(and none of them can be zero). We shall use |u2−2v2| = 1. If u2−2v2 = −1,
then the unit ϱ = v

√
2 − u = 1/(u + v

√
2) satisfies 0 < ϱ < 1. On the other

hand, ϱ > 1 for v > 0 and u < 0, and ϱ < 0 for v < 0 and u > 0, providing the
contradiction. We get a contradiction similarly also in the case u2 − 2v2 = 1.

• 1.1.23 (a) If e is the identity, then it is clearly a unit, as well. For the
converse, let ε be a unit. Then ε | ε, so ε = εq for some q. We show that q
is an identity. We have εc = εqc for every c, i.e. ε(c − qc) = 0. There are no
zero divisors, hence c = qc, so q is an identity, indeed.

• 1.3.11 Since (a, b) | a, therefore c(a, b) | ca, and similarly c(a, b) | cb. This
means that c(a, b) is a common divisor of ca and cb, hence c(a, b) divides also
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the special common divisor (ca, cb) of ca and cb. Thus c(a, b)q = (ca, cb) for
some integer q. We have to show that q is a unit.

Since c(a, b)q = (ca, cb) | ca, therefore q(a, b) | a, and similarly q(a, b) | b.
This means that q(a, b) is a common divisor of a and b, hence it divides also
their special common divisor: q(a, b) | (a, b). So q | 1, thus q is a unit, indeed.

• 1.3.13 Since (n, k) | n, thus a(n,k)−1 | an−1, and similarly a(n,k)−1 | ak−1.
This means that a(n,k) − 1 is a common divisor of an − 1 and ak − 1.

Now we show the special property, i.e. any common divisor d of an − 1
and ak − 1 divides also a(n,k) − 1. Obviously, u and v have opposite signs in
the representation (n, k) = nu+ kv, so we may assume (n, k) = nr− ks where
r and s are positive integers. Then

d | an − 1 | anr − 1 and d | ak − 1 | aks − 1,

so

d | (anr − 1)− (aks − 1) = anr − aks = aks(anr−ks − 1) = aks(a(n,k) − 1) .

Here d is coprime to the first factor aks of the last product as d | aks−1. Thus
d must divide the second factor a(n,k) − 1.

• 1.4.5 We shall use that ck +(t+1− c)k is divisible by c+(t+1− c) = t+1
for any c if k is odd.

Let first t be even. Then the grouping(
1k + tk

)
+
(
2k + (t− 1)k

)
+ . . .+

(
(t/2)k + (1 + (t/2))k

)
shows that the sum is divisible by t + 1. Therefore, it can be a prime only if
it equals t+ 1. However,

1k + 2k + 3k + . . .+ tk ≥ 1 + 2 + . . .+ t = t(t+ 1)/2 ≥ t+ 1 ,

and equality holds only for t = 2 and k = 1. In this case, 11 + 21 = 3 is a
prime, indeed.

If t is odd, then the only change is that the sum has a middle term(
(t + 1)/2

)k
. So the sum is divisible by (t + 1)/2 by the previous argument.

As the sum is greater than (t+ 1)/2, it can never be a prime.
Thus the only solution is t = 2, k = 1.
We can solve the problem similarly also using the divisibility by t instead

of t+ 1.
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• 1.5.8 Let p be irreducible, and assume p | ab. We have to verify that at
least one of p | a and p | b holds.

If a = 0, then p | a. If a is a unit, then p | b.
If a and b are different from zero and units, then factor them into the

product of irreducible elements:

a = u1 . . . uk, b = v1 . . . vm.

Hence ab = u1 . . . ukv1 . . . vm.
The assumption p | ab implies ab = ps for some integer s. Write s as a

product of irreducible elements: s = w1 . . . wn. Then ab = pw1 . . . wn.
By the Fundamental Theorem, the two decompositions of ab are essen-

tially the same, so p must be an associate of some ui or vj . Accordingly, p | a
or p | b.

• 1.5.10 2 and 3 suits, e.g. 2 = 13 + 13 and 32 = 23 + 13. We claim that no
other primes meet the requirements.

Assume x3 + y3 = pα. Dividing the equation by (x, y)3, we obtain a
similar equation where the (new) x and y are coprime (and the new α may be
smaller than the original was).

Factoring yields (x+ y)(x2 − xy + y2) = pα. The Fundamental Theorem
(and positivity) imply

(S.1.1) x+ y = pβ , x2 − xy + y2 = pγ , β > 0, γ ≥ 0, β + γ = α.

Substituting (S.1.1) into the identity (x+y)2−(x2−xy+y2) = 3xy, we obtain

(S.1.2) p2β − pγ = 3xy .

If γ = 0, then

1 = x2 − xy + y2 = (x− y)2 + xy ≥ xy ≥ 1 · 1 = 1

giving x = y = 1 and p = 2.
If γ > 0, then p | 3xy by (S.1.2). If p | x, then p | x + y(= pβ) implies

p | y , which contradicts x and y being coprime. We get a contradiction
similarly from p | y . Hence p | 3, i.e. only p = 3 is possible.

• 1.6.3 (a) For a proof by contradiction, assume that x(x + 1) = zk holds
for some integers x > 0, z > 0, and k ≥ 2. Since (x, x + 1) = 1, therefore
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x = uk and x+ 1 = vk for some positive integers u and v by Exercise 1.6.2a.
So vk − uk = 1. But this is impossible as

vk − uk ≥ (u+ 1)k − uk > kuk−1 > 1.

• (b) We have to modify the previous argument slightly. The three factors
are generally not pairwise coprime, but the middle one is coprime to the other
two. Thus (x− 1)x(x+1) = zk and (x, x2− 1) = 1 imply x = uk, x2− 1 = vk.
Then (u2)k − vk = 1 which is impossible.

• (c) First we show that the product of four consecutive positive integers
cannot be a square, i.e.

(S.1.3) (x− 1)x(x+ 1)(x+ 2) = z2

is impossible (for x ≥ 2). Put x(x + 1) = 2y, then (x − 1)(x + 2) = 2y − 2,
so (1) can be rewritten as y(y − 1) = (z/2)2. We saw in (a) that the product
of two consecutive positive integers is never a square, so (S.1.3) cannot hold
either.

Consider now k ≥ 3, and for a proof by contradiction, assume that the
product of four consecutive positive integers is a kth power. Observe that
the odd one of the middle two numbers is always coprime to the other three.
Then, as seen in (b), both this factor and the product of the other three are
kth powers. This means either

(S.1.4) (uk − 1)(uk + 1)(uk + 2) = vk

or

(S.1.5) (uk − 1)(uk + 1)(uk − 2) = vk .

We prove, however, that for k ≥ 3, the left-hand side in (S.1.4) and (S.1.5)
fall between the kth powers of two consecutive integers, hence these cannot
be kth powers themselves.

Consider first the left-hand side of (S.1.4): u3k +2u2k − uk − 2. We show

(u3)k < u3k + 2u2k − uk − 2 < (u3 + 1)k .

The first inequality is obvious, and the second follows (for k ≥ 3) since

(u3 + 1)k > u3k + ku3(k−1) > u3k + 2u2k > u3k + 2u2k − uk − 2.
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Consider now the left-hand side of (S.1.5): u3k − 2u2k − uk + 2. We
demonstrate

(u3)k > u3k − 2u2k − uk + 2 > (u3 − 1)k .

The first inequality is obvious. The second is equivalent to (u3−1)(u3−3) > 0
for k = 3 which is true. For k ≥ 4, rewrite the second inequality as

(u3)k − (u3 − 1)k > 2u2k + uk − 2.

We can verify this as follows:

(u3)k − (u3 − 1)k = u3(k−1) + u3(k−2)(u3 − 1) + . . .+ (u3 − 1)k−1 >

> u3k−3 + u3k−6 > u · u2k + uk > 2u2k + uk − 2 .

• 1.6.4 Assume 2p−1−1 = n2p. Since p = 2 is not a solution, so p−1 is even,
and the equation is equivalent to

(2(p−1)/2 − 1)(2(p−1)/2 + 1) = n2p.

The two factors on the left-hand side are coprime, so the following two
cases can occur: either

(S.1.6) 2(p−1)/2 − 1 = u2 and 2(p−1)/2 + 1 = pv2 ,

or

(S.1.7) 2(p−1)/2 − 1 = pu2 and 2(p−1)/2 + 1 = v2 .

In Case (S.1.6), the left-hand side of the first equality gives a remainder
3 divided by 4 for p > 3, and so cannot be a square. Hence only p = 3 is
possible which satisfies the requirements, indeed.

In Case (S.1.7), the equality assumes the form 2(p−1)/2 = (v − 1)(v + 1).
This implies that both v − 1 and v + 1 must be powers of two. Since their
difference is 2, only the pair 2 and 4 can occur, i.e. v = 3. This yields p = 7
which satisfies the requirements, indeed.

Hence all solutions are p = 3 and p = 7.

• 1.6.10 First solution: If n = 1, then A(1) = B(1) = d(1) = 1, so we have
equality. For n > 1, let the standard form of n be n = pα1

1 . . . pαr
r where

αi > 0. The squarefree divisors are those where the exponent of every pi is 0
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or 1, thus A(n) = 2r. In the square divisors, the exponent of every pi is even,
so B(n) = (1 + ⌊α1/2⌋) . . . (1 + ⌊αr/2⌋).

To prove (a), consider the inequalities 2(1+ ⌊αi/2⌋) ≥ αi +1 (we have >
for αi even, and = for αi odd). Multiplying these inequalities for i = 1, 2, . . . , r,
the left-hand side of the product is A(n)B(n), and the right-hand side is d(n).
This shows that equality holds if and only if 2(1 + ⌊αi/2⌋) = αi + 1 for every
i, i.e. every αi is odd.

• Second solution: Factoring out the largest square divisor from a number,
the Fundamental Theorem implies that every positive integer has a unique
decomposition into the product of a square and a squarefree number. Thus,
also every divisor of n can uniquely be written as the product of a square
divisor and a squarefree divisor of n. So d(n) ≤ A(n)B(n). We have equality
if and only if all these products are divisors of n. If the exponent of a prime pi
is even in the standard form of n, i.e. αi = 2m, then the product p2mi pi is not
a divisor of n. We can check similarly that if the exponent of every prime is
odd in the standard form of n, then all such products divide n, indeed. Thus
equality holds if and only if every prime occurs with an odd exponent in the
standard form of n.

• 1.6.28 The game terminates for every initial position of the coins if and only
if the number of monkeys is a power of two.

Replacing heads by −1 and tails by +1, we can rephrase the problem as
follows. Let each of the numbers x1, x2, . . . , xn be 1 or −1, form the products
x1x2, x2x3, . . . , xnx1, and iterate this procedure. We have to find all n for
which the sequence of pure 1s will necessarily appear whatever the original
numbers were.

We show first that the game does not terminate necessarily for an odd
n > 1. In each step, the product of the new numbers is the square of the
product of the previous numbers, hence it must equal +1. Therefore, the
number of −1s must be even during the game (except perhaps for the initial
position). So, if the starting n-tuple contained both a 1 and a −1, then just
before the end of the game, every number has to be −1. But this would mean
an odd number of −1s which is impossible. (Thus the game terminates for an
odd n only if we start uniformly with 1s or −1s.)

Consider now n = rt with an odd t > 1. If the starting position is
periodic with a period of length t (and not all numbers are the same), then
the argument given for the odd case shows that the game will not terminate.

Finally, we prove that the game ends if n = 2k. Writing a few steps in
detail, we can conjecture and then verify by induction on r or by Pascal’s
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triangle that the first term of our sequence after r steps is

(S.1.8) x
(r0)
1 x

(r1)
2 . . . x

(rr)
r+1

where we define xi for i > n by x1 = xn+1 = x2n+1 = . . . , x2 = xn+2 = . . .,
etc. (this is true for every n, not just for the powers of two). Applying this

for r = n = 2k, we obtain that the exponents in (1) are 2 for x1 and
(
2k

i−1

)
for the other xi. These exponents are all even (see Exercise 1.6.27c2). So the
product in (S.1.8) is a square, hence it equals +1. We get exactly the same
way that all other terms of the sequence are +1 after the nth step. Thus the
game terminates here at the latest.

• 1.6.29 First solution: Let 1 ≤ k ≤ n. As n! + k > k, there must be a prime
p that occurs with a higher exponent in the standard form of n! + k than in
the standard form of k. Let pα | k, pα+1 ̸ | k, , and pα+1 | n! + k (for some
integer α ≥ 0). We claim that p does not divide the other numbers n! + t
(t = 1, 2, . . . , n, t ̸= k).

This is obvious for p > n, since then p can divide at most one of n
consecutive integers. So it suffices to check p ≤ n. For a proof by contradiction
assume p | n! + t for some 1 ≤ t ≤ n and t ̸= k. As p | n! , therefore
p | (n! + t)− n! = t, and kt | n! implies pα+1 | n! . But this is a contradiction
since pα+1 | n! + k and pα+1 ̸ | k.
• Second solution: We show first that each number n! + k (1 ≤ k ≤ n) has a
prime divisor larger than n/2. Moreover, we claim that every prime divisor p
of the second factor in n! + k = k(n!/k + 1) is bigger than n/2. For a proof
by contradiction, assume p ≤ n/2. The number n!/k is the product of all
numbers from 1 to n except k. If p ≤ n/2, then both p and 2p occur among
the factors of n!, so at least one of them occurs also in n!/k (this is p for
k = 2p; it is 2p for k = p; and both remain for other values of k). So p divides
both n!/k and n!/k + 1 which is impossible.

Now we prove that any prime divisor q > n/2 of n!+k meets the require-
ments. It suffices to show that q can divide at most one of the numbers n! + j
(1 ≤ j ≤ n). For q ≥ n this is obvious, as we have only n consecutive integers.
If n/2 < q < n, then q occurs in n!. So, if q divides n! + j, then it divides also
(n!+ j)−n! = j. But 2q > n ≥ j > 0, thus only q = j is possible. This means
that j is uniquely determined in this case, as well.

• 1.6.30 The maximum is 9.
We prove first that 9 pairwise coprime numbers can be attained. Let

p1, p2, . . . , p4991 be distinct primes and P be their product. Then the following
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5000 numbers meet the requirements:

ai = P/pi, i = 1, 2, . . . , 4991; bj = pj , j = 1, 2, . . . , 8; and b9 = p9·p10·. . .·p4991.

Here b1, b2, . . . , b9 are pairwise coprime. We show that the lcm of any ten
numbers is P . Every ai and bj divides P , so the lcm cannot be bigger than
P . On the other hand, the lcm of two or more ai is P , and the lcm of all bj
is P , as well. Since any ten numbers either contain at least two ai, or contain
all bj , their lcm cannot be less than P .

Now we show that we cannot have 10 pairwise coprime numbers. For a
proof by contradiction, assume that the lcm of any ten of the distinct positive
integers c1, c2, . . . , c5000 is the same C and (say) c1, c2, . . . , c10 are pairwise
coprime. Then the lcm of c1, c2, . . . , c10 is C = c1 · c2 · . . . · c10. Consider now
c11. According to the condition, the lcm of c2, c3, . . . , c10, c11 is C, as well.
This means that all prime divisors of c11 must occur also in one of c1, . . . , c10,
and c11 must contain the prime factors of c1 with exactly the same exponents
as c1 (since these primes do not divide any of the numbers c2, . . . , c10 coprime
to c1). Repeating the argument for all groups of ten numbers composed of c11
and nine elements from c1, c2, . . . , c10, we obtain that only c11 = C is possible.
The same applies also for c12, which is a contradiction as the numbers have
to be distinct.

• 1.6.34 I. We show first that S(i) is a (positive) composite number for every
i ≥ 2. S(i) ≥ i ≥ 2 implies S(i) ̸= 1. Further, S(i) cannot be a prime, since a
product of distinct positive integers with a prime maximal element cannot be
a square as it is divisible only by the first power of this prime.

II. We prove now S(i) ̸= S(j) for i < j. For a proof by contradiction,
assume S(i) = S(j) = n. Then both b1b2 . . . br and c1c2 . . . cs are squares for
some i = b1 < b2 < . . . < br = n and j = c1 < c2 < . . . < cs = n. We multiply
the two products and delete both copies of the factors occurring twice (i.e. we
divide b1b2 . . . brc1c2 . . . cs by the squares of the common factors of the original
two products).

The new product is a square, its smallest element is i (due to i < j), and
its maximal element is less than n (since we deleted the square of n = br = cs).
This, however, contradicts S(i) = n.

III. Finally, we verify that every composite n occurs among the values
S(i). Consider all sets of numbers u1 < u2 < . . . < uk where uk = n and
the product u1u2 . . . uk is a square. There always exists such a set: if n is a
square, then k = 1, u1 = n suits, and if n is not a square, insert those primes
that occur in the standard form of n with an odd exponent.
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Let m be the maximal value among the smallest numbers u1 of these sets.
We claim that S(m) = n.

For a proof by contradiction, assume that v1v2 . . . vq is a square for some
numbers m = v1 < v2 < . . . < vq with vq < n. Similarly to part II., we form
the product of all u and v and delete both copies of the factors occurring twice.
This product contains n, but m is missing. Hence this product is a square, its
maximal factor is n, but its smallest factor is bigger than m. This, however,
contradicts the maximality of m.

• 1.6.35 (a) No.

•First proof : For a proof by contradiction, assume that the arithmetic pro-
gression a+kd, k = 0, 1, 2, . . . satisfies the requirements. Let p be a prime that
does not divide d. It is easy to show that the numbers a+kd, k = 1, 2, . . . , p2,
have distinct remainders at the division by p2. This means that we obtain all
possible residues, including also the remainder p. But a power cannot be of
the form mp2 + p, since it is divisible exactly by the first power of p.

• Second proof : An arithmetic progression with difference d has about N/d
elements up to N . The number of powers up to N is, however, much less, it
is not more than N1/2 +N1/3 +N1/4 + . . . ≤ N1/2 + log2N ·N1/3 < 2

√
N for

N large enough. So, choosing a sufficiently big N , there are “too few” powers
to make every element of the arithmetic progression a power.

• Third proof : We use Dirichlet’s Theorem about the primes in arithmetic
progressions: If (A,D) = 1, then the arithmetic progression A+ kD contains
infinitely many primes (Theorem 5.3.1). Factoring out m = (a, d) from a+kd,
then a + kd = m(A + kD) would be infinitely often of the form mp, but this
cannot be a power for a prime p bigger than m.

• Fourth proof : If the first term of the arithmetic progression is a = br where
r > 1 is the maximal possible exponent (we may assume a > 1), then a simple
calculation yields that the term a+ (a2dr−1)d cannot be a power.

• (b) Yes. We prove by induction. Assume that ak1
1 , . . . , a

kn
n is an arithmetic

progression with difference d, and let s = akn
n + d be its n+ 1st term. Multi-

plying every term by sk1k2...kn , we obtain an arithmetic progression of n + 1
powers.

2. Congruences

• 2.2.4 (f) There is a complete residue system modulo m purely of repunits
if and only if m is of a power of three.
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Assume first that m has a prime divisor p ̸= 3 and still some repunits
produce all possible remainders modulo m. Then also modulo p we get all
remainders, i.e. there exists a complete residue system modulo p of repunits,
as well.

Multiplying this complete residue system modulo p by 9 and adding 1, we
obtain powers of 10. Due to (9, p) = 1, these form again a complete residue
system modulo p. But this is impossible: for p = 2 or 5, all remainders are
zero, and for other primes p, the zero remainder will certainly not occur.

This contradiction shows that if m is not a power of three, then there are
no such repunits.

For the converse, consider m = 3k. We show that the first m repunits are
pairwise incongruent modulo m, so they form a complete residue system.

For a proof by contradiction, assume that the difference of the jth and ith
repunits is a multiple of 3k for some 1 ≤ i < j ≤ m. Dividing this difference
by 10i, we obtain the j − ith repunit, and due to (3k, 10) = 1, this is still a
multiple of 3k. We can prove by induction on r that the 3rth repunit is the
first one divisible by 3r (see Exercise 1.3.12b). This implies the contradiction
3k = m ≤ j − i < m.

Thus m = 3k meets the requirements, indeed.

• (g) There is a complete residue system modulo m purely of powers if and
only if m is squarefree, i.e. m is the product of distinct primes.

If m is not squarefree, i.e. m is a multiple of p2 for some prime p, then
e.g. the remainder p can not be attained: p occurs with exponent 1 in the
standard form of every element of this residue class, so none of these can be a
power.

We start to verify the “if” part by showing that, to any prime p and
integer c, we can find an s > 0 so that cs+1 − c is divisible by p. If c is a
multiple of p, then clearly every s suits. Otherwise, we apply that the powers
of c can give only finitely many remainders when divided by p, thus p divides
ct − cr = cr−1(ct−r+1 − c) for some r < t. But then (p, c) = 1 implies that p
divides also ct−r+1 − c.

Let now m be m = p1 . . . pr, pi ̸= pj . To every c, we shall generate a
T > 0 such that cT+1 and c have the same remainder at the division by m,
i.e. cT+1 − c is a multiple of m. Consider the exponents si belonging to c and
pi in the previous paragraph; their product satisfies the requirement for T .

Finally, consider any complete residue system c1, . . . , cm modulo m with
ci > 1. We saw above that, to every ci, there is some ki > 1 satisfying ci ≡ cki

i

(mod m). Then the powers cki
i form a complete residue system modulo m.

• 2.2.8 (a) The squirrels can gather on one tree if and only if m is odd or is
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a multiple of 4.
For m odd, the squirrel on the highest tree should remain there, its two

neighbors should jump onto this tree in one step, the two second neighbors
should jump here in two steps, etc.

If m is divisible by 4, then, after the above steps, one squirrel will remain
on the tree opposite to the highest tree. She can arrive at the highest tree by
an even number of jumps whereas another squirrel keeps jumping to and fro
between the highest tree and one of its neighbors.

Finally, if m is even but not divisible by 4, then the squirrels cannot
gather on one tree. If we count with how many jumps a squirrel can get on
the designated tree (taking into consideration that the squirrel can jump in
both directions in every minute) and add these numbers for all squirrels, then
the total number of jumps is always odd. Thus the task cannot be done to
meet the requirements.

• (b) Exactly the odd numbers m suit the conditions.
The arguments in (a) remain valid if m is not a multiple of 4.
If m is divisible by 4 (or is simply even), then we number the trees con-

secutively from 1 to m. In every minute and for each squirrel, we register
the serial number of the tree where the squirrel actually sits, and add these
m numbers (if there are k squirrels on a tree, then the serial number of this
tree occurs k times in the sum). The remainder of this sum modulo m re-
mains the same in every step. In the initial position, this is the remainder of
1 + 2 + . . . +m = m(m + 1)/2 = m · (m/2) +m/2, which is m/2 (we could
have referred also to Exercise 2.2.7a). If every squirrel is on the same tree,
then the remainder is 0, hence this situation cannot be achieved.

• 2.2.12 (a) If (a,m) = 1, then ari form a reduced residue system, so they
are pairwise incongruent modulo m.

We show that these numbers are pairwise incongruent also in the case
m = 4k + 2 and (a,m) = 2. Assume ari ≡ arj (mod m). By the cancelation
rule of Theorem 2.1.3,

(S.2.1) ri ≡ rj
(
mod

m

2

)
.

Further, both ri and rj are odd due to (ri,m) = (rj ,m) = 1. Thus

(S.2.2) ri ≡ rj (mod 2).

Using (m/2, 2) = 1, congruences (S.2.1) and (S.2.2) imply ri ≡ rj (mod m),
i.e. i = j.
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We give now two proofs that the numbers ari will not be pairwise incon-
gruent modulo m in any other case.

First proof : We investigate the following two cases separately: (A) m and
a share a prime divisor p > 2; (B) 2 | a and 4 | m.

In Case (A),

(S.2.3) a ·
(m
p

+ 1
)
≡ a · 1 ≡ a ·

(2m
p

+ 1
)
(mod m) .

If (m/p+ 1,m) = 1, then for some i ̸= j,

ri ≡ 1 ̸≡ m

p
+ 1 ≡ rj (mod m), but ari ≡ arj (mod m).

If (2m/p + 1,m) = 1, then we obtain similarly that the numbers ari are
not pairwise incongruent modulo m.

Hence, to settle Case (A), it suffices to show that at least one of m/p+1
and 2m/p+ 1 is coprime to m.

Let (m/p + 1,m) = d. Then d | p(m/p + 1) −m = p, so only d = p or
d = 1 is possible. We get similarly that (2m/p+ 1,m) = p or 1.

Both greatest common divisors, however, cannot equal p, since

2
(m
p

+ 1
)
−

(2m
p

+ 1
)
= 1

implies that m/p+ 1 and 2m/p+ 1 are coprime.
Case (B) is similar, we use (m/2 + 1, 2) = 1 and (S.2.3).

Second proof : We shall use Euler’s φ function.
Let p be an arbitrary prime divisor ofm. There are φ(m) numbers ri, and

these fall into (at most) φ(m/p) residue classes modulo m/p. So, if φ(m) >
φ(m/p), then some ri and rj (i ̸= j) must have the same remainder at division
by m/p implying m | ari − arj for p | a. This means that if the numbers ari
are pairwise incongruent mod m, then φ(m) = φ(m/p) must hold for every
common prime divisor p of a and m.

We can easily deduce from the formula for φ(n) (see Theorem 2.3.1) that

φ(m) = pφ(m/p) if p2 | m; and φ(m) = (p− 1)φ(m/p) if (p,m/p) = 1 .

Thus φ(m) = φ(m/p) if and only if p = 2 and (2,m/2) = 1. This means
that if ari are pairwise incongruent and a and m are not coprime, then m is
necessarily even but not a multiple of 4 and (a,m) = 2.
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• (b) There are φ(m) pairwise incongruent numbers ri + b, hence they form
a reduced residue system if and only if each of them is coprime to m.

Let p1, . . . , ps be all distinct prime divisors of m. We show first that if
p1 · . . . · ps | b, then (ri + b,m) = 1.

Since
pj | b, pj ̸ | ri =⇒ pj ̸ | ri + b

for every 1 ≤ j ≤ s, i.e. ri + b and m have no common prime divisors, indeed.
We give two proofs that no other b suits, i.e. (ri + b,m) ̸= 1 for some i.
First proof : Assume that among the primes pj , exactly p1, . . . , pk divide

b. By the assumption, k < s. If no pj divides b, then we handle it as k = 0.
Let v = pk+1 . . . ps− b. Then (v,m) = 1, as no pj divides v, since each pj

divides exactly one of the two terms in the difference pk+1 . . . ps − b.
This implies that ri ≡ v (mod m) for some i. However, ri + b ≡ v + b =

pk+1 . . . ps (mod m), so ri + b is not coprime to m.

Second proof : Assume that the numbers ai + b form a reduced residue
system. Then a1 + b ≡ as for some s. This implies a1 + 2b ≡ as + b. By the
assumption, (as + b,m) = 1, hence also (a1 + 2b,m) = 1 by Theorem 2.2.5.
Continuing the procedure, we get by induction that (a1 + jb,m) = 1 for every
j ≥ 0.

Let now p be a prime divisor of m that does not divide b. Then, by
Theorem 2.2.4, a1, a1+b, a1+2b, . . . , a1+(p−1)b is a complete residue system
mod p (we multiplied the complete residue system 0, 1, . . . , p−1 by b and added
a1). Thus some a1 + tb is divisible by p, which contradicts (a1 + tb,m) = 1.

• 2.2.13 There exist such residue systems if and only if (k,m) = 1.

Sufficiency : Assume (k,m) = 1 and choose

ai = 1 + ki, i = 1, 2, . . . ,m, and bj = 1 +mj, j = 1, 2, . . . , k .

These are complete residue systems modulo m and modulo k, resp., by
Theorem 2.2.4.

We show that the mk products aibj form a complete residue system mo-
dulo mk, i.e. they are pairwise incongruent.

Assume

(1 + ki)(1 +mj) ≡ (1 + kr)(1 +ms) (mod mk).

Performing the multiplications, subtracting 1 from both sides, and omitting
the multiples of mk, we obtain

(S.2.4) ki+mj ≡ kr +ms (mod mk).
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Considering (S.2.4) only modulo m, it reduces to ki ≡ kr (mod m).
Dividing by k coprime to the modulus m, we get i ≡ r (mod m), i.e. i = r.
We obtain j = s similarly.

Necessity : Assuming (m, k) ̸= 1, we have to demonstrate that the products
aibj , formed from the complete residue systems a1, . . . , am (modulo m) and
b1, . . . , bk (modulo k), cannot yield a complete residue system modulo mk.

Let p be a common prime divisor of m and k. Then there are m/p and
k/p multiples of p among the elements ai and bj , resp.

The product aibj is divisible by p if and only if ai or bj is a multiple of p.
Thus

(S.2.5) m · k
p
+ k · m

p
− m

p
· k
p
=

2mk

p
− mk

p2

products aibj are divisible by p. (The negative term stands for the number
of products when both ai and bj are multiples of p since these products were
counted twice in the previous sum.) In a complete residue system modulo mk,
however, there are mk/p elements divisible by p, which is not equal to (S.2.5)
by p > 1. Hence, the products aibj never form a complete residue system
modulo mk.

• 2.2.14 (a) Necessity : If (a, b) = d > 1, then every element of T is a multiple
of d, thus e.g. the reduced residue classes are not represented by them.

Sufficiency : There are ab elements in T , so we need to verify the pairwise
incongruence. If

i1b+ j1a ≡ i2b+ j2a (mod ab) ,

then this congruence holds also modulo a: i1b ≡ i2b (mod a). Since (a, b) = 1,
we can cancel by b yielding i1 ≡ i2 (mod a), i.e. i1 = i2. We obtain j1 = j2
similarly.

• (b) The necessity and the pairwise incongruence for the sufficiency can be
verified the same way as in (a). To complete the proof of sufficiency, we have
to show that assuming (a, b) = 1, every element of R belongs to a reduced
residue class and every reduced residue class is represented by some element
of R. This means:
(A) The elements of R are coprime to ab; and
(B) If (u, ab) = 1, then R contains an element v satisfying u ≡ v (mod ab).

To prove (A), consider an arbitrary prime divisor p of ab. We show that
p does not divide rib+ sja.

As p is a prime and (a, b) = 1, the following two cases are possible:

(α) p | a and p ̸ | b, (β) p ̸ | a and p | b .
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In Case (α), p̸ | b and p̸ | ri. As p is a prime, this implies p̸ | rib. But p | sja,
thus p̸ | rib+ sja, indeed. We can settle Case (β) similarly.

Finally, to verify (B), let (u, ab) = 1, and write u in the form

(S.2.6) u = rb+ sa.

This can be done as the Diophantine equation u = bx+ ay is solvable due to
(a, b) = 1.

Clearly, (r, a) | ab, and (S.2.6) implies (r, a) | u. Since (u, ab) = 1, so
(r, a) = 1. Therefore r ≡ ri (mod a) for some i. Similarly, s ≡ sj (mod b) for
some j.

We show that the element v = rib + sja of R is congruent to u modulo
ab. Considering

v − u = (rib+ sja)− (rb+ sa) = (ri − r)b+ (sj − s)a,

the last sum is clearly divisible by ab as ri − r in the first term is a multiple
of a and sj − s in the second term is a multiple of b.

• (c) There are φ(a)φ(b) elements in R on the one hand, and R is a reduced
residue system modulo ab for (a, b) = 1, hence it has φ(ab) elements on the
other hand.

• 2.3.18 The integers n ≤ 3 clearly suit.
We show that φ(n!) = k! is impossible for n > 3. This is obvious for

n = 4, so we investigate n ≥ 5.
Let A(j) be the exponent of 2 in the standard form of j.
Since k < n, also

(S.2.7) A(k!) ≤ A(n!) .

But φ(n!) necessarily contains the factors 2A(n!)−1, 3− 1, and 5− 1, thus

(S.2.8) A
(
φ(n!)

)
≥ (A(n!)− 1) + 1 + 2 > A(n!) .

(S.2.7) and (S.2.8) imply A
(
φ(n!)

)
> A(k!), hence φ(n!) = k! cannot hold.

• 2.3.19 A reduced residue system modulo m can form an arithmetic pro-
gression if and only if m is a prime, or the double of a prime, or a power of
two.
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Sufficiency : The following sets meet the requirements: 1, 3, . . . , 2k − 1 for
m = 2k; 1, 2, . . . , p− 1 for m = p; and p+2, p+4, . . . , 2p− 1, 2p+1, . . . , 3p− 2
for m = 2p (where p > 2 is a prime).

Necessity : For a proof by contradiction, assume that m is not of the above
form and the arithmetic progression

(S.2.9) a, a+ d, . . . , a+ (φ(m)− 1)d

is still a reduced residue system modulo m.
Let p be an odd prime divisor of m.
If p | d, then every element in the above arithmetic progression is con-

gruent to a modulo p. This cannot be true, however, for both of the elements
representing the reduced residue classes (1)m and (−1)m, as 1 ̸≡ −1 (mod p).

If (p, d) = 1, then a, a + d, . . . , a + (p − 1)d is a complete residue system
modulo p. Hence it contains also a multiple of p that is not coprime to m.
Therefore, this number cannot occur in (S.2.9) which means that p − 1 >
φ(m)− 1, so

p > φ(m) . (S.2.10)

Write m in the form m = tp where t > 2 according to the assumption on
m. Then φ(t) ≥ 2, and using Exercise 2.3.10a, we obtain

φ(m) = φ(tp) ≥ φ(t)φ(p) ≥ 2(p− 1) > p ,

which contradicts (S.2.10).

• 2.5.7 First solution: If (a,m) = d, then there are f(b) = d solutions for
the m/d numbers b = d, 2d, . . . , (m/d)d; and there are no solutions for the
other values of 1 ≤ b ≤ m, so f(b) = 0 for these. Therefore the sum equals∑m

b=1 f(b) = (m/d)d = m.

• Second solution: Each of the numbers x = 1, 2, . . . ,m satisfies the congruence
ax ≡ b (mod m) for exactly one b. Hence

∑m
b=1 f(b) = m. This argument

is valid also for any non-linear congruence h(x) ≡ b (mod m) where h is an
arbitrary polynomial of higher degree.

• 2.6.9 According to the hint, we investigate the congruence x ≡ 3938
37

(mod
1440), and using 1440 = 25 · 32 · 5, we replace it by a system of congruences
with moduli 25, 32, and 5.

Since 39 ≡ −1 (mod 5) and 3837 is even, so x ≡ 1 (mod 5).
3 | 39 implies x ≡ 0 (mod 9).
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Finally, 39 ≡ 7 (mod 32) and 74 = 492 ≡ 172 ≡ 1 (mod 32), further
4 | 3837, hence x ≡ 1 (mod 32).

Thus we have to solve the system

x ≡ 1 (mod 5), x ≡ 0 (mod 9), x ≡ 1 (mod 32).

Combining the first and last congruences, we get x ≡ 1 (mod 5·32 = 160),
i.e. x = 160z + 1. Substituting this into the second congruence, we have
160z + 1 ≡ 0 (mod 9) yielding z ≡ 5 (mod 9) or z = 9t+ 5. Hence

x = 160(9t+ 5) + 1 = 1440t+ 801, thus x ≡ 801 (mod 1440) .

Thus the exact time is 13:21.

• 2.8.5 (c) We prove the four statements indicated in the hint.

(i) We can prove similarly to (a) that the operations are well defined, the
operational identities are valid, there exists a zero element, and every element
has a negative.

(ii) Let m = tk where t > 1 and (t, k) = 1 by the assumption. The arising
residue classes are (rk)m for 0 ≤ r ≤ t − 1. (Taking other values of r, we
obtain the same residue classes just represented by different elements.)

The residue class (sk)m is an identity element if and only if

(S.2.11) (sk)m(rk)m = (rk)m, i.e. srk2 ≡ rk (mod tk), r = 0, 1 . . . , t− 1.

If the congruence in (S.2.11) holds for r = 1, i.e.

(S.2.12) sk2 ≡ k (mod tk),

then multiplying (S.2.12) by r, we obtain that (S.2.11) is true for every r. This
means that also (S.2.12) is equivalent to (sk)m being an identity element.

Dividing (S.2.12) by k yields an equivalent congruence sk ≡ 1 (mod t).
This means that the linear congruence xk ≡ 1 (mod t) is solvable. Since
(t, k) = 1, this is true, indeed.

(iii) Now m = tk, (t, k) = 1, and t is a prime. Relying on (i) and (ii), we
have to prove only that the residue class (rk)m has a multiplicative inverse
for every 1 ≤ r ≤ t− 1. Let (sk)m be the identity element, and we search the
inverse of (rk)m in the form (uk)m:

(S.2.13) (rk)m(uk)m = (sk)m, i.e. ruk2 ≡ sk (mod tk).
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Dividing (S.2.13) by k, we get the equivalent congruence ukr ≡ s (mod t).
Thus we have to show that the linear congruence xkr ≡ s (mod t) is solvable.
Since (t, k) = 1, and t being a prime implies also (t, r) = 1, so (t, kr) = 1,
i.e. the congruence is solvable, indeed.

Remark : Refining the above argument, we can prove that if (t, k) = 1
but t is composite, then we never get a field. Moreover, the following general
proposition is true: If (t, k) = 1, then the ring R is “exactly the same” as
the the ring of the residue classes modulo t (in a precise formulation, this
means that the two rings are isomorphic, i.e. there is a bijection between
them preserving the operations).

(iv) We use the previous notations. The residue class (rk)m ̸= (0)m is a
zero divisor if and only if

(S.2.14) (rk)m(vk)m = (0)m, i.e. rvk2 ≡ 0 (mod tk)

for some (vk)m ̸= (0)m. Dividing (S.2.14) by k, we obtain the equivalent
congruence vkr ≡ 0 (mod t). We need to show that xkr ≡ 0 (mod t) has a
non-trivial solution v ̸≡ 0 (mod t). Since there are (t, kr) > 1 solutions, this
is true, indeed.

3. Congruences of Higher Degree

• 3.2.6 Assume op(a) = op(−a) = k. Then

(S.3.1) 1 ≡ ak ≡ (−a)k = (−1)kak ≡ (−1)k (mod p) ,

so k is even, k = 2t. This implies p | a2t − 1 = (at − 1)(at + 1). Since p is
a prime and t < op(a), we obtain p | at + 1, i.e. at ≡ −1 (mod p). Similarly,
(−a)t ≡ −1 (mod p). An argument analogous to (S.3.1) yields that also t is
even, thus 4 | op(a), indeed.

For the converse, consider op(a) = 4s. Then (−a)4s = a4s ≡ 1 (mod p),
so r = op(−a) | 4s. For a proof by contradiction, assume r < 4s. If r is even,
then 1 ≡ (−a)r = ar (mod p) contradicts op(a) = 4s. If r is odd, then r | s
and 1 ≡ (−a)2r = a2r (mod p), a contradiction again.

Note that the converse holds also for composite moduli m, as we made no
use of the modulus being a prime, but the other direction is false, e.g. o21(8) =
o21(−8) = 2.

• 3.2.9 The assumption implies (a, p) = 1, so op(a) makes sense. By Fermat’s
Little Theorem, 1 ≡ a2p−2 = a2p−10a8 ≡ −a8 (mod p), thus a8 ≡ −1 (mod p).
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Squaring yields a16 ≡ 1 (mod p). Using the statement of part (i) in Theorem
3.2.2 (and 1 ̸≡ −1 (mod p) due to p > 2), we obtain op(a) | 16 and op(a)̸ | 8.
Therefore op(a) = 16.

• 3.3.10 If a ≡ br (mod p) and b ≡ as (mod p), then op(a) and op(b) mutually
divide each other by Exercise 3.2.4a, hence they are equal.

To prove the converse, let g be a primitive root and a ≡ gu (mod p),
b ≡ gv (mod p). By Exercise 3.2.4c, op(a) = (p − 1)/(p − 1, u) and op(b) =
(p− 1)/(p− 1, v). The equality of the orders implies (p− 1, u) = (p− 1, v).

The roles of a and b are symmetric, so it suffices to guarantee an r satis-
fying a ≡ br (mod p). We can rewrite this congruence into the form gu ≡ gvr
(mod p) which is equivalent to the linear congruence u ≡ vr (mod p − 1)
(where r is the variable). As (p− 1, v) = (p− 1, u) | u, this linear congruence
is solvable, indeed.

Another option to verify the existence of r is the following. Let op(b) = k.
There are φ(k) elements of order k by Exercise 3.3.9 (or by the second proof
of Theorem 3.3.3). By Exercise 3.2.4b, there are φ(k) elements of order k also
among b, b2, . . . , bk. Hence these elements contain all numbers of order k.

Remark : A similar argument proves the following more general result:
op(a) | op(b) if and only if a ≡ br (mod p) for some positive integer r.

• 3.4.9 Assume first indg a = indh b. By Exercise 3.2.4c,

op(a) =
p− 1(

indg a , p− 1
) =

p− 1(
indh b , p− 1

) = op(b) .

To prove the converse, assume op(a) = op(b), let g be an arbitrary prim-
itive root mod p, and indg a = r, indg b = s. Using Exercise 3.2.4c again, we
have (r, p− 1) = (s, p− 1).

We want to find the primitive root h satisfying indh b = r in the form
h ≡ gk (mod p). Here (k, p − 1) = 1 by statement (i) of Theorem 3.3.4. The
requirement can be rewritten as

gs ≡ b ≡ hr ≡ (gk)r = gkr (mod p)

which is equivalent to

(S.3.2) s ≡ kr (mod p− 1).

This is a linear congruence for k which is solvable as (r, p− 1) = (s, p− 1) | s.
We have to show the existence of a solution k coprime to p− 1.
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Denote (r, p − 1) = (s, p − 1) by d. Dividing (S.3.2) by d, we obtain an
equivalent congruence

(S.3.3)
s

d
≡ k · r

d

(
mod

p− 1

d

)
.

The left-hand side of (S.3.3) is coprime to the modulus since (s/d, (p−1)/d) =
1. Therefore also the right-hand side has this property, so (k, (p− 1)/d) = 1.

If every prime divisor of p−1 occurs already in (p−1)/d, then (k, p−1) = 1,
so we are done. Otherwise, let Q be the product of those prime divisors of
p − 1 that are coprime to (p − 1)/d, and let k0 be an arbitrary solution of
(S.3.3). Then a solution k of the system

x ≡ k0
(
mod

p− 1

d

)
, x ≡ 1 (modQ)

meets all requirements: it satisfies (S.3.2) and is coprime to p− 1.

• 3.5.12 First proof : If a is a 100th power residue, i.e. p ̸ | a and a ≡ w100

(mod p) for some w, then a ≡ (w5)20 ≡ (w2)50 (mod p), thus a is both a 20th
and a 50th power residue, as well.

To prove the converse, assume that a is both a 20th and a 50th power
residue, i.e. p̸ | a and u20 ≡ v50 ≡ a (mod p) for some u and v. This implies
u100 ≡ a5 (mod p) and v100 ≡ a2 (mod p). Substituting these into a · (a2)2 =
a5, we obtain a(v2)100 ≡ u100 (mod p). Multiplying both sides by (vp−3)100

and applying Fermat’s Little Theorem, we get a ≡ (vp−3u)100 (mod p). So a
is a 100th power residue, indeed.

• Second proof : By the criterion about indices in Theorem 3.5.3, we have to
show

(100, p− 1) | ind a ⇐⇒
{
(20, p− 1) | ind a
(50, p− 1) | ind a

The only if part is obvious, since both (20, p − 1) and (50, p − 1) divide
(100, p− 1).

For the if part, we have to show that (20, p−1) | ind a and (50, p−1) | ind a
imply (100, p − 1) | ind a. If 25̸ | p − 1, then (100, p − 1) = (20, p − 1), and if
4̸ | p − 1, then (100, p − 1) = (50, p − 1), so we are done. If both 25 | p − 1
and 4 | p − 1, then (50, p − 1) = 50 | ind a and (20, p − 1) = 20 | ind a, thus
[50, 20] = 100 = (100, p− 1) | ind a.

• We can create a third proof along similar lines using the criterion about
powers of a in Theorem 3.5.3. We leave the details to the Reader.
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• We formulated the generalization already at the hints: a is both a kth and
an nth power residue if and only if it is a [k, n]th power residue.

Each of the three proofs above can be applied also for this general case.
For the “more difficult” direction, we can use the representation 1 = b([k, n]/k)−
c([k, n]/n) in the first proof instead of 1 = 1 · 5 − 2 · 2 serving as a basis for
a · (a2)2 = a5, and the relation [(k, p − 1), (n, p − 1)] = ([k, n], p − 1) (see
Exercise 1.6.19b) in the second (and third) proof(s).

• 3.7.3 (b) We show that for k ≥ 3 and a odd, the congruence

(S.3.4) x2 ≡ a (mod 2k)

is solvable if and only if

(S.3.5) a ≡ 1 (mod 8),

and there are 4 solutions (if it is solvable).
Since c2 ≡ 1 (mod 8) for any odd c, therefore (S.3.5) is necessary for the

solvability of (S.3.4).
Next we prove that there are 4 solutions in the case of solvability. Assume

that x ≡ c (mod 2k) is a solution of (S.3.4) for some (fixed odd) a. Then d is
a solution if and only if

(S.3.6) 2k | d2 − c2 = (d− c)(d+ c) .

As c and d are odd, both factors are even. Also, both cannot be divisible by
4, since that would imply 4 | (d− c) + (d+ c) = 2d which contradicts d being
odd.

Therefore (S.3.6) holds if and only if (exactly) one of d− c and d+ c is a
multiple of 2k−1. This means d ≡ ±c (mod 2k−1), i.e. we obtain four (pairwise
incongruent) solutions of (S.3.4) mod 2k:

x ≡ c, x ≡ c+ 2k−1, x ≡ −c, x ≡ −c+ 2k−1 .

Finally, we verify that (S.3.5) is not only a necessary but also a sufficient
condition for the solvability of (S.3.4).

We can restrict ourselves to the values 1 ≤ a < 2k pairwise incongruent
mod 2k. Every element of a reduced residue system 2k will be a solution of
(S.3.4) exactly for one such a. For every such a there are 4 solutions, so the
congruence will be solvable for φ(2k)/4 = 2k−3 values of a. Exactly that many
a satisfy (S.3.5), hence (S.3.4) must be solvable for each of them.
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4. Legendre and Jacobi Symbols

• 4.1.13 (a) (The modulus of each congruence is 13.) The first step is to
change the coefficient of the quadratic term into 1. To acieve this, we multiply
the congruence by −4 (which is an equivalent step due to (−4, 13) = 1):
−12x2 − 20x− 20 ≡ 0, or x2 + 6x+ 6 ≡ 0. Now we form a complete square:

(x+ 3)2 ≡ 3 ≡ 16 ⇐⇒ x+ 3 ≡ ±4 ⇐⇒ x ≡ 1 and 6.

Instead of multiplying by −4, we can divide by 3 after converting all
coefficients into multiples of 3: 3x2 + 5x + 5 ≡ 3x2 + 18x + 18 ≡ 0, and thus
x2 + 6x+ 6 ≡ 0.

Another option is to multiply the original congruence by 4 · 3 and then to
transform it into a complete square:

36x2 + 60x+ 60 = (6x+ 5)2 + 35 ≡ 0 ⇐⇒ (6x+ 5)2 ≡ 4 ⇐⇒ 6x+ 5 ≡ ±2 .

Finally, we have to solve the linear congruences 6x ≡ −3 and 6x ≡ −7.

• 4.2.8 The polynomial f = (x2 + 1)(x2 − 17)(x2 + 17) given in the hint has
clearly no rational roots.

To prove the solvability of the congruence f(x) ≡ 0 (mod m) for every
m, it suffices to prove it for every prime power pk, by the Chinese Remainder
Theorem.

The congruence x2 ≡ 17 (mod 2k) is solvable for every k as 17 ≡ 1 (mod
8), see the solution of Exercise 3.7.3b.

If p > 2 and p ̸= 17, then(
−1
p

)(
17

p

)(
−17
p

)
=

(
−17
p

)2

= 1

guarantees that at least one of the factors in f has a solution mod p. Since p
is odd, this implies that there exists a solution also mod pk by Exercise 3.7.2
(or by Theorem 3.7.1).

Finally, for p = 17 the congruence x2 ≡ −1 (mod 17) is solvable since
17 ≡ 1 (mod 4), and therefore there exists a solution mod 17k, as well.

• 4.3.7 (b) We show that exactly the squares have this property.
The squares suit, indeed: for a = s2, we have(

a

m

)
=

(
s2

m

)
=

(
s

m

)2

= 1 .
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To prove the converse, assume that a is not a square. Consider first when
a > 0. Then some prime occurs with an odd exponent in the standard form
of a.

If 2 is such a prime, i.e. a = 2it where both i and t are odd, then let m
be a (positive) solution of the system x ≡ 5 (mod 8), x ≡ 1 (mod t). Then(

a

m

)
=

(
2

m

)i(
t

m

)
= (−1)

(
m

t

)
= (−1)

(
1

t

)
= −1 .

If the exponent of some prime p > 2 is odd, i.e. a = 2ipjv where i ≥ 0, j
is odd, and (v, 2p) = 1, then let m be a (positive) solution of the system x ≡ 1
(mod 8), x ≡ 1 (mod v), x ≡ c (mod p) where c is a quadratic non-residue
mod p. Then(

a

m

)
=

(
2

m

)i(
v

m

)(
c

p

)j

= 1 ·
(
m

v

)
(−1) = (−1)

(
1

v

)
= −1 .

Finally, consider a < 0. If |a| is not a square, then proceed as above. If
a = −s2, then any m coprime to a and of the form 4k + 3 suits:(

−s2

m

)
=

(
−1
m

)(
s

m

)2

= −1 .
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5. Prime Numbers

• 5.1.5 (c) For a proof by contradiction, assume that p < n is the smallest
prime satisfying (p, d) = 1. Then the first p elements of the arithmetic pro-
gression a, a+ d, . . . , a+ (p− 1)d consisting purely of primes form a complete
residue system modulo p, thus one of them is divisible by p which has to be p
itself, i.e. p = a+ jd. If j > 0, then the minimality of p implies that the prime
a divides d, hence a divides every element in the arithmetic progression, so
they cannot be primes. Therefore, only p = a is possible, but then the p+1st
element a+ pd = p(1 + d) is not a prime.

• 5.2.5 By Gauss’s theorem, we have to determine which numbers of type
2k − 1 can be written as the product of distinct Fermat primes.

First, we show that k must be a power of two. Assume that k has an
odd prime divisor q. Then also 2q − 1 | 2k − 1 holds. Further, by Theorem
5.2.3, every prime divisor of 2q−1 is of type 2rq+1 which cannot be a Fermat
prime since q is odd. But this contradicts to the fact that every prime divisor
of 2k − 1 is a Fermat prime.

Let k = 2n+1. Then, by Exercise 5.2.1a, we have 2k − 1 = F0F1 . . . Fn.
For 0 ≤ n ≤ 4, this means that 2k−1 is the product of distinct Fermat primes,
so these five values of k satisfy the conditions. For n ≥ 5, however, 2k − 1 is
divisible by F5, hence also by 641, which is not a Fermat prime.

Summarizing the results, a regular 2k − 1-gon is constructible if and only
if k = 2, 4, 8, 16, or 32.

• 5.2.7 Assume first that 2p+1 |Mp, and let q be an arbitrary prime divisor
of 2p + 1. Then also q | Mp holds, so q = 2pk + 1, by Theorem 5.2.3. Since
q | 2p+1, therefore only q = 2p+1 is possible, i.e. 2p+1 is a prime. We have
to show p ≡ 3 (mod 4). Clearly p ̸= 2. If p ≡ 1 (mod 4), then q = 2p+ 1 ≡ 3
(mod 8), so

(
2
q

)
= −1 follows. But the condition 2p+ 1 |Mp can be rewritten

as 2(q−1)/2 ≡ 1 (mod q), or equivalently
(
2
q

)
= 1, which is a contradiction.

For the converse, let q = 2p+1 be a prime and p ≡ 3 (mod 4). Then q ≡ 7
(mod 8), therefore

(
2
q

)
= 1, i.e. 2(q−1)/2 ≡ 1 (mod q) which means precisely

the desired divisibility 2p+ 1 |Mp.
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• 5.2.9 The even element of a pair can only be a power of two.
Consider first the case when n + 1 = 2α and n = qβ (where q is an odd

prime, α, β ≥ 1). Then 2α = qβ + 1.
If β = 1, then q is a Mersenne prime.
If β is even, then the residue mod 4 of the right-hand side is 2 which is

impossible.
If β > 1 is odd, write the right-hand side as (q+1)(qβ−1−qβ−2± . . .+1).

The second factor is an odd number greater than 1, hence it cannot be a power
of two, a contradiction.

Assume now n = 2α and n+ 1 = qβ . Then 2α = qβ − 1.
If β = 1, then q is a Fermat prime.
If β is even, write the right-hand side as (qβ/2 − 1)(qβ/2 + 1). Here both

factors have to be powers of two, and since their difference is two, only the
product 2 · 4 is possible. Then 2α = 8, qβ = 9.

If β > 1 is odd, factor the right-hand side as (q−1)(qβ−1+qβ−2+ . . .+1).
The second factor is an odd number greater than 1, so it cannot be a power
of two, which is a contradiction.

Thus the following pairs satisfy the requirements: (8, 9); (Mp,Mp + 1),
where Mp is a Mersenne prime; and (22

n

, Fn), where Fn is a Fermat prime.

• 5.5.9 (a) If n = k3, then (k + 1)3 = n+ 3n2/3 + 3n1/3 + 1 > n+ n2/3. By
part (A) of Theorem 5.5.4 there is a prime between n and n+n2/3 for n large
enough, therefore the interval

(
k3, (k + 1)3

)
contains a prime, too.

• (b) We follow the ideas suggested in the hint. We construct a sequence of
primes qn satisfying

(S.5.1) qn = ⌊α3n⌋

for some α. Consider

cn = 3n
√
qn and dn = 3n

√
qn + 1 .

This transforms (S.5.1) into

(S.5.2) cn ≤ α < dn .

We shall choose the primes qn so that [cn, dn] should form nested intervals,
i.e.

(S.5.3) 3n
√
qn < 3n+1√

qn+1 <
3n+1√

qn+1 + 1 < 3n
√
qn + 1
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for every n. Raising (S.5.3) to the 3n+1st power, we get condition

(S.5.4) q3n ≤ qn+1 < (qn + 1)3 − 1.

Hence, let q1 be a big prime, q2 a prime between q31 and (q1 +1)3, and in
general, if qn was already selected, then let qn+1 be a prime satisfying (S.5.4).
We can always find such a prime qn+1, by part (a) (provided q1 was sufficiently
large).

Let α be a common point of the nested closed intervals [cn, dn]. We show
that it meets the requirements.

By the construction of α, we have cn ≤ α ≤ dn for every n, and we need
the slightly sharper inequality (S.5.2). We would run into a problem if α = dn
for some n. The numbers dj , however, are strictly decreasing by (S.5.3) and
(S.5.4), i.e. α ≤ dn+1 < dn, so α = dn cannot occur.

• (c) In the proof of part (b) we could guarantee just the existence of α but
could not exhibit its concrete value. In fact, the situation is even more weird:
first we had to “construct” infinitely many suitable primes to guarantee an α
which served afterwards to retrieve from the “formula” ⌊α3n⌋ the same primes
that we needed to establish α.

• 5.6.1 We denote the sequences in parts (a), (b), . . . by A = {a1, a2, . . .},
B = {b1, b2, . . .}, etc., and A(n), B(n), etc. should stand for the number of
elements in them not exceeding n.

• (a) Clearly, an = Ln, thus

∞∑
n=1

1

an
=

1

L

∞∑
n=1

1

n
= ∞ and A(n) =

⌊n
L

⌋
∼ n

L
.

• (b) The series consists of positive elements, hence we can rearrange the order
of terms arbitrarily. We group them according to the bases of the powers (thus
certain powers will be counted more times, e.g. 64 = 43 = 82). Then

∞∑
n=1

1

bn
<

∞∑
j=2

∞∑
k=2

1

jk
=

∞∑
j=2

1

j2(1− 1
j )

=

∞∑
j=2

1

j(j − 1)
= 1 .

Turning to B(n), we show that the squares dominate it, the number of
higher powers is negligible compared to the number of squares.
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For a fixed exponent k > 1, the number of kth powers greater than 1 and
not greater than n is ⌊ k

√
n⌋− 1. So certain numbers (as e.g. 64) are taken into

consideration for several values of k, further 2k ≤ n, i.e. k ≤ ⌊log2 n⌋. Hence

⌊
√
n⌋ − 1 ≤ B(n) ≤

√
n +

⌊log2 n⌋∑
k=3

k
√
n ≤

√
n + (log2 n)

3
√
n .

Dividing by
√
n, we obtain B(n) ∼

√
n.

• (c) The squarefree integers contain also the primes, and the sum of recipro-
cals of the latter is divergent in itself.

• (d) Similarly to the third proof of Theorem 5.6.1, we get

∑
dj≤n

1

dj
≤

∏
p<L

(
1 +

1

p
+

1

p2
+ . . .+

1

pνp

)
,

where
pνp ≤ n < pνp+1 , i.e. νp = ⌊logp n⌋ .

Summing up and estimating the geometric series from above, we have∑
dj≤n

1

dj
≤

∏
p<L

1

1− 1
p

.

The right-hand side is independent of n, therefore
∑∞

j=1 1/dj converges.
To estimate D(n), let p1, . . . , pk be the primes less than L. Then the

standard form of an element in D is

(S.5.5) d = pα1
1 . . . pαk

k .

If d ≤ n, then clearly

pαi
i ≤ n , i.e. 0 ≤ αi ≤

log n

log pi

for every i in (S.5.5). This implies

D(n) ≤
k∏

i=1

(
1 +

log n

log pi

)
≤ c(log n)k
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with a suitable constant c.
To estimate D(n) from below, observe that if

pαi
i ≤ k

√
n , i.e. 0 ≤ αi ≤

log n

k log pi

for every i in (S.5.5), then d ≤ n. This yields D(n) > c′(log n)k for some
constant c′ > 0, similarly to the previous calculation.

To find an asymptotics, we use the logarithmic version of (S.5.5):

log d = α1 log p1 + . . .+ αk log pk .

Then D(n) is the number of k-tuples (α1, . . . , αk) where

(S.5.6) α1 log p1 + . . .+ αk log pk ≤ log n and every αi ≥ 0 is an integer.

We describe the proof first for L = 6, and then indicate how we can
generalize the idea for any L.

If L = 6, then k = 3; these are the primes 2, 3, and 5. Then D(n) is the
number of non-negative integer solutions (α1, α2, α3) of the inequality

(S.5.7) α1 log 2 + α2 log 3 + α3 log 5 ≤ log n.

Equality x1 log 2 + x2 log 3 + x3 log 5 = log n can be interpreted as the
equation of a plane in the space. Then

x1 log 2 + x2 log 3 + x3 log 5 ≤ log n, xi ≥ 0

is satisfied by the points (x1, x2, x3) of the trilateral pyramid Gn defined by
the above plane and the positive half-lines of the coordinate axes.

The points (x1, x2, x3) with integer coordinates form a lattice of unit
cubes. This means that the number of solutions of (S.5.7) in non-negative
integers is the number of lattice points in the pyramid Gn.

It is clear intuitively (and can be easily verified, cf. Exercise 7.5.9), that
the number of lattice points in Gn is “approximately” the volume of Gn if n
is large. To state it precisely, the number of lattice points and the volume of
the pyramid are asymptotically equal as n tends to infinity.

The volume V (Gn) of the pyramid Gn is one sixth of the product of the
three pairwise perpendicular edges starting from the origin. Hence

D(n) ∼ V (Gn) =
(log n)3

6 · log 2 · log 3 · log 5
.
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We can proceed similarly for arbitrary L: by (S.5.6), we have to determine
the number of lattice points in the “pyramid” (so-called simplex) in the k-
dimensional space which is asymptotically equal to the volume of the pyramid.
Thus

D(n) ∼ V (Gn) =
(log n)k

k!
∏

p<L log p
.

• (e) The primes greater than L occur among these numbers, so the sum of
reciprocals is divergent.

To estimate E(n), note that these are the integers coprime to every prime
not exceeding L. Thus taking M =

∏
p≤L p, there are exactly φ(M) such

elements among any M consecutive integers. Hence,

if tM ≤ n < (t+ 1)M, then tφ(M) ≤ E(n) ≤ (t+ 1)φ(M) .

These inequalities yield

tφ(M)

(t+ 1)M
≤ E(n)

n
≤ (t+ 1)φ(M)

tM
.

Since t = ⌊n/M⌋, therefore t tends to infinity, and both t/(t+1) and (t+1)/t
tend to 1 when n→∞. This implies

lim
n→∞

E(n)

n
=

φ(M)

M
=

∏
p≤L

(
1− 1

p

)
, i.e. E(n) ∼ n

∏
p≤L

(
1− 1

p

)
.

• (f) We give two proofs for the convergence of the series
∑∞

j=1 1/fj composed
of the reciprocals of squareful numbers. (Also a third proof can be obtained
based on Exercise 5.6.7.)
First proof : Similarly to the third proof of Theorem 5.6.1, we get∑

fj≤n

1

fj
≤

∏
p2≤n

(
1 +

1

p2
+

1

p3
+ . . .+

1

pνp

)
,

where
pνp ≤ n < pνp+1 , i.e. νp = ⌊logp n⌋ .

In each factor, the first term 1 if followed by geometric series. Using the
summation formula and estimating from above, we obtain

(S.5.8)
∑
fj≤n

1

fj
≤

∏
p≤

√
n

(
1 +

1

p2(1− 1
p )

)
=

∏
p≤

√
n

(
1 +

1

p(p− 1)

)
.
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Let pk be the kth prime, then pk(pk− 1) > p2k−1 for k > 1. On the right-hand
side of (S.5.8), we leave unaltered the first factor

1 +
1

2 · 1
=

3

2

corresponding to p = p1 = 2, and apply the estimate

1 +
1

pk(pk − 1)
< 1 +

1

p2k−1

for the other factors corresponding to p = pk with k > 1. This gives the
following upper bound for the right-hand side of (S.5.8):∏

p≤
√
n

(
1 +

1

p(p− 1)

)
<

3

2

∏
p≤

√
n

(
1 +

1

p2

)
< 2

∞∑
j=1

1

j2
.

Second proof : We show first that every squareful number is the product of a
square and a cube. Let the standard form of the squareful number f be

f = qµ1

1 . . . qµr
r , µi ≥ 2, i = 1, 2, . . . , r .

The exponents µi can be written in the form µi = 2αi + 3βi where αi, βi ≥ 0
(e.g. βi is 0 or 1 according to µi being even or odd). Then

(S.5.9) f = a2b3 , where a =
r∏

i=1

qαi
i and b =

r∏
i=1

qβi

i .

It follows from (S.5.9) that the sum of reciprocals of squareful numbers is
less than the product of the sum of reciprocals of squares and the sum of
reciprocals of the cubes, which verifies the convergence.

We shall use (S.5.9) to estimate F (n). We saw that βi = 0 or 1 can
be attained, i.e. b is squarefree. It is straightforward that the representation
f = a2b3 is already unique in this case, i.e. every squareful number has a
unique decomposition into the product of a cube of a squarefree number and
a square. It is also clear that, except for the number 1, the products a2b3 are
squareful, indeed.

Therefore, F (n) is just one less than the number of such products a2b3 not
greater than n. In these products b is squarefree, b ≤ 3

√
n, and 1 ≤ a ≤

√
n/b3

for a fixed b. Therefore

(S.5.10) F (n) = −1 +
∑′

b≤ 3√n

⌊√
n

b3

⌋
,
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where
∑′

denotes that the sum is taken for the squarefree values of b.
Removing the floors on the right-hand side of (S.5.10), we get

√
n

∑′

b≤ 3√n

1

b3/2
+ U(n),

where the error term U(n) can be neglected compared to the other term as

|U(n)| ≤ 1 +
∑′

b≤ 3√n

1 ≤ 1 + 3
√
n .

This implies

F (n) ∼ c
√
n , where c =

∞∑′

b=1

1

b3/2
.

• 5.6.6 We write the factors (1 − 1/ps)−1 as infinite geometric series and
apply that the multiplication of two positive (or more generally, absolutely
convergent) series “obeys the same rules as the multiplication of finite sums”.
Hence, ∏

p≤n

1

1− 1
ps

=
∏
p≤n

(
1 +

1

ps
+

1

p2s
+ . . .

)
=

∑
j∈Wn

1

js
,

where Wn is the set of integers having no prime factor greater than n. Clearly

(S.5.11)

n∑
j=1

1

js
≤

∑
j∈Wn

1

js
<

∞∑
j=1

1

js
.

Since the left-hand side of (S.5.11) tends to the right-hand side if n → ∞,
therefore

lim
n→∞

∏
p≤n

1

1− 1
ps

= lim
n→∞

∑
j∈Wn

1

js
=

∞∑
j=1

1

js
= ζ(s) .

• 5.7.4 By assumption, the composite number n satisfies

(S.5.12) 2n−1 ≡ 1 (mod n).
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We have to show that also 2n − 1 is composite which follows immediately of
n being composite (see Exercise 1.4.4a), further that

22
n−2 ≡ 1 (mod 2n − 1).

Since 2n ≡ 1 (mod 2n−1), it is enough to check n | 2n−2; this follows directly
from (S.5.12).

• 5.7.17 Let the standard form of the odd integer n > 1 be

n = qα1
1 . . . qαs

s , and n− 1 = 2kr, where r is odd.

We have to verify that if

ar, a2r, a4r, . . . , a2
k−2r = a

n−1
4 , a2

k−1r = a
n−1
2

is a good sequence, i.e. either −1 occurs among their mod n residues of least
absolute value, or the residue of ar is 1, then also

(S.5.13) a
n−1
2 ≡

(
a

n

)
(mod n).

If ar ≡ 1 (mod n), then raising this congruence to exponent 2k−1, we get
a(n−1)/2 ≡ 1 (mod n), and also

1 =

(
1

n

)
=

(
ar

n

)
=

(
a

n

)r

,

which implies
(
a
n

)
= 1 since r is odd. Thus (S.5.13) holds, indeed.

Assume now

(S.5.14) a2
jr ≡ −1 (mod n), where 0 ≤ j ≤ k − 2 .

Then j < k − 1 implies a(n−1)/2 ≡ 1 (mod n). We have to show that
(
a
n

)
= 1

is true, as well.
Considering congruence (S.5.14) mod qi and squaring it, we obtain

a2
jr ≡ −1 (mod qi) and a2

j+1r ≡ 1 (mod qi) .

This means that

oqi(a) ̸ | 2jr and oqi(a) | 2j+1r ,
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i.e.

(S.5.15) oqi(a) = 2j+1ri , where ri | r .

Since qi is a prime, therefore (S.5.15) implies

(S.5.16) a2
jri ≡ −1 (mod qi),

further, oqi(a) | q − 1 yields

(S.5.17) qi = 1 + 2j+1rihi

for some suitable hi. Using (S.5.16) and (S.5.17), we infer

(S.5.18)

(
a

qi

)
≡ a(qi−1)/2 = a2

jrihi =
(
a2

jri
)hi

≡ (−1)hi (mod qi).

By (S.5.18), (
a

n

)
=

s∏
i=1

(
a

qi

)αi

= (−1)
∑s

i=1
αihi ,

i.e.
(
a
n

)
= 1 follows if

∑s
i=1 αihi is even. As each ri is odd, this is equivalent

to
∑s

i=1 αirihi being even.
By (S.5.17), we have

(S.5.19) n =

s∏
i=1

qαi
i =

s∏
i=1

(1 + 2j+1rihi)
αi .

Carrying out the multiplications on the right-hand side of (S.5.19), most terms
will be divisible by 2j+2:

(S.5.20) n = 1 + 2j+1
s∑

i=1

αirihi + 2j+2C .

Since n− 1 = 2kr, i.e. n = 1 + 2kr, therefore (S.5.20) implies

2kr = 2j+1
s∑

i=1

αirihi + 2j+2C ,
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and after cancelation by 2j+1, we get

(S.5.21) 2k−j−1r − 2C =

s∑
i=1

αirihi.

As j < k−1, the left-hand side of (S.5.21) is even, hence so is also
∑s

i=1 αirihi
on the right-hand side, indeed.

Finally, we can proceed similarly in the case

a2
k−1r = a

n−1
2 ≡ −1 (mod qi).

Then we have to show
(
a
n

)
= −1 which is equivalent to

∑s
i=1 αirihi being odd.

Then, due to j = k − 1, the left-hand side of (S.5.21) is r − 2C, which is odd,
as r is odd, indeed.

6. Arithmetic Functions

• 6.1.7 (a) If we compute f(ab) in two different ways using ab = (a, b)[a, b]
and complete additivity, we get just the desired equality

(S.6.1) f(a) + f(b) = f((a, b)) + f([a, b]).

• (b) Let

a = pα1
1 pα2

2 . . . pαr
r and b = pβ1

1 p
β2

2 . . . pβr
r , where αi ≥ 0, βj ≥ 0 ,

be the standard forms of a and b. Then

(a, b) = p
min(α1,β1)
1 p

min(α2,β2)
2 . . . pmin(αr,βr)

r

and
[a, b] = p

max(α1,β1)
1 p

max(α2,β2)
2 . . . pmax(αr,βr)

r .

By Theorem 6.1.7, we obtain

(S.6.2) f(a) + f(b) =
r∑

i=1

(
f(pαi

i ) + f(pβi

i )
)
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and

(S.6.3) f((a, b)) + f([a, b]) =

r∑
i=1

(
f(p

min(αi,βi)
i + f(p

max(αi,βi)
i )

)
.

(These are valid also if some exponents are 0, as f(1) = 0.)
Considering any two real numbers, one of them is the maximum and the

other is the minimum of them, thus the pairs αi, βi and min(αi, βi),max(αi, βi)
are the same for every i. Therefore (S.6.2) and (S.6.3) imply (S.6.1).

• (c) We show that condition (S.6.1) is satisfied exactly by the functions
f = g + c, where g is additive and c is a constant.

We proved previously that (S.6.1) is true for additive functions, thus
clearly, it holds also for the functions f in question.

For the converse, we assume that f satisfies (S.6.1) for any a, b, and we
try to establish f in the form f = g+c, where g is additive and c is a constant.

From g(1) = 0 we obtain that only c = f(1) is possible. Thus we have to
show that the function g(n) = f(n)− f(1) is additive. This requires

f(ab)− f(1) =
(
f(a)− f(1)

)
+

(
f(b)− f(1)

)
,

i.e.

(S.6.4) f(1) + f(ab) = f(a) + f(b)

for any coprime a and b. Since (a, b) = 1 implies [a, b] = ab, we can replace
f(1) and f(ab) on the left-hand side of (S.6.4) by f((a, b)) and f([a, b]), resp.
Thus (S.6.4) follows from (S.6.1).

• (d) We can verify similarly that a completely multiplicative function, more-
over a constant multiple of any multiplicative function satisfies

(S.6.5) f(a)f(b) = f((a, b))f([a, b])

for every a, b, and there are no other solutions with f(1) ̸= 0.
We investigate now the case f(1) = 0. Clearly, (S.6.5) holds for f = 0.

Assume that (S.6.5) is true for some f ̸= 0, and let K be the smallest positive
integer for which f(K) ̸= 0.

If K ̸ |n, then consider

(S.6.6) f(K)f(n) = f((K,n))f([K,n]).
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Since (K,n) < K, we have f((K,n)) = 0, further f(K) ̸= 0, thus (S.6.6)
implies f(n) = 0.

Let h(n) = f(Kn). Then also h satisfies (S.6.5) for any a, b, as

h(a)h(b) = f(Ka)f(Kb) = f((Ka,Kb))f([Ka,Kb]) =

= f(K(a, b))f(K[a, b]) = h((a, b))h([a, b]).

Further h(1) = f(K) ̸= 0, thus h is a constant multiple of a multiplicative
function.

We obtained

(S.6.7) f(n) =

{
0, if K ̸ | n;
cg
(
n
K

)
, if K | n,

where g(n) is multiplicative, c is a constant, and K is a fixed positive integer.
We can easily check that (S.6.5) is true for all functions f in (S.6.7) with

any a, b. Also, the cases f(1) ̸= 0 and f = 0 are contained in (S.6.7) when
K = 1 and c = 0 (or g = 0), resp. Herewith we have proved that (S.6.7)
describes the general solution of (S.6.5).

• 6.1.9 (d) Those additive functions play a crucial role here which assume 0
on every prime power apart from the powers of one or two primes.

Let p be an arbitrary prime. We say (for domestic use) that an additive
function h has sole p if h can assume arbitrary values on the powers of p but
assumes 0 on all other prime powers. To obtain h(n) for a general integer n,
we write n = tpα, where (t, p) = 1; then h(n) = h(pα). (This is correct also
for α = 0, since h(1) = 0 follows from additivity.) Another characterization of
these functions is that (c, p) = 1 implies h(c) = 0.

We define similarly the functions having sole (p, q), where p and q are
distinct primes: then the additive function h can assume arbitrary values on
the powers of p and q but is 0 on every other prime power. For a general
integer n, we write n = tpαqβ , where (t, pq) = 1, then h(n) = h(pα) + h(qβ).
Another characterization of these functions is that (c, pq) = 1 implies h(c) = 0.

Turning to the solution of the problem, we note first that if one of the
two additive functions is 0, then also their product is 0, thus the product is
additive, as well.

Next we show that if f and g have the same sole p, then fg is additive.
We have to prove

(S.6.8) (fg)(ab) = (fg)(a) + (fg)(b)
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for every (a, b) = 1. If none of a and b is a multiple of p, then both sides of
(S.6.8) are 0.

If a = tpα, where α > 0, (t, p) = 1, then (a, b) = 1 implies p̸ | b, so

(fg)(b) = 0 , (fg)(a) = (fg)(ab) = f(pα)g(pα) ,

thus (S.6.8) holds, indeed.
We get further solutions if f and g have the same sole (p, q), and there

exists a number c satisfying

(S.6.9) g(pα) = cf(pα) , g(qβ) = −cf(qβ) , α, β = 1, 2, 3, . . .

We can verify (S.6.8) as before, if at least one of a and b is divisible neither
by p, nor by q.

The remaining case is a = tpα, b = sqβ (or vice versa), where (ts, pq) = 1.
Using (S.6.9), we obtain

(fg)(a) = f(pα)g(pα) = c
(
f(pα)

)2
,

(fg)(b) = f(qβ)g(qβ) = −c
(
f(qβ)

)2
,

(fg)(ab) =
(
f(pα) + f(qβ)

)(
g(pα) + g(qβ)

)
=

=
(
f(pα) + f(qβ)

)(
cf(pα)− cf(qβ)

)
,

which verifies (S.6.8).
Summarizing the above, we found the following solutions sofar:

I. f = 0 or g = 0.
II. f and g are arbitrary functions with (a common) sole p.
III. f and g are functions with (a common) sole (p, q) satisfying also (S.6.9).

Now we show that there are no other solutions, i.e. if f, g, and fg are all
additive, then the pair of functions f, g belongs to one of the above types.

Assume that f, g, and fg is additive. Then

f(a)g(a) + f(b)g(b) = f(ab)g(ab) =
(
f(a) + f(b)

)(
g(a) + g(b)

)
,

i.e.

(S.6.10) f(a)g(b) + f(b)g(a) = 0

if (a, b) = 1. We may assume f ̸= 0 and g ̸= 0. We shall examine the values
of f and g at prime powers. We distinguish two cases:
(A) There exists a prime power pα where f(pα) ̸= 0 and g(pα) = 0.
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(B) f(w) = 0 ⇐⇒ g(w) = 0 for every prime power w.
In Case (A) we apply (S.6.10) with a = pα and b = rγ , where r is a

prime distinct from p. This yields g(rγ) = 0, i.e. g has sole p. As g ̸= 0, we
have g(pκ) ̸= 0 for some κ. Applying (S.6.10) for a = pκ and b = rγ , we get
f(rγ) = 0. Thus also f has sole p, i.e. our pair f, g is of type II.

Turning to Case (B), let pα be a prime power where f(pα) ̸= 0 and
g(pα) ̸= 0. If f has sole p, then condition (B) implies that the same holds also
for g, thus we have again a pair f, g of type II.

So we may assume that there exists a prime power qβ for some prime
q ̸= p, where f(qβ) ̸= 0 and g(qβ) ̸= 0.

We show first that both f and g have sole (p, q), i.e. f(rγ) = g(rγ) = 0
for every prime r different from p and q, and for every γ.

For a proof by contradiction, assume f(rγ) ̸= 0 for some rγ .
If f(a)f(b) ̸= 0, we can rewrite (S.6.10) into

(S.6.11)
g(a)

f(a)
= − g(b)

f(b)
.

Applying (S.6.11) for all pairs taken from pα, qβ , and rγ , we get

g(pα)

f(pα)
= − g(q

β)

f(qβ)
=
g(rγ)

f(rγ)
= − g(p

α)

f(pα)
,

which contradicts g(pα) ̸= 0.
Finally, to verify (S.6.9), apply (S.6.11) first for a = pα and b = qβ ,

and let c be the common value of the two sides. Keeping now a unaltered,
let b = qν , where ν assumes all exponents with f(qν) ̸= 0, and similarly, fix
b = qβ and let a = pµ for all µ satisfying f(pµ) ̸= 0. Then we obtain just the
relations (S.6.9) from (S.6.11).

This means that the pair f, g is of type III.

• 6.1.13 (a) Let k be the number of (distinct) elements in the range of the
additive function f . The integer 0 occurs in the range, as f(1) = 0, .

We show first that if a1, a2, . . . , ak are k arbitrary, pairwise coprime in-
tegers, then we can select some of them (allowing also the selection of all
numbers or just one of them) so that f is 0 on their product.

Consider the values

f(a1), f(a1a2), . . . , f(a1a2 . . . ak) .
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If these are all distinct, then 0 appears among them, and we are done. If two
of them are equal, i.e. f(a1a2 . . . aj) = f(a1a2 . . . ai) for some 1 ≤ i < j ≤ k,
then

0 = f(a1a2 . . . aj)− f(a1a2 . . . ai) =
=

(
f(a1) + f(a2) + . . .+ f(aj)

)
−

(
f(a1) + f(a2) + . . .+ f(ai)

)
=

= f(ai+1) + . . .+ f(aj) = f(ai+1 . . . aj) .

Consider now an arbitrary b. Partition the primes greater than b into
groups of size k. By our previous observation, for any r there exists a product
cr of some primes in the rth block for which f(cr) = 0. Since (b, cr) = 1,
we have f(bcr) = f(b) + f(cr) = f(b), thus the function assumes f(b) at the
infinitely many integers bcr.

• 6.1.15 Clearly, φ2(1) = 1. If pα is a prime power, then (j, pα) ̸= 1 ⇐⇒ p | j,
hence (i, pα) ̸= 1 ⇐⇒ i = rp, and (i+ 1, pα) ̸= 1 ⇐⇒ i = rp− 1. Thus we
obtain φ2(p

α) by subtracting the number of integers

p− 1, p, 2p− 1, 2p, . . . , pα − 1 = pα−1p− 1, pα = pα−1p

from the number of all integers 1, 2, . . . , pα. Hence

(S.6.12) φ2(p
α) = pα − 2pα−1 .

We verify now that φ2(n) is multiplicative. Let (a, b) = 1, and

1 ≤ u1 < u2 < . . . < ur ≤ a and 1 ≤ v1 < v2 < . . . < vs ≤ b

be all integers (between 1 and a, or 1 and b, resp.) satisfying

(ui, a) = (ui + 1, a) = 1 and (vj , b) = (vj + 1, b) = 1, resp.

Thus r = φ2(a) and s = φ2(b).
Consider the system of congruences

(S.6.13)
x ≡ ui (mod a)

x ≡ vj (mod b).

As (a, b) = 1, this system has a unique solution modulo ab for every
i = 1, . . . , φ2(a) and j = 1, . . . , φ2(b). Let wij denote the solution satisfying
condition 1 ≤ wij ≤ ab. Thus we defined altogether φ2(a)φ2(b) integers wij .
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We show

(S.6.14) (wij , ab) = (wij + 1, ab) = 1 ,

and no other integers have this property between 1 and ab. This means that
there are φ2(ab) integers wij . Combining the two results, we get the desired
multiplicativity.

To verify (S.6.14), we have to show that both wij and wij +1 are coprime
both to a and b. Since wij ≡ ui (mod a), so

(wij , a) = (ui, a) = 1 and (wij + 1, a) = (ui + 1, a) = 1 .

We get (wij , b) = (wij + 1, b) = 1 similarly.
Now assume that 1 ≤ c ≤ ab and (c, ab) = (c + 1, ab) = 1. We have to

prove c = wij for some i and j. Let c′ and c′′ be the least positive remainders
of c upon division by a and b, resp. This means c′ = ui and c

′′ = vj with some
i and j.

Therefore c is a solution of the system of congruences (S.6.13), so c = wij .
This completes the proof of multiplicativity of φ2(n).

Finally, let n =
∏t

i=1 p
αi
i be the standard form of n. Then using multi-

plicativity and (S.6.12), we get

φ2(n) =
t∏

i=1

(
pαi
i − 2pαi−1

i

)
= n

∏
p|n

p prime

(
1− 2

p

)
.

• 6.2.7 First solution: We show σ(n) ̸= 2p if p is any prime of the form 6k−1.
For a proof by contradiction, assume σ(n) = 2p for some positive integer

n of standard form n = qα1
1 . . . qαr

r . Then

2p = σ(n) =
r∏

i=1

σ(qαi
i ) .

Since 2 does not occur in the range of σ, therefore r = 1, i.e n = qα for some
prime q and

(S.6.15) 2p = 1 + q + q2 + . . .+ qα .

The left-hand side of (S.6.15) is even, so q > 2 and α is odd. Then we can
factor out 1 + q on the right-hand side of (S.6.15). Clearly, 1 + q ̸= 1, 2, p,
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thus 1 + q = 2p (and α = 1). By the condition, 2p ≡ 1 (mod 3), so 3 | q. This
yields q = 3, i.e. p = 2, which is impossible.

We can prove similarly σ(n) ̸= 2p for any prime p of the form 5k − 2
greater than 3 or of the form 7k − 3 or 11k − 5, etc.

• Second solution: We show σ(n) ̸= 3s for s > 1.

We prove again by contradiction. As σ is multiplicative, σ(qα) = 3t (with
1 ≤ t ≤ s) for any prime power qα in the standard form of n, i.e.

(S.6.16) 3t = 1 + q + q2 + . . .+ qα .

Considering first the case q = 2, we can rewrite (S.6.16) into

(S.6.17) 3t = 2α+1 − 1.

If α = 1, then t = 1 and we get a solution qα = 2. If α > 1, then the left-hand
side of (S.6.17) is 1 or 3 modulo 8, but the right-hand side is 7, a contradiction.
Thus we may assume q > 2 and t > 1. Considering (S.6.16) modulo 2 and 3,
we find that α is even, further q ≡ 1 (mod 3) and α ≡ 2 (mod 3). Therefore
1+ q+ q2 is a factor of the right-hand side of (S.6.16), so it has to be a power
of 3, as well. But this is impossible, since 1 + q + q2 is not divisible even by 9
as we can check it substituting q ≡ 1, 4, and 7 (mod 9).

We obtained that 2 is the only prime power, and therefore the only integer
n for which σ(n) is a power of 3. This means that σ(n) = 3s is impossible for
s > 1.

• Third solution: We show that “most” odd integers do not appear in the
range of σ.

We fix a “big” N , and estimate, at most for how many integers x is σ(x)
an odd number less than 2N . Then clearly x < 2N and x must be a square
or the double of a square by Exercise 6.2.6a. There are ⌊

√
2N − 1⌋ squares

and ⌊
√
N − 1⌋ doubles of squares less than 2N . Hence there are less than

(
√
2+1)

√
N possible values for x, whereas there are N odd integers up to 2N .

This means that at least

(S.6.18) N − (
√
2 + 1)

√
N

odd integers less than 2N are missing from the range of σ. (The function in
(S.6.18) tends “very strongly” to infinity, since the second term is “negligible”
compared to N .)
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• Fourth solution: Again, we fix a “big” N and estimate, at most how many
numbers x satisfy σ(x) ≤ N . Then clearly also x ≤ N , but the even numbers
s > 2N/3 do not fit, since σ(s) ≥ s+ s/2 > N . There are⌊N

2

⌋
−

⌊N
3

⌋
>
N

6
− 1

even integers between 2N/3 and N , thus there remain at most 5N/6 + 1 pos-
sible values for x. This means that at least N/6−1 integers among 1, 2, . . . , N
are missing from the range of σ.

• Fifth solution: We apply a similar argument as in the fourth solution, but
instead of using σ(x) > N for many x ≤ N , we exhibit “many” pairs xi ̸= xj
satisfying σ(xi) = σ(xj). Such pairs are e.g. 6t and 11t for (t, 66) = 1, and
their number up to N is approximately

N
φ(66)

66 · 11
= 0.027 . . . N.

Since the values of σ coincide for the members of at least so many pairs x ≤ N ,
therefore at least that many integers must be out of the range.

• Remark : Even a much sharper statement holds: “most” integers are missing
from the range of σ, i.e. the range is a “rare” subsequence of the natural
numbers. The precise formulation is the following. Let U(N) be the number
of elements y ≤ N in the range of σ. Then limN→∞ U(N)/N = 0. The proof
requires results on the distribution of primes in arithmetic progressions, see
Exercises 6.4.8 and 6.4.9.

• 6.2.8 Clearly, n = 1 meets the requirement. We show that there are no
more solutions. For n ≥ 2,

σ(n!)

n!
=

∏
p≤n

(
1 +

1

p
+

1

p2
+ . . .+

1

pαp

)
<

∏
p≤n

p

p− 1
≤

∏
2≤v≤n

v

v − 1
= n .

Hence n! < σ(n!) < n · n! < (n+ 1)!, i.e. σ(n!) ̸= k!.

• 6.2.17 (b) We show that g(n) assumes only values 0 and ±1.
If n is not squarefree, then every term in the sum is 0, so g(n) = 0.
If n is squarefree and is a multiple of every prime less than 100, then

g(n) = µ(n) = ±1.
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Otherwise, let S be the product of all primes up to 100 which do not
divide n. If (n, k) ̸= 1 or k is not squarefree, then µ(nk) = 0, so

g(n) =
∑
k|S

µ(nk) =
∑
k|S

µ(n)µ(k) = µ(n)
∑
k|S

µ(k) = 0

(we used Theorem 6.2.4 in the last step).

• 6.3.5 (a) If n = 2p−1, where 2p−1 is a Mersenne prime, then σ(n) = 2p−1
and σ(σ(n)) = 2p = 2n.

For the converse, assume that n is even and superperfect. Write n = 2kt,
where k ≥ 1 and t is odd. We have to show that 2k+1−1 is a prime and t = 1.

We get σ(n) = (2k+1 − 1)σ(t), so k ≥ 1 implies that (2k+1 − 1)σ(t) and
σ(t) are two distinct divisors of σ(n). Therefore

2k+1t = 2n = σ(σ(n)) ≥ (2k+1 − 1)σ(t) + σ(t) = 2k+1σ(t) .

This is possible only if σ(t) = t, i.e. t = 1, and σ(n) has only these two positive
divisors, thus σ(n) = 2k+1 − 1 is a prime.

• (b) By Exercise 6.2.6a, an odd n is a square if and only if σ(n) is odd. Thus
it suffices to prove that σ(n) is odd if n is an odd superperfect number.

To get a contradiction, assume that n is superperfect and σ(n) = 2vw,
where w is odd and v ≥ 1. Then

2n = σ(σ(n)) = (2v+1 − 1)σ(w) .

This implies σ(w) = 2z and n = (2v+1 − 1)z with a suitable z. As v ≥ 1, we
obtain

σ(n) ≥ (2v+1 − 1)z + z = 2v+1z,

but, as σ(w) = 2z implies w ̸= 1, also

σ(n) = 2vw < 2vσ(w) = 2v+1z,

a contradiction.

• (c) Assume that pα is superperfect where p is an odd prime. Let
∏s

j=1 q
βj

j

be the standard form of σ(pα), i.e.

(S.6.19) σ(pα) = 1 + p+ . . .+ pα =

s∏
j=1

q
βj

j .
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Then

(S.6.20) 2pα = σ(σ(pα)) =

s∏
j=1

(
1 + qj + . . .+ q

βj

j

)
.

Exactly one is even among the factors on the right-hand side of (S.6.20), say
the first one. This means

(S.6.21a) 1 + q1 + . . .+ qβ1

1 =
qβ1+1
1 − 1

q1 − 1
= 2pγ1 ,

and

(S.6.21b) 1 + qj + . . .+ q
βj

j =
q
βj+1
j − 1

qj − 1
= pγj , j = 2, . . . , s ,

where the exponents γj are suitable positive integers and their sum is α. (The
steps of the proof will be correct also for s = 1.)

(S.6.21a) and (S.6.21b) imply

(S.6.22) q
βj+1
j ≡ 1 (mod p) , j = 1, 2, . . . , s .

By (S.6.21a), β1 is odd, so we can factor out 1+q1 from 1+q1+ . . .+q
β1

1 .
Therefore also 1 + q1 = 2pδ, thus

(S.6.23) q1 ≡ −1 (mod p) .

By (S.6.21b), βj is even for j ≥ 2, so

(S.6.24) K = (β2 + 1) . . . (βs + 1) is odd.

Multiplying (S.6.19) by q1 . . . qs, we obtain

(S.6.25)

s∏
j=1

q
βj+1
j = q1q2 . . . qs(1 + p+ . . .+ pα) .

Considering (S.6.25) modulo p and applying (S.6.22) and (S.6.23) we arrive at
1 ≡ −q2 . . . qs (mod p), i.e.

(S.6.26) q2 . . . qs ≡ −1 (mod p).



Solutions 6.4. 45

Now we raise (S.6.26) to the Kth power. Then

(S.6.27) (q2 . . . qs)
K ≡ −1 (mod p) ,

by (S.6.24). But j ≥ 2 implies βj + 1 | K so (S.6.22) yields

(q2 . . . qs)
K ≡ 1 (mod p) ,

which contradicts (S.6.27) (as p > 2).

• 6.4.8 (b) We follow the ideas sketched in the hint.
Let ε > 0 be arbitrary. We have to verify that if N is large enough, then

at most εN integers among 1, 2, . . . , N occur in the range of φ.
Fix a positive integer r satisfying

2r >
2

ε
.

We partition the range of φ(n) into two subsets: H1 contains those ele-
ments which are multiples of 2r, and H2 consists of the values not divisible by
2r.

Clearly, there are ⌊N
2r

⌋
<
εN

2

elements in H1 not greater than N . Thus it is sufficient to show that also H2

contains at most εN/2 elements not greater than N for N large enough.
If ω(n) ≥ r + 1, then 2r | φ(n), so φ(n) ∈ H1 for every such integer n.
Thus we may restrict ourselves to integers n satisfying ω(n) ≤ r. In this

case,

(S.6.28)
φ(n)

n
=

∏
p|n

(
1− 1

p

)
is minimal if just the first r primes p1, . . . , pr occur in the standard form of n.
Therefore we can transform (S.6.28) into

(S.6.29) φ(n) ≥ nc,

where

c =
r∏

i=1

(
1− 1

pi

)
.
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(S.6.29) implies

n ≤ φ(n)

c
≤ N

c

for φ(n) ≤ N , so the elements of H2 not greater than N must be among the
values

φ(1), φ(2), . . . , φ(N ′),

where N ′ = ⌊N/c⌋. By part (a), if ha N ′ is large enough, then there are at
most

cεN ′

2
≤ εN

2

integers among 1, 2, . . . , N ′ for which φ(n) is not a multiple of 2r, therefore at
most εN/2 values φ(n) can occur in H2, indeed.

• 6.6.12 (a) Since d(n) = (1∗1)(n), the Dirichlet series of d(n) is D(s) = ζ2(s)
by Theorem 6.6.4. So, for s = 2, we have

D(2) =

∞∑
n=1

d(n)

n2
= ζ2(2) =

(π2

6

)2

.

• (b) Let T (s) be the Dirichlet series of d2(n). Since d2(n) is multiplicative,
we can apply Exercise 6.6.10a to deduce

(S.6.30) T (s) =
∞∑

n=1

d2(n)

ns
=

∏
p

( ∞∑
k=0

d2(pk)

pks

)
=

∏
p

( ∞∑
k=0

(k + 1)2

pks

)
.

Let

(S.6.31) H(x) =

∞∑
k=0

(k + 1)2xk ,

then (S.6.30) and (S.6.31) imply

(S.6.32) T (s) =
∏
p

H
( 1

ps
)
.

We assume s > 1, and we investigate H(x) in the region 0 < x < 1/2, as
p ≥ 2. We get the infinite series H(x) by differentiating the infinite geometric
series

∞∑
j=0

xj =
1

1− x
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by terms:
∞∑
j=1

jxj−1 =
1

(1− x)2
,

multiplying the result by x:

∞∑
j=1

jxj =
x

(1− x)2
,

and differentiating again by terms:

(S.6.33)

∞∑
j=1

j2xj−1 =
1 + x

(1− x)3
.

By the theorem about differentiating power series, the above steps were legal
e.g. for |x| ≤ 1/2, thus the above equalities are valid.

Substitution k = j − 1 shows that the left-hand side of (S.6.33) is just
H(x). Multiplying both the numerator and denominator of the fraction on
the right-hand side by 1− x, we get

(S.6.34) H(x) =
1− x2

(1− x)4
.

Substituting (S.6.34) into (S.6.32) yields

(S.6.35) T (s) =
∏
p

1− 1
p2s(

1− 1
ps

)4 =
ζ4(s)

ζ(2s)
.

Applying (S.6.35) with s = 2, we get

T (2) =
∞∑

n=1

d2(n)

n2
=
ζ4(2)

ζ(4)
=

(
π2

6

)4
π4

90

=
5π4

72
.

• 6.7.4 We prove along the lines indicated in the hint.
We show first that if n is large enough, then σ(i) ≤ 2n for more than the

half of the integers i among 1, 2, . . . , n. Let t denote the number of values i
for which this is false, then we have to verify t < n/2. Applying σ(i) > 2n for
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the t “bad” values and using the trivial estimate σ(i) > 0 for the others, we
obtain

(S.6.36) σ(1) + σ(2) + . . .+ σ(n) > 2tn .

On the other hand, by Theorem 6.7.3,

(S.6.37) σ(1) + σ(2) + . . .+ σ(n) < n2

if N is large enough. (S.6.36) and (S.6.37) immediately imply t < n/2.
Let now k be arbitrary. By Exercise 6.4.9, the range of σ contains at most

2n

4k

integers j ≤ 2n, if n is large enough. By the previous paragraph, σ(i) is such a
j for more than n/2 integers i, therefore σ must assume some value j at least
at

n

2
:
2n

4k
= k

places.



Solutions, Chapters 7�9

7. Diophantine Equations

• 7.1.4 Let M denote the year in question of the 20th century. We show first
that at least one of A and B was born before 1900.

For a proof by contradiction, assume that they were born in 19uv and
19xz (clearly, none of them could be born in 2000, i.e. in the last year of the
20th century). By the condition,

M = 1900 + 10u+ v + 1 + 9 + u+ v = 1910 + 11u+ 2v = 1910 + 11x+ 2z.

We can rearrange it as 11(u−x) = 2(z−v), so we obtain 11 | z−v. Since
|z − v| ≤ 9, only z − v = 0 is possible. But then also u = x which contradicts
the different ages of A and B.

We get similarly that at least one of them was born after 1899: if the
birth dates are 18uv and 18xz, then

M = 1800 + 10u+ v + 1 + 8 + u+ v = 1809 + 11u+ 2v = 1809 + 11x+ 2z

leads to a contradiction exactly the same way.
This means that B was born in 19uv, and A was born in 18xz. Then

M = 1910+11u+2v = 1809+11x+2z, i.e. 101 = 11(x−u)+2(z−v).

Thus x− u is odd, further z − v ≤ 9 implies

x− u ≥ 101− 18

11
> 7,

thus only x− u = 9 is possible. Hence

x = 9, u = 0 and z = v + 1 (v = 0, 1, . . . , 8),

and these values satisfy the requirements, indeed (with suitable values M).
Thus the difference in ages is

19uv − 18xz = (1900 + v)− (1890 + v + 1) = 9 years.

• 7.3.8 We show that there are no solutions apart from the trivial x = y =
s = t = 0.
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• First proof : For a proof by contradiction, assume the existence of a non-
trivial rational solution. Multiplying by the least common multiple of the
denominators, and if necessary, dividing by the greatest common divisor of
the integers thus obtained, we get an integer solution satisfying (x, y, s, t) = 1.

We check the parity of the numbers. By the condition,

t2 + s2 + x2 ≡ t2 + (s+ x)2 = (y + t)2 + x2 ≡ y2 + t2 + x2 (mod 2),

so s and y have the same parity.
Considering now the system of equations modulo 4, we infer that also t,

s+ x, y + t, and x must have this parity.
All the six numbers cannot be odd, for if y and t are odd, then y + t is

even.
All the six numbers cannot be even either, since (x, y, s, t) = 1.
This contradiction completes the proof.

• Second proof : We prove again by contradiction. As in the previous proof, we
may assume the existence of a non-trivial integer solution. Then the occurring
sums of squares are greater than zero.

Consider the points (0, 0), (s, y), and (s+x,−t) in the lattice with integer
coordinates. By the condition, these are vertices of an equilateral triangle.

Lattice points, however, cannot form an equilateral triangle, since the
lattice rectangle containing it and the “corner triangles” have rational areas,
but the area of the equilateral triangle is

√
3/4 times the square of the side

length, and this square is an integer by the Pythagorean theorem.

• 7.3.10 Let s be the arithmetic mean of the 8 numbers. Then 2s = t where
t is an odd integer, and the sum of cubes of the 8 numbers is(

s− 7

2

)3

+

(
s− 5

2

)3

+

(
s− 3

2

)3

+

(
s− 1

2

)3

+

(
s+

1

2

)3

+

(
s+

3

2

)3

+

(
s+

5

2

)3

+

(
s+

7

2

)3

= 8s3 + 126s = t3 + 63t .

Thus we are looking for solutions of t3+63t = v3 where v is an integer and
t is an odd integer. If the pair (v, t) is a solution, then also the pair (−v,−t)
is a solution, hence it is sufficient to find the solutions with t > 0.

Clearly v > t, further, (t+ 5)3 > t3 + 63t = v3 implies v < t+ 5. Also, v
has to be even, therefore v = t+ 1 or v = t+ 3.

The first relation yields no solution, the second one gives t = 1 and
t = 3. Accordingly, the integers v in question are 4, 6, −4, and −6. Indeed,
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43 = (−3)3 + (−2)3 + . . .+43, 63 = (−2)3 + (−1)3 + . . .+53, and multiplying
these by −1 yields the other two representations.

• 7.3.13 (g) Clearly, x = ±1, y = 0 satisfy the equation. We show that there
are no other integer solutions.

For a proof by contradiction, we consider a solution where x > 1.
Writing the equation as (x+1)(x− 1) = 2y4, we see that x+1 and x− 1

are even, so also y = 2u. Dividing both sides by 4, we get

(S.7.1)
x+ 1

2
· x− 1

2
= 8u4 .

The left-hand side of (S.7.1) is the product of two consecutive integers, there-
fore the factors are coprime. So one of them is a fourth power, and the other
one is 8 times a fourth power. Their difference is 1, hence

w4 − 8z4 = 1 or w4 − 8z4 = −1.

The second case is impossible since a square cannot have a residue −1 modulo
8. In the first case, rearranging and factoring yields (w2 + 1)(w2 − 1) = 8z4,
i.e.

(S.7.2)
w2 + 1

2
(w2 − 1) = (2z2)2 .

We show that the two (positive) factors on the left-hand side of (S.7.2)
are coprime. Let d denote their gcd. Since (w2 + 1)/2 is odd, also d must be
odd. Further,

d | 2w
2 + 1

2
− (w2 − 1) = 2,

thus d = 1, indeed.
This means that (w2 + 1)/2 and w2 − 1 are squares themselves. The

difference of two positive squares, however, cannot be 1, so w2 − 1 cannot a
square, which is a contradiction.

• (h) We verify that all solutions are: x = y; x = 2, y = 4; and x = 4, y = 2.
Obviously, these are solutions, indeed. Thus we have to show that if

y > x, then necessarily x = 2 and y = 4.

• First proof : Let (x, y) = d, then x = da, y = db, where (a, b) = 1. Substi-
tuting back into the equation and taking dth root, we get

(S.7.3) (da)b = (db)a, so, by b > a, db−aab = ba .



52 Solutions 7.3.

Therefore a | ba, but (a, b) = 1, so necessarily a = 1. Then (S.7.3) means the
equation

db−1 = b .

Here b > a = 1, thus d > 1. Then db−1 ≥ b for every b > 1, and equality holds
only for d = b = 2. Thus we obtain the desired values

x = da = 2 · 1 = 2 and y = db = 2 · 2 = 4.

• Second proof : If y > x > 1, then an equivalent form of the equation is

x

log x
=

y

log y
.

Since the (real) function f(z) = z/ log z is strictly decreasing for 1 < z < e and
is strictly increasing for z > e, it can assume the same value at two distinct
integers only if the smaller integer is 2. Thus only x = 2 is possible. Then
y = 4 satisfies the equation, and as f is strictly monotone for z > e, no other
y can fit.

• (i) Clearly, x = 5, y = 1 satisfy the equation. We show that this is the only
solution.

If the equation holds, then also

(S.7.4) y5 ≡ 2x (mod 31).

We see from the original equation that 31 ̸ | y, therefore 2x has to be a fifth
power residue modulo 31, by (S.7.4). By Theorem 3.5.3,

(S.7.5) (2x)
30

(5,30) = 26x ≡ 1 (mod 31) .

(S.7.5) implies

o31(2) = 5 | 6x, thus 5 | x, i.e. x = 5u .

Substituting back into the original equation, we get

(S.7.6) (2u)5 − y5 = 31,

hence the difference of two (positive) fifth powers is 31. This happens only
in the case 25 − 15 which can be proved similarly as we handled the equation
a3 − b3 = 7 during the solution of the example illustrating method II: either
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we use that the difference of two fifth powers is bigger than 31 in every other
case; or we prove via factoring the left-hand side of (S.7.6).

• 7.5.10 We factor the left-hand side of the equation: (x + 2i)(x − 2i) = y3.
Let δ = (x+ 2i, x− 2i), then

δ | (x+ 2i)− (x− 2i) = 4i = (−i)(1 + i)4.

Therefore δ = (1 + i)r, where 0 ≤ r ≤ 4.
The properties of conjugation (see Exercise 7.4.2a) imply

(S.7.7) (1 + i)s | x+ 2i ⇐⇒ (1− i)s | x− 2i .

Since 1+ i and 1− i are associates, we obtain from (S.7.7) that the exponents
of 1 + i in the standard forms of x + 2i and x − 2i are the same integer r.
The product (x + 2i)(x − 2i) is a cube (also among the Gaussian integers),
therefore the exponent of the Gaussian prime 1 + i in the standard form of
this product is a multiple of 3. So 3 | 2r, hence r = 3t (i.e. r = 0 or 3).

By the above,

x+ 2i

(1 + i)3t
· x− 2i

(1− i)3t
=

( y
2t

)3

and

(
x+ 2i

(1 + i)3t
,
x− 2i

(1− i)3t

)
= 1 .

By the Fundamental Theorem of Arithmetic, each of x + 2i and x − 2i is an
associate of a cube. Since every unit among the Gaussian integers is a cube,
we obtain that x+ 2i and x− 2i are cubes themselves.

Then

(S.7.8) x+ 2i = (c+ di)3 = c3 − 3cd2 + (3c2d− d3)i .

Comparing the imaginary parts, we obtain 2 = d(3c2 − d2). Thus d = ±1 or
±2, and substitution shows that only d = 1 and d = −2 yield an integer value
for c which is c = ±1 in both cases.

Finally, we get x = c3 − 3cd2 from (S.7.8), so the solutions are x = ±2,
y = 2; and x = ±11, y = 5.

• 7.5.11 We investigate the equation ξ2+ψ2 = α, where α is a given Gaussian
integer, and ξ and ψ are the “unknown” Gaussian integers.

Factoring the left-hand side, we obtain (ξ + ψi)(ξ − ψi) = α, i.e.

ξ + ψi = δ1, ξ − ψi = δ2, where δ1δ2 = α.
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So

ξ =
δ1 + δ2

2
, ψ =

δ1 − δ2
2i

.

Since i is a unit, further δ1 + δ2 = (δ1− δ2)+ 2δ2, hence ξ and ψ are Gaussian
integers if and only if

(S.7.9) 2 | δ1 − δ2 .

Let α = a+ bi.
First we list the cases when (S.7.9) holds for some pair of divisors δ1, δ2

(so α has a representation as ξ2 + ψ2).
If a is odd and b is even, then δ1 = α, δ2 = 1 satisfy (S.7.9): 2 | (a−1)+bi.
If 4 | a and 4 | b, then δ1 = α/2, δ2 = 2 suit, as now each of δ1 and δ2 is a

multiple of 2.
Let a and b even so that exactly one of them is a multiple of 4. Then the

exponent of the Gaussian prime 1 + i is exactly 2 in the standard form of α,
therefore

α = (1 + i)2(c+ di), where 1 + i̸ | c+ di, i.e. c ̸≡ d (mod 2) .

We can choose

δ1 =
α

1 + i
= (c+ di)(1 + i), δ2 = 1 + i,

since

δ1 − δ2 = (1 + i)((c− 1) + di) ,

further

c− 1 ≡ d (mod 2) =⇒ 1 + i | c− 1 + di,

so δ1 − δ2 is divisible by (−i)(1 + i)2 = 2.
Now we show that α cannot be written as ξ2 + ψ2 in the other cases.
If a ≡ b ≡ 2 (mod 4), then the Gaussian prime 1+ i occurs with exponent

3 in the standard form of α. Therefore exactly one element of any pair of
divisors δ1, δ2 is divisible by (−i)(1 + i)2 = 2, so (S.7.9) cannot hold.

Finally, if b is odd, then a + bi ̸= (x1 + x2i)
2 + (y1 + y2i)

2, since the
imaginary part is even on the right-hand side, and odd on the left-hand side.

Thus we have proved that α = a + bi is not representable in the form
ξ2 + ψ2 if and only if b is odd, or a ≡ b ≡ 2 (mod 4).
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• 7.5.17 We verify that n can be represented in the desired form if and only
if 2n is the sum of three squares. Hence, by the Three Squares Theorem, we
infer that those integers n are “bad” for which

2n = 4k+1(8m+ 7), i.e. n = 4k(16m+ 14) .

If n has a good representation, i.e. n = 2x2 + y2 + z2, then

2n = (2x)2 + (y + z)2 + (y − z)2 .

Conversely, if 2n = a2 + b2 + c2, then we can assume that a is even, and
b and c have the same parity, so

n = 2
(a
2

)2

+
(b+ c

2

)2

+
(b− c

2

)2

.

• 7.7.5 (b) We apply infinite descent. By solution we shall always mean a
solution in positive integers. Assume that

(S.7.10) x4 + y4 = z2

has a solution, and consider the solution x0, y0, z0 where z0 is minimal. We
exhibit a solution x1, y1, z1 with z1 < z0, which contradicts the minimality
of z0.

If (x0, y0, z0) = d > 1, then also

x0
d
,

y0
d
,

z0
d2

satisfy (S.7.10), and z0/d
2 < z0 contradicts the minimality of z0.

Therefore x0, y0, and z0 are coprime, and the usual argument yields
that they are pairwise coprime, as well.

So x20, y
2
0 , and z0 form a primitive Pythagorean triple:

x20 = 2mn(S.7.11a)

y20 = m2 − n2(S.7.11b)

z0 = m2 + n2(S.7.11c)

where

m > n > 0, (m,n) = 1, and m ̸≡ n (mod 2) .
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Considering (S.7.11b) modulo 4, we obtain that now m is odd and n is even;
n = 2n1. Substituting into (S.7.11a), we obtain(x0

2

)2

= mn1, where (m,n1) = 1.

Therefore

(S.7.12) m = u2 and n1 = v2 , where (u, v) = 1.

Substituting (S.7.12) into (S.7.11b), we get

y20 = (u2)2 − (2v2)2 ,

i.e. y0, 2v2, and u2 is a primitive Pythagorean triple. Using the formula
again,

2v2 = 2rs(S.7.13a)

u2 = r2 + s2(S.7.13b)

where (r, s) = 1. Thus (S.7.13a) implies r = t2, s = w2, and so (S.7.13b) can
be written as

u2 = t4 + w4 .

This means that x1 = t, y1 = w, z1 = u satisfy (S.7.10), and by (S.7.11c) and
(S.7.12),

z0 = m2 + n2 > m = u2 ≥ u = z1,

which contradicts the minimality of z0.

• 7.7.7 Let x be the base of the number system. We need the solutions of the
Diophantine equation

(S.7.14) x3 + x2 + x+ 1 = y2

where x ≥ 2. We prove that x = 7, y = 20 is the only solution. (We can easily
see that for x ≤ 1 we get integer solutions only for x = 0 and ±1.)

Factoring the left-hand side of (S.7.14), we obtain

(S.7.15) (x+ 1)(x2 + 1) = y2 .

Let h be the gcd of the two factors on the left-hand side of (S.7.15), then

h | (x2 + 1)− (x+ 1)(x− 1) = 2, thus h = 1 or 2.
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If h = 1, then x2 + 1 is a square (and so is also x+ 1): x2 + 1 = z2. But
this is impossible for x ̸= 0.

If h = 2, then

(S.7.16) x+ 1 = 2u2 and x2 + 1 = 2v2 (u > 1, v > 1).

Expressing x = 2u2 − 1 from the first equation and substituting it into the
second one, we get

(S.7.17) (2u2 − 1)2 + 1 = 2v2 .

Rearranging (S.7.17) and dividing by 2 yields

(S.7.18) (u2)2 + (u2 − 1)2 = v2 .

Since u > 1, v > 0, and (u2, u2 − 1) = 1, (S.7.18) implies that

u2, u2 − 1, and v

form a primitive Pythagorean triple. Thus

u2 = m2 − n2(S.7.19a)

and

u2 − 1 = 2mn,(S.7.19b)

or with reverse roles,

u2 = 2mn(S.7.20a)

and

u2 − 1 = m2 − n2(S.7.20b)

for some integers m and n satisfying the “usual” properties.
Consider first the case (S.7.19a)–(S.7.19b). Then u, n, and m form a

primitive Pythagorean triple by (S.7.19a) and (m,n) = 1. Since u is odd [by
(S.7.19a)], we have

u = r2 − s2, n = 2rs, and m = r2 + s2.

We infer

(S.7.21) m− n = (r − s)2.
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Subtracting (S.7.19b) from (S.7.19a), we get

(S.7.22) m2 − n2 − 2mn = 1, i.e. (m− n)2 − 2n2 = 1.

Using (S.7.21), we can rewrite (S.7.22) as

(S.7.23) (r − s)4 − 1 = 2n2 .

We can factor the left-hand side of (S.7.23):

(S.7.24)
(
(r − s)2 + 1

)(
(r − s)2 − 1

)
= 2n2 .

The difference of the two factors on the left-hand side of (S.7.24) is 2, both
factors are even, so their gcd is 2. The residue of an odd square modulo 4 is
1, thus the first factor is (even, but) not divisible by 4. Therefore

(r − s)2 + 1 = 2t2 and (r − s)2 − 1 = w2 .

But the latter cannot hold as w ̸= 0. Herewith we have proved the impossi-
bility of the case (S.7.19a)–(S.7.19b).

Turning to the case (S.7.20a)–(S.7.20b), now u is even, so considering
(S.7.20b) modulo 4, we see that m is even and n is odd. As (m,n) = 1,
(S.7.20a) implies

(S.7.25) m = 2a2, n = b2, and so u2 = 4a2b2.

Substituting (S.7.25) into (S.7.20b), we get

4a2b2 − 1 = 4a4 − b4 ,

which can be rearranged as

(S.7.26) (2a2 + b2)2 − 1 = 8a4 .

Factoring the left-hand side of (S.7.26), the two factors are even and their
difference is 2, so their gcd is 2. This yields

(S.7.27) 2a2 + b2 + 1 = 2c4 and 2a2 + b2 − 1 = 4d4 ,

or

(S.7.28) 2a2 + b2 + 1 = 4d4 and 2a2 + b2 − 1 = 2c4 .
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Subtracting the two equations in (S.7.27) and dividing by 2, we get

c4 − 2d4 = 1 .

By Exercise 7.3.13g, d = 0 follows, which is excluded now.
From (S.7.28), we obtain similarly

c4 − 2d4 = −1.

By Exercise 7.7.6, here c = ±1, d = ±1. Substituting these values into
(S.7.28), we get 2a2 + b2 = 3, so a2 = b2 = 1. Thus u2 = 4 by (S.7.25), and
finally x = 7 by (S.7.16).

• 7.7.10 (a) Assume first that the Diophantine equation

(S.7.29) x2 + 3y2 = n

is solvable, and let x = a, y = b a solution. Then

n = a2 + 3b2 = a2 + (bi
√
3)2 = N(a+ bi

√
3) = N(a+ b(1 + 2ω)) =

= N(a+ b+ 2bω) = (a+ b)2 − (a+ b)2b+ (2b)2 ,

so x = a+ b, y = 2b is a solution of

(S.7.30) x2 − xy + y2 = n.

Let now x = c, y = d be a solution of (S.7.30). If

(S.7.31) c = a+ b and d = 2b

for some integers a, b, then reversing the previous argument we see that x = a,
y = b is a solution of (S.7.29). (S.7.31) holds if and only if d is even. As
n = x2−xy+y2 is symmetric in x and y, we are done also if c is even. Finally,
if both c and d are odd, then

n = c2 − cd+ d2 = N(c+ dω) = N(c+ dω2) =

= N(c− d− dω) = (c− d)2 − (c− d)(−d) + (−d)2 ,

so also x = c− d, y = −d is a solution of (S.7.30), and here c− d is even.
Of course, one can present the above arguments also via “tricky” trans-

formations without referring to Eulerian integers.
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• 7.7.11 We proceed similarly as in Exercise 7.5.10. We can factor the left-
hand side of

(S.7.32) x2 + 243 = y3

among the Eulerian integers:

(S.7.33) (x+ 9i
√
3)(x− 9i

√
3) = y3 .

Let
α = x+ 9i

√
3 = x+ 9 + 18ω, then α = x− 9i

√
3 .

We show that each of α and α is an associate of a cube among the Eulerian
integers.

Let δ = (α, α), then δ divides

α− α = 18i
√
3 = 2(i

√
3)5 .

Considering (S.7.32) modulo 8, we find that x must be even, thus 2̸ |x+9,
and so 2 ̸ |α = x+9+ 18ω. Therefore the Eulerian prime 2 does not divide δ,
thus

δ = πr, where π = i
√
3 and 0 ≤ r ≤ 5.

Since
πs | α ⇐⇒ πs | α,

further, π and π are associates, so the exponents of π are the same r in the
standard forms of α and α. By (S.7.33), the product αα is a cube, hence its
standard form contains π with an exponent divisible by 3. Thus 3 | 2r, so
r = 3t (i.e. r = 0 or 3). Therefore (some associate of) δ is a cube: δ = τ3.

By the above,

α

τ3
· α
τ3

=
( y

τ2

)3

, where
( α
τ3

,
α

τ3

)
= 1.

According to the Fundamental Theorem of Arithmetic, (x ± 9i
√
3)/τ3 and

thus x±9i
√
3 are associates of cubes. (We cannot omit the unit factor, as not

all units are cubes among the Eulerian integers.)
Then

(S.7.34) α = x+ 9 + 18ω = ε(c+ dω)3 .
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Since −1 is a cube, it is enough to investigate (S.7.34) for the cases ε = 1, ω,
and ω2.

If ε = 1, then ω3 = 1 and ω2 = −1− ω, so

(c+ dω)3 = c3 + 3c2dω + 3cd2ω2 + d3ω3 = c3 + d3 − 3cd2 + (3c2d− 3cd2)ω.

Comparing the “ω-free parts” and the coefficients of ω, resp., in (S.7.34), we
get

x+ 9 = c3 + d3 − 3cd2(S.7.35a)

18 = 3c2d− 3cd2.(S.7.35b)

(S.7.35b) is equivalent to cd(c−d) = 6 the solutions of which are the following
pairs (c, d):

(3, 2); (3, 1); (−1, 2); (−1,−3); (−2, 1); (−2,−3).

Substituting these into (S.7.35a), we get x = ±10, and then y = 7 by (S.7.32).
If ε = ω, then we get similarly

(S.7.36) 18 = c3 + d3 − 3c2d

instead of (S.7.35b). We show that (S.7.36) has no solutions.
We look at (S.7.36) mod 3. By Fermat’s Little Theorem, a3 ≡ a (mod 3)

for every a, so
0 ≡ c3 + d3 ≡ c+ d (mod 3).

If 3 | c, then 3 | d, thus the right-hand side of (S.7.36) is a multiple of 27,
but the left-hand side is not.

Otherwise c = 3r + 1 and d = 3s− 1, or vice versa, so

c3 + d3 = (3r + 1)3 + (3s− 1)3 = 27(r3 + s3 + r2 − s2) + 9(r + s) ,

so rearranging (S.7.36) into

3c2d = c3 + d3 − 18,

the right-hand side is a multiple of 9, but the left-hand side is not.
Herewith we have proved that (S.7.36) has no solutions.
Finally, the case ε = ω2 leads to

18 = −c3 − d3 + 3cd2
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instead of (S.7.36), and we find the same way that it has no solutions.
Summarizing the results, we obtained that all solutions of the Diophantine

equation x2 + 243 = y3 are x = ±10, y = 7.

8. Diophantine Approximation

• 8.1.8 (c) We show that a real number ϱ can be written in the form
h(α) = {α}2 − {α2} if and only if −1 < ϱ < 1.

Necessity follows from 0 ≤ {c} < 1 for any c.
Concerning sufficiency, let 0 ≤ ϑ < 1, k a positive integer, and α = k+ϑ.

Then

(S.8.1) {α}2 = ϑ2 and {α2} = {ϑ2 + 2kϑ}.

If

(S.8.2) 0 ≤ ϑ2 + 2kϑ < 1, i.e. 0 ≤ ϑ < −k +
√
k2 + 1,

then, by (S.8.1),

(S.8.3) h(α) = {α}2 − {α2} = ϑ2 − {ϑ2 + 2kϑ} = ϑ2 − (ϑ2 + 2kϑ) = −2kϑ.

By (S.8.2), we have

(S.8.4) 0 ≥ −2kϑ > −2k(−k +
√
k2 + 1).

We see by (S.8.3) and (S.8.4) that h(α) = −2kϑ assumes all values in the
interval (

−2k(−k +
√
k2 + 1) , 0

]
.

Since

−2k(−k +
√
k2 + 1) =

−2k
k +
√
k2 + 1

=
−2

1 +
√
1 + k−2

→ −1, if k →∞,

the values h(α) cover the complete interval (−1, 0].
If we replace condition (S.8.2) on ϑ by

2k ≤ ϑ2 + 2kϑ < 2k + 1, i.e. − k +
√
k2 + 2k ≤ ϑ < 1
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and repeat the above argument, then we get that every point in the interval
[0, 1) appears in the range of h(α).

• 8.3.5 By formulas (8.3.8a), (8.3.8b), and (8.3.10) in Lemma 8.3.4,

rnsn−2 − rn−2sn = (cnrn−1 + rn−2)sn−2 − rn−2(cnsn−1 + sn−2) =

= cn(rn−1sn−2 − rn−2sn−1) = (−1)ncn .

Dividing by snsn−2, we get the statement of the exercise.

• 8.3.6 By the condition,

α = C(c0, c1, . . . , cM−k, cM−k+1, . . . , cM , cM−k+1, . . . , cM , . . .) .

Let
β = C(cM−k+1, . . . , cM , cM−k+1, . . . , cM , . . .) .

Then

α = C(c0, c1, . . . , cM−k, β) and β = C(cM−k+1, . . . , cM , β) .

Condensing these multiple-decked fractions, we obtain

α =
u1β + u2
u3β + u4

and β =
u5β + u6
u7β + u8

with suitable integers ui. We express β from the first equality with the help of
α and substitute it into the second equality. This yields a quadratic equation
with integer coefficients having α among its roots. (The continued fraction
is infinite, so α is irrational, and cannot be a root of a linear equation with
integer coefficients.)

• 8.4.1 (a) Since (1+
√
2)n+(1−

√
2)n is an integer and limn→∞(1−

√
2)n = 0,

the subsequences of {(1 +
√
2)n} for even and odd integers n, resp., tend to 1

and 0, resp. Thus the sequence cannot be dense in [0, 1].

• (b) The differences of two consecutive elements in the sequence tend to 0:

√
n+ 1−

√
n =

1√
n+ 1 +

√
n
→ 0 if n→∞ .

Therefore, also the differences of the fractional parts of two consecutive ele-
ments tend to 0 except when the fractional part “jumps back” from nearly
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1 to nearly 0. This implies that the fractional parts are everywhere dense in
[0, 1].

• (c) Since

{
√
n2 + 1} =

√
n2 + 1− n =

1√
n2 + 1 + n

→ 0, if n→∞ ,

{√
n2 + 1

}
cannot be dense in [0, 1].

• (d) Since √
2n2 + 1− n

√
2→ 0, if n→∞ ,

and
{
n
√
2
}

is everywhere dense in [0, 1] by Theorem 8.4.1, therefore also{√
2n2 + 1

}
is everywhere dense in [0, 1].

• (e) The sine function is periodic, so the sequence assumes only finitely
many (181) distinct values. Therefore the sequence of fractional parts cannot
be dense in [0, 1].

• (f) As π, and so 1/(2π) are irrational, the angles n (measured in radian) are
everywhere dense on the unit circle. The sine function is continuous, thus also
the values sinn are everywhere dense in the range [−1, 1] of the sine function.
Hence, the fractional parts are everywhere dense in [0, 1].

• (g) Since

log10(n+ 1)− log10 n = log10
(
1 +

1

n

)
→ 0, if n→∞ ,

the sequence of fractional parts is everywhere dense in [0, 1], similar to the
argument in part (b).

• 8.4.3 Assume that the points Pn = ({nα1}, {nα2}, . . . , {nαk}) lie densely,
i.e. we can find a Pn arbitrarily close to any point (v1, . . . , vk) of the k dimen-
sional unit cube. In other words, to any ε > 0 there exists an n satisfying

|{nαj} − vj | < ε, j = 1, 2, . . . , k,

or equivalently,

(S.8.5) |nαj − vj − rj | < ε, j = 1, 2, . . . , k

with suitable integers rj .
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We have to show that 1, α1, . . . , αk are linearly independent. For a proof
by contradiction, assume

(S.8.6) c0 + c1α1 + . . .+ ckαk = 0

for some rational numbers c0, . . . , ck not all zero. Multiplying (S.8.6) by the
least common multiple of the denominators, we can achieve that the coeffi-
cients cj in (S.8.6) should be integers.

The key step is that since the numbers nαj−vj−rj are of “small” absolute
value by (S.8.5), their linear combination by coefficients c1, . . . , ck extended
with the term 0 = c0(n · 1− n) has a small absolute value, too:

(S.8.7) |c0(n · 1− n) +
k∑

j=1

cj(nαj − vj − rj)| < ε

k∑
j=1

|cj | = ε′.

On the other hand, the left-hand side of (S.8.7) without the absolute value
can be written as

(S.8.8) n(c0 +
k∑

j=1

cjαj)−
k∑

j=1

cjvj −M

with some integer M . Combining (S.8.6), (S.8.7), and (S.8.8), we get

|
k∑

j=1

cjvj +M | < ε′.

Thus,

{
k∑

j=1

cjvj} < ε′ or {
k∑

j=1

cjvj} > 1− ε′.

This is clearly impossible for every v1, . . . , vk, a contradiction.

9. Algebraic and Transcendental Numbers

• 9.2.8 By condition, f ̸= 0, further, f has a root, so f cannot be a (non-zero)
constant polynomial.
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For a proof by contradiction, assume that f is irreducible over Q. Then
f is the minimal polynomial of its roots, i.e.

f = mα = mβ .

Since g(α) = 0, we have mα = f | g. Then every root of f is a root of g, too,
so g(β) = 0. This contradiction proves that f is reducible over Q.

(The conditions give no information whether g is reducible or irreducible,
both cases can occur.)

• 9.3.6Assume that both r and cosφ are algebraic. Then sinφ = ±
√

1− cos2 φ
and i are algebraic, too. We “assemble” α from r, cosφ, sinφ, and i using
addition and multiplication, so α is algebraic, as well.

For the converse, assume that α is algebraic. By Theorem 9.3.3, both
r cosφ and r sinφ are algebraic. Therefore r =

√
(r cosφ)2 + (r sinφ)2 is

algebraic. So also cosφ = (r cosφ)/r is algebraic.

• 9.4.1 (a) (a1) Let h = a/b with some integers b > 0 and a. As α is a
Liouville number, to any n there exists a fraction r/s satisfying

(S.9.1)
∣∣∣α− r

s

∣∣∣ < 1

s2n
.

As seen several times, the values s tend to infinity for n → ∞, so we can
assume s > b.

We can rewrite (S.9.1) as∣∣∣(h+ α)−
(a
b
+
r

s

)∣∣∣ < 1

s2n
,

thus, using also s > b, we obtain∣∣∣(h+ α)− as+ br

bs

∣∣∣ < 1

s2n
<

1

(bs)n
.

This means that the fraction

R

S
=
as+ br

bs

satisfies ∣∣∣(h+ α)− R

S

∣∣∣ < 1

Sn
,
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so h+ α is a Liouville number.

• (a2) We can handle hα similarly to h+ α in (a1).

• (a3) We show that if r/s approximates α “well”, then (r/s)k approximates
αk “almost so well”. Consider the identity

(S.9.2) αk −
(r
s

)k

=
(
α− r

s

)(
αk−1 + αk−2

(r
s

)
+ . . .+

(r
s

)k−1)
.

If r/s is close to α (in any sense), then the second factor on the right-hand side
of (S.9.2) is close to kαk−1, so its absolute value is bounded by some constant
c depending only on α and k. This implies that if

(S.9.3)
∣∣∣α− r

s

∣∣∣ < 1

skn
,

then

(S.9.4)
∣∣∣αk − rk

sk

∣∣∣ < c

(sk)n
.

As α is a Liouville number, we can achieve (S.9.3) and thus also (S.9.4) for an
arbitrary n, i.e. αk is a Liouville number, as well.

• (a4) We show that if r/s approximates α “well”, then s/r approximates 1/α
“well”. (If r < 0, then we replace s/r by (−s)/(−r) .)

Using the form

|sα− r| < 1

s2n−1

of inequality (S.9.1), we obtain

(S.9.5)
∣∣∣ 1
α
− s

r

∣∣∣ =
∣∣∣r − sα
rα

∣∣∣ < 1

s2n−1|rα|

(we may clearly assume r ̸= 0). If n → ∞, then the values s tend to infinity
and the fractions r/s tend to α, so we may assume

(S.9.6)
∣∣∣r
s

∣∣∣ < |α|+ 1 < s and s|α| ≥ 1.

Combining (S.9.5) and (S.9.6), we get

(S.9.7)
∣∣∣ 1
α
− s

r

∣∣∣ < 1

|r|n
.
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Since α is a Liouville number, we can achieve (S.9.1), and thus also (S.9.7) for
an arbitrary n, i.e. 1/α is a Liouville number, as well.

• 9.4.4 Assume that a complex number α is a multiple root of an irreducible
polynomial f . Then α is a root of the derivative f ′ of f , too. Due to irre-
ducibility, f is a minimal polynomial of α. Therefore f ′(α) = 0 implies f | f ′.
This is impossible, however, as (f ′ ̸= 0 and) deg f ′ < deg f .

• 9.6.5 (a) True. For a proof by contradiction, assume that all complex roots
of f are algebraic integers, i.e.

f = (x− α1)(x− α2) . . . (x− αn),

where every αj is an algebraic integer. Performing the multiplication, we
obtain the coefficients of f from the numbers αj via addition, subtraction,
and multiplication. The algebraic integers form a ring, so every coefficient of
f is an algebraic integer. The coefficients are rational numbers, too, so they
must be integers, which contradicts the condition on f .

• (b) False. E.g.

f = (x2 − 6)(x2 − 1

2
) = x4 − 13

2
x2 + 3

is a polynomial with rational coefficients which are not all integers and the
leading coefficient is 1. Still, f has the algebraic integers ±

√
6 among its roots.

• (c) True. Since f is irreducible over Q, it is a minimal polynomial of each
of its roots. By Definition 9.6.1, none of the roots can be an algebraic integer.

• (d) True. Let α be the only not algebraic integer root of f . Since f(α) = 0,
we have mα | f , and so every root of mα is a root of f , too. No root of mα

is an algebraic integer, further, mα cannot have multiple roots (by Exercise
9.4.4), thus mα must have degree 1. This means that α is rational, so f has a
rational root, indeed.
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10. Algebraic Number Fields

• 10.2.5 (a) Let α =
√
7 + 3i and M = Q(α), then degα = deg(M : Q).

Consider the chain of extensions

(S.10.1) Q ⊆ K ⊆ L, where K = Q(
√
7) and L = K(i).

We prove M = L, and then compute deg(L : Q) = degα.
By definition,

√
7 ∈ L and 3i ∈ L, further, L is a field, so α =

√
7+3i ∈ L,

hence M ⊆ L.
To verify the other containment L ⊆M , we have to demonstrate

√
7 ∈M

and 3i ∈M . Since

(
√
7− 3i)(

√
7 + 3i) = 16, i.e. α =

16

α
,

so α ∈M , thus

√
7 = Reα =

α+ α

2
∈M and 3i =

α− α
2
∈M.

To compute deg(L : Q), we show that both links have degree 2 in (S.10.1).
Clearly, deg(K : Q) = deg

√
7 = 2. Since L ̸= K (because K has only real

elements, whereas i ∈ L), therefore deg(L : K) ≥ 2. On the other hand,
deg(L : K) = degK i ≤ deg i = 2, so deg(L : K) = 2, indeed.

Applying the tower theorem, we obtain

degα = deg(L : Q) = deg(K : Q) · deg(L : K) = 4.

• 10.2.7 Let V denote the set of real numbers in Q(ϑ), i.e. V = Q(ϑ) ∩R.

• (a) As ϑ = 5
√
3(cos 144◦ + i sin 144◦) is a root of the polynomial x5 − 3

irreducible over Q, the degree of Q(ϑ) is 5.
Consider the chain Q ⊆ V ⊆ Q(ϑ) . By the tower theorem,

5 = deg(Q(ϑ) : Q) = deg(Q(ϑ) : V ) · deg(V : Q),

so deg(Q(ϑ) : V ) = 1 or 5. Since V consists purely of real numbers, but
Q(ϑ) contains non-real complex numbers, too, therefore Q(ϑ) ̸= V . This
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implies deg(Q(ϑ) : V ) ̸= 1, i.e. only deg(Q(ϑ) : V ) = 5 is possible. Then
deg(V : Q) = 1, so V = Q.

• (b) We prove V = Q( 3
√
3).

As 3
√
3 is a real number and

3
√
3 = −

(
i
6
√
3
)2

= −ϑ2 ∈ Q(ϑ),

therefore Q( 3
√
3) ⊆ V .

Consider now the chain

(S.10.2) Q ⊆ Q(
3
√
3) ⊆ V ⊆ Q(ϑ).

Since ϑ = i 6
√
3 is a root of the polynomial x6+3 irreducible over Q, hence

deg(Q(ϑ) : Q) = 6.
We get similarly deg(Q( 3

√
3) : Q) = 3.

Applying the tower theorem for the chain (S.10.2), we obtain

2 = deg(Q(ϑ) : Q(
3
√
3)) = deg(Q(ϑ) : V ) · deg(V : Q(

3
√
3)).

Similarly to part (a), Q(ϑ) ̸= Q( 3
√
3), so

deg(V : Q(
3
√
3)) = 1, i.e. V = Q(

3
√
3).

• (c) Since the two values of
√
i are negatives of each other, we get the same

extension for each value. We choose e.g.

(S.10.3) ϑ =
√
i =

1 + i√
2
.

We prove V = Q(
√
2).

First solution: Since

i = (
√
i)2 = ϑ2 ∈ Q(ϑ) ,

(S.10.3) implies √
2 ∈ Q(ϑ), so Q(

√
2) ⊆ V.

Consider the chain

Q ⊆ Q(
√
2) ⊆ V ⊆ Q(ϑ).
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Similar to the previous arguments, we obtain

deg(Q(ϑ) : Q) = 4, deg(Q(
√
2) : Q) = 2, and V ̸= Q(ϑ).

By the tower theorem,

deg(V : Q(
√
2)) = 1, i.e. V = Q(

√
2).

Second solution: By Theorem 10.2.3, the elements of Q(ϑ) have a unique
representation

(S.10.4) α = a0+a1
√
i+a2(

√
i)2+a3(

√
i)3 = a0+a1

1 + i√
2

+a2i+a3
−1 + i√

2

with rational numbers ai.
Here α is a real number if and only if its imaginary part is 0, i.e.

a1 + a3√
2

+ a2 = 0.

Since
√
2 is irrational, this holds if and only if

a3 = −a1 and a2 = 0.

Substituting back into (S.10.4), we obtain that α is a real number if and only
if

α = a0 + a1
√
2, i.e. α ∈ Q(

√
2).

Herewith we have proved V = Q(
√
2).

Third solution: The statement follows also from Exercise 10.2.8.

• 10.2.8 Since |ϑ| = 1, we have ϑ = 1/ϑ, so

(S.10.5) Reϑ =
ϑ+ ϑ

2
=

1

2

(
ϑ+

1

ϑ

)
.

This implies Reϑ ∈ Q(ϑ), thus Q(Reϑ) ⊆ Q(ϑ). Obviously, Q(Reϑ) ⊆ R,
hence

(S.10.6) Q(Reϑ) ⊆ Q(ϑ) ∩R.
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For the opposite containment, let c be an arbitrary real element in Q(ϑ),
i.e. c = g(ϑ)/h(ϑ) (where g, h ∈ Q[x], h(ϑ) ̸= 0). Then

(S.10.7) h(ϑ)c = g(ϑ).

Conjugating (S.10.7) and using c ∈ R,

(S.10.8) h(ϑ)c = g(ϑ).

We assume temporarily h(ϑ) + h(ϑ) ̸= 0. Adding (S.10.7) and (S.10.8) and
expressing c, we obtain

(S.10.9) c =
g(ϑ) + g(ϑ)

h(ϑ) + h(ϑ)
=

g(ϑ) + g(1/ϑ)

h(ϑ) + h(1/ϑ)
.

It can be easily shown by induction that ϑk + ϑ−k can be expressed as a
polynomial of ϑ+(1/ϑ) = 2Reϑ with rational coefficients. So (S.10.9) implies
c ∈ Q(Reϑ). This proves

Q(ϑ) ∩R ⊆ Q(Reϑ).

We still have to handle the case

(S.10.10) h(ϑ) + h(ϑ) = h(ϑ) + h(1/ϑ) = 0.

It follows that ϑ is an algebraic number. The next argument works for any al-
gebraic number ϑ on the unit circle, independently of the validity of (S.10.10).

Relying on (S.10.6), consider the chain

(S.10.11) Q(Reϑ) ⊆ Q(ϑ) ∩R ⊆ Q(ϑ).

The statement is obvious for ϑ = ±1, so we may assume that ϑ is not a real
number. We show that in (S.10.11), both the entire chain and the second link
have degree 2, so by the tower theorem the first link has degree 1 which proves
that the two extensions coincide.

Since the first two fields of the chain (S.10.11) consist purely of real num-
bers, whereas the third field contains non-real numbers too, therefore both the
second link and the entire chain must have at least degree 2. Hence, it suffices
to prove that the entire chain has degree (at most) 2.

By condition |ϑ| = 1, we have Imϑ = ±
√

1− (Reϑ)2, so

ϑ = Reϑ+ iImϑ = Reϑ+
√

(Reϑ)2 − 1



Solutions 10.2. 73

has degree (exactly) 2 over Q(Reϑ) (as Imϑ ̸= 0). So deg
(
Q(ϑ) : Q(Reϑ)

)
=

2, indeed.

• 10.2.11 We show that there are no algebraic numbers of odd degree on the
unit circle except ±1.
• First proof : During the solution of Exercise 10.2.8 we proved that if ϑ is an
algebraic number and |ϑ| = 1, then

Q(Reϑ) ⊆ Q(ϑ),

and the degree of this extension is 2 for ϑ ̸= ±1.
This means that the second link in the chain

Q ⊆ Q(Reϑ) ⊆ Q(ϑ)

has degree 2, so
deg ϑ = deg(Q(ϑ) : Q) is even

by the tower theorem.

• Second proof : A complex number and its conjugate are roots with the same
multiplicity of a polynomial with real coefficients. Thus, if |ϑ| = 1, then also
1/ϑ = ϑ is a root of the minimal polynomial of ϑ. As mϑ is irreducible, this
implies

(S.10.12) mϑ = m1/ϑ.

We can easily deduce (see e.g. the hint to Exercise 9.1.2c) that if a minimal
polynomial of ϑ is

(S.10.13a) mϑ = a0 + a1x+ . . .+ anx
n (an ̸= 0),

then a minimal polynomial of 1/ϑ is

(S.10.13b) m1/ϑ = an + an−1x+ . . .+ a0x
n (a0 ̸= 0).

Condition (S.10.12) implies that we get the polynomial in (S.10.13b) by mul-
tiplying the polynomial in (S.10.13a) by a rational constant c. Comparing the
constant terms and leading coefficients, we obtain

an = ca0 and a0 = can ,
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so c = ±1. Comparing now the other coefficients, either

aj = an−j , j = 0, 1, . . . , n,

or
aj = −an−j , j = 0, 1, . . . , n.

If deg ϑ = n is odd, then in the first case,

mϑ(−1) =
n∑

j=0

aj(−1)j =
(n−1)/2∑

j=0

aj
(
(−1)j + (−1)n−j

)
= 0,

and in the second case,

mϑ(1) =
n∑

j=0

aj =

(n−1)/2∑
j=0

(
aj + an−j

)
= 0.

This means that the rational number −1 or 1 is a root of mϑ. Since mϑ is
irreducible over Q, this can happen only if ϑ = −1 or 1.

• 10.3.5 If t is a squarefree composite number, then it has a prime divisor
p > 2.

Assume that the Fundamental Theorem still holds in I(
√
t). Then p is

reducible in I(
√
t) by Theorem 10.3.8/(vii). Thus, N(α) = a2 + |t|b2 = p for

some α = a+b
√
t where both a and b are integers or fractions with denominator

2. Hence, u = 2a and v = 2b are integers and

(S.10.14) u2 + |t|v2 = 4p.

If v = 0, then u2 = 4p, which is impossible.
Let |t| = kp. Since k ≥ 2, the left-hand side of (S.10.14) is bigger than

the right-hand side if |v| ≥ 2.
Finally, if |v| = 1, then u2 = (4− k)p. This cannot hold for k = 2, 3, and

k ≥ 5, further k ̸= 4 as t is squarefree.
Herewith we have shown that (S.10.14) is false which is a contradiction.

• 10.3.6 We follow the hint.
Let t = −4k + 1 and αn = n+ (1 +

√
t)/2. Then

(S.10.15)

N(αn) = N
(
n+

1 +
√
t

2

)
=

(
n+

1 +
√
t

2

)(
n+

1−
√
t

2

)
= n2 + n+ k .
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We show that αn is irreducible for 0 ≤ n ≤ k − 2. Assume that still αn = βγ
(for some n), where neither β, nor γ is a unit. Since αn cannot be divisible by
any integer different from ±1,

β = b0+ b1
1 +
√
t

2
, γ = c0+ c1

1 +
√
t

2
, where bj , cj ∈ Z and b1c1 ̸= 0.

This implies

N(β) = b20 + b0b1 + b21k =
(
b0 +

b1
2

)2

+ b21

(
k − 1

4

)
≥ k,

and N(γ) ≥ k similarly. Then, however,

k2 ≤ N(β)N(γ) = N(αn) < N(αk−1) = (k − 1)2 + (k − 1) + k = k2 ,

a contradiction.
Herewith we have proved that αn is irreducible for 0 ≤ n ≤ k − 2. Then

also αn is irreducible.
Assume now that f(n) is not a prime number for some 0 ≤ n ≤ k− 2, i.e.

(S.10.16) N(αn) = n2 + n+ k = rs, where r, s > 1.

Combining (S.10.15) and (S.10.16), we obtain

(S.10.17)
(
n+

1 +
√
t

2

)(
n+

1−
√
t

2

)
= rs.

The left-hand side of (S.10.17) is the product of two irreducible numbers. By
the Fundamental Theorem, also the two non-unit factors on the right-hand
side must be irreducible, moreover, they are associates of the factors on the
left-hand side. But this is impossible since an integer r ̸= ±1 cannot divide
αn or αn.

• 10.3.9 (e) Following the hint, we shall verify that if p ≡ 1 or 9 (mod 20),
then

p = a2 + 5b2 = (a+ b
√
−5)(a− b

√
−5)

for some integers a and b. We give two different proofs. Both use that
(−5

p

)
= 1

implies p | c2 + 5 for some integer c.

• First proof : We proceed along the ideas seen at Theorem 8.2.4. Consider
the points on the plane with coordinates x = pu + cv, y = v where u and
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v assume all integers independently. These points form a lattice where the
fundamental parallelogram has area ∆ = p.

Every lattice point satisfies

x2 + 5y2 = (pu+ cv)2 + 5v2 = p(pu2 + 2cuv) + v2(c2 + 5) ≡ 0 (mod p) ,

i.e. p | x2 + 5y2.
We apply Minkowski’s theorem for the closed ellipse x2 + 5y2 ≤ 4

√
5p/π

around the origin having area 4p = 4∆. Thus, there is a lattice point (x, y) in
the ellipse different from the origin satisfying

p | x2 + 5y2 and x2 + 5y2 ≤ 4
√
5p

π
< 3p,

so x2 + 5y2 = p or 2p.
But x2+5y2 = 2p cannot hold since mod 5 the left-hand side is congruent

to 0 or ±1, and the right-hand side is congruent to ±2 as p ≡ ±1 (mod 5).
Thus, necessarily x2 + 5y2 = p.

• Second proof : Let p | c2 + 5. Then the congruence cy ≡ x (mod p) has a
solution x and y, where 0 < |x|, |y| < √p. This follows from Thue’s lemma in
Exercise 7.5.21a with k = 1, u = v = ⌈√p⌉, and C = c.

So

x2 + 5y2 ≡ c2y2 + 5y2 = (c2 + 5)y2 ≡ 0 (mod p) and x2 + 5y2 < 6p .

We show a2 + 5b2 = p for some integers a and b.
If x2 + 5y2 = 5p, then 5 | x, i.e. x = 5z, and so 25z2 + 5y2 = 5p yields

5z2 + y2 = p.
If x2 + 5y2 = 4p, then a check modulo 4 shows that both x and y are

even, x = 2a, y = 2b, and so 4a2 + 20b2 = 4p yields a2 + 5b2 = p.
Equalities x2 + 5y2 = 3p or 2p are impossible mod 5.
Finally, x2 + 5y2 = p is just the desired claim.

• 10.5.6 We consider a general quadratic field Q(
√
t) where t ̸= 1 is a square-

free integer. We prove that Q(
√
t) possesses an integral basis with the desired

property if and only if t ≡ 1 (mod 4).

Sufficiency : If t ≡ 1 (mod 4), then we can choose

ω1 =
1 +
√
t

2
and ω2 =

1−
√
t

2
.
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We have to show that
(i) every α ∈ Q(

√
t) has a unique representation

(S.10.18) α = c1ω1 + c2ω2

with rational numbers cj ;
(ii) α is an algebraic integer if and only if both c1 and c2 are integers;
(iii) ω1 and ω2 share the same minimal polynomial.

(i) We know that α has a unique representation

(S.10.19) α = a+ b
√
t,

where a and b are rational numbers. Comparing (S.10.18) and (S.10.19), we
obtain

a+ b
√
t = c1

1 +
√
t

2
+ c2

1−
√
t

2
=
c1 + c2

2
+
c1 − c2

2

√
t .

Hence, (S.10.18) holds if and only if

(S.10.20a) a =
c1 + c2

2
and b =

c1 − c2
2

,

i.e.

(S.10.20b) c1 = a+ b and c2 = a− b.

This proves the existence and uniqueness of suitable rational numbers c1 and
c2.

(ii) By Theorem 10.3.2, α is an algebraic integer for t ≡ 1 (mod 4) if and
only if

(S.10.21) a =
u

2
, b =

v

2
, where u, v ∈ Z and u ≡ v (mod 2).

We have to show that (S.10.21) is equivalent to c1 and c2 being integers.
If a and b satisfy (S.10.21), then (S.10.20b) implies that

c1 =
u+ v

2
and c2 =

u− v
2

are integers.
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Conversely, if c1 and c2 are integers, then u = c1 + c2 and v = c1 − c2
have the same parity, and so, by (S.10.20a), a and b satisfy (S.10.21).

(iii) The common minimal polynomial of the two numbers is

(x− ω1)(x− ω2) = x2 − x+
1− t
4

.

Necessity : Assume that t ̸≡ 1 (mod 4), but still there exists an integral
basis ω1, ω2 with the given property.

As ω1 and ω2 are conjugates over Q, so

ω1 = r + s
√
t and ω2 = r − s

√
t, r, s ∈ Q.

Since ω1 and ω2 are algebraic integers and t ̸≡ 1 (mod 4), so (by Theorem
10.3.2) r and s are integers, further, s ̸= 0, since ω1 and ω2 are linearly
independent.

As 1 is an algebraic integer, so

1 = c1ω1 + c2ω2 = (c1 + c2)r + (c1 − c2)s
√
t

with suitable integers c1 and c2. This holds if and only if

(c1 + c2)r = 1 and (c1 − c2)s = 0.

As s ̸= 0, we obtain c1 = c2, and so 1 = (c1 + c2)r = 2c1r, which is impossible
for integers c1 and r.

11. Ideals

• 11.1.8 (a) We show first that a1 and a3 are not fields as both contain zero
divisors.

Let I = (x2−2). In the factor ring R[x]/I , the product of two (non-zero)
residue classes represented by polynomials x +

√
2 and x −

√
2 is the zero

residue class:[
x+
√
2 + I

][
x−
√
2 + I

]
=

[
x+
√
2
][
x−
√
2
]
+ I = x2 − 2 + I = 0 + I .

This means that x+
√
2 + I and x−

√
2 + I are zero divisors in R[x]/I, so

R[x]/I cannot be a field.
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The situation is similar in the factor ring C[x]/(x2+1): here the product
of (non-zero) residue classes represented x+ i and x− i is zero.

Turning to a2, we prove that the factor ring R[x]/(x2 +1) is isomorphic
to the complex field.

We adapt the arguments used in the Example after Theorem 11.1.6.
Those polynomials (with real coefficients) fall into the same residue class mod-
ulo the principal ideal (x2 + 1) which give the same remainder in the division
algorithm by x2 + 1. Thus, every residue class can be uniquely characterized
by its “remainder”, i.e. by a polynomial a+bx (with real coefficients) of degree
at most 1 (including the 0 polynomial representing the ideal itself).

We perform the operations in the factor ring with these remainders,
e.g. multiplying two residue classes we multiply the remainders and take the
remainder of the product upon division by x2 + 1. Accordingly, the rules for
addition and multiplication are

[a+ bx] + [c+ dx] = [a+ c] + [b+ d]x

and

[a+ bx][c+ dx] = ac+ [ad+ bc]x+ bdx2 =

= ac+ [ad+ bc]x− bd+ bd[x2 + 1] = [ac− bd] + [ad+ bc]x.

These are exactly the same rules as we add and multiply complex numbers
(just replace letter x by letter i).

Herewith we have proved that the factor ring R[x]/(x2 + 1) is a field
isomorphic to C.

• (b) We prove that the factor ring R = F [x]/(g) is a field if and only if g is
irreducible over F .

Necessity : Assume that g is not irreducible over F . Then g = 0, or g is a
unit, or g is reducible over F . We show that R is not a field in these cases.

If g is a unit, then (g) = (1) = F [x], so R has just one element, and if
g = 0, then (g) = (0), so R can be identified with F [x]. Hence R is not a field,
obviously.

If g is reducible, i.e. g = ht for some non-constant polynomials h and t,
then the product of residue classes in R represented by polynomials h and t
is residue class zero:

[h+ (g)][t+ (g)] = ht+ (g) = g + (g) = 0 + (g) .

On the other hand, none of h+ (g) and t+ (g) is the zero residue class, as
g ̸ | h and g ̸ | t .
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This means that if g is reducible, then R contains zero divisors, so it
cannot be a field.

Sufficiency : We have to show that if g is irreducible over F , then the
factor ring R = F [x]/(g) is a field.

The ring R is commutative and the residue class 1 + (g) is an identity
element (for multiplication). We have to show that every non-zero element
has a multiplicative inverse.

We argue similarly as in part I. of the proof of Theorem 10.2.3.
Let u + (g) be an arbitrary non-zero residue class, i.e. g ̸ | u. A residue

class v + (g) is the inverse of u+ (g) if and only if

[u+ (g)][v + (g)] = uv + (g) = 1 + (g) , i.e. g | 1− uv.

This means

(S.11.1) 1 = uv + gw

for some polynomial w ∈ F [x]. In equation (S.11.1), u and g are given, and
we want to find a suitable v and w . Thus, we reformulated the question of
invertibility as the solvability of a “Diophantine” equation for polynomials.

As explained in the proof of Theorem 10.2.3, equation (1) is solvable
(analogously to Theorem 1.3.6 about integers) if and only if the greatest com-
mon divisor of u and g divides 1, i.e. u and g are coprime. Since g is
irreducible and g ̸ | u, this holds, indeed.

• (c) To represent the residue classes modulo the ideal I = (2, x2 + x + 1),
we take the remainders of polynomials upon division by both generators. (As
g = x2 + x+ 1 has leading coefficient 1, we can apply the division algorithm
for dividing any polynomial with integer coefficients by g.)

Accordingly, every residue class has a representative of degree at most 1
(including the 0 polynomial) and with coefficients 0 or 1. Thus, we have the
four polynomials

0, 1, x, 1 + x.

We can easily check that no two of these fall into the same residue class (i.e. the
ideal I contains no difference of two of them).

This means that the factor ring R = Z[x]/(2, x2+x+1) has four elements
which can be represented by the above four polynomials.

The ring R is commutative and the residue class 1 + I is an identity.
The inverse of the identity is itself, and the other two non-zero elements are
inverses of each other:

[x+ I][1 + x+ I] = x[1 + x] + I = 1 + [x2 + x+ 1− 2] + I = 1 + I,
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as x2 + x+ 1− 2 ∈ I.
This proves that R is a field.
We sketched another possible proof in the hint to this exercise.

• 11.3.5 If R is a field, then R[x] is a Euclidean ring (with a division algorithm
with respect to the degree), so it is also a principal ideal domain by Theorem
11.3.5.

For the converse, assume that R[x] is a principal ideal domain. We have
to show that R is a field, i.e. every a ̸= 0 has an inverse.

Consider in R[x] the ideal I = (a, x) generated by x and the non-zero
constant polynomial a. By the condition, I is a principal ideal, i.e. I = (g) for
some polynomial g ∈ R[x].

Since x ∈ (a, x) = (g), therefore g | x. So g = ε or g = εx, where ε is a
unit (i.e. a constant polynomial which has an inverse in R[x], or equivalently,
ε as an element in R has an inverse in R). Condition g | a implies g ̸= εx,
hence necessarily g = ε. Then (g) = (1).

Since (a, x) = (1), we have 1 = ah + xt with suitable polynomials h,
t ∈ R[x]. It follows that the product of a and the constant term of h is 1, so
a has an inverse, indeed.

• 11.3.9 (a) By the hint to Exercise 11.1.10b, it follows that every ideal in R
is finitely generated.

If (a, b) = (d), then (a, b, c) = (d, c). Thus, it suffices to prove that any
ideal (a, b) generated by two elements is a principal ideal.

If one of the generators is 0, then the statement is obvious. So we may
assume that none of a and b is 0.

The Fundamental Theorem of Arithmetic implies the existence of d =
gcd {a, b}. By Theorem 11.2.2/(iii), (a, b) = (d) if and only if d = gcd{a, b}
and d = au+ bv for some u, v ∈ R. Dividing by d, we obtain

1 = a1u+ b1v, gcd{a1, b1} = 1.

Hence, we have to show that 1 and a1u fall into the same residue class modulo
(b1) for some u.

Pick an element in each of the finitely many residue classes mod (b1)
(i.e. form a complete residue system modulo b1), let these be r1, . . . , rn. We
show that also a1r1, . . . , a1rn is a complete residue system modulo b1.

If a1ri and a1rj fall into the same residue class modulo (b1), then a1ri −
a1rj ∈ (b1), so b1 | a1(ri − rj). As a1 and b1 are coprime, the Fundamental of
Arithmetic implies b1 | ri − rj . Therefore, ri − rj ∈ (b1), so i = j.
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Herewith we have proved that a1r1, . . . , a1rn fall into disjoint residue
classes, so they represent every class, indeed. In particular, also a1ri falls
into the same class as 1 for some i, as claimed.

• 11.3.10 We have a division algorithm with respect to the norm in I(
√
t) for

the given five values of t, as sketched in the hint to Exercise 10.3.4.
For the converse, assume that I(

√
t) is a Euclidean ring. We may obvi-

ously restrict ourselves to t < −3, then the only units are ±1 in I(
√
t).

Let β be an element different from 0 and the units ±1 for which f(β) is
minimal (apart from the values f(0) = 0 and f(±1)).

The definition of β implies that applying the division algorithm for any
ξ ∈ I(

√
t) and β, the remainder can be only 0 or ±1. In other words, ξ, ξ+1,

or ξ − 1 is a multiple of β for any ξ.
In particular, for ξ = 2 we obtain β | 2, or β | 3, or β | 1. The last case

cannot occur as β ̸= ±1.
If β | 2, then N(β) | N(2) = 4, i.e. N(β) = 2 or N(β) = 4 [since

N(β) ̸= 1]. We show that necessarily N(β) = 2.
Condition N(β) = 4 (combined with β | 2) implies that β is an associate

of 2. To exclude this possibility, it is enough to exhibit a single ξ such that 2
divides none of ξ, ξ + 1, and ξ − 1.

If t ̸≡ 1 (mod 4), then ξ =
√
t, and if t ≡ 1 (mod 4), then ξ = (1 +

√
t)/2

clearly suits. (We used Theorem 10.3.2 about the representation of elements
in I(

√
t).)

This proves that β | 2 implies N(β) = 2. We get similarly that β | 3
implies N(β) = 3.

Consider first t ̸≡ 1 (mod 4). Then β = c + d
√
t, where c and d are

integers. As N(β) is not a square, d ̸= 0, and so

3 ≥ N(β) = c2 + |t| · d2 ≥ 0 + |t| · 1 = |t|, i.e. t ≥ −3,

which was excluded in the beginning.
If t ≡ 1 (mod 4), then β = c + d(1 +

√
t)/2, where c and d are integers.

Again, d ̸= 0, and so

3 ≥ N(β) =
(
c+

d

2

)2

+ |t| · d
2

4
≥ 1 + |t|

4
, i.e. t ≥ −11.

Combining this with t < −3 and t ≡ 1 (mod 4), we get t = −7 or t = −11, as
claimed.
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• 11.4.8 (a) We shall rely frequently on the two facts below:
(i) Divisibility and opposite containment are equivalent for ideals in I(

√
−5),

so it suffices to find the ideals containing the given ideals.
(ii) Since −5 ≡ 3 (mod 4), the elements of I(

√
−5) are of the form u +

v
√
−5, where u and v are integers, by Theorem 10.3.2.

• (a1) We show first

(S.11.2) a+ b
√
−5 ∈ (2, 1 +

√
−5) ⇐⇒ a ≡ b (mod 2).

(We avoid numbers as signs for formulas in this exercise to avoid possible
confusion caused by the same notation, say, (2) for a principal ideal and a
formula.)

If both a and b are even, then

a+ b
√
−5 = 2

[a
2
+
b

2

√
−5

]
∈ (2) ⊆ (2, 1 +

√
−5) ,

and if both a and b are odd, then

a+ b
√
−5 = 2

[a− 1

2
+
b− 1

2

√
−5

]
+

[
1 +
√
−5

]
∈ (2, 1 +

√
−5) .

For the converse, assume a+ b
√
−5 ∈ (2, 1 +

√
−5), i.e.

(S.11.3) a+ b
√
−5 = 2α+

[
1 +
√
−5

]
β

with suitable elements α, β ∈ I(
√
−5).

Multiplying (S.11.3) by 1−
√
−5, we obtain[

a+ b
√
−5

][
1−
√
−5

]
= 2

[
1−
√
−5

]
α+ 6β.

This implies

2
∣∣ [a+ b

√
−5

][
1−
√
−5

]
= [a+ 5b] + [b− a]

√
−5.

Hence, both a+ 5b and b− a are even, i.e. a and b have the same parity.
Herewith we have proved (S.11.2).
We turn now to the divisors of the ideal I = (2, 1+

√
−5) . Clearly, I | I

and (1) | I. We show that I has no more divisors (so I is an irreducible, and
therefore also a prime ideal).



84 Solutions 11.4.

Assume A | I for some ideal A ̸= I. Then I ⊂ A with a strict containment.
We claim A = (1), i.e. 1 ∈ A.

Let c+ d
√
−5 ∈ A \ I. Then c and d are of opposite parity by (∗).

If c is odd and d is even, then again by (∗),

c− 1 + d
√
−5 ∈ I ⊂ A,

and so
1 =

[
c+ d

√
−5

]
−

[
c− 1 + d

√
−5

]
∈ A.

If d is odd and c is even, then similarly

√
−5 =

[
c+ d

√
−5

]
−

[
c+ [d− 1]

√
−5

]
∈ A,

and so
1 =

[√
−5

][√
−5

]
+ 3 · 2 ∈ A.

• (a2) Obviously, (1) and itself are divisors of (2). By (∗), (2, 1 +
√
−5) is a

non-trivial divisor. We show that (2) has no other divisors.
Assume that B | (2) for some ideal B ̸= (2). Then (2) ⊂ B with a strict

containment.
Let u+ v

√
−5 ∈ B \ (2).

If u is odd and v is even, then u− 1 + v
√
−5 ∈ (2), and so

1 =
[
u+ v

√
−5

]
−

[
u− 1 + v

√
−5

]
∈ B, thus B = (1).

If u is even and v is odd, then we get similarly

√
−5 =

[
u+ v

√
−5

]
−
[
u+ [v − 1]

√
−5

]
∈ B,

which implies again

1 =
[√
−5

][√
−5

]
+ 3 · 2 ∈ B, i.e. B = (1).

Finally, if both u and v are odd, then

1 +
√
−5 =

[
u+ v

√
−5

]
− 2

[u− 1

2
+
v − 1

2

√
−5

]
∈ B.

This means (2, 1 +
√
−5) ⊆ B, which implies B = (2, 1 +

√
−5) or B = (1)

by part (a1).
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• (a3) We show that the principal ideal (1 +
√
−5) has the following four

(distinct) divisors:

(1), (1 +
√
−5), (2, 1 +

√
−5), and (3, 1 +

√
−5).

These are divisors, indeed, as they contain (1 +
√
−5) .

(2, 1 +
√
−5) is a non-trivial divisor since

1 +
√
−5̸ | 2 =⇒ (2, 1 +

√
−5) ̸= (1 +

√
−5),

and (2, 1 +
√
−5) ̸= (1) by formula (S.11.2).

We get similarly that (3, 1 +
√
−5) is a non-trivial divisor, here we can

use

(S.11.4) a+ b
√
−5 ∈ (3, 1 +

√
−5) ⇐⇒ a ≡ b (mod 3)

which can be proved similarly as (S.11.2).
Finally, (e.g.) (S.11.2) and (S.11.4) imply

(2, 1 +
√
−5) ̸= (3, 1 +

√
−5) .

Now we verify that if an ideal C divides (1+
√
−5) , then C is one of the

four ideals above.
Assume C | (1 +

√
−5) and C ̸= (1 +

√
−5), then (1 +

√
−5) ⊂ C with

strict containment. Let

(S.11.5) r + s
√
−5 ∈ C \ (1 +

√
−5).

Then

(S.11.6) r − s =
[
r + s

√
−5

]
− s

[
1 +
√
−5

]
∈ C

on the one hand, and

(S.11.7) 6 =
[
1 +
√
−5

][
1−
√
−5

]
∈ (1 +

√
−5) ⊂ C

on the other hand.
Let d denote the greatest common divisors of 6 and r − s. Then d =

6t + [r − s]w for suitable integers t and w, so (S.11.6) and (S.11.7) imply
d ∈ C.

If d = 1, then 1 ∈ C, so C = (1).



86 Solutions 11.5.

If d = 2, then 2 ∈ C, so (2, 1 +
√
−5) ⊆ C. By (a1), we infer C =

(2, 1 +
√
−5) or C = (1).

If d = 3, then 3 ∈ C, so (3, 1 +
√
−5) ⊆ C. Relying on (S.11.4), we can

easily deduce C = (3, 1 +
√
−5) or C = (1) similar to (a1).

Finally we show d ̸= 6. If d = 6, i.e. 6 | r − s, then

r + s
√
−5 = [r − s] + s

[
1 +
√
−5

]
∈ (1 +

√
−5),

which contradicts (S.11.5).

• 11.4.9 (a) False. E.g. 2 is irreducible in I(
√
−5), but (2) is not an irreducible

ideal.

• (b) True. By the condition, α is not a unit or 0. Assume α = βγ. Then
(α) = (β)(γ), and as (α) is irreducible, (β) = (1) or (γ) = (1), i.e. β or γ is
a unit.

• (c) and (d) Both are true. Since

(α) ̸= (0) ⇐⇒ α ̸= 0 and (α) ̸= (1) ⇐⇒ α is not a unit,

we may assume that (α) is a non-trivial ideal.
Using the equivalence of divisibility and opposite containment,

(α) is a prime ideal ⇐⇒
[
βγ ∈ (α) =⇒ β ∈ (α) or γ ∈ (α)

]
⇐⇒

⇐⇒
[
α | βγ =⇒ α | β or α | γ

]
⇐⇒ α is a prime element.

• 11.5.7 (c) We prove that to a prime number p > 0 we can find an integer
a such that (p, a+

√
−5) is a prime ideal if and only if p = 2, p = 5, or the

remainder of p mod 20 is 1, 3, 7, or 9.

• We verify first that primes p in the list above have this property, indeed.

• If p = 2, then a = 1 suits: I2 = (2, 1 +
√
−5) is a prime ideal (see Exercise

11.4.8).

• If p = 5, then a = 0 works: I5 = (5,
√
−5) = (

√
−5) is a prime ideal.

By Exercise 11.4.9c–d, this is equivalent to
√
−5 being a prime element in

E(
√
−5). Thus, we have to prove

(S.11.8)
√
−5

∣∣[a+b√−5 ][c+d√−5 ]⇒ √−5 ∣∣a+b√−5 or
√
−5

∣∣c+d√−5 .
As
√
−5 divides itself, (S.11.8) is equivalent to

(S.11.9)
√
−5

∣∣ ac =⇒ √−5 ∣∣ a or
√
−5

∣∣ c .
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We easily see that an integer is divisible by
√
−5 if and only if it is divisible

by 5, so we can rewrite (S.11.9) as

(S.11.10) 5 | ac =⇒ 5 | a vagy 5 | c .

As 5 is a prime among the integers, (S.11.10), and so also (S.11.8) hold, indeed.
(We could have used also Exercise 10.3.7b.)

• Let now p be a positive prime of the form 20k + 1, 20k + 3, 20k + 7, or
20k+9. We obtain from the properties of the Legendre symbol that these are
exactly the primes satisfying

(−5
p

)
= 1. Hence, the congruence

x2 ≡ −5 (mod p)

is solvable, i.e.

(S.11.11) p | a2 + 5

for some integer a. We prove that Ip = (p, a +
√
−5) is irreducible, conse-

quently it is a prime ideal. We have to verify Ip ̸= (1), Ip ̸= (0), and that Ip
can be decomposed into the product of two ideals only trivially. This latter is
equivalent (see (11.4.9) after Definition 11.4.6) to

(S.11.12) Ip ⊆ A ⊆ I(
√
−5) =⇒ A = Ip or A = I(

√
−5)

(for any ideal A).
Clearly, Ip ̸= (0).
If Ip = (1), then

(S.11.13) 1 = αp+ β
[
a+
√
−5

]
for some α, β ∈ I(

√
−5). Multiplying equality (S.11.13) by a −

√
−5, we

obtain

(S.11.14) a−
√
−5 = α

[
a−
√
−5

]
p+ β[a2 + 5] .

By (S.11.11), the right-hand side of (S.11.14) is divisible p, so the same holds
also for the left-hand side, i.e.

a

p
− 1

p

√
−5 ∈ I(

√
−5) ,
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which is clearly impossible. This proves Ip ̸= (1).
To verify implication (S.11.12), assume that an ideal A contains Ip, but

they are not equal. We demonstrate 1 ∈ A, i.e. A = I(
√
−5).

Pick any element

(S.11.15) c+ d
√
−5 ∈ A \ Ip.

Then

(S.11.16)
[
c+ d

√
−5

]
− d

[
a+
√
−5

]
= c− da ∈ A.

If p | c− da, i.e. for some integer u,

c = da+ up, then c+ d
√
−5 = d

[
a+
√
−5

]
+ up ∈ Ip

contradicting (S.11.15).
This implies that c− da is not divisible by p, so c− da and p are coprime

(among the integers). Thus,

(S.11.17) 1 = v[c− da] + wp

for some integers v and w. Since p ∈ A , and also c− da ∈ A by (S.11.16), we
get 1 ∈ A from (S.11.17), as claimed.

• Finally, we show that for the positive prime numbers p not listed, i.e. for the
ones of the form 20k+ 11, 20k+ 13, 20k+ 17, and 20k+ 19, (p, a+

√
−5) is

not a prime ideal for any integer a.
These prime numbers p satisfy

(−5
p

)
= −1, and so they are primes also

in I(
√
−5) by Theorem 10.3.7. Then (p) is a prime ideal by Exercise 11.4.9c.

Assume that (p, a+
√
−5) is still a prime ideal for some integer a. Since

(p) ⊆ (p, a+
√
−5), and so (p, a+

√
−5)

∣∣ (p) ,
further both (p, a+

√
−5) and (p) are prime ideals, only (p, a+

√
−5) = (p)

is possible. This implies a+
√
−5 ∈ (p), so

p | a+
√
−5, i.e.

a

p
+

1

p

√
−5 ∈ I(

√
−5),

which is false.

• 11.5.9 As a preliminary remark, we note that Theorem 11.5.1 remains valid
if we replace algebraic integers everywhere by integers. This follows from the
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fact that for integers u and v, the divisibility u | v holds among algebraic
integers if and only if it is true among integers. To see this, consider equality
uw = v. If w is an integer, then it is an algebraic integer, too. Conversely, if
w is an algebraic integer, then as (for u ̸= 0) w = v/u is rational, too, it must
be an integer.

In the sequel we shall use this special case of Theorem 11.5.1 for integers.

• (a) Let

f(x) = a0 + a1x+ . . .+ amx
m and g(x) = b0 + b1x+ . . .+ bnx

n

be two primitive polynomials and

f(x)g(x) = c0 + c1x+ . . .+ cm+nx
m+n

be their product. Assume that f(x)g(x) is not a primitive polynomial, i.e.

p | ck, k = 0, 1, . . . ,m+ n

for some prime p. Then by (the special case of) Theorem 11.5.1,

p | aibj , i = 0, 1, . . . ,m, j = 0, 1, . . . , n.

Since f and g are primitive polynomials,

p̸ | ai and p̸ | bj

for some i and j. As p is a prime, this implies p̸ |aibj providing a contradiction.

• (b) Let r and s be the least common multiples of denominators in the
coefficients of F and G, resp. Multiplying H = FG by t = rs, we obtain

(S.11.18) tH(x) = F2(x)G2(x), where F2(x), G2(x) ∈ Z[x] .

If t = 1, then we are done. If t > 1, then let p be an arbitrary prime divisor
of t. Then p divides every coefficient of F2(x)G2(x).

If both F2(x) and G2(x) have a coefficient not divisible by p, then this
contradicts Theorem 11.5.1 as seen in part (a). Hence p divides all coefficients
of (say) F2(x), so F2(x) = pF3(x).

Dividing (S.11.18) by p, we get

t1H(x) = F3(x)G2(x), F3(x), G2(x) ∈ Z[x], t1 =
t

p
.
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If t1 = 1, then we are done. Otherwise repeat the procedure till we get a
required factorization of H.

• 11.6.3 (a) Since k and h are coprime, ku = 1+hv for some positive integers
u and v. Also,

Ak ∼ Bk =⇒ Aku ∼ Bku ,

i.e.

(S.11.19) (α)Aku = (β)Bku

for suitable non-zero principal ideals (α) and (β). Replace Aku and Bku in
(S.11.19) by AAhv and BBhv, resp., and use that Ahv and Bhv are principal
ideals, let Ahv = (γ) and Bhv = (δ). This implies

(αγ)A = (βδ)B, i.e. A ∼ B.

• (b) Applying part (a) for B = (1), we get A ∼ (1), hence A is a principal
ideal by Theorem 11.6.2/(iv).

• 11.6.4 (d) We show that all integer solutions of x2 +35 = y3 are x = ±36,
y = 11.

We follow the proof of Theorem 11.6.5. We shall use that the number
of ideal classes in I(

√
−35) is h(

√
−35) = 2 (see the table before Theorem

11.6.4). This implies that the Fundamental Theorem of Arithmetic is false in
I(
√
−35).
We can factor the left-hand side of the equation in I(

√
−35):

(S.11.20)
[
x+
√
−35

][
x−
√
−35

]
= y3 .

As the Fundamental Theorem is false in I(
√
−35), we have to convert (S.11.20)

into an equation for principal ideals:

(S.11.21) (x+
√
−35)(x−

√
−35) = (y)3 .

We show that the ideals (x+
√
−35) and (x−

√
−35) are coprime. Assume that

there still exists a prime ideal P dividing both of them. Then P divides (y)3,
which implies P | (y) as P is a prime ideal. By the containments corresponding
to the divisibilities,

x+
√
−35 ∈ P, x−

√
−35 ∈ P, and y ∈ P.
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Then also

√
−35

[
[x−

√
−35 ]− [x+

√
−35 ]

]
= 2 · 35 = 70 ∈ P.

We show that y and 70 are coprime (among the integers).
If 7 | y, then the original equation implies 7 | x. However, the exponents

of 7 in the standard forms of x2+35 and y3 are exactly 1 and at least 3, resp.,
which is impossible.

We get 5 ̸ | y similarly.
If 2 | y, then x is odd, and the remainders of the left-hand side and

right-hand side modulo 8 are 4 and 0, resp., which is a contradiction again.
Herewith we have proved that y and 70 are coprime. Consequently,

1 = yr + 70s with suitable integers r and s. Since both 70 and y are in
P , 1 is in P , as well, i.e. P = (1), which contradicts P being a prime ideal.

Thus, the two (principal) ideals on the left-hand side of (S.11.21) are
coprime, indeed. The Unique Factorization Theorem 11.5.8 for ideals yields
that both ideals are cubes of suitable ideals, so

(S.11.22) (x+
√
−35) = A3 .

Since the number of ideal classes in I(
√
−35) is h(

√
−35) = 2, A2 is a principal

ideal, A2 = (γ), by Theorem 11.6.4. Substituting it into (S.11.22), we get

(x+
√
−35) = (γ)A.

By Exercise 11.4.3b, A is a principal ideal, A = (α). Then (S.11.22) can be
written as

(S.11.23) (x+
√
−35) = (α3), i.e. x+

√
−35 = εα3,

where ε is a unit in I(
√
−35). The only units in I(

√
−35) are ±1, which are

cubes themselves. Hence, (S.11.23) is equivalent to

(S.11.24) x+
√
−35 = β3 =

[
a+ b

√
−35

]3
,

where −35 ≡ 1 (mod 4) implies that either a and b are integers, or a = u/2
and v = b/2 for some odd integers u and v.

Cubing and comparing the imaginary parts, we obtain

(S.11.25) 1 = 3a2b− 35b3 = b[3a2 − 35b2].
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If a and b are integers, then b = ±1, but we do not get integer values for
a.

If a = u/2 and v = b/2 with u and v odd, then multiplying (S.11.25)
by 8, we have

8 = v[3u2 − 35v2].

As v is odd,

v = ±1 and 3u2 − 35v2 = 3u2 − 35 = ±8.

This yields u = ±3 and v = −1 . Substituting back into formula (S.11.24)
and comparing the real parts, we get

x =
u[u2 − 105v2]

8
= ∓36 and y =

3
√
x2 + 35 = 11.

12. Combinatorial Number Theory

• 12.1.3 First we present a construction where the number of representations
is ⌈k/2⌉. Let k = 2j − 1 or 2j, then ⌈k/2⌉ = j. Following the hint, take

q > j, a1 = q + 1, a2 = q + 2, . . . , aj = q + j, and t = a1 + a2 + . . .+ aj .

Now insert aj+1 = a1 + a2, then also

t = a3 + a4 + . . .+ aj + aj+1.

Similarly, if aj+2 = a3 + a4, then also

t = a5 + a6 + . . .+ aj+1 + aj+2.

In general, put aj+r = a2r−1 + a2r for r ≤ j − 1 (and for k = 2j let a2j
be an arbitrary number greater than a2j−1). Then we have

t = a2r+1 + a2r+2 + . . .+ aj+r.

We show as < as+1 for every s. For s < j this follows from the definition
of as, for s = j we have aj+1 = a1 + a2 = 2q + 3 > aj = q + j (since q > j),
and for j < s ≤ 2j − 2 the two terms ai in the sum as+1 are bigger than the
ones in the sum as.
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The procedure guarantees that t is the sum of j, j − 1, . . . consecutive
numbers ai, till finally t is a one term sum, which means altogether j repre-
sentations, as desired.

Now we show that no bigger number of representations is possible. Con-
sider an arbitrary system a1, . . . , ak and a number t, and select the represen-
tation of t where the last (i.e. the biggest) term is the smallest, let this term
be av.

If v > j, then at most k− (v−1) ≤ k− j ≤ j representations are possible,
since each representation must have a different last term.

If v ≤ j, then since the number of terms is different in every representation
and it is at most v, therefore at most v ≤ j representations are possible.

• 12.2.3 Consider a finite field F2 of p2 elements and its subfield F1 of p
elements. The multiplicative group of a finite field is cyclic, so F2 has an
element ∆ such that every non-zero element in F2 is a power of ∆.

Pick an arbitrary Θ ∈ F2 \ F1, and let γ1, . . . , γp be the elements of F1.
Write the elements Θ+ γi as Θ+ γi = ∆ai defining thus p integers ai between
1 and p2 − 1.

We show that these meet the requirement, i.e. the sums ai+aj are pairwise
incongruent modulo p2 − 1.

Assume ai + aj ≡ ak + al (mod p2 − 1). By the definition of integers
ai, this means (Θ + γi)(Θ + γj) − (Θ + γk)(Θ + γl) = 0. The left-hand side
is a polynomial of Θ with coefficients from F1 and of degree at most 1 as Θ2

gets canceled. It cannot have degree 1 (or 0) since this would imply Θ ∈ F1,
so it must be the zero polynomial (with all coefficients 0). Then, e.g. by the
uniqueness of the root factors, {γi, γj} = {γk, γl}, and so the same holds for
the numbers ai , too, as claimed.

• 12.2.4 Following the hint, let g be a primitive root modulo p, and let ai be
the modulo p(p− 1) solution of the system of congruences x ≡ i (mod p− 1),
x ≡ gi (mod p), i = 1, 2, . . . , p − 1. It suffices to verify that for any c, the
congruence c ≡ ai + aj

(
mod p(p− 1)

)
can hold with at most one (unordered)

pair {i, j} (allowing also i = j). By the definition of ai, this congruence is
equivalent to the system of congruences c ≡ i + j (mod p − 1), c ≡ gi + gj

(mod p). The first congruence here can be written as gc ≡ gigj (mod p).
Hence we know both the sum and product of the numbers gi and gj modulo
p. By Viète’s formulas concerning roots and coefficients, the residue classes
gi and gj are the uniquely determined solutions of the quadratic congruence
z2 − cz + gc ≡ 0 (mod p), as p is a prime. Therefore also i and j are unique.
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• 12.3.6 Following the hint, let |C| = |D| = n < p, C = {c1, . . . , cn},
A1 = . . . = An = D, and

G(x1, . . . , xn) =
∏

1≤j<i≤n

(xi − xj)(xi + ci − xj − cj).

Then the degree of G is n(n− 1). Thus, if the coefficient of
∏n

i=1 x
n−1
i is not

zero, then by Exercise 12.3.5b,

G(d1, . . . , dn) =
∏

1≤j<i≤n

(di − dj)(di + ci − dj − cj) ̸= 0

for some d1, . . . , dn ∈ D. Here necessarily di ̸= dj for i ̸= j, i.e. d1, . . . , dn are
all elements of D. Further, ci + di ̸= cj + dj for i ̸= j, i.e. the map ci ←→ di
yields a suitable pairing between the elements of C and D.

Now we verify that the coefficient of
∏n

i=1 x
n−1
i inG is not zero. We obtain

the terms in G having degree degG = n(n − 1) from
∏

1≤j<i≤n(xi − xj)
2

(all other terms have smaller degree). This part is just the square of the
Vandermonde determinant

V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣
1 x1 . . . xn−1

1

1 x2 . . . xn−1
2

...
...

. . .
...

1 xn . . . xn−1
n

∣∣∣∣∣∣∣∣ .
Write V (x1, . . . , xn) according to the definition of determinants, and check
the coefficient of

∏n
i=1 x

n−1
i when multiplying V with itself. We obtain such

a term if we multiply a term

(−1)I(j1,...,jn)xj11 . . . xjnn

from the first determinant with the term

(−1)I(n−1−j1,...,n−1−jn)xn−1−j1
1 . . . xn−1−jn

n

from the second determinant, where I() denotes the number of inversions in
the corresponding permutation of the indices of columns numbered from 0 to
n− 1. Since the two permutations determining the sign are “complements” of
each other, therefore

I(j1, . . . , jn) + I(n− 1− j, . . . , n− 1− jn) =
(
n

2

)
,
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i.e. every such product is

(−1)(
n
2)xn−1

1 . . . xn−1
n .

There are n! such products, so the coefficient of
∏n

i=1 x
n−1
i in G is (−1)(

n
2)n!,

which is not zero, indeed, as n < p.

• 12.4.11 (b) Assume that in the coloring defined in the hint, the integers
1 ≤ b < b + d < b + 2d < . . . < b + pd ≤ p(2p − 1) have the same color.
Let Θ = ∆b ,Ψ = ∆d. By the monochromatic assumption, the “vectors”
Θ,ΘΨ, . . . ,ΘΨp either all are in subspace W , or all are outside W .

If the arithmetic progression is red, then all these vectors are in a sub-
space of dimension p − 1. Therefore, already the first p of them are linearly
dependent, i.e.

∑p−1
i=0 γi(ΘΨi) = 0 holds non-trivially with suitable coefficients

γi ∈ Z2. Dividing the equality by Θ, we obtain that Ψ is a root of a (non-zero)
polynomial over Z2 having degree less than p. Since the degree of Ψ divides
the degree p of F , the degree of Ψ must be 1, i.e. Ψ ∈ Z2. This is impossible,
however, as Ψ ̸= 0 and d < 2p − 1 implies Ψ ̸= 1.

If the arithmetic progression is blue, then we have to use the above ar-
gument for vectors ΘΨ − Θ,ΘΨ2 − ΘΨ, . . . ,ΘΨp − ΘΨp−1, and divide the
suitable equality by Θ(Ψ− 1) instead of Θ (if Ψ ̸= 1).

• 12.4.12 Following the hint, consider the positive integers up to n which have
only digits less than d/2 in number system of base d and the sum of squares of
digits is a fixed q. If three such integers form an arithmetic progression, then
the same must hold for every digit since there is no overflow to the next digit
due to the restriction on the digits. Therefore every digit of the second integer
is the arithmetic mean of the corresponding digits of the other two integers.
Using that the sum of squares of digits in each integer is q, a simple calculation
yields that the three integers must be equal. (In other words: Considering the
three integers as vectors where the coordinates are the digits, then one vector
is the half of the sum of the other two, and each vector has the same Euclidean
norm. This can happen only if the three vectors are equal.)

For a given d, the number of digits is u ≈ (log n)/(log d) and q can assume
at most ud2/4 values. Uniting our sets for all possible values of q, we obtain
every integer having all digits less than d/2. This gives altogether about
n/2u integers. Therefore there is a q for which the corresponding set contains
at least n/(2u−2ud2) integers. The maximum of this expression occurs when
log d ≈

√
log n , and we obtain the value claimed in the exercise as a maximum.


