
Chapter 5

Itô Calculus

Itô calculus has profound applications in mathematics and mathematical finance. In
this chapter, we construct the Itô integral on Brownian paths. Themathematical signif-
icance of Itô’s work is to have given a rigorous meaning to an integral of random func-
tions (like Brownianmotion)whose paths do not have bounded variation; seeCorollary
3.17. The construction is done in Section 5.3 as a limit ofmartingale transforms, which
is the equivalent of the Riemann sum for stochastic integrals as explained in Section
5.2. One of the upshots is that the Itô integral gives a systematic way to construct Brow-
nian martingales. We also derive Itô’s formula in Section 5.4. The formula relates the
Itô integral to explicit functions of Brownian motion. As such, it can be considered
as the fundamental theorem of Itô calculus. As a point of comparison, it is useful to
briefly go back to the integral of standard calculus: the Riemann integral.

5.1. Preliminaries

The construction of the classical Riemann integral goes as follows. Consider, for exam-
ple, a continuous function 𝑔 on [0, 𝑡]. We take a partition of [0, 𝑡] in 𝑛 intervals (𝑡𝑗 , 𝑡𝑗+1]
with 𝑡𝑛 = 𝑡; for example 𝑡𝑗 = 𝑗

𝑛 𝑡. The Riemann integral is understood as the limit of
Riemann sums:

∫
𝑡

0
𝑔(𝑠) d𝑠 = lim

𝑛→∞

𝑛−1
∑
𝑗=0

𝑔(𝑡𝑗)(𝑡𝑗+1 − 𝑡𝑗).

Note that the integral is a number for fixed 𝑡. The integral represents the area under
the curve given by 𝑔 on the interval [0, 𝑡]. It can also be seen as a continuous function
of 𝑡 as 𝑡 varies on an interval. In fact, as a function of 𝑡, the integral is differentiable and
its derivative is 𝑔. This is the fundamental theorem of calculus.

It is possible to modify the above definition slightly for more general increments.
The construction is called the Riemann-Stieltjes integral. Let 𝐹 be a function on [0, 𝑡]
of bounded variation, as in Example 3.6. It can be shown that the integral as a limit of
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100 5. Itô Calculus

Riemann sums with the increments of 𝐹 exists:

(5.1) ∫
𝑡

0
𝑔(𝑠) d𝐹(𝑠) = lim

𝑛→∞

𝑛−1
∑
𝑗=0

𝑔(𝑡𝑗)(𝐹(𝑡𝑗+1) − 𝐹(𝑡𝑗)).

If 𝐹 is a CDF of a random variable 𝑋 , then ∫∞
−∞ 𝑔(𝑠) d𝐹(𝑠) represents the expectation of

the random variable 𝑔(𝑋); see Remark 1.25. Note that 𝐹(𝑡𝑗+1)−𝐹(𝑡𝑗) is the probability
that 𝑋 falls in the interval (𝑡𝑗 , 𝑡𝑗+1].

The goal is to make sense of the above when 𝐹 is replaced by a Brownian motion
(𝐵𝑡, 𝑡 ≥ 0):

∫
𝑡

0
𝑔(𝑠) d𝐵𝑠 = lim

𝑛→∞

𝑛−1
∑
𝑗=0

𝑔(𝑡𝑗)(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 ).

The major hurdle here is not the fact that the Brownian paths are random, but instead
that these paths have unbounded variation, as proved in Corollary 3.17. This means
that the classical construction does not apply for a given path. Therefore, another
a priori construction is needed. The Poisson process has paths of bounded variation,
as they are increasing. There is no problem in using the classical construction of the
integral for Poisson paths.

Note that the sum∑𝑛−1
𝑗=0 𝑔(𝑡𝑗)(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 ) above is a random variable. If the end-

point 𝑡𝑛 = 𝑡 is varied, it can be seen as a stochastic process. Moreover, since the Brow-
nian paths are continuous, this new stochastic process also has continuous paths. As
we shall see, this stochastic process is in fact a continuous martingale like Brownian
motion. It turns out that these properties remain in the limit 𝑛 → ∞.

What is the interpretation of the stochastic integral? If we think of (𝐵𝑡, 𝑡 ≥ 0) as
modelling the price of a stock, then∑𝑛−1

𝑗=0 𝑔(𝑡𝑗)(𝐵𝑡𝑗+1−𝐵𝑡𝑗 ) gives the value of a portfolio
at time 𝑡 that implements the following strategy: At 𝑡𝑗 we buy 𝑔(𝑡𝑗) shares of the stock
that we sell at time 𝑡𝑗+1. We do this for every 𝑗 ≤ 𝑛 − 1. The net gain or loss of
this strategy is the sum over 𝑗 of 𝑔(𝑡𝑗)(𝐵𝑡𝑗+1 −𝐵𝑡𝑗 ). Of course, in this interpretation, the
number of shares 𝑔(𝑡𝑗) put in play could be randomand depend on the past information
of the path up to time 𝑡𝑗 .

In the next section, we take a first step towards the Itô integral by defining themar-
tingale transform. The construction makes sense for any square-integrable martingale.

5.2. Martingale Transform

Let (𝑀𝑡, 𝑡 ≤ 𝑇) be a continuous square-integrable martingale on [0, 𝑇] for the filtration
(ℱ𝑡, 𝑡 ≤ 𝑇), defined on some probability space (Ω,ℱ,P). The idea of the martingale
transform is to modify the amplitude of each increment in such a way as to produce
a martingale when these new increments are summed up. The martingale transforms
are to the Itô integral what Riemann sums are for the Riemann integral.

More precisely, let (𝑡𝑗 , 𝑗 ≤ 𝑛) be a sequence of partitions of [0, 𝑇] with 𝑡0 = 0 and
𝑡𝑛 = 𝑇. For example, we can take 𝑡𝑗 = 𝑗

𝑛𝑇. Consider 𝑛 fixed numbers (𝑌0, 𝑌1, . . . , 𝑌𝑛−1).
It is convenient to construct a function of time 𝑋𝑡 from these:

𝑋𝑡 = 𝑌 𝑗 if 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1].
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This can be written also as a sum of indicator functions:

(5.2) 𝑋𝑡 =
𝑛−1
∑
𝑗=0

𝑌 𝑗1(𝑡𝑗 ,𝑡𝑗+1](𝑡), 𝑡 ≤ 𝑇.

The integral of (𝑋𝑡, 𝑡 ≤ 𝑇) with respect to the martingale𝑀 on [0, 𝑇], also called a
martingale transform, is the sum of the increments of the martingale modulated by 𝑋 ;
i.e.,

(5.3) 𝐼𝑇 = 𝑌0(𝑀𝑡1 −𝑀0) +⋯+ 𝑌𝑛−1(𝑀𝑇 −𝑀𝑡𝑛−1) =
𝑛−1
∑
𝑗=0

𝑌 𝑗(𝑀𝑡𝑗+1 −𝑀𝑡𝑗 ).

This is a random variable in 𝐿2(Ω,ℱ,P), since it is a linear combination of random
variables in 𝐿2. Note that we recover𝑀𝑇 when 𝑋𝑡𝑗 is 1 for all intervals. We may think
of (𝑀𝑡, 𝑠 ≤ 𝑇) as the price of an asset, say a stock, on a time interval [0, 𝑇]. Then the
term

𝑌 𝑗(𝑀𝑗+1 −𝑀𝑡𝑗 )
can be seen as the gain or loss in the time interval (𝑡𝑗 , 𝑡𝑗+1] of buying 𝑌 𝑗 units of the
asset at time 𝑡𝑗 at price 𝑀𝑡𝑗 and selling these at time 𝑡𝑗+1 at price 𝑀𝑡𝑗+1 . Summing
these terms over time gives the value 𝐼𝑡 of implementing the investing strategy 𝑋 on the
interval [0, 𝑇]. It is not hard to modify the definition to obtain a stochastic process on
the whole interval [0, 𝑇]. For 𝑡 ≤ 𝑇, we simply sum the increments up to 𝑡. This can
be written down as
(5.4) 𝐼𝑡 = 𝑌0(𝑀𝑡1 −𝑀0) + 𝑌1(𝑀𝑡2 −𝑀𝑡1) +⋯+ 𝑌 𝑗(𝑀𝑡 −𝑀𝑡𝑗 ), if 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1].

Example 5.1 (Integral of a simple process). Consider a standard Brownian motion
(𝐵𝑡, 𝑡 ∈ [0, 1]) on the time interval [0, 1]. We know very well by now that it is a martin-
gale. We look at a simple integral constructed from it. We take the following integrand:

𝑋𝑡 =
⎧
⎨
⎩

10 if 𝑡 ∈ [0, 1/3],
5 if 𝑡 ∈ (1/3, 2/3],
2 if 𝑡 ∈ (2/3, 1].

Then the integrals 𝐼𝑡 as in equation (5.4) form a process (𝐼𝑡, 𝑡 ∈ [0, 1]) of the form

𝐼𝑡 =
⎧
⎨
⎩

10𝐵𝑡 if 𝑡 ∈ [0, 1/3],
10𝐵1/3 + 5(𝐵𝑡 − 𝐵1/3) if 𝑡 ∈ (1/3, 2/3],
10𝐵1/3 + 5(𝐵2/3 − 𝐵1/3) + 2(𝐵𝑡 − 𝐵2/3) if 𝑡 ∈ (2/3, 1].

We make three important observations. First, the paths of the process (𝐼𝑡, 𝑡 ∈ [0, 1])
are continuous, because Brownian paths are. Second, the process is a square-integrable
martingale. It is easy to see that it is adapted and square-integrable, because 𝐼𝑡 is a sum
of square-integrable random variables. The martingale property is also not hard to
verify. For example, we have for 𝑡 ∈ (2/3, 1],

E[𝐼𝑡|ℱ2/3] = 10𝐵1/3 + 5(𝐵2/3 − 𝐵1/3) + 2E[𝐵𝑡 − 𝐵2/3|ℱ2/3] = 𝐼2/3,
since E[𝐵𝑡 − 𝐵2/3|ℱ2/3] = 0 by the martingale property of Brownian motion. See Exer-
cise 5.2 for more on this example.
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We can generalize the integrand or investing strategy 𝑋 by considering values 𝑋𝑡𝑗
that depend on the process, hence are random, but in a predictable way. Namely, we
can take 𝑋 to be a random vector such that 𝑋𝑡𝑗 is ℱ𝑡𝑗 -measurable. In other words, 𝑋𝑡𝑗
may be randombutmust only depend on the information up to time 𝑡𝑗 . Common sense
dictates that the number of shares you buy today should not depend on information in
the future. With this in mind, for a given filtration, we define the space of simple (that
is, discrete) adapted processes on [0, 𝑇]:
(5.5)

𝒮(𝑇) = {(𝑋𝑡, 𝑡 ≤ 𝑇) ∶ 𝑋𝑡 =
𝑛−1
∑
𝑗=0

𝑌 𝑗1(𝑡𝑗 ,𝑡𝑗+1](𝑡), 𝑌 𝑗 is ℱ𝑡𝑗 -measurable,E[𝑌2
𝑗 ] < ∞} .

In words, the processes in 𝒮(𝑇) have paths that are piecewise constant on a finite num-
ber of intervals of [0, 𝑇]. The values 𝑌 𝑗(𝜔) on each time interval might vary depending
on the paths 𝜔. As random variables, the 𝑌 𝑗 ’s depend only on the information up to
time 𝑡𝑗 and have finite second moment: E[𝑌2

𝑗 ] < ∞. Note that 𝒮(𝑇) is a linear space:
If 𝑋, 𝑋 ′ ∈ 𝒮(𝑇), then 𝑎𝑋 + 𝑏𝑋 ′ ∈ 𝒮(𝑇) for 𝑎, 𝑏 ∈ ℝ. Indeed, if the paths of 𝑋, 𝑋 ′ take a
finite number of values, then so are the ones of 𝑎𝑋 + 𝑏𝑋 ′.

Example 5.2 (An example of simple adapted process). Let (𝐵𝑡, 𝑡 ≤ 1) be a standard
Brownianmotion. For the interval [0, 1], consider the investing strategy𝑋 in 𝒮(1) given
by the position of the Brownian path at times 0, 1/3, 2/3:

𝑋𝑠 =
⎧
⎨
⎩

0 if 𝑠 ∈ [0, 1/3],
𝐵1/3 if 𝑠 ∈ (1/3, 2/3],
𝐵2/3 if 𝑠 ∈ (2/3, 1].

Clearly, 𝑋 is simple and adapted to the Brownian filtration. For example, the value at
𝑠 = 3/4 is 𝐵2/3. In particular, it depends only on the information prior to time 3/4. See
Figure 5.1.

For a simple adapted process 𝑋 , the integral 𝐼𝑡 of 𝑋 with respect to the martingale
(𝑀𝑡, 𝑡 ≤ 𝑇) is the same as in equation (5.4).

Definition 5.3. Let (𝑀𝑡, 𝑡 ≤ 𝑇) be a continuous square-integrable martingale for the
filtration (ℱ𝑡, 𝑡 ≤ 𝑇). Let 𝑋 ∈ 𝒮(𝑇) be a simple, adapted process 𝑋 = ∑𝑛−1

𝑗=0 𝑌 𝑗1(𝑡𝑗 ,𝑡𝑗+1]
on [0, 𝑇]. Themartingale transform 𝐼𝑡 is

𝐼𝑡 = 𝑌0(𝑀𝑡1 −𝑀0) + 𝑌1(𝑀𝑡2 −𝑀𝑡1) +⋯+ 𝑌 𝑗(𝑀𝑡 −𝑀𝑡𝑗 ), if 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1].

It defines a process (𝐼𝑡, 𝑡 ≤ 𝑇) on [0, 𝑇].

Example 5.4 (Another integral of a simple process). Consider the simple process 𝑋 of
Example 5.2 defined on a Brownian motion. The integral of 𝑋 as a process on [0, 1] is

𝐼𝑠 =
⎧
⎨
⎩

0 if 𝑠 ∈ [0, 1/3],
𝐵1/3(𝐵𝑠 − 𝐵1/3) if 𝑠 ∈ (1/3, 2/3],
𝐵1/3(𝐵2/3 − 𝐵1/3) + 𝐵2/3(𝐵𝑠 − 𝐵2/3) if 𝑠 ∈ (2/3, 1].
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Figure 5.1. The simple process 𝑋 constructed from a Brownian path in Example 5.2.
Note that the path of 𝑋 is piecewise constant. However, the value on each piece is
random as it depends on the positions of the Brownian path at time 1/3 and 2/3.

As in Example 5.1, the paths of 𝐼𝑠 are continuous for all 𝑠 ∈ [0, 1], since the paths of 𝐵𝑠
are continuous! This is also true at the integer times 𝑠 = 1/3, 2/3, if we approached on
the left or right. The process (𝐼𝑠, 𝑠 ≤ 1) is also a martingale for the Brownian filtration.
The key here is that the value multiplying the increment on the interval (𝑡𝑗 , 𝑡𝑗+1] is
ℱ𝑡𝑗 -measurable. For example, take 𝑡 > 2/3 and 1/3 < 𝑠 < 2/3. The properties of condi-
tional expectation in Proposition 4.19 and the fact that Brownianmotion is amartingale
give

E[𝐼𝑡|ℱ𝑠] = E[𝐵1/3(𝐵2/3 − 𝐵1/3) + 𝐵2/3(𝐵𝑡 − 𝐵2/3)|ℱ𝑠]
= E[𝐵1/3(𝐵2/3 − 𝐵1/3)|ℱ𝑠] + E[𝐵2/3(𝐵𝑡 − 𝐵2/3)|ℱ𝑠]
= 𝐵1/3(𝐵𝑠 − 𝐵1/3) + E[ E[𝐵2/3(𝐵𝑡 − 𝐵2/3)|ℱ2/3] |ℱ𝑠]
= 𝐵1/3(𝐵𝑠 − 𝐵1/3) + E[𝐵2/3 E[(𝐵𝑡 − 𝐵2/3)|ℱ2/3] |ℱ𝑠]
= 𝐵1/3(𝐵𝑠 − 𝐵1/3) + 0 = 𝐼𝑠.

Note that it was crucial to use the tower property in the third equality and that we took
out what is known at 𝑡 = 2/3 in the fourth equality.

Martingale transforms are always themselves martingales. In particular, it is not
possible in this setup to design an investing strategy whose value would be increasing
on average.

Proposition 5.5 (Martingale transforms are martingales). Let (𝑀𝑡, 𝑡 ≤ 𝑇) be a con-
tinuous square-integrable martingale for the filtration (ℱ𝑡, 𝑡 ≤ 𝑇) and let 𝑋 ∈ 𝒮(𝑇) be
a simple process as in equation (5.5). Then the martingale transform (𝐼𝑡, 𝑡 ≤ 𝑇) is a
continuous martingale on [0, 𝑇] for the same filtration.

Proof. The fact that 𝐼𝑡 is ℱ𝑡-measurable for 𝑡 ≤ 𝑇 is clear from the construction in
equation (5.4). Indeed, the increments𝑀𝑡𝑗+1−𝑀𝑡𝑗 areℱ𝑡-measurable for 𝑡𝑗+1 ≤ 𝑡 since
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the martingale is adapted. The integrand 𝑋 is also adapted. Moreover, 𝐼𝑡 is integrable
since

E[|𝐼𝑡|] ≤ E[|𝐼𝑇 |] ≤
𝑛−1
∑
𝑗=0

E[|𝑌 𝑗||𝑀𝑡𝑗+1 −𝑀𝑡𝑗 |] ≤
𝑛−1
∑
𝑗=0

(E[𝑌2
𝑗 ])1/2(E[(𝑀𝑡𝑗+1 −𝑀𝑡𝑗 )2])1/2,

by the Cauchy-Schwarz inequality. The last term is finite by assumption on 𝑋 and𝑀.
As for continuity, since (𝑀𝑡, 𝑡 ≤ 𝑇) is continuous, the only possible issue could be at
the points 𝑡𝑗 for some 𝑗. But in that case, we have for 𝑡 > 𝑡𝑗 but close and any outcome
𝜔,

𝐼𝑡(𝜔) =
𝑗−1
∑
𝑖=0

𝑌 𝑖(𝑀𝑡𝑖+1(𝜔) − 𝑀𝑡𝑖 (𝜔)) + 𝑌 𝑗(𝑀𝑡(𝜔) − 𝑀𝑡𝑗 (𝜔)),

which goes to 𝐼𝑡𝑗 when 𝑡 → 𝑡+𝑗 by continuity of 𝑀𝑡(𝜔). A similar argument holds for
𝑡 → 𝑡−𝑗 .

To prove the martingale property, consider 𝑠 < 𝑡. We want to show that E[𝐼𝑡|ℱ𝑠] =
𝐼𝑠. Suppose 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1] for some 𝑡𝑗 < 𝑇. By linearity of conditional expectation in
Proposition 4.19, we have

(5.6) E[𝐼𝑡|𝐹𝑠] =
𝑗
∑
𝑖=0

E[𝑌 𝑖(𝑀𝑡𝑖+1 −𝑀𝑡𝑖 )|ℱ𝑠],

where it is understood that 𝑡 = 𝑡𝑗+1 in the above to simplify notation. We can now
handle each summand. There are three possibilities: 𝑠 ≥ 𝑡𝑖+1, 𝑠 ∈ (𝑡𝑖, 𝑡𝑖+1), and 𝑠 < 𝑡𝑖.
It all depends on Proposition 4.19. In the case 𝑠 ≥ 𝑡𝑖+1, we have

E[𝑌 𝑖(𝑀𝑡𝑖+1 −𝑀𝑡𝑖 )|ℱ𝑠] = 𝑌 𝑖(𝑀𝑡𝑖+1 −𝑀𝑡𝑖 ),
since the whole summand is ℱ𝑠-measurable. In the case 𝑠 ∈ (𝑡𝑖, 𝑡𝑖+1), we have that 𝑌 𝑖
is ℱ𝑠-measurable; therefore

E[𝑌 𝑖(𝑀𝑡𝑖+1 −𝑀𝑡𝑖 )|ℱ𝑠] = 𝑌 𝑖E[𝑀𝑡𝑖+1 −𝑀𝑡𝑖 |ℱ𝑠] = 𝑌 𝑖(𝑀𝑠 −𝑀𝑡𝑖 ),
by the martingale property. In the case 𝑠 < 𝑡𝑖, we use the tower property to get

E[𝑌 𝑖(𝑀𝑡𝑖+1 −𝑀𝑡𝑖 )|ℱ𝑠] = E[ E[𝑌 𝑖(𝑀𝑡𝑖+1 −𝑀𝑡𝑖 )|ℱ𝑡𝑖 ] |ℱ𝑠]
= E[𝑌 𝑖 E[(𝑀𝑡𝑖+1 −𝑀𝑡𝑖 )|ℱ𝑡𝑖 ] |ℱ𝑠] = 0,

sinceE[(𝑀𝑡𝑖+1−𝑀𝑡𝑖 )|ℱ𝑡𝑖 ] = 0 by themartingale property. Putting all the cases together
in (5.6) gives for 𝑠 ∈ (𝑡𝑘, 𝑡𝑘+1], say,

E[𝐼𝑡|𝐹𝑠] = 𝑌0(𝑀𝑡1 −𝑀0) + 𝑌1(𝑀𝑡2 −𝑀𝑡1) +⋯+ 𝑌 𝑘(𝑀𝑠 −𝑀𝑡𝑘). □

5.3. The Itô Integral

We now turn to martingale transforms where the underlying martingale is a standard
Brownian motion (𝐵𝑡, 𝑡 ≥ 0). This gives our first definition of the Itô integral.

Definition 5.6 (Itô integral on 𝒮(𝑇)). Let (𝐵𝑡, 𝑡 ≤ 𝑇) be a standard Brownian motion
on [0, 𝑇] and let 𝑋 ∈ 𝒮(𝑇) be a simple process 𝑋 = ∑𝑛−1

𝑗=0 𝑌 𝑗1(𝑡𝑗 ,𝑡𝑗+1] on [0, 𝑇] adapted
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to the Brownian filtration. The Itô integral of 𝑋 with respect to the Brownian motion
is defined as the martingale transform

∫
𝑇

0
𝑋𝑠 d𝐵𝑠 =

𝑛−1
∑
𝑗=0

𝑌 𝑗(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 ),

and similarly for any 𝑡 ≤ 𝑇,

∫
𝑡

0
𝑋𝑠 d𝐵𝑠 = 𝑌0(𝐵𝑡1 − 𝐵0) + 𝑌1(𝐵𝑡2 − 𝐵𝑡1) +⋯+ 𝑌 𝑗(𝐵𝑡 − 𝐵𝑡𝑗 ), if 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1].

Note again the similarities with Riemann sums. The interpretation of the Itô inte-
gral is as follows:

the value of implementing the strategy 𝑋 on the underlying asset with price
given by the Brownian motion.

The martingale transform with Brownian motion has more properties than with a
generic martingale as given in Definition 5.3. This is because the Brownian incre-
ments are independent. We gather the properties of the Itô integral for 𝑋 ∈ 𝒮(𝑇) in an
important proposition. The same exact result will hold for continuous strategies; see
Theorem 5.12.

Proposition 5.7 (Properties of the Itô integral). Let (𝐵𝑡, 𝑡 ≤ 𝑇) be a standard Brownian
motion on [0, 𝑇] defined on a probability space (Ω,ℱ,P). The Itô integral in Definition
5.6 has the following properties:

• Linearity: If 𝑋, 𝑋 ′ ∈ 𝒮(𝑇) and 𝑎, 𝑏 ∈ ℝ, then for all 𝑡 ≤ 𝑇,

∫
𝑡

0
(𝑎𝑋𝑠 + 𝑏𝑋 ′

𝑠) d𝐵𝑠 = 𝑎∫
𝑡

0
𝑋𝑠 d𝐵𝑠 + 𝑏∫

𝑡

0
𝑋 ′
𝑠 d𝐵𝑠.

• Continuous martingale: The process (∫𝑡
0 𝑋𝑠 d𝐵𝑠, 𝑡 ≤ 𝑇) is a continuous martin-

gale on [0, 𝑇] for the Brownian filtration.
• Itô’s isometry: The random variable ∫𝑡

0 𝑋𝑠 d𝐵𝑠 is in 𝐿2(Ω,ℱ,P) with mean 0 and
variance

E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠)

2

] = ∫
𝑡

0
E[𝑋2

𝑠 ] d𝑠 = E [∫
𝑡

0
𝑋2
𝑠 d𝑠] , 𝑡 ≤ 𝑇.

It is very important for the understanding of the theory to keep in mind that
∫𝑡
0 𝑋𝑠 d𝐵𝑠 is a random variable. We should walk away from the temptation to use the re-
flexes of classical calculus to manipulate it as if it were a Riemann integral. The reason
we use the integral sign to denote the random variable ∫𝑡

0 𝑋𝑠 d𝐵𝑠 is because it shares
the linearity property with the Riemann integral.

It turns out that Itô’s isometry not only yields themean and the variance of the ran-
dom variable∫𝑡

0 𝑋𝑠 d𝐵𝑠, but also the covariances for these random variables at different
times, and the covariance for two integrals built with two different strategies on the
same Brownian motion; see Corollary 5.15. What about the distribution of ∫𝑡

0 𝑋𝑠 d𝐵𝑠?
It turns out that the random variable ∫𝑡

0 𝑋𝑠 d𝐵𝑠 is not Gaussian in general. However, if
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the process 𝑋 is not random, then it will be; see Corollary 5.18 below. For example, the
process (𝐼𝑡, 𝑡 ≤ 𝑇) in Example 5.1 is Gaussian, but the one in Example 5.4 is not.

Proof of Proposition 5.7. The linearity is clear from the definition of the martingale
transform. The continuity property and the martingale property follow generally from
Proposition 5.5.

We now prove Itô’s isometry. We will use the properties of conditional expectation
in Proposition 4.19 many times, so the reader might quickly review it beforehand. To
simplify notation, for fixed 𝑡 ∈ [0, 𝑇], we can suppose that the partition (𝑡𝑗 , 𝑗 ≤ 𝑛) is a
partition of [0, 𝑡] with 𝑡𝑛 = 𝑡. Since 𝑌 𝑗 is ℱ𝑡𝑗 -measurable, we have

E[𝑌 𝑗(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )] = E[E[𝑌 𝑗(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )|ℱ𝑡𝑗 ]] = E[𝑌 𝑗E[𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 |ℱ𝑡𝑗 ]] = 0,
since E[𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 |ℱ𝑡𝑗 ] = 0, as Brownian motion is a martingale. Therefore, it follows
that

E [∫
𝑡

0
𝑋𝑠 d𝐵𝑠] =

𝑛−1
∑
𝑗=0

E[𝑌 𝑗(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )] = 0.

As for the variance, we have by conditioning on ℱ𝑡𝑗 that, for 𝑡𝑖 < 𝑡𝑗 ,
E[𝑌 𝑗𝑌 𝑖(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )(𝐵𝑡𝑖+1 − 𝐵𝑡𝑖 )] = E[𝑌 𝑗𝑌 𝑖(𝐵𝑡𝑖+1 − 𝐵𝑡𝑖 ) E[𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 |ℱ𝑡𝑗 ]] = 0,

since E[𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 |ℱ𝑡𝑗 ] = 0 and since all factors but 𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 are ℱ𝑡𝑗 -measurable.
Thus, this yields

E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠)

2

] =
𝑛−1
∑
𝑖,𝑗=0

E[𝑌 𝑗𝑌 𝑖(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )(𝐵𝑡𝑖+1 − 𝐵𝑡𝑖 )]

=
𝑛−1
∑
𝑗=0

E[𝑌2
𝑗 E[(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )2|ℱ𝑡𝑗 ]],

by the previous equation and the fact that 𝑌 𝑗 is ℱ𝑡𝑗 -measurable. Since the increment
𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 is independent of ℱ𝑡𝑗 , we have

E[(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )2|ℱ𝑡𝑗 ] = E[(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )2] = 𝑡𝑗+1 − 𝑡𝑗 .
Therefore, we conclude that

E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠)

2

] =
𝑛−1
∑
𝑗=0

E[𝑌2
𝑗 ](𝑡𝑗+1 − 𝑡𝑗).

From the definition of 𝑋 as a simple process in equation (5.2), we have ∫𝑡
0 E[𝑋2

𝑠 ] d𝑠 =
∑𝑛−1

𝑗=0 E[𝑌2
𝑗 ](𝑡𝑗+1 − 𝑡𝑗), since 𝑋 equals 𝑌 𝑗 on the whole interval (𝑡𝑗 , 𝑡𝑗+1]. □

Example 5.8. We go back to the Itô integral in Example 5.2. The mean of 𝐼𝑡 is 0 by
Proposition 5.7 or by direct computation. It is not hard to compute the variance. For
example, at 𝑡 = 1, it is

E[𝐼21 ] = ∫
1

0
E[𝑋2

ᵆ] d𝑢 = E[𝐵20] ⋅
1
3 + E[𝐵21/3] ⋅

1
3 + E[𝐵22/3] ⋅

1
3 = 0 + 1

9 +
2
9 =

1
3 .
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Consider now another process 𝑌 on [0, 1] defined on the same Brownian motion:
𝑌𝑡 = 𝐵201(0,1/3](𝑡) + 𝐵21/31(1/3,2/3](𝑡) + 𝐵22/31(2/3,1](𝑡).

Again, the Itô integral 𝐽𝑡 = ∫𝑡
0 𝑌2

𝑠 d𝐵𝑠 is well-defined as a process on [0, 1]:

𝐽𝑡 =
⎧
⎨
⎩

0 if 𝑡 ∈ [0, 1/3],
𝐵21/3(𝐵𝑡 − 𝐵1/3) if 𝑡 ∈ (1/3, 2/3],
𝐵21/3(𝐵2/3 − 𝐵1/3) + 𝐵22/3(𝐵𝑡 − 𝐵2/3) if 𝑡 ∈ (2/3, 1].

The covariance between the random variables 𝐼1 and 𝐽1 can be computed easily by
using the independence of the increments and suitable conditioning. Indeed, we have

E [𝐼1𝐽1] =
3
∑
𝑖,𝑗=0

E[𝐵𝑖/3𝐵2𝑗/3(𝐵(𝑖+1)/3 − 𝐵𝑖/3)(𝐵(𝑗+1)/3 − 𝐵𝑗/3)].

If 𝑗 > 𝑖, we can condition on ℱ𝑗/3 in the above summand to get

E[𝐵𝑖/3𝐵2𝑗/3(𝐵(𝑖+1)/3 − 𝐵𝑖/3)(𝐵(𝑗+1)/3 − 𝐵𝑗/3) |ℱ𝑗/3]
= 𝐵𝑖/3𝐵2𝑗/3(𝐵(𝑖+1)/3 − 𝐵𝑖/3)E[𝐵(𝑗+1)/3 − 𝐵𝑗/3 |ℱ𝑗/3] = 0.

The same holds for 𝑖 > 𝑗 by conditioning on ℱ 𝑖/3. The only remaining terms are 𝑖 = 𝑗:

𝐸 [𝐼1𝐽1] =
3
∑
𝑖=0

E[𝐵3𝑖/3(𝐵(𝑖+1)/3 − 𝐵𝑖/3)2] =
3
∑
𝑖=0

E[𝐵3𝑖/3] ⋅ E[(𝐵(𝑖+1)/3 − 𝐵𝑖/3)2],

by independence of increments. The first factor of each term is zero (due to the nature
of odd moments of a Gaussian centered at 0). Therefore, the variables 𝐼1 and 𝐽1 are
uncorrelated. Corollary 5.15 gives a systematic way to compute covariances based on
Itô’s isometry.

Remark 5.9. An isometry is a mapping between metric spaces (i.e., with a distance)
that actually preserves the distance between points. (It literally means same measure
in Greek.) In the case of Itô’s isometry, the mapping is the one that sends the integrand
𝑋 to the square-integrable random variable given by the integral:

𝒮(𝑇) → 𝐿2(Ω,ℱ,P)

𝑋 ↦ ∫
𝑇

0
𝑋𝑠 d𝐵𝑠.

The 𝐿2-norm of∫𝑇
0 𝑋𝑠 d𝐵𝑠 is (E[(∫

𝑇
0 𝑋𝑠 d𝐵𝑠)2])1/2. It turns out that the space 𝒮(𝑇) is also

a linear space with the norm ‖𝑋‖𝒮 = (∫𝑇
0 E[𝑋𝑠]2 d𝑠)1/2. Itô’s isometry says that these

two norms (and hence the distance) are equal. In fact, this isometry extends in part to
the 𝐿2-space of functions on Ω × [0, 𝑇], for which 𝒮(𝑇) is a subspace. We will see that
this isometry is central to the extension of the Itô integral in the limit 𝑛 → ∞.

The next goal is to extend the Itô integral to processes 𝑋 other than simple pro-
cesses. The integral will be defined as a limit of integrals of simple processes, very
much like the Riemann integral is a limit of Riemann sums. But first, we need a good
class of integrands.
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Definition 5.10. For a given Brownian filtration (ℱ𝑡, 𝑡 ≤ 𝑇), we consider the class of
processes ℒ2

𝑐(𝑇) of processes (𝑋𝑡, 𝑡 ≤ 𝑇) such that the following hold:
(1) 𝑋 is adapted; that is, 𝑋𝑡 is ℱ𝑡-measurable for 𝑡 ≤ 𝑇.
(2) E[∫𝑇

0 𝑋2
𝑡 d𝑡] = ∫𝑇

0 E[𝑋2
𝑡 ] d𝑡 < ∞.

(3) 𝑋 has continuous paths; that is, 𝑡 ↦ 𝑋𝑡(𝜔) is continuous on [0, 𝑇] for a set of 𝜔 of
probability one.

It is not hard to check that the processes (𝐵𝑡, 𝑡 ≤ 𝑇) and (𝐵2𝑡 , 𝑡 ≤ 𝑇) are in ℒ2
𝑐(𝑇).

In fact, if 𝑓 is a continuous function and ∫𝑇
0 E[𝑓(𝐵𝑡)2] d𝑡 < ∞, then the process

(𝑓(𝐵𝑡), 𝑡 ≤ 𝑇) is in ℒ2
𝑐(𝑇). Indeed, 𝑓(𝐵𝑡) is ℱ𝑡-measurable, since it is an explicit func-

tion of 𝐵𝑡. Moreover, the second condition is by assumption. The third holds simply
because the composition of two continuous functions is continuous. Example 5.17 de-
scribes a process that is in ℒ2

𝑐(𝑇) but is not an explicit function of Brownian motion.
See Exercise 5.7 for an example of a process of the form (𝑓(𝐵𝑡), 𝑡 ≤ 𝑇) that is not in
ℒ2
𝑐(𝑇). The main advantage of processes in ℒ2

𝑐(𝑇) is that they are easily approximated
by simple adapted processes.

Lemma 5.11. Let𝑋 ∈ ℒ2
𝑐(𝑇). Then𝑋 can be approximated by simple adapted processes

in 𝒮(𝑇), in the sense that there exists a sequence 𝑋(𝑛) ∈ 𝒮(𝑇) such that

lim
𝑛→∞

∫
𝑇

0
E[(𝑋(𝑛)

𝑡 − 𝑋𝑡)2] d𝑡 = 0.

Proof. For a given 𝑛, consider the partition 𝑡𝑗 = 𝑗
𝑛𝑇 of [0, 𝑇] and the simple adapted

process given by

𝑋(𝑛)
𝑡 =

𝑛
∑
𝑗=0

𝑋𝑡𝑗1(𝑡𝑗 ,𝑡𝑗+1](𝑡), 𝑡 ≤ 𝑇.

In other words, we give the constant value 𝑋𝑡𝑗 on the whole interval (𝑡𝑗 , 𝑡𝑗+1]. By con-
tinuity of the paths of 𝑋 , it is clear that 𝑋(𝑛)

𝑡 (𝜔) → 𝑋𝑡(𝜔) at any 𝑡 ≤ 𝑇 and for any 𝜔.
Therefore, by Theorem 4.40, we have

lim
𝑛→∞

∫
𝑇

0
E[(𝑋(𝑛)

𝑡 − 𝑋𝑡)2] d𝑡 = 0. □

We are now ready to state the most important theorem of this section.

Theorem 5.12. Let (𝐵𝑡, 𝑡 ≤ 𝑇) be a standard Brownian motion defined on (Ω,ℱ,P).
Let (𝑋𝑡, 𝑡 ≤ 𝑇) be a process inℒ2

𝑐(𝑇). There exist random variables ∫𝑡
0 𝑋𝑠 d𝐵𝑠, 𝑡 ≤ 𝑇, with

the following properties:

• Linearity: If 𝑋, 𝑌 ∈ ℒ2
𝑐(𝑇) and 𝑎, 𝑏 ∈ ℝ, then

∫
𝑡

0
(𝑎𝑋𝑠 + 𝑏𝑌𝑠) d𝐵𝑠 = 𝑎∫

𝑡

0
𝑋𝑠 d𝐵𝑠 + 𝑏∫

𝑡

0
𝑌𝑠 d𝐵𝑠, 𝑡 ≤ 𝑇.

• Continuous martingale: The process (∫𝑡
0 𝑋𝑠 d𝐵𝑠, 𝑡 ≤ 𝑇) is a continuous martin-

gale for the Brownian filtration.
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Figure 5.2. Simulation of 5 paths of the process ∫𝑡0 𝐵𝑠 d𝐵𝑠, 𝑡 ≤ 1.

• Itô’s isometry: The random variable ∫𝑡
0 𝑋𝑠 d𝐵𝑠 is in 𝐿2(Ω,ℱ,P) with mean 0 and

variance

E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠)

2

] = ∫
𝑡

0
E[𝑋2

𝑠 ] d𝑠 = E [∫
𝑡

0
𝑋2
𝑠 d𝑠] , 𝑡 ≤ 𝑇.

Example 5.13 (Sampling Itô integrals). How can we sample paths of processes given
by Itô integrals? A very simplemethod is to go back to the integral on simple processes.
Consider the process 𝐼𝑡 = ∫𝑡

0 𝑋𝑠 d𝐵𝑠 , 𝑡 ≤ 𝑇, constructed from 𝑋 ∈ ℒ2
𝑐(𝑇) and from a

standard Brownian motion (𝐵𝑡, 𝑡 ≥ 0). To simulate the paths, we fix the endpoint, say
𝑇, and a step size, say 1/𝑛. Thenwe can generate the process at every 𝑡𝑗 = 𝑗

𝑛𝑇 by taking

𝐼𝑡𝑗 =
𝑗−1
∑
𝑖=0

𝑋𝑡𝑖 (𝐵𝑡𝑖+1 − 𝐵𝑡𝑖 ), 𝑗 ≤ 𝑛.

Here are two observations that makes this expression more palatable. First, note that
the increment 𝐵𝑡𝑖+1 − 𝐵𝑡𝑖 is a Gaussian random variable of mean 0 and variance 1

𝑛𝑇
for every 𝑖. Second, we have 𝐼𝑡𝑗 − 𝐼𝑡𝑗−1 = 𝑋𝑡𝑗−1(𝐵𝑡𝑗 − 𝐵𝑡𝑗−1), so the values 𝐼𝑡𝑗 can be
computed recursively. Numerical Project 5.1 is about implementing this method.

Remark 5.14 (𝐿2-spaces are complete). The proof of the existence of the Itô integral
is based on the completeness property of 𝐿2-spaces: If (𝑋𝑛, 𝑛 ≥ 1) is a Cauchy sequence
of elements in an 𝐿2-space, then the sequence 𝑋𝑛 converges to some element 𝑋 in 𝐿2.
A sequence is Cauchy if for any choice of 𝜀 > 0, we can find 𝑛 large enough so that

‖𝑋𝑚 − 𝑋𝑛‖ < 𝜀 for any𝑚 > 𝑛.
In other words, for an arbitrarily small distance 𝜀, if we go further enough in the se-
quence the distances between increments are all smaller than 𝜀. Another example of
spaces that are complete is ℝ, endowed with the metric given by the absolute value.
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However, the set of rational numbersℚ as a subset of ℝ is not complete, because there
are sequences of rational numbers that converge to irrationals. A proof of the com-
pleteness of 𝐿2 is outlined in Exercise 5.20.

Proof of Theorem 5.12. Consider a process 𝑋 = (𝑋𝑡, 𝑡 ≤ 𝑇) in ℒ2
𝑐(𝑇). By Lemma

5.11, we can approximate it by a simple adapted processes (𝑋(𝑛)
𝑡 , 𝑡 ≤ 𝑇). In particular,

this implies that the sequence is Cauchy for the metric

(5.7) ‖𝑋(𝑛) − 𝑋(𝑚)‖ = (∫
𝑇

0
E[(𝑋(𝑛)

𝑡 − 𝑋(𝑚)
𝑡 )2] d𝑡)

1/2

.

The key step is the following. We know that the integral 𝐼(𝑛)𝑡 = ∫𝑡
0 𝑋

(𝑛)
𝑠 d𝐵𝑠 is well-

defined as a random variable in 𝐿2(Ω,ℱ,P). Moreover, we know by the Itô isometry
that the 𝐿2-distance of the processes in equation (5.7) is the same as the 𝐿2-distance of
the 𝐼(𝑛)’s. Thismeans that the sequence (𝐼(𝑛), 𝑛 ≥ 1)must also beCauchy in𝐿2(Ω,ℱ,P)!
We conclude by completeness of the space that 𝐼(𝑛) converges in 𝐿2 to a random vari-
able that we denote by 𝐼𝑡 or∫

𝑡
0 𝑋𝑠 d𝐵𝑠. Furthermore, the limit 𝐼𝑡 does not depend on the

approximating sequence 𝑋(𝑛). We could have taken another sequence to approximate
𝑋 and the isometry guarantees that the corresponding integrals will converge to the
same random variable.

We now prove the properties:

• Linearity: It follows by using linearity in Proposition 5.7 for𝑋(𝑛) and 𝑌 (𝑛), the two
approximating processes for 𝑋 and 𝑌 .

• Isometry: The variance follows from the following fact: If 𝐼(𝑛)𝑡 → 𝐼𝑡 in 𝐿2, then
E[(𝐼(𝑛)𝑡 )2] → E[𝐼2𝑡 ] and E[𝐼(𝑛)𝑡 ] → E[𝐼𝑡]; see Exercise 5.3.

• Continuous martingale: Write 𝐼𝑡 = ∫𝑡
0 𝑋𝑠 d𝐵𝑠. We must show that E[𝐼𝑡|ℱ𝑠] = 𝐼𝑠

for any 𝑡 > 𝑠. To see this, we go back to Definition 4.14. The random variable 𝐼𝑡
is ℱ𝑡-measurable by construction. Now for a bounded random variable𝑊 that is
ℱ𝑠-measurable, we need to show

E[𝑊𝐼𝑡] = E[𝑊𝐼𝑠].

This is clear for 𝐼(𝑛)𝑡 , the approximating integrals, because (𝐼(𝑛)𝑡 , 𝑡 ≤ 𝑇) is a mar-
tingale. The above then follows from the fact that 𝐼(𝑛)𝑠 𝑊 converges in 𝐿2 to 𝐼𝑠𝑊
(and thus the expectation converges) and the same way for 𝑡. The fact that the
path 𝑡 ↦ 𝐼𝑡(𝜔) is continuous on [0, 𝑡] with probability one is more involved. It
uses Doob’s maximal inequality; see Exercise 4.19.

□

Once the conclusions of Theorem 5.12 are accepted, we are free to explore the
beauty and the power of Itô calculus. As a first step, we observe that with Itô’s isometry,
we can compute not only variances, but also covariances between integrals. This is
because an isometry also preserves the inner product in 𝐿2-spaces.
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Corollary 5.15. Let (𝐵𝑡, 𝑡 ≤ 𝑇) be a standard Brownian motion, and let 𝑋 ∈ ℒ2
𝑐(𝑇). We

have

E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠) (∫

𝑡′

0
𝑋𝑠 d𝐵𝑠)] = ∫

𝑡∧𝑡′

0
E[𝑋2

𝑠 ] d𝑠, 𝑡, 𝑡′ ≤ 𝑇,

and for any 𝑌 ∈ ℒ2
𝑐(𝑇),

E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠) (∫

𝑡

0
𝑌𝑠 d𝐵𝑠)] = ∫

𝑡

0
E[𝑋𝑠𝑌𝑠] d𝑠, 𝑡 ≤ 𝑇.

Note that when 𝑋 is just the constant 1, we recover from the first equation the
covariance of Brownian motion.

Proof. The first assertion is Exercise 5.4. As for the second, we have on one hand by
Itô’s isometry

E [(∫
𝑡

0
{𝑋𝑠 + 𝑌𝑠} d𝐵𝑠)

2

] = ∫
𝑡

0
E[(𝑋𝑠 + 𝑌𝑠)2] d𝑠

= ∫
𝑡

0
E[𝑋2

𝑠 ] d𝑠 +∫
𝑡

0
E[𝑌2

𝑠 ] d𝑠 + 2∫
𝑡

0
E[𝑋𝑠𝑌𝑠] d𝑠.

On the other hand, by linearity of the Itô integral and of the expectation, we have

E [(∫
𝑡

0
{𝑋𝑠 + 𝑌𝑠} d𝐵𝑠)

2

] = E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠 +∫

𝑡

0
𝑌𝑠 d𝐵𝑠)

2

]

= E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠)

2

] + E [(∫
𝑡

0
𝑌𝑠 d𝐵𝑠)

2

]

+ 2E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠) (∫

𝑡

0
𝑌𝑠 d𝐵𝑠)] .

By combining the two equations and by using Itô’s isometry, we conclude that

□(5.8) E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠) (∫

𝑡

0
𝑌𝑠 d𝐵𝑠)] = ∫

𝑡

0
E[𝑋𝑠𝑌𝑠] d𝑠.

Example 5.16. Consider the processes (𝐵𝑡, 𝑡 ≤ 𝑇) and (𝐵2𝑡 , 𝑡 ≤ 𝑇) for a given stan-
dard Brownian motion. Note that these two processes are in ℒ2

𝑐(𝑇) for any 𝑇 > 0. By
Theorem 5.12, the random variables

𝐼𝑡 = ∫
𝑡

0
𝐵𝑠 d𝐵𝑠, 𝐽𝑡 = ∫

𝑡

0
𝐵2𝑠 d𝐵𝑠

exist and are in 𝐿2(Ω,ℱ,P). Their mean is 0, and they have variances

E[𝐼2𝑡 ] = ∫
𝑡

0
E[𝐵2𝑠 ] d𝑠 = ∫

𝑡

0
𝑠 d𝑠 = 𝑡2

2 , E[𝐽2𝑡 ] = ∫
𝑡

0
E[𝐵4𝑠 ] d𝑠 = ∫

𝑡

0
3𝑠2 d𝑠 = 𝑡3.
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(Recall the Gaussian moments in equation (1.8).) The covariance is by Corollary 5.15:

E[𝐼𝑡𝐽𝑡] = ∫
𝑡

0
E[𝐵𝑠𝐵2𝑠 ] d𝑠 = 0.

The variables are uncorrelated.

Example 5.17 (A path-dependent integrand). Consider the process 𝑋𝑡 = ∫𝑡
0 𝐵𝑠 d𝐵𝑠 on

[0, 𝑇] as in Example 5.16. Note that the process (𝑋𝑡, 𝑡 ≤ 𝑇) is itself inℒ2
𝑐(𝑇). In particu-

lar, the integral ∫𝑡
0 𝑋𝑠 d𝐵𝑠 is well-defined! (Note that the integrand 𝑋𝑡 isℱ𝑡-measurable

but its value depends on the whole Brownian up to time 𝑡.) The mean of the integral is
0 and its variance is obtained by applying Itô’s isometry twice:

E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠)

2

] = ∫
𝑡

0
E[𝑋2

𝑠 ] d𝑠 = ∫
𝑡

0

𝑠2
2 d𝑠 = 𝑡3

6 .

See Numerical Project 5.4.

In general, the Itô integral is not Gaussian. However, if the integrand 𝑋 is not
random (as in Example 5.1), the process is actually Gaussian. In this particular case,
the integral is sometimes called aWiener integral.

Corollary 5.18 (Wiener integral). Let (𝐵𝑡, 𝑡 ≤ 𝑇) be a standard Brownian motion and
let 𝑓 ∶ [0, 𝑇] → ℝ be a function such that ∫𝑇

0 𝑓2(𝑠) d𝑠 < ∞. Then the process
(∫𝑡
0 𝑓(𝑠) d𝐵𝑠, 𝑡 ≤ 𝑇) is Gaussian with mean 0 and covariance

Cov(∫
𝑡

0
𝑓(𝑠) d𝐵𝑠,∫

𝑡′

0
𝑓(𝑠) d𝐵𝑠) = ∫

𝑡∧𝑡′

0
𝑓(𝑠)2 d𝑠.

Proof. We prove the case when 𝑓 is continuous. In this case, we can use our proof of
Lemma 5.11. Let (𝑡𝑗 , 𝑗 ≤ 𝑛) be a partition of [0, 𝑇] in 𝑛 intervals. The lemma shows
that the sequence of simple functions

𝑓(𝑛)(𝑡) =
𝑛−1
∑
𝑗=0

𝑓(𝑡𝑗)1(𝑡𝑗 ,𝑡𝑗+1](𝑡), 𝑡 ≤ 𝑇,

approximates 𝑓. The Itô integral of 𝑓(𝑛) is

𝐼(𝑛)𝑡 =
𝑗−1
∑
𝑖=0

𝑓(𝑡𝑗)(𝐵𝑡 − 𝐵𝑡𝑗 ), 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1].

This is a Gaussian process for any 𝑛. This is because for any choice of times 𝑠1, . . . , 𝑠𝑚,
the vector (𝐼(𝑛)𝑠1 , . . . , 𝐼

(𝑛)
𝑠𝑚 ) is Gaussian, since it reduces to linear combinations of Brow-

nian motion at fixed times. Moreover, the random variable ∫𝑡
0 𝑓(𝑠) d𝐵𝑠 is the 𝐿2-limit

of 𝐼(𝑛)𝑡 by Theorem 5.12. It remains to show that an 𝐿2-limit of a sequence of Gauss-
ian vectors remains Gaussian. This is sketched in Exercise 5.19. The expression of the
covariances is from Corollary 5.15. □
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Example 5.19 (Ornstein-Uhlenbeck process as an Itô integral). Consider the function
𝑓(𝑠) = 𝑒𝑠. The Ornstein-Uhlenbeck process starting at 𝑋0 defined in Example 2.29 can
also be written as

(5.9) 𝑌𝑡 = 𝑒−𝑡∫
𝑡

0
𝑒𝑠 d𝐵𝑠, 𝑡 ≥ 0.

This is tested numerically in Numerical Project 5.2. To see this mathematically, note
that (𝑌𝑡, 𝑡 ≥ 0) is a Gaussian process by Corollary 5.18. The mean is 0 and the covari-
ance is, by Corollary 5.15,

E[𝑌𝑡𝑌𝑠] = 𝑒−𝑡−𝑠∫
𝑠

0
𝑒2ᵆ d𝑢 = 1

2(𝑒
−(𝑡−𝑠) − 𝑒−(𝑡+𝑠)), 𝑠 ≤ 𝑡.

We can also start the process at 𝑌0, a Gaussian random variable of mean 0 and
variance 1/2 independent of the Brownian motion (𝐵𝑡, 𝑡 ≥ 0). The process then takes
the form

𝑌𝑡 = 𝑌0𝑒−𝑡 + 𝑒−𝑡∫
𝑡

0
𝑒𝑠 d𝐵𝑠.

Since 𝑌0 and the Itô integral are independent by assumption, the covariance is then

E[𝑌𝑡𝑌𝑠] =
1
2𝑒

−𝑡−𝑠 + 1
2(𝑒

−(𝑡−𝑠) − 𝑒−(𝑡+𝑠)) = 1
2𝑒

−(𝑡−𝑠), 𝑠 ≤ 𝑡.

In this case, the process is stationary in the sense that (𝑌𝑡, 𝑡 ≥ 0) has the same distribu-
tion as (𝑌𝑡+𝑎, 𝑡 ≥ 0) for any 𝑎 > 0.

Example 5.20 (Brownian bridge as an Itô integral). The Brownian bridge
(𝑍𝑡, 𝑡 ∈ [0, 1]) is the stochastic process with the distribution defined in Example 2.27.
Another way to construct a Brownian bridge is as follows:

(5.10) 𝑍𝑡 = (1 − 𝑡)∫
𝑡

0

1
1 − 𝑠 d𝐵𝑠, 𝑡 < 1.

This is tested numerically in Numerical Project 5.2. It turns out that 𝑍1 = 0. This is
done in Exercise 5.21. The process 𝑍 is a Gaussian process by Corollary 5.18. Themean
is 0 and the covariance is, by Corollary 5.15,

E[𝑍𝑡𝑍𝑠] = (1 − 𝑡)(1 − 𝑠)E [(∫
𝑠

0

1
1 − 𝑢 d𝐵ᵆ) (∫

𝑡

0

1
1 − 𝑢 d𝐵ᵆ)] = 𝑠(1 − 𝑡), 𝑠 ≤ 𝑡.

The above representations of the Orstein-Uhlenbeck and the Brownian bridge im-
plies that they are not martingales; see Exercise 5.10.

Remark 5.21 (Fubini’s theorem). In Exercise 3.11 and Exercise 4.21, it was shown
that we can interchange the expectation E and the sum∑ if the random variables are
positive or if ∑𝑛≥1 E[|𝑋𝑛|] < ∞. This result holds in general when the integrands
are positive or integrable. This is known as Fubini’s theorem. This is applicable in
particular whenwe calculate the variance using Itô’s isometry. More precisely, we have

∫
𝑡

0
E[𝑋2

𝑠 ] d𝑠 = E [∫
𝑡

0
𝑋2
𝑠 d𝑠] .
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Remark 5.22 (Extension to other processes). Can we define the Itô integral for pro-
cesses other than the ones inℒ2

𝑐(𝑇)? Of course, since simple adapted processes in 𝒮(𝑇)
given in equation (5.5) are not continuous. In fact, the Itô construction holdswhenever
𝑋 is a limit of simple adapted processes. Such processes will have the property that

(5.11) E [∫
𝑇

0
𝑋2
𝑡 d𝑡] < ∞.

Theorem 5.12 is the same for these processes. In particular, they define continuous
square-integrable martingales.

A further extension applies to processes such that

(5.12) ∫
𝑇

0
𝑋2
𝑡 (𝜔) d𝑡 < ∞ for 𝜔 in a set of probability one.

(Note that equation (5.11) implies the above by Exercise 1.15.) Equation (5.12) is a
very weak condition, since any process 𝑋𝑡 = 𝑔(𝐵𝑡) where 𝑔 is continuous will satisfy
it, because a continuous function is bounded on an interval. For example the process
𝑋𝑡 = 𝑒𝐵2𝑡 does not satisfy (5.11), but it satisfies (5.12); see Numerical Project 5.7 and
Exercise 5.7. The construction of the Itô integral for such processes involves stopping
times and will not be pursued here. The Itô integrals in this case are not martingales
but are said to be local martingales; i.e., they are martingales when suitably stopped:

Definition 5.23. A process (𝑌𝑡, 𝑡 ≥ 0) is said to be a local martingale for the filtration
(ℱ𝑡, 𝑡 ≥ 0) if there exists an increasing sequence of stopping times (𝜏𝑛, 𝑛 ≥ 1) for the
same filtration such that 𝜏𝑛 → +∞ as 𝑛 → ∞ almost surely, and the stopped processes
(𝑀𝑡∧𝜏𝑛 , 𝑡 ≥ 0) are martingales for every 𝑛 ≥ 1.

5.4. Itô’s Formula

The Itô integralwas constructed in the last section in a rather abstractway. It is the limit
of a sequence of random variables constructed from Brownian motion. It is good to
remind ourselves that the classical Riemann integral is also very abstract! It is defined
as the limit of the sequence of Riemann sums. It does not always have an explicit form.
For example, the CDF of a Gaussian variable

Φ(𝑥) = ∫
𝑥

−∞

𝑒−
𝑦2
2

√2𝜋
d𝑦

is a well-defined function of 𝑥, but the integral cannot be expressed in terms of the
typical elementary functions of calculus. But in some cases, a Riemann integral can
be written explicitly in terms of such functions. This is the content of the fundamental
theorem of calculus. It is useful to recall the theorem, as Itô’s formula is built upon it.

Let 𝑓 ∶ [0, 𝑇] → ℝ be a function for which the derivative 𝑓′ exists and is a contin-
uous function on [0, 𝑇]. We will say that such a function is in 𝒞1([0, 𝑇]). The funda-
mental theorem of calculus says that we can write

(5.13) 𝑓(𝑡) − 𝑓(0) = ∫
𝑡

0
𝑓′(𝑠) d𝑠, 𝑡 ≤ 𝑇.
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Note that we often write this result in differential form:

(5.14) d𝑓(𝑡) = 𝑓′(𝑡) d𝑡 .
The differential form has no rigorous meaning in itself. It is simply a compact and
convenient notation that encodes (5.13).

The stochastic equivalent of the fundamental theorem of calculus is Itô’s formula
provided below. It relates the Itô integral to an explicit function of Brownian motion.
Note that the function 𝑓 must be in 𝒞2(ℝ); i.e., 𝑓′ and 𝑓″ exist and are continuous on
the whole space ℝ.

Theorem5.24 (Itô’s formula). Let (𝐵𝑡, 𝑡 ≤ 𝑇) be a standardBrownianmotion. Consider
𝑓 ∈ 𝒞2(ℝ). Then, with probability one, we have

(5.15) 𝑓(𝐵𝑡) − 𝑓(𝐵0) = ∫
𝑡

0
𝑓′(𝐵𝑠) d𝐵𝑠 +

1
2 ∫

𝑡

0
𝑓″(𝐵𝑠) d𝑠, 𝑡 ≤ 𝑇.

We will see other variations in Proposition 5.28 and in Chapters 6 and 7. Before
giving the idea of the proof, we make some important observations:

(i) Equation (5.15) is an equality of processes, which is much stronger than equality
in distribution. In other words, if you take a path of the process on the left con-
structed on a given Brownian motion, then this path will be the same as the path
of the process on the right constructed on the same Brownian motion. See Figure
5.3. The reader should verify this in Numerical Project 5.3. The equality holds
in the limit where the mesh of the partition of the interval [0, 𝑇] goes to 0. See
Numerical Project 5.5.

Figure 5.3. Simulation of a path of 𝐵3𝑡 and of a path of 3∫
𝑡
0 𝐵2𝑠 d𝐵𝑠 + 3∫𝑡0 𝐵𝑠 d𝑠 for a

discretization of 0.01. See Numerical Project 5.5.

(ii) Note the similarity with the classical formulation in (5.13) if we replace the Rie-
mann integral by Itô’s integral. We do have the additional integral of 𝑓″(𝐵𝑠). As
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Figure 5.4. A sample of 10 paths of the martingale 𝐵3𝑡 − 3∫𝑡0 𝐵𝑠 d𝑠.

wewill see in the proof, this additional term comes from the quadratic term in the
Taylor approximation and from the quadratic variation of Brownian motion seen
in Theorem 3.8. As in the classical case (5.14), it is very convenient to summarize
the conclusion of Itô’s formula in differential form:

(5.16) d𝑓(𝐵𝑡) = 𝑓′(𝐵𝑡) d𝐵𝑡 +
1
2𝑓

″(𝐵𝑡) d𝑡.

We stress that the differential formhas nomeaning by itself. It is a compact way to
express the two integrals in Itô’s formula and a powerful device for computations.

(iii) An important consequence of Itô’s formula is that it provides a systematic way
to construct martingales as explicit functions of Brownian motion. To make sure
that ∫𝑡

0 𝑓′(𝐵𝑠) d𝐵𝑠, 𝑡 ≤ 𝑇, defines a continuous square-integrable martingale on
[0, 𝑇], we might need to check that (𝑓′(𝐵𝑡), 𝑡 ≤ 𝑇) ∈ ℒ2

𝑐(𝑇). In general the Itô
integral ∫𝑡

0 𝑓′(𝐵𝑠) d𝐵𝑠 makes sense as a local martingale; see Remark 5.22.

Corollary 5.25 (Brownian martingales). Let (𝐵𝑡, 𝑡 ≤ 𝑇) be a standard Brownian
motion. Consider 𝑓 ∈ 𝒞2(ℝ) such that ∫𝑇

0 E[𝑓′(𝐵𝑠)2] d𝑠 < ∞. Then the process

(𝑓(𝐵𝑡) −
1
2 ∫

𝑡

0
𝑓″(𝐵𝑠) d𝑠, 𝑡 ≤ 𝑇)

is a martingale for the Brownian filtration.

Proof. This is straightforward from Itô’s formula

𝑓(𝐵𝑡) −
1
2 ∫

𝑡

0
𝑓″(𝐵𝑠) d𝑠 = 𝑓(𝐵0) +∫

𝑡

0
𝑓′(𝐵𝑠) d𝐵𝑠.

The first term is a constant and the second term is a continuous martingale by
Proposition 5.7. □
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The integral we subtract from 𝑓(𝐵𝑡) is called the compensator. A simple case
is given by the function 𝑓(𝑥) = 𝑥2. For this function, the corollary gives that the
process 𝐵2𝑡 −𝑡, 𝑡 ≥ 0, is a martingale, as we already observed in Example 4.28. The
compensator was then simply 𝑡. In general, the compensator might be random.

(iv) The compensator is the Riemann integral ∫𝑡
0 𝑓″(𝐵𝑠) d𝑠. It might seem to be a

strange object at first. The function 𝑓″(𝐵𝑠) is random (it depends on 𝜔), so the
integral is a random variable. There is no problem in integrating the random
function 𝑓″(𝐵𝑠) since by assumption it is a continuous function of 𝑠, since 𝑓″ and
𝐵𝑠(𝜔) are continuous. In fact, the paths of ∫

𝑡
0 𝑓″(𝐵𝑠) d𝑠 are much smoother than

the ones of Brownian motion in general: The paths are differentiable everywhere
(the derivative is 𝑓″(𝐵𝑡)), and in particular, the paths have bounded variations
(see Example 3.6). See Figure 5.5 for a sample of paths of the process ∫𝑡

0 𝐵𝑠 d𝑠.
To sum it up, Itô’s formula says that 𝑓(𝐵𝑡) can be expressed as a sum of two

processes: one with bounded variation (the Riemann integral) and a (local) mar-
tingale with finite quadratic variation (the Itô integral). In the next chapter, we
will study Itô processes in more generality, which are processes that can be ex-
pressed as the sum of a Riemann integral and an Itô integral.

Example 5.26 (𝑓(𝑥) = 𝑥3).
In this case, Itô’s formula yields

(5.17) 𝐵3𝑡 = ∫
𝑡

0
3𝐵2𝑠 d𝐵𝑠 +

1
2 ∫

𝑡

0
6𝐵𝑠 d𝑠 = 3∫

𝑡

0
𝐵2𝑠 d𝐵𝑠 + 3∫

𝑡

0
𝐵𝑠 d𝑠.

Figure 5.3 shows a sample of a single path of each of these two processes constructed
from the same Brownian path. Note that they are almost equal (the discrepancy is only
due to the discretization in the numerics)! From the above equation, we conclude that
the process 𝐵3𝑡 −3∫

𝑡
0 𝐵𝑠 d𝑠 is a martingale. See Figure 5.4 for a sample of its paths. The

process (∫𝑡
0 𝐵𝑠 d𝑠, 𝑡 ≥ 0) is not complicated. It is a Gaussian process since the integral

is the limit (almost sure and in 𝐿2) of the Riemann sums
𝑛−1
∑
𝑗=0

𝐵𝑡𝑗 (𝑡𝑗+1 − 𝑡𝑗),

and each term of the sum is a Gaussian variable. (Why?) Clearly, the mean of ∫𝑡
0 𝐵𝑠 d𝑠

is 0. The covariance of the process can be calculated directly by interchanging the
integrals and the expectation:

E [(∫
𝑡

0
𝐵𝑠 d𝑠) (∫

𝑡′

0
𝐵𝑠 d𝑠)] = ∫

𝑡

0
∫

𝑡′

0
E[𝐵𝑠𝐵𝑠′] d𝑠 d𝑠′ = ∫

𝑡

0
∫

𝑡′

0
(𝑠 ∧ 𝑠′) d𝑠 d𝑠′.

The integral equals 𝑡′𝑡2
2 − 𝑡3

6 , for 𝑡 ≤ 𝑡′. In particular, the variance at time 𝑡 is 𝑡3
3 . The

paths of this process are very smooth as can be observed in Figure 5.5. In fact, the paths
are differentiable and the derivative at time 𝑡 is 𝐵𝑡.
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Figure 5.5. A sample of 10 paths of 3∫𝑡0 𝐵𝑠 d𝑠.

Example 5.27 (𝑓(𝑥) = cos 𝑥).
In this case, Itô’s formula gives

cos 𝐵𝑡 − cos 0 = ∫
𝑡

0
(− sin 𝐵𝑠) d𝐵𝑠 +

1
2 ∫

𝑡

0
(− cos 𝐵𝑠) d𝑠.

In particular, the process

𝑀𝑡 = cos 𝐵𝑡 +
1
2 ∫

𝑡

0
cos 𝐵𝑠 d𝑠 = 1 −∫

𝑡

0
sin 𝐵𝑠 d𝐵𝑠, 𝑡 ≥ 0,

is a continuous martingale starting at 𝑀0 = 1. It is easy to check that the process
(sin 𝐵𝑡, 𝑡 ≤ 𝑇) is in ℒ2

𝑐(𝑇) for any 𝑇. A sample of the paths of (𝑀𝑡, 𝑡 ≤ 1) is depicted in
Figure 5.6.

Where does Itô’s formula come from? It is the same idea as for the proof of the
fundamental theoremof calculus. Let’s startwith the latter. Suppose𝑓 ∈ 𝒞1(ℝ); that is,
𝑓 is differentiable with a continuous derivative. Then 𝑓 admits a Taylor approximation
around 𝑠 of the form
(5.18) 𝑓(𝑡) − 𝑓(𝑠) = 𝑓′(𝑠)(𝑡 − 𝑠) + ℰ(𝑠, 𝑡).
(This is in the spirit of themean-value theorem.) Here, ℰ(𝑠, 𝑡) is an error term that goes
to 0 faster than (𝑡 − 𝑠) as 𝑠 → 𝑡. Now, for a partition (𝑡𝑗 , 𝑗 ≤ 𝑛) of [0, 𝑡], say 𝑡𝑗 = 𝑗

𝑛 𝑡, we
can trivially write for any 𝑛

𝑓(𝑡) − 𝑓(0) =
𝑛
∑
𝑗=0

𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗).

Now, we can use equation (5.18) at 𝑠 = 𝑡𝑗 :
𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗) = 𝑓′(𝑡𝑗)(𝑡𝑗+1 − 𝑡𝑗) + ℰ(𝑡𝑗 , 𝑡𝑗+1).
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Figure 5.6. A sample of 5 paths of the martingale (cos 𝐵𝑡 − 1 + 1
2 ∫

𝑡
0 cos 𝐵𝑠 d𝑠, 𝑡 ≤ 1).

Therefore, we have by taking the limit of large 𝑛

𝑓(𝑡) − 𝑓(0) = lim
𝑛→∞

𝑛
∑
𝑗=0

𝑓′(𝑡𝑗)(𝑡𝑗+1 − 𝑡𝑗) +
𝑛
∑
𝑗=0

ℰ(𝑡𝑗 , 𝑡𝑗+1) = ∫
𝑡

0
𝑓′(𝑠) d𝑠 + 0.

The idea for Itô’s formula is similar to the above with two big differences: First, we will
consider a function 𝑓 of space and not time. Second, we shall need a Taylor approxi-
mation to the second order around a point 𝑥: If 𝑓 ∈ 𝒞2(ℝ), we have

(5.19) 𝑓(𝑦) − 𝑓(𝑥) = 𝑓′(𝑥)(𝑦 − 𝑥) + 1
2𝑓

″(𝑥)(𝑥 − 𝑦)2 + ℰ(𝑥, 𝑦),

where ℰ(𝑥, 𝑦) is an error term that now goes to 0 faster than (𝑥 − 𝑦)2 as 𝑦 → 𝑥.

Proof of Theorem 5.24. Recall that by assumption 𝑓 ∈ 𝒞2(ℝ). We will prove the
particular case where 𝑓 is 0 outside a bounded interval. This implies that both deriva-
tives are bounded, since they are continuous functions on a bounded interval. We first
prove the formula for a fixed 𝑡. Then we generalize to processes on [0, 𝑇]. Consider a
partition (𝑡𝑗 , 𝑗 ≤ 𝑛) of [0, 𝑡]. From equation (5.19), we get

(5.20)

𝑓(𝐵𝑡) − 𝑓(𝐵0)

=
𝑛−1
∑
𝑗=0

𝑓′(𝐵𝑡𝑗 )(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 ) +
𝑛−1
∑
𝑗=0

1
2𝑓

″(𝐵𝑡𝑗 )(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )2 +
𝑛
∑
𝑗=0

ℰ(𝐵𝑡𝑗 , 𝐵𝑡𝑗+1).

As 𝑛 → ∞, the first term converges (as a random variable in 𝐿2) to the Itô integral. This
is how we proved Proposition 5.7 using simple processes. We claim the second term
converges to the Riemann integral. To see this, consider the corresponding Riemann
sum

𝑛−1
∑
𝑗=0

𝑓″(𝐵𝑡𝑗 )(𝑡𝑗+1 − 𝑡𝑗).
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This term converges almost surely to the Riemann integral∫𝑡
0 𝑓″(𝐵𝑠) d𝑠 since 𝑓″ is con-

tinuous. It also converges in 𝐿2 by Theorem 4.40, since 𝑓″ is bounded by assumption.
Therefore, to show the second term converges to the same limit, it suffices to show that
the 𝐿2-distance between the second term and the Riemann sum goes to 0; i.e.,

(5.21) lim
𝑛→∞

E[(
𝑛−1
∑
𝑗=0

𝑓″(𝐵𝑡𝑗 ) {(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )2 − (𝑡𝑗+1 − 𝑡𝑗)})
2

] = 0.

This is in the same spirit as the proof of the quadratic variation of Brownian motion in
Theorem 3.8. To lighten notation, define the variables 𝑋𝑗 = (𝐵𝑡𝑗+1 −𝐵𝑡𝑗 )2 − (𝑡𝑗+1 − 𝑡𝑗),
𝑗 ≤ 𝑛 − 1. We expand the square in (5.21) to get

𝑛−1
∑

𝑗,𝑘=0
E [𝑓″(𝐵𝑡𝑗 )𝑓″(𝐵𝑡𝑘)𝑋𝑗𝑋𝑘] .

For 𝑗 < 𝑘, we condition on ℱ𝑡𝑘 to get that the summand is 0 by Proposition 4.19 and
since E[(𝐵𝑡𝑘+1 − 𝐵𝑡𝑘)2] = 𝑡𝑘+1 − 𝑡𝑘. For 𝑗 = 𝑘, the sum is

𝑛−1
∑
𝑗=0

E [(𝑓″(𝐵𝑡𝑗 ))2{(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )2 − (𝑡𝑗+1 − 𝑡𝑗)}2] .

By expanding the square again and conditioning on ℱ𝑡𝑗 , we have by independence of
the increments

∑
𝑗
E [(𝑓″(𝐵𝑡𝑗 ))2] {3(𝑡𝑗+1 − 𝑡𝑗)2 + (𝑡𝑗+1 − 𝑡𝑗)2 − 2(𝑡𝑗+1 − 𝑡𝑗)2}2

= 2∑
𝑗
E [(𝑓″(𝐵𝑡𝑗 ))2] (𝑡𝑗+1 − 𝑡𝑗)2.

Since 𝑓″ is bounded, this term goes to 0 exactly as in the proof of Theorem 3.8. It
remains to handle the error term (5.20). This follows the same idea as for the second
term and we omit it.

To extend the formula to the whole interval [0, 𝑇], notice that the processes of both
sides of equation (5.15) have continuous paths. Since they are equal (with probability
one) at any fixed time by the above argument, they must be equal for any countable set
of times with probability one; see Exercise 1.5. It suffices to consider the processes on
the rational times in [0, 𝑇], which are dense in [0, 𝑇]. Since the paths are continuous
and they are equal on these times, they must be equal at all times on [0, 𝑇]. □

Recall from equation (5.16) that Itô’s formula can be conveniently written in the
differential form:

d𝑓(𝐵𝑡) = 𝑓′(𝐵𝑡) d𝐵𝑡 +
1
2𝑓

″(𝐵𝑡) d𝑡.

This notation has no meaning by itself. It is a compact way to write equation (5.15).
This allows us to derive an easy and useful computational formula: If we blindly ap-
ply the classical differential to 𝑓 to second order in the Taylor expansion, we formally
obtain

(5.22) d𝑓(𝐵𝑡) = 𝑓′(𝐵𝑡) d𝐵𝑡 +
1
2𝑓

″(𝐵𝑡)(d𝐵𝑡)2.
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Therefore, Itô’s formula is equivalent to applying the rule d𝑡 = d𝐵𝑡 ⋅ d𝐵𝑡. In fact, it
is counterproductive to learn Itô’s formula by heart. It is much better to simply com-
pute the differential up to the second order and apply the following simple rules of Itô
calculus:

(5.23)
⋅ d𝑡 d𝐵𝑡
d𝑡 0 0
d𝐵𝑡 0 d𝑡

.

It is not hard to extend Itô’s formula to a function 𝑓(𝑡, 𝑥) of both time and space:

(5.24)
𝑓 ∶ [0, 𝑇] × ℝ → ℝ

(𝑡, 𝑥) ↦ 𝑓(𝑡, 𝑥).
Such functions have partial derivatives that are themselves functions of time and space.
We will use the following notation for the partial derivatives:

(5.25) 𝜕0𝑓(𝑡, 𝑥) =
𝜕𝑓
𝜕𝑡 (𝑡, 𝑥), 𝜕1𝑓(𝑡, 𝑥) =

𝜕𝑓
𝜕𝑥 (𝑡, 𝑥), 𝜕21𝑓(𝑡, 𝑥) =

𝜕2𝑓
𝜕𝑥2 (𝑡, 𝑥).

The reason for this notation is to avoid confusion between the variable that is being
differentiated and the value of time and space at which the derivative is being evaluated.
It might appear strange at first, but it will avoid confusion down the road (especially
when dealing with several space variables in Chapter 6). To apply Itô’s formula, we
will need that the partial derivative with respect to time 𝜕0𝑓 exists and is continuous
as a function on [0, 𝑇]×ℝ and that the first and second partial derivatives in space 𝜕1𝑓
and 𝜕21𝑓 exist and are continuous. We say that such a function 𝑓 is in 𝒞1,2([0, 𝑇] × ℝ).
Proposition 5.28 (Itô’s formula). Let (𝐵𝑡, 𝑡 ≤ 𝑇) be a standard Brownian motion on
[0, 𝑇]. Consider a function 𝑓 of time and space with 𝑓 ∈ 𝒞1,2([0, 𝑇] × ℝ). Then, with
probability one, we have for every 𝑡 ∈ [0, 𝑇],

𝑓(𝑡, 𝐵𝑡) − 𝑓(0, 𝐵0) = ∫
𝑡

0
𝜕1𝑓(𝑠, 𝐵𝑠) d𝐵𝑠 +∫

𝑡

0
{𝜕0𝑓(𝑠, 𝐵𝑠) +

1
2𝜕

2
1𝑓(𝑠, 𝐵𝑠)} d𝑠.

Or in differential form we have

d𝑓(𝑡, 𝐵𝑡) = 𝜕1𝑓(𝑡, 𝐵𝑡) d𝐵𝑡 + (𝜕0𝑓(𝑡, 𝐵𝑡) +
1
2𝜕

2
1𝑓(𝑡, 𝐵𝑡)) d𝑡.

Note that the notation 𝜕0𝑓(𝑡, 𝐵𝑡) stands for the function 𝜕0𝑓 evaluated at the point
(𝑡, 𝐵𝑡), and the notation 𝜕21𝑓(𝑡, 𝐵𝑡) stands for the function 𝜕21𝑓 evaluated at the point
(𝑡, 𝐵𝑡).

Proof. The idea of the proof is similar as for a function of space only, as it depends on a
Taylor approximation and on the quadratic variation. Here, however, we need to apply
Taylor approximation to second order in space and to first order in time. We then get
something of the following form:
𝑓(𝑡, 𝐵𝑡) − 𝑓(0, 𝐵0)

=
𝑛−1
∑
𝑗=0

𝜕1𝑓(𝑡𝑗 , 𝐵𝑡𝑗 )(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 ) + 𝜕0𝑓(𝑡𝑗 , 𝐵𝑡𝑗 )(𝑡𝑗+1 − 𝑡𝑗) +
1
2𝜕

2
1𝑓(𝑡𝑗 , 𝐵𝑡𝑗 )(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )2

+ 𝜕1𝜕0𝑓(𝑡𝑗 , 𝐵𝑡𝑗 )(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )(𝑡𝑗+1 − 𝑡𝑗) + ℰ.
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The first line becomes the integrals in Itô’s formula. We see a new animal in the second
line: the mixed derivative 𝜕0𝜕1𝑓 in time and space. This term is related to the limit in
the cross variation between 𝐵𝑡 and 𝑡 given by

lim
𝑛→∞

𝑛−1
∑
𝑗=0

(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 )(𝑡𝑗+1 − 𝑡𝑗).

It can be shown that it goes to 0 in a suitable sense; see Exercise 5.15. This is the
rigorous reason for the rule d𝑡 ⋅ d𝐵𝑡 = 0. Once this is known, the rest of the proof
is done similarly to the one for a function of space only. We do notice though that
the formula is easy to derive once we accept the rules of Itô calculus. By writing the
differential to second order in space and to first order in time and applying the rules of
Itô calculus, we get

d𝑓(𝑡, 𝐵𝑡) = 𝜕1𝑓(𝑡, 𝐵𝑡) d𝐵𝑡 + (𝜕0𝑓(𝑡, 𝐵𝑡) +
1
2𝜕

2
1𝑓(𝑡, 𝐵𝑡)) d𝑡. □

As in the one variable case, we get a corollary to construct martingales:

Corollary 5.29 (Brownian martingales). Let (𝐵𝑡, 𝑡 ≤ 𝑇) be a standard Brownian mo-
tion. Consider 𝑓 ∈ 𝒞1,2([0, 𝑇] × ℝ) such that the process (𝜕1𝑓(𝑡, 𝐵𝑡), 𝑡 ≤ 𝑇) ∈ ℒ2

𝑐(𝑇).
Then the process

(𝑓(𝑡, 𝐵𝑡) −∫
𝑡

0
{𝜕0𝑓(𝑠, 𝐵𝑠) +

1
2𝜕

2
1𝑓(𝑠, 𝐵𝑠)} d𝑠, 𝑡 ≤ 𝑇)

is a martingale for the Brownian filtration. In particular, if 𝑓(𝑡, 𝑥) satisfies the partial
differential equation 𝜕0𝑓 = − 1

2𝜕
2
1𝑓, then the process (𝑓(𝑡, 𝐵𝑡), 𝑡 ≤ 𝑇) is itself amartingale.

We now catch a glimpse of a powerful connection between two fields of mathe-
matics: The study of martingales is closely related to the study of differential equations.
We will see this connection in action in the gambler’s ruin problem in Section 5.5. This
is also explored further in Chapter 8.

Example 5.30. Consider the function 𝑓(𝑡, 𝑥) = 𝑡𝑥. In this case, we have 𝜕0𝑓 = 𝑥,
𝜕1𝑓 = 𝑡, and 𝜕21𝑓 = 0. Itô’s formula yields

d(𝑡𝐵𝑡) = 𝑡 d𝐵𝑡 + 𝐵𝑡 d𝑡.

Therefore, the process𝑀𝑡 = 𝑡𝐵𝑡 − ∫𝑡
0 𝐵𝑠 d𝑠 is a martingale for the Brownian filtration.

It is also a Gaussian process by Corollary 5.18. The mean is 0 and the covariance is by
Corollary 5.15

E[𝑀𝑡𝑀𝑡′] = ∫
𝑡∧𝑡′

0
𝑠2 d𝑠 = (𝑡 ∧ 𝑡′)3

3 .

Example 5.31 (Geometric Brownian motion revisited). We know from Example 4.28
that geometric Brownian motion is a martingale for the choice 𝜇 = −1

2 𝜎
2. How does

this translate in terms of Itô integrals? Note that 𝑆𝑡 = 𝑓(𝑡, 𝐵𝑡) for the function of time
and space 𝑓(𝑡, 𝑥) = 𝑒𝜍𝑥+𝜇𝑡 with 𝑆0 = 1. The relevant partial derivatives are 𝜕0𝑓 = 𝜇𝑓,
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𝜕1𝑓 = 𝜎𝑓, and 𝜕21𝑓 = 𝜎2𝑓. Therefore, developing the function 𝑓 to second order in
space and first order in time and using the rules of Itô calculus yield

d𝑆𝑡 = d𝑓(𝑡, 𝐵𝑡) = 𝜕0𝑓(𝑡, 𝐵𝑡) d𝑡 + 𝜕1𝑓(𝑡, 𝐵𝑡) d𝐵𝑡 +
1
2𝜕

2
1𝑓(𝑡, 𝐵𝑡)(d𝐵𝑡)2

= 𝜎𝑓(𝑡, 𝐵𝑡) d𝐵𝑡 + (𝜇 + 1
2𝜎

2) 𝑓(𝑡, 𝐵𝑡) d𝑡.

In the integral notation, this is

𝑆𝑡 = 1 +∫
𝑡

0
𝜎𝑓(𝑠, 𝐵𝑠) d𝐵𝑠 +∫

𝑡

0
(𝜇 + 1

2𝜎
2) 𝑓(𝑠, 𝐵𝑠) d𝑠.

We see that we have a martingale if 𝜇 = −1
2 𝜎

2 as expected. It is not hard to check that
the integrand is in ℒ2

𝑐(𝑇) for any 𝑇 > 0 (see Exercise 5.6).

5.5. Gambler’s Ruin for Brownian Motion with Drift

We solved the gambler’s ruin problem for standard Brownian motion in Example 4.41.
We now deal with the case where a drift is present. Consider the Brownian motion
with drift

𝑋𝑡 = 𝜎𝐵𝑡 + 𝜇𝑡,
where (𝐵𝑡, 𝑡 ≥ 0) is a standard Brownian motion. We assume that 𝜇 > 0. Therefore,
there is a bias upward. This is important!

We consider for 𝑎, 𝑏 > 0 the first passage time of the level 𝑎 or −𝑏
𝜏 = min{𝑡 ≥ 0 ∶ 𝑋𝜏 > 𝑎 or 𝑋𝜏 < −𝑏}.

The problem consists of computing P(𝑋𝜏 = 𝑎). Recall that in the case of no drift, this
probability was 𝑏/(𝑎+𝑏). To solve the problem, we need to find a goodmartingale of𝑋𝑡
that gives us the desired probability using Doob’s optional stopping theorem. It is not

Figure 5.7. A sample of 10 paths of the process 𝑋𝑡 = 𝐵𝑡 + 2𝑡.
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hard to see here that 𝜏 < ∞ (by the same argument as for standard Brownian motion).
We assume the martingale is of the simplest form, that is, a function of 𝑋𝑡:

𝑀𝑡 = 𝑔(𝑋𝑡),
for some function 𝑔 to be found. The function needs to satisfy two properties:

• The process (𝑔(𝑋𝑡), 𝑡 ≥ 0) is a martingale for the Brownian filtration.
• The values at 𝑥 = 𝑎 or 𝑥 = −𝑏 are 𝑔(𝑎) = 1 and 𝑔(−𝑏) = 0.

The first condition implies by Corollary 4.38 that
E[𝑔(𝑋𝜏)] = 𝑔(0).

The second condition is a convenient choice since we have
E[𝑔(𝑋𝜏)] = 𝑔(𝑎)P(𝑋𝜏 = 𝑎) + 𝑔(−𝑏)P(𝑋𝜏 = −𝑏) = P(𝑋𝜏 = 𝑎).

Combining these two, we see that the ruin problem is reduced to finding 𝑔(0) since
𝑔(0) = E[𝑔(𝑋𝜏)] = P(𝑋𝜏 = 𝑎).

What are the conditions on 𝑔 for 𝑔(𝑋𝑡) to be amartingale? Note that 𝑔(𝑋𝑡) = 𝑔(𝜎𝐵𝑡+𝜇𝑡)
is an explicit function of 𝑡 and 𝐵𝑡: 𝑓(𝑡, 𝑥) = 𝑔(𝜎𝑥 + 𝜇𝑡). By the chain rule, we have
𝜕0𝑓(𝑡, 𝑥) = 𝜇𝑔′(𝜎𝑥 + 𝜇𝑡), 𝜕1𝑓(𝑡, 𝑥) = 𝜎𝑔′(𝜎𝑥 + 𝜇𝑡), 𝜕21𝑓(𝑡, 𝑥) = 𝜎2𝑔″(𝜎𝑥 + 𝜇𝑡).

By Corollary 5.29, for 𝑔(𝑋𝑡) to be martingale, we need 𝑔 to satisfy the ordinary differ-
ential equation

𝜇𝑔′ = −𝜎2
2 𝑔″.

This is easy to solve just by integrating, and we get 𝑔(𝑦) = 𝐶𝑒−2𝜇/𝜍2 + 𝐶′ for two con-
stants 𝐶 and 𝐶′. The boundary conditions 𝑔(𝑎) = 1 and 𝑔(−𝑏) = 0 determine those
constants, and we finally have

(5.26) 𝑔(𝑦) = 1 − 𝑒−2𝜇(𝑦+𝑏)/𝜍2

1 − 𝑒−2𝜇(𝑎+𝑏)/𝜍2
.

(Notice that 𝑔 is bounded, and so is the martingale 𝑔(𝑋𝑡). Hence, there is no problem
in applying Corollary 4.38.) In particular, we get the answer to our initial question

(5.27) P(𝑋𝜏 = 𝑎) = 𝑔(0) = 1 − 𝑒−2𝜇𝑏/𝜍2

1 − 𝑒−2𝜇(𝑎+𝑏)/𝜍2
.

This formula is tested numerically in Numerical Project 5.6. It is good to take a step
back and look at what we have achieved:

• If we take the case 𝜇 = 𝜎 = 1 and 𝑎 = 𝑏 = 1, then the probability is

P(𝑋𝜏 = 𝑎) = 1 − 𝑒−2
1 − 𝑒−4 = 0.881 . . . .

Compare this to the case 𝜇 = 0, where this probability is 1/2!
• Notice that we reduced the problem of computing a probability to solving a dif-
ferential equation with boundary conditions. This is amazing!

• Our answer is even more general. Had we started the process at 𝑦 ∈ [−𝑏, 𝑎]
instead of 0, then the probability would have been 𝑔(𝑦) given in equation (5.26).
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• The identity
E[𝑔(𝑋𝜏)] = P(𝑋𝜏 = 𝑎)

is very intuitive. Since 𝑔(𝑎) = 1 and 𝑔(−𝑏) = 0, the paths that hit 𝑎 (success) con-
tribute to the expectationwhereas the ones that hit−𝑏 (failure) do not. Therefore,
the proportion of paths hitting 𝑎, or in other words the probability, is given by av-
eraging the Bernoulli variable 𝑔(𝑋𝜏) over all paths.

• Let’s look at the limiting cases. If we take 𝑏 → ∞, then we get

(5.28) P(𝑋𝜏 = 𝑎) → 1, 𝑏 → ∞,

which makes sense since the drift is upward, and we already know that it is the
case when 𝜇 = 0. On the other hand, if 𝑎 → ∞, then we get

(5.29) P(𝑋𝜏 = −𝑏) → 𝑒
−2𝜇
𝜍2 𝑏.

It is not 1. The formula is telling us that even when 𝑎 → ∞, there are some paths
that will never hit −𝑏, because of the upward drift, no matter how small the drift
is!

5.6. Tanaka’s Formula

What happens to Itô’s formula when 𝑓 is not in 𝒞2? It turns out that in some cases we
can still express 𝑓(𝐵𝑡) as a sum of a martingale and a process with bounded variation.
Themost famous example is when 𝑓(𝐵𝑡) = |𝐵𝑡|. (The absolute value is continuous, but
the first and second derivative do not exist at 0.) Note that in this case, one can see the
paths of the process 𝑓(𝐵𝑡) as the paths of a Brownian motion reflected on the 𝑥-axis.
In this case, one recovers some, but not all, of Itô’s formula as the following theorem
shows.

Theorem 5.32 (Tanaka’s formula). Let (𝐵𝑡, 𝑡 ≥ 0) be a standard Brownian motion.
There exists an increasing adapted process (𝐿𝑡, 𝑡 ≥ 0), called the local time of the Brown-
ian motion at 0, such that

|𝐵𝑡| = ∫
𝑡

0
sgn(𝐵𝑠) d𝐵𝑠 + 𝐿𝑡, 𝑡 ≥ 0,

where sgn(𝑥) = 1 if 𝑥 ≥ 0 and sgn(𝑥) = −1 if 𝑥 < 0.

As for the case of Itô’s formula where 𝑓 ∈ 𝒞2(ℝ), the function of Brownianmotion
is expressed as a sum of an Itô integral and of a process of bounded variation, since 𝐿𝑡
is increasing in 𝑡. (The theorem is not surprising in view of the Doob-Meyer decompo-
sition in Remark 4.31.) The theorem is illustrated in Figure 5.8. It turns out that the
Itô integral has the distribution of Brownian motion; see Section 7.6. The integrand
sgn(𝐵𝑠) is not inℒ2

𝑐(𝑇) but it can be shown that it falls in the first case in Remark 5.22,
so that it is a martingale. It is the investing strategy that equals+1when the Brownian
motion is positive, and−1when it is negative. The local time at 0, denoted by 𝐿𝑡, should



126 5. Itô Calculus

be interpreted as the amount of time on [0, 𝑡] that the Brownian motion has spent at 0.
More precisely, it is equal to

𝐿𝑡 = lim
𝜀→0

1
2𝜀 ∫

𝑡

0
1{𝑠∈[0,𝑡]∶|𝐵𝑠|≤𝜀} d𝑠 in 𝐿2.

The existence of the process 𝐿𝑡 is not obvious and is a consequence of the proof. The
strategy of the proof is to use Itô’s formula on an approximation of the absolute value
that is in 𝒞2. The proof is technical and will be skipped. However, the result is not hard
to simulate; see Numerical Project 5.8.

Figure 5.8. Sample of 3 paths of the processes |𝐵𝑡| − ∫𝑡0 sgn(𝐵𝑠) d𝐵𝑠 (top) and of 𝐿𝑡
with the approximation 𝜀 = 0.001 (bottom) and step size 1/100,000.
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5.7. Numerical Projects and Exercises

5.1. Itô integrals. Following the procedure outlined in Example 5.13, sample 10 paths
of the following three processes on [0, 1] using a 0.001 discretization:
(a) ∫𝑡

0 4𝐵3𝑠 d𝐵𝑠,
(b) ∫𝑡

0 cos 𝐵𝑠 d𝐵𝑠,
(c) 1 − ∫𝑡

0 𝑒𝑠/2 sin 𝐵𝑠 d𝐵𝑠.

5.2. Ornstein-Uhlenbeck process and Brownian bridge revisited. We saw in
Examples 5.19 and 5.20 that the Ornstein-Uhlenbeck process and the Brownian
bridge can be expressed in terms ofWiener integrals; see equations (5.9) and (5.10).
Use these representations to sample 100 paths of each process on [0, 1]with a dis-
cretization of 0.001. Compare this to the samples generated in Numerical Projects
2.3 and 2.5 using Cholesky decomposition.

5.3. Itô’s formula. Sample a single path of the following three processes on [0, 1] us-
ing a 0.01 discretization and compare to the processes in Numerical Project 5.1
constructed on the same Brownian path:
(a) 𝐵4𝑡 − 6∫𝑡

0 𝐵2𝑠 d𝑠,
(b) sin 𝐵𝑡 + 1

2 ∫
𝑡
0 sin 𝐵𝑠 d𝑠,

(c) 𝑒𝑡/2 cos 𝐵𝑡.
The command random.seed is useful to work on the same outcome.

5.4. A path-dependent integrand. Consider the process (𝑋𝑡, 𝑡 ∈ [0, 1]) with 𝑋𝑡 =
∫𝑡
0 𝐵𝑠 d𝐵𝑠. We construct the process 𝐼𝑡 = ∫𝑡

0 𝑋𝑠 d𝐵𝑠 as in Example 5.17. Following
the procedure outlined in Example 5.13, sample 10 paths of this process on [0, 1]
using a 0.01 discretization.

5.5. Convergence of Itô’s formula. Consider the two processes (𝐼𝑡, 𝑡 ∈ [0, 1]) and
(𝐽𝑡, 𝑡 ∈ [0, 1]) in Example 5.26 defined by the two sides of equation (5.17) on the
interval [0, 1]. Sample 100 paths of these two processes for each of the discretiza-
tion 0.1, 0.01, 0.001, 0.0001. EstimateE[|𝐼1−𝐽1|] for each of these time steps. What
do you notice?

5.6. Testing the solution to the gambler’s ruin. Let’s test equation (5.29).
(a) Sample 10,000 paths of Brownian paths with drift 𝜇 = 1 and volatility 𝜎 = 1

on [0, 5] for a step size of 0.01.
(b) Count the proportion of those paths that reach −1 on the time interval and

compare with equation (5.29). Repeat the experiment for a step size of 0.001.
The experiment on [0, 5] gives an approximation of the probability on [0,∞). It turns
out that the probability on a finite interval can be computed exactly. See Exercise 9.5.

5.7. The integral of a process not in ℒ2
𝑐(𝑇).

(a) Sample 100 paths of the process 𝑍𝑡 = exp𝐵2𝑡 , 𝑡 ∈ [0, 10]. This process in not
in ℒ2

𝑐(10) as shown in Exercise 5.7.
(b) Sample and plot 100 paths of the process ∫𝑡

0 𝑍𝑠 d𝐵𝑠, 𝑡 ∈ [0, 10]. What do you
notice?
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5.8. Tanaka’s formula. Generate 10 paths of Brownian motion on [0, 1] using a dis-
cretization of 1/1,000,000.
(a) Plot the paths of the process |𝐵𝑡| − ∫𝑡

0 sgn(𝐵𝑠) d𝐵𝑠 on [0, 1].
(b) Plot the paths of the process 𝐿𝜀𝑡 for 𝜀 = 0.001 where

𝐿𝜀𝑡 =
1
2𝜀 |{𝑠 ∈ [0, 𝑡] ∶ |𝐵𝑡| < 𝜀}| .

In other words, this is the amount of time before time 𝑡 spent by Brownian
motion in the interval [−𝜀, 𝜀] (rescaled by 1/2𝜀).

Exercises

5.1. Stopped martingales are martingales. Let (𝑀𝑛, 𝑛 = 0, 1, 2, . . . ) be a martingale
in discrete time for the filtration (ℱ𝑛, 𝑛 ≥ 0). Let 𝜏 be a stopping time for the same
filtration. Use the martingale transform with the process

𝑋𝑛(𝜔) = {+1 if 𝑛 < 𝜏(𝜔),
0 if 𝑛 ≥ 𝜏(𝜔)

to show that the stopped martingale (𝑀𝜏∧𝑛, 𝑛 ≥ 0) is a martingale.
5.2. Itô integral of a simple process. Consider (𝐼𝑠, 𝑠 ≤ 1) the Itô integrals in Example

5.1.
(a) Argue that (𝐼1/3, 𝐼2/3, 𝐼1) is a Gaussian vector.
(b) Compute the mean and the covariance matrix of (𝐼1/3, 𝐼2/3, 𝐼1).
(c) Compute E[𝐵1𝐼1]. Are the random variables 𝐵1 and 𝐼1 independent? Briefly

justify.
5.3. Convergence in 𝐿2 implies convergence of first and second moments. Let

(𝑋𝑛, 𝑛 ≥ 0) be a sequence of random variables that converge to 𝑋 in 𝐿2(Ω,ℱ,P).
(a) Show that E[𝑋2

𝑛] converges to E[𝑋2].
Hint: Write𝑋 = (𝑋−𝑋𝑛)+𝑋𝑛. The Cauchy-Schwarz inequalitymight be useful.

(b) Show that E[𝑋𝑛] converges to E[𝑋].
Hint: Write |E[𝑋𝑛] − E[𝑋]| and use Jensen’s inequality twice.

5.4. Increments of martingales are uncorrelated.
(a) Let (𝑀𝑡, 𝑡 ≥ 0) be a square-integrable martingale for the filtration (ℱ𝑡, 𝑡 ≥ 0).

Use the properties of conditional expectation to show that for 𝑡1 ≤ 𝑡2 ≤ 𝑡3 ≤ 𝑡4,
we have

E[(𝑀𝑡2 −𝑀𝑡1)(𝑀𝑡4 −𝑀𝑡3)] = 0.
(b) Let (𝐵𝑡, 𝑡 ≥ 0) be a standard Brownian motion, and let (𝑋𝑡, 𝑡 ≤ 𝑇) be a pro-

cess in ℒ2
𝑐(𝑇). Use part (a) to show that the covariance between integrals at

different times 𝑡 < 𝑡′ is

E [(∫
𝑡

0
𝑋𝑠 d𝐵𝑠) (∫

𝑡′

0
𝑋𝑠 d𝐵𝑠)] = ∫

𝑡

0
E[𝑋2

𝑠 ] d𝑠.
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This motivates the natural notation

∫
𝑡′

𝑡
𝑋𝑠 d𝐵𝑠 = ∫

𝑡′

0
𝑋𝑠 d𝐵𝑠 −∫

𝑡

0
𝑋𝑠 d𝐵𝑠.

5.5. Mean and variance of martingale transforms. Let (𝑀𝑡, 𝑡 ≤ 𝑇) be a square-
integrable martingale for a filtration (ℱ𝑡, 𝑡 ≤ 𝑇), and let 𝑋 be a simple process in
𝒮(𝑇). Compute the mean and the variance of the martingale transform of 𝑋 with
respect to𝑀 on [0, 𝑇].

5.6. GeometricBrownianmotion is inℒ2
𝑐. Let𝑀𝑡 = exp(𝜎𝐵𝑡−𝜎2𝑡/2) be a geometric

Brownian motion. Verify that the process (𝑀𝑡, 𝑡 ≤ 𝑇) is in ℒ2
𝑐(𝑇) for any 𝑇 > 0.

5.7. A process that is not in ℒ2
𝑐(𝑇). Consider the process (𝑒𝐵

2
𝑡 , 𝑡 ≤ 𝑇). Show that it is

not in ℒ2
𝑐(𝑇) for 𝑇 > 1/4.

5.8. Practice on Itô integrals. Consider the two processes

𝑋𝑡 = ∫
𝑡

0
(1 − 𝑠) d𝐵𝑠, 𝑌𝑡 = ∫

𝑡

0
(1 + 𝑠) d𝐵𝑠.

(a) Find the mean and the covariance of the process (𝑋𝑡, 𝑡 ≥ 0). What is its distri-
bution?

(b) Find the mean and the covariance of the process (𝑌𝑡, 𝑡 ≥ 0). What is its distri-
bution?

(c) For which time 𝑡, if any, do we have that 𝑋𝑡 and 𝑌𝑡 are uncorrelated? Are 𝑋𝑡
and 𝑌𝑡 independent at these times?

5.9. Practice on Itô integrals. Consider the process (𝑋𝑡, 𝑡 ≥ 0) given by

𝑋𝑡 = ∫
𝑡

0
sin 𝑠 d𝐵𝑠.

(a) Argue briefly that this process is Gaussian. Find the mean and the covariance
matrix.

(b) Write the covariancematrix for (𝑋𝜋/2, 𝑋𝜋) (i.e., the process at time 𝑡 = 𝜋/2 and
𝑡 = 𝜋). Write down a double integral for the probability P(𝑋𝜋/2 > 1, 𝑋𝜋 > 1).

(c) On the same Brownian motion, consider the process 𝑌𝑡 = ∫𝑡
0 cos 𝑠 d𝐵𝑠. Find

for which time 𝑡 the variables 𝑋𝑡 and 𝑌𝑡 are independent.
5.10. Not everything is a martingale.

(a) Use the representation of the Ornstein-Uhlenbeck process in Example 5.19 to
show that it is not a martingale for the Brownian filtration.

(b) Use the representation of the Brownian bridge in Example 5.20 to show that
it is not a martingale for the Brownian filtration.

(c) Show that the process (∫𝑡
0 𝐵𝑠 d𝑠, 𝑡 ≥ 0) is not a martingale for the Brownian

flltration.
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5.11. Practice on Itô integrals. Let (𝐵𝑡, 𝑡 ≥ 0) be a Brownian motion defined on
(Ω,ℱ,P). We define for 𝑡 ≥ 0 the process

𝑋𝑡 = ∫
𝑡

0
sgn(𝐵𝑠) d𝐵𝑠,

where sgn(𝑥) = −1 if 𝑥 < 0 and sgn(𝑥) = +1 if 𝑥 ≥ 0.
The integral is well-defined even though 𝑠 ↦ sgn(𝐵𝑠) is not continuous.
(a) Compute the mean and the covariance of the process (𝑋𝑡, 𝑡 ≥ 0).
(b) Show that 𝑋𝑡 and 𝐵𝑡 are uncorrelated for all 𝑡 ≥ 0.
(c) Show that 𝑋𝑡 and 𝐵𝑡 are not independent. (Use 𝐵2𝑡 = 2∫𝑡

0 𝐵𝑠 d𝐵𝑠 + 𝑡.)
It turns out that (𝑋𝑡, 𝑡 ≥ 0) is a standard Brownian motion. See Theorem 7.26.

5.12. Integration by parts for some Itô integrals. Let 𝑔 ∈ 𝒞2(ℝ) and (𝐵𝑡, 𝑡 ≥ 0), a
standard Brownian motion.
(a) Use Itô’s formula to prove that for any 𝑡 ≥ 0

∫
𝑡

0
𝑔(𝑠) d𝐵𝑠 = 𝑔(𝑡)𝐵𝑡 −∫

𝑡

0
𝐵𝑠𝑔′(𝑠) d𝑠.

(b) Use the above to show that the process given by

𝑋𝑡 = 𝑡2𝐵𝑡 − 2∫
𝑡

0
𝑠𝐵𝑠 d𝑠

is Gaussian. Find its mean and its covariance.
5.13. Some practice with Itô’s formula. Let (𝐵𝑡, 𝑡 ≥ 0) be a standard Brownian mo-

tion. For each of the processes (𝑋𝑡, 𝑡 ≤ 𝑇) below:
• Determine if they are martingales for the Brownian filtration. If not, find a
compensator for it.

• Find the mean, the variance, and the covariance.
• Is the process Gaussian? Argue briefly.

(a) 𝑋𝑡 = ∫𝑡
0 cos 𝑠 d𝐵𝑠.

(b) 𝑋𝑡 = 𝐵4𝑡 .
(c) 𝑋𝑡 = 𝑒𝑡/2 cos 𝐵𝑡.

Hint: If 𝑍 is standard Gaussian, then E[sin2(𝜎𝑍)] = 1−𝑒−2𝜍2

2 .
(d) 𝑍𝑡 = (𝐵𝑡 + 𝑡) exp(−𝐵𝑡 − 𝑡

2 ).
5.14. Gaussian moments using Itô. Let (𝐵𝑡, 𝑡 ∈ [0, 1]) be a Brownian motion. Use

Itô’s formula to show that for 𝑘 ∈ ℕ

E[𝐵𝑘𝑡 ] =
1
2𝑘(𝑘 − 1)∫

𝑡

0
E[𝐵𝑘−2𝑠 ] d𝑠.

Conclude from this that E[𝐵4𝑡 ] = 3𝑡2 and E[𝐵6𝑡 ] = 15𝑡3.
5.15. Cross-variation of 𝑡 and 𝐵𝑡. Let (𝑡𝑗 , 𝑗 ≤ 𝑛) be a sequence of partitions of [0, 𝑡]

such thatmax𝑗 |𝑡𝑗+1 − 𝑡𝑗| → 0 as 𝑛 → ∞. Prove that

lim
𝑛→∞

𝑛−1
∑
𝑗=0

(𝑡𝑗+1 − 𝑡𝑗)(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 ) = 0 in 𝐿2.
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This justifies the rule d𝑡 ⋅ d𝐵𝑡 = 0. Can you also justify the rule d𝑡 ⋅ d𝑡 = 0?
5.16. Exercise on Itô’s formula. Consider for 𝑡 ≥ 0 the process

𝑋𝑡 = exp(𝑡𝐵𝑡).

(a) Find the mean and the variance of this process.
(b) Use Itô’s formula towrite the process in terms of an Itô integral and aRiemann

integral. Find a compensator 𝐶𝑡 so that 𝑋𝑡 − 𝐶𝑡 is a martingale.
(c) Argue that (𝑒𝑡𝐵𝑡 , 𝑡 ≤ 𝑇) is in ℒ2

𝑐(𝑇) for any 𝑇 > 0, so that ∫𝑡
0 𝑒𝑠𝐵𝑠 d𝐵𝑠 makes

sense.
(d) Show that the covariance between 𝐵𝑡 and ∫

𝑡
0 𝑒𝑠𝐵𝑠 d𝐵𝑠 is

∫
𝑡

0
𝑒𝑠3/2 d𝑠.

5.17. Itô’s formula and optional stopping. Let (𝐵𝑡, 𝑡 ≥ 0) be a standard Brownian
motion. Consider for 𝑎, 𝑏 > 0 the hitting time

𝜏 = min
𝑡≥0

{𝑡 ∶ 𝐵𝑡 ≥ 𝑎 or 𝐵𝑡 ≤ −𝑏} .

The goal of this exercise is to compute E[𝜏𝐵𝜏].
(a) Let 𝑓(𝑡, 𝑥) be a function of the form

𝑓(𝑡, 𝑥) = 𝑡𝑥 + 𝑔(𝑥) .

Find an ODE for the function 𝑓 for which 𝜕0𝑓 = − 1
2𝜕

2
1𝑓. Solve this ODE.

(b) Argue briefly that the process (𝑓(𝑡, 𝐵𝑡), 𝑡 ≥ 0) is a continuous martingale.
(c) Use this to show that

E[𝜏𝐵𝜏] =
𝑎𝑏
3 (𝑎 − 𝑏) .

5.18. A strange martingale. Let (𝐵𝑡, 𝑡 ≥ 0) be a standard Brownian motion. Consider
the process

𝑀𝑡 =
1

√1 − 𝑡
exp( −𝐵2𝑡

2(1 − 𝑡)) , for 0 ≤ 𝑡 < 1.

(a) Show that𝑀𝑡 can be represented by

𝑀𝑡 = 1 +∫
𝑡

0

−𝐵𝑠𝑀𝑠
1 − 𝑠 d𝐵𝑠, for 0 ≤ 𝑡 < 1.

(b) Deduce from the previous question that (𝑀𝑠, 𝑠 ≤ 𝑡) is a martingale for 𝑡 < 1
and for the Brownian filtration.

(c) Show that E[𝑀𝑡] = 1 for all 𝑡 < 1.
(d) Prove that lim𝑡→1− 𝑀𝑡 = 0 almost surely.
(e) Argue (by contradiction) thatE[sup0≤𝑡<1𝑀𝑡] = +∞, where sup stands for the

supremum.
Hint: Theorem 4.40 is useful.
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5.19. ⋆ 𝐿2-limit of Gaussians is Gaussian. Let (𝑋𝑛, 𝑛 ≥ 0) be a sequence of Gaussian
random variables that converge to 𝑋 in 𝐿2(Ω,ℱ,P).
(a) Show that 𝑋 is also Gaussian.

Hint: Use Exercise 1.14. Use also the fact that there is a subsequence that con-
verges almost surely; see Exercise 3.14.

(b) Find its mean and variance in terms of 𝑋 .
5.20. ⋆ 𝐿2 is complete. We prove that the space 𝐿2(Ω,ℱ,P) is complete; that is, if

(𝑋𝑛, 𝑛 ≥ 1) is a Cauchy sequence in 𝐿2 (see Remark 5.14), then there exists 𝑋 ∈
𝐿2(Ω,ℱ,P) such that 𝑋𝑛 → 𝑋 in 𝐿2.
(a) Argue from the definition of Cauchy sequence that we can find a subsequence

(𝑋𝑛𝑘 , 𝑘 ≥ 0) such that ‖𝑋𝑚 − 𝑋𝑛𝑘‖ ≤ 2−𝑘 for all 𝑚 > 𝑛𝑘, where ‖ ⋅ ‖ is the
𝐿2-norm.

(b) Consider the candidate limit∑∞
𝑗=0(𝑋𝑛𝑗+1 −𝑋𝑛𝑗 )with 𝑋𝑛0 = 0. Show that this

sum converges almost surely (so 𝑋 is well-defined) by considering

𝑘
∑
𝑗=0

E[|𝑋𝑛𝑗+1 − 𝑋𝑛𝑗 |] .

(c) Show that ‖𝑋 − 𝑋𝑛𝑘‖ → 0 as 𝑘 → ∞. Conclude that ‖𝑋‖ < ∞. (This shows
the convergence in 𝐿2 along the subsequence!)

(d) Use again the Cauchy definition and the subsequence to show convergence of
the whole sequence; i.e., ‖𝑋𝑛 − 𝑋‖ → 0.

5.21. ⋆ Another application of Doob’s maximal inequality. Let (𝐵𝑡, 𝑡 ∈ [0, 1]) be a
Brownian motion defined on (Ω,ℱ,P). Recall from Example 5.20 that the process

𝑍𝑡 = (1 − 𝑡)∫
𝑡

0

1
1 − 𝑠 d𝐵𝑠, 0 ≤ 𝑡 < 1,

has the distribution of Brownian bridge on [0, 1). In this exercisewe prove lim𝑡→1𝑍𝑡
= 0 almost surely as expected.
(a) Show that lim𝑡→1 𝑍𝑡 = 0 in 𝐿2(Ω,ℱ,P).
(b) Using Doob’s maximal inequality of Exercise 4.19, show that

P( max
𝑡∈[1− 1

2𝑛 ,1−
1

2𝑛+1 ]
|𝑍𝑡| > 𝛿) ≤ 1

𝛿2
1

2𝑛−1 .

(c) Deduce that lim𝑡→1 𝑍𝑡 = 0 almost surely using the Borel-Cantelli lemma.

5.8. Historical and Bibliographical Notes

Stochastic integrals on Brownian motion were studied before Itô, notably by Wiener
[PW87]. It was Kiyosi Itô who extended the definition to include integrands that were
possibly dependent on the Brownian motion in a seminal paper during World War
II [Ito44]. It is important to note that other definitions of stochastic integrals exist
where the integrand is not necessarily adapted. The most famous one is arguably the
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Stratonovich integral [Str64], for which the integrand depends symmetrically on the
past and future. This definition has important applications in physics. The reader is
referred to [Øks03] for an introduction to this integral and the comparison with the
Itô integral. The proof of the continuity of the Itô integral in Theorem 5.12 is done in
[Ste01]. Interestingly, Tanaka did not publish his formula. The first occurrence of the
formula seems to have been in [McK62], giving credit to Tanaka.


