Chapter 1

Introduction

Simply stated, the “Newtonian N-body problem” is the mathematical study
of how heavily bodies move in settings where the dynamics are dictated by
Newton’s law of motion. In practical terms, this area now includes just
about any dynamical system that even remotely resembles Newton’s law.
Beyond the insight the subject provides for understanding astronomical
issues, the Newtonian N-body problem has historically served as a source
of mathematical discovery and new problems. The purpose of this book is
to introduce the reader to a selective portion of issues about the Newtonian
N-body problem while outlining and describing some open problems.!

1.1 Mars

How do the heavenly bodies move? A quick introduction can be provided by
using elementary complex variables to describe some simple orbits. The ul-
timate purpose of this exercise is to show how surprising levels of complexity
can arise even in particularly “nice” and “well behaved” settings. Later in
this chapter, these orbits are used to describe and motivate an open research
problem.

Start with a mystery that most surely bothered generations of school
kids: it most certainly troubled me when I was in the fourth grade. It
involves the story of Galileo being forced to recant his views that the Sun,
rather than Earth, is the center of the solar system. Even a child can
appreciate the fact that if the church felt it was necessary to force Galileo
to recant, then the stakes in the issue must have been high. But, what

1A companion book [90] is being prepared that addresses issues other than those de-
scribed here.
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difference does it make if the Sun revolves about the Earth, or the Earth
about the Sun? After all, whichever occurs, one forms the center of a circular
motion for the other. Why should we care which is which?

BEarth, zp(t) = 22

Mars, zp(t) = 3™

Fig. 1.1. Sun-Earth-Mars coordinates in half-astronomical units

1.1.1 Motion of Mars

To explain the kinds of difficulties that are introduced by an Earth-centered
prejudice, start with the Sun as the center of our solar system. A simplified
story has Mars approximately 3/2 times (actually, about 1.524 times) as far
from the Sun as the Earth, and Mars takes approximately two years (about
687 Earth days) to complete its journey about the Sun.

To keep everything simple, eliminate fractions by replacing the standard
astronomical unit (the distance between the Earth and the Sun) with what I
call “half-astronomical” units. In the new system, which is depicted in Fig.
1.1, the Earth is two units from the Sun, and Mars is three. Using complex
variables, a reasonable description of the motion of the Earth is given by
2p(t) = 2e2™ while that of Mars is zj; = 3e™.

Finding the orbit of Mars relative to the Earth now is simple; it is

2(t) = zpr(t) — zp(t) = 3™ — 2e2™, (1.1)
To describe this orbit, add and subtract the distance to the Sun to obtain

2(t) =3e™ —2e?™ — 242 =24 ™3 — 2™ — 27T

=2+ [3 — 4 cos(nt)]e™, (12)

According to Eq. 1.2, the graph of this equation, as given in Fig. 1.2, depicts
the surprisingly complicated orbit of Mars when viewed relative to that of
the Earth: it is a limacon with a nicely defined loop.?

’In my introductory calculus courses, I often use the trigonometric version of this
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Fig. 1.2. Apparent motion of Mars relative to the Earth

Figure 1.2 makes it clear why the pre-Copernican, Earth-centered preju-
dice made it so difficult to predict the motion of the planets and to develop
a “Newtonian Theory.” For a segment of time on this orbit, everything is
regular. Indeed, starting at the point where the loop intersects itself, Mars
starts on its long journey moving away from the Earth until eventually it
is five half-astronomical units away. (This position corresponds to where
Earth and Mars are on opposite sides of the Sun.) The interesting, coun-
terintuitive action starts when Mars returns to begin its close approach to
the Earth. First, it quickly swoops in a radical plunge toward the Earth.
But rather than colliding, Mars suddenly reverses direction to swoop out—
a motion suggesting that the physics—for some strange reason—suddenly
changes to a law of repulsion rather than attraction. Finally Mars changes
direction once more so that it can repeat its long two-year journey.

Imagine the difficulty in determining the appropriate force law—a law
that resembles some form of attraction for most of the journey only to sud-
denly become a law of repulsion when Mars approaches Earth, and then
reverts back into a law of attraction. Other than resorting to bad jokes
about the annoyance of Earthling’s politics or their behavior, how does one
explain the sudden repulsion of Mars when it starts approaching Earth?
In other words, the change of variables from a FEarth-centered to a Sun-
centered system makes a considerable difference: without it, it is difficult to

example to put life into those mandatory reviews of trigonometry. The trigonometric ver-
sion just uses double angle formulae; e.g., (3 cos(nt), 3sin(nt)) — 2(cos(27t), 2sin(27t)) =
(2,0) + p(cos(nt),sin(wt)) where p = 3 — 4 cos(nt).
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even imagine how Newton’s laws of attraction could have been developed.

Incidentally, it is easy to observe this retrograde behavior of Mars. Of
course, the change in distance between Earth and Mars cannot be detected
by the untrained naked eye, but the change in direction—where Mars ap-
pears to be moving in one direction, stops and moves backwards, and then
stops again to return to its original direction—is quite apparent over the
span of several nights. During those periods when Mars approaches Earth
to start its dipping behavior, even a casual observer can notice how at a
fixed time each night the position of Mars swings to define, over a period of
days, a compressed “Z.”

Fig. 1.3. Apparent orbit of a planet 9 times farther from the Sun

While the apparent motion of Mars offers surprising behavior, the orbits
of the planets farther from the Sun adopt a much more complicated appear-
ance with the several loops as indicated in Fig. 1.3. This figure depicts the
apparent behavior of a planet nine AU away from the Sun: a distance that
is a bit short of Saturn’s actual orbit. Rather than developing a compli-
cated version of the above description, a different elementary approach is
described next.

1.1.2 The “far out” planets

Consider the circular orbit of a far-out planet—Mars, Saturn, or beyond—
given by zp(t) = ae®™ where the value of a > 3 defines the distance from
the Sun in our half-astronomical units: the « values are discussed below.
After expressing this

2(t) = zp(t) — zp(t) = ae®™ — 2%t (1.3)
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orbit of the planet relative to the Earth in the usual complex variable form
of z(t) = r(t)e’?®, a way to determine whether the orbit is moving in a
clockwise or counter-clockwise manner (relative to the Earth) is to examine
the sign of 0'(t).
. . . . 2h o

The sign of §'(?) is the imaginary part of (In zp(t))" = £ = T +i0". But

since ,
/ m‘(aa _ 46(27a)mt)

I _*p _
(ln ZP(t)) - 2p - a— 2e(2—a)mit (14)

it follows from the form of the numerator that the sign of # must change
periodically whenever aa < 4.

The reason this aa < 4 inequality must hold for all of the planets that
are farther from the Sun than the Earth is Kepler’s third law. This law
asserts that

aa? =k (1.5)

where k is a constant. Consequently, aa = (2)1/ 2 is a decreasing function

of a: remember, a is the distance of the planet to the Sun. Thus, for a
planet sufficiently far from the Sun, we must expect its orbit to experience
loops when expressed relative to the Earth. According to Eq. 1.4, the loop
occurs whenever the distance between the Earth and the planet decreases
toward a (local) minimal value. But because those far-out planets take from
decades to a couple of Earth centuries to circle the Sun,? it follows that their
apparent orbits must exhibit many loops.

A natural related question, which is needed for later purposes, is to
determine how far a planet must be beyond the Earth so that its apparent
orbit has a loop. Using the units of the Earth, a = 2, = 2, we have that
k = 32 for Eq. 1.5. Thus, a®a? = 32, or the crucial parameter has the value
ac = [32/ a]%. Because apparent loops occur when aa < 4, it follows that

these loops occur when [32/ a]% < 4, or when a > 2. Restated in words,

the apparent motion of any planet that is farther from the Sun
than the Farth has a loop.

Of course, this assertion holds for all bodies governed by Newton’s equation:
this fact plays a key role in the discussion about the rings of Saturn given
in the last section of this chapter.

Notice how this simple argument just describes a circular uniform motion
relative to another circular uniform orbit. The importance of this comment

3While Venus takes only about 224 Earth days to circle the Sun, Jupiter takes 4332
(about 11.9 Earth years), Saturn 10,760 (about 29.5 years), Uranus 30,685 (about 84
years), Neptune 60,190 (about 165 years), and Pluto 90,800 days (about 249 years).
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derives from the reality that all sorts of circular motions arise in the N-
body problem. Consequently, it is reasonable to anticipate that loops and
complicated orbits of this type are commonplace. To illustrate with another
example, I now turn to the orbit of Mercury.

1.2 Mercury

Mercury, our smallest planet, is only slightly larger than our Moon. Even
though this planet was known to the ancient Egyptians, its proximity to the
Sun has hampered all attempts to explore Mercury with either telescopic
observations or space missions.? Yet, enough is known about Mercury to
allow it to play an important role in the development of celestial mechan-
ics. We know, for instance, that the perihelion of Mercury (i.e., the closest
approach of Mercury to the Sun) deviates 43” of arc per century from that
predicted by Newton’s laws. What a stunning assertion! When you consider
only 43” of arc per century you have to join me in being impressed by the
precision attained by our nineteenth century colleagues!

This deviant behavior has encouraged all sorts of searches including spec-
ulation about the possible existence of another planet called “Vulcan.”?
What a delightful notion: could it be that someone would discover (again!)
a new planet strictly through mathematical computations? Einstein spoiled
the fun by showing that this effect could be explained strictly in terms of
his theory of relativity.

Moving on to the orbit of Mercury, we now know that this planet takes

4Mercury was visited by NASA’s Mariner 10 in March of 1974 where the pictures sent
back from its three approaches reveal a planet with plains of frozen lava and a surface
pockmarked with craters: the planet resembles our Moon. The Mariner photos also
discovered the Caloris Basin; a basin that suggests one of the most cataclysmic events in
our planetary system. Mercury is not an inviting destination.

5Tt is highly doubtful that Vulcan exists, yet its colorful history involved important
individuals. For instance, the French mathematician Urbain Le Verrier ensured a place in
history by using computations about how the path of Uranus deviated from Newtonian
predictions to predict the existence and position of Neptune; he did this before Neptune
was even observed. Using similar reasoning, in 1860 he wondered whether the deviation
of Mercury’s perihelion indicated the existence of another planet or an asteroid belt.
Accelerating the chase for the discovery of the new planet, which Le Verrier christened
“Vulcan,” were the claims of the amateur astronomer Lescarbault that he sighted a spot—
a planet?—mnear the Sun. But Le Verrier showed that even if this sighting were the
speculated Vulcan, its orbit would not explain Mercury’s perihelion problems. Again in
1878 two reputable astronomers, Watson and Swift, suspected they saw “stars” that might
be the elusive Vulcan. With the exception of faint objects observed near the Sun during
a 1970 solar eclipse, if Vulcan really exists, it has successfully remained hidden.
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about 90 Earth days (actually, 87.97) to circle the Sun. If you check the
books in astronomy written prior to 1965, they reflect the earlier belief that
Mercury took about the same length of time—about 90 Earth days—to
rotate on its axis. If this were true, then, as these books asserted, the same
face of Mercury would always face the Sun. This would constitute, of course,
a phenomenon similar to where the same face of the Moon always faces the
Earth.

In 1965 radio astronomers visited this long standing belief. Using the
Arecibo radio telescope based in Puerto Rico, they discovered that the
sideral rotation (the length of time it takes a planet to revolve once as
measured against a fixed background) was about 60 days (actually 59, or
two thirds of the length of a Mercury year). In turn, this change in the
rotational period significantly shortens a Mercury solar day from eternity to
about 176 Earth days, or exactly two Mercury years.

Our interest in these figures is that they identify another astronomi-
cal setting where it is reasonable to consider the orbit of a rotating object
relative to a point on another rotating object. Stated in simple terms, if
someone lived on Mercury, what would the orbit of the Sun look like?

To answer to this question, we need to use a more accurate description
for the orbit of Mercury. A sharper approximation for the orbit of any planet
is obtained by treating it as an ellipse with eccentricity € rather than a circle
where ¢ = 0. For instance, the Earth’s orbit is fairly circular as reflected
by its eccentricity of € = 0.0167, while the more elliptical orbit of Mercury
is manifested by the twelve-fold larger ¢ = 0.2056 value. Indeed, Mercury’s
more extreme elliptical nature is captured by the difference between its
perihelion distance of 0.308 AU and its aphelion (its largest distance from
the Sun) of 0.466 AU.

The position of any planet on its ellipse is given by

rp(0)

a

= T cconld) ~ a(1 + ecos(h)) (1.6)

where a is a positive constant (the length of the semi-major axis of the
ellipse) and 6(t) is the angular position of the planet relative to a reference
line.® This equation has the complex variable representation

zp(0) ~ a(1 + ecos(8))e®. (1.7)

By measuring time in Earth years and using the fact Mercury takes
about 60 days, or one-sixth of an Earth year, to rotate on its axis, the

SFor a quick introduction into the basics of the two-body problem, I recommend the
first chapter of Pollard’s book Celestial Mechanics [60].
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rotating motion of Mercury about its axis can be approximated by e!?7.

Thus the apparent position of the Sun (relative to a position on the surface
of Mercury) can be represented by the product

Zs(t) = —zp(0(t))e™ 127, (1.8)
In turn, the angular position of the Sun, given by the argument of Zg(¢), is
Arg(Zs(t)) = Arg(—zp(0(t))e 12 = 0(t) — 12nt. (1.9)

According to this expression, the Sun’s apparent motion changes di-
rection whenever (Arg(Zg(t)))’ changes sign; that is, whenever 6’ passes
through the value of 127. The reason the Sun’s orbit relative to a position
on Mercury must experience this directional change comes from Kepler’s
second law that captures the angular momentum: this law asserts that

%0 = C (1.10)

where C' is a constant. What we learn from Eq. 1.6 is that if € is sufficiently
large, as it is for Mercury, then it is unreasonable to approximate rp(t)
by a constant. In turn, according to Kepler’s second law (Eq. 1.10), 6'(¢)
cannot be approximated by a constant, so §(¢) cannot be approximated by
uniform motion. In particular, when rp(t) is at perihelion, 6" achieves its
maximum value; when rp(t) is at apihelion, 6" attains its minimum. This
assertion matches intuition gained from those high school physics exercises
of swinging a weight on a string where pulling in the string (i.e., rp is made
shorter) makes the object move faster.
Using Kepler’s second law and Eq. 1.6, we have that

n

70 = T eon(@)?

where the new constant n—a combination of @ and C—is called the “mean
motion.” For Mercury, n = 8, so, by setting

81

0= (1 — ecos(9))2

= 12, (1.11)
it follows immediately that the apparent motion of the Sun moves in different
directions depending on whether (1 — e cos(#))? is greater than, or less than,
%. The first condition requires rp(f) to have a sufficiently large value, the
second requires rp(6) to have a sufficiently small value. In turn, this means
that we should expect a reversal in direction to occur whenever Mercury
moves closer to the Sun.
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What remains is to seen whether the orbit of Mercury ever experiences a
reversal; namely, can # — 127 change sign? The answer follows by examining
what happens for § = 0 —at perihelion, and § = m—at aphelion. A direct
computation shows for Mercury that the 6" values at perihelion and aphelion
are, respectively,

8 8
0 = —— =12.677 12 — < 12n7.
(0.7944)?2 T o0s6e)2 ST

Consequently, the apparent orbit of the Sun relative to Mercury must expe-
rience reversals.

More specifically, whenever Mercury moves toward its closest approach
to the Sun, the Sun’s apparent motion reverses direction. But there are
two Mercury years for each Mercury day,” so this unexpected phenomena
happens “twice a Mercury day.” To add some drama to the description, as
indicated in Fig. 1.4, at some location the Sun will rise in the east, only to
almost immediately set again in the east for a period of time. Then, the Sun
does rise a second time in the east for the long Mercury day until it finally
appears to set in the west. The correct word is “appears” because shortly
after the Sun sets, it rises again in the west for a short time, only to finally
settle in the west for the long Mercury night.®

"Mercury’s day-year ratio has intrigued mathematicians. Tom Kyner [32] probably
was the first to explore this resonance effect by using dynamical systems to show how the
orbit is “trapped.” Kyner introduced his results at a 1969 conference on mathematical
astronomy held in Sao Paulo, Brazil. Amusingly, Kyner presented his paper the day after
the first and (probably) only time he observed Mercury: this was at a social gathering held
at the Sao Paulo Observatory. (Most of us conference participants were mathematicians,
so visiting an observatory was a novelty.) Later C. Robinson and J. Murdock [70] extended
the mathematics. But, if this Mercury rotation problem is interesting, a greater challenge
comes from the planet Venus. Years ago friends at JPL told me that prior to radio
astronomy, astronomers knew nothing about the rotation of Venus. What they discovered
through modern technology was surprising: Venus moves in a retrograde motion. Why
this “backwards” rotation? I expect that an explanation will involve some fascinating
mathematics. In any case, it provides an exercise that I leave to the reader: what is the
apparent behavior of the Sun for someone on Venus?

81 was delighted when in 1991, Chris Fang-Yen, a high-school student supervised by
Stan Wagon in a summer research program at the (now defunct) Geometry Center at the
University of Minnesota, sent me his project entitled “Sunrise and Sunset on Mercury.”
After Wagon read my paper (Saari [88]) where I described this phenomenon, he asked
Fang-Yen to simulate the motion. In doing so, Fang-Yen discovered that there does not
exist a fized position on Mercury where this double-dip behavior can be observed. The
reason is that the Sun is too small and, as distinctly suggested by Fig. 1.4, the dips in
the apparent orbit are too tight relative to the radius of Mercury for a Mercurian to see
over the horizon. Consequently, to observe this phenomenon, our Mercurian would have
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Fig. 1.4. Apparent behavior of the Sun from Mercury

It is clear from Eq. 1.11 that this strange phenomenon is due to the large
eccentricity of Mercury. A direct computation, which just involves finding
the € value where

L - < 12,

1-9

proves that the apparent motion of the Sun would have no direction reversal
had the orbit of Mercury been circular enough so that € < 0.1835.

What we have observed in this and in the last section is how different but
seemingly unremarkable orbits of two bodies about a central body, or even
the orbit of one body about another but with a sufficiently large eccentricity,
converts the actual motion into an apparent one with surprisingly complex
behavior. A more important observation is that this effect is a direct conse-
quence of describing one circular motion relative to another circular motion.
Consequently, we must anticipate this behavior to be reasonably common
in celestial mechanics. The interesting message, which helps identify new
research issues and opportunities, is that the closer the bodies approach
one-another in a Newtonian system, not only does the force between them
increase, but it is possible to have an apparent reversal of direction. Thus, as
indicated in Figs. 1.2, 1.3, and 1.4, expect surprising and recurring changes
in the gravitational forces to arise even in seemingly well-behaved settings.
This observation plays a central role in Sect. 1.5.

to move to another location. But this should be no problem because he would have “all
Mercury day” to do so.
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1.3 Epicycles

With an Earth centered system, how does one recognize and represent the
motion of the planets? This problem was crucial for astronomers of ancient
time. After all, researchers of that epoch needed accurate representations
in order to construct astrology tables. Don’t scoff at these efforts because,
quite frankly, the money paid for these commissioned tables could be viewed
as the NSF research funding of that time.

The accuracy needed for this representation problem was achieved through
the predictive planetary theory developed by Ptolemy. To appreciate the ge-
nius of his work, recall that any theory must adjust to the prejudices of the
day; the restrictions facing Ptolemy were the monumental ones established
by Aristotle. As a quick, maybe overly simplistic review, Aristotle believed

(1) that the Earth was the center of the universe, and

(2) that the circle and uniform circular motion were the most
virtuous figure and motion.

Of course, since virtue is located in the “heavens,”

(3) any description of the motion of the planets must be de-
scribed in terms of uniform circular motion about the Earth.

Fine, but how?

In his Almagest, written around 130 A.D., Ptolemy resolved the problem
of describing the position of the planets with circular, uniformly moving
motion by putting forth his ingenious epicycle approach. The clever idea
is that the point indicated by a designated point on the motion of the first
circle, the deferent, does not represent the location of the planet. Instead,
the point merely locates the center of a second circle that also is spinning
with uniform motion. The location of the planet, then, is given by the
moving point on the second circle—the epicycle. (See Fig. 1.5.)

Today this approach may seem to be hopelessly naive. But remember
that variations of Ptolemy’s theory dominated astronomy for more than
a millennium—this is an incredibly long period of time for any scientific
theory. Even Newton’s theory did not enjoy such a long reign before being
challenged by Einstein’s relativity, and who knows how long it will take until
a serious challenge will force Einstein’s theory to be replaced.

The long success of Ptolemy’s approach can be understood, again, in
terms of elementary complex variables. Let a; be the radius of the jth circle
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where the uniform motion takes c¢; Earth years, j = 1,2, to complete one
revolution. This means that the motion of a planet as described by epicycles
is given by

2p(t) = a1e”™ 4 axe®™ where b; = cz’ j=12. (1.12)
J

This expression should be familiar: by comparing Eq. 1.12 with the Earth
centered expressions Eqgs. 1.1, 1.3, we discover that the epicycles can be
treated as roughly capturing the conversion of a Sun centered representation
of the location of the planets into an Earth centered one. Namely, let the
deferent be the location of the Sun relative to the Earth, and let the epicycle
describe the location of Mars relative to the Sun. (The actual descriptions
were more complicated.) No wonder Ptolemy’s approach proved to be so
successful!

a. Epicycles b. More is better

Fig. 1.5. Epicycle structure

Of course, the demanding needs of astronomers and astrologers to obtain
even sharper representations and to correct for accumulated error required
a sharper, extended theory. One approach is obvious. Instead of treating a
point on the epicycle as the location of a planet, interpret it as the center of
still another rotating circle. As indicated in Fig. 1.5b, even that point could
be treated as the center for still another rotating circle. Imagine: these
attempts to find still better theoretical representations could be the source
of an infinite number of Ph.D. theses. By adding more and more terms, we
obtain the expression

zp(t) = Zajebjmt. (1.13)
J

Again, we all accept that the epicycle approach is hopelessly naive. Af-
ter all, N-body motion is much more complicated where modern theories
are accompanied with terms such as “quasi-periodic” or “almost periodic”
motion. What is quasi-periodic motion? It is represented by a finite sum in
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Eq. 1.13 while almost periodic motion is given by a converging infinite sum.
In other words, once we recognize that epicycles geometrically represent
motion developed in modern theory, we gain added respect for Ptolemy’s
insight.

As a brief aside, Eq. 1.13 describes a Fourier series when the b;’s are
integer multiples of a specified number. But quasi-periodic and almost pe-
riodic motion imposes no constraints on the b; values. This amazing theory
of almost periodic motion was essentially developed by one person, Harald
Bohr [6, 7], the younger brother of Niels Bohr.

Before describing more structure of these motions, first recall the story of
a mathematician asked to give a general audience talk about mathematics
to the parents and teachers of his daughter’s elementary school starting
off with, “Let X be a non-separable Hilbert Space.” The delight of this
self-deprecating joke—the kind many mathematicians enjoy—is that many
of us cannot quickly provide an example of such a space. To do so while
illustrating some of the mathematical structure Bohr developed, define the
inner product for complex valued functions on the real line by

and define a Hilbert space in the normal manner. It is easy to show that
an orthonormal basis for this space is {¢\'} for A € R. As this space—
the natural home for epicycles, quasi- and almost periodic motion—has an
uncountable basis, it is a natural example of a non-separable Hilbert Space.

1.4 Chaotic behavior

To relate the above story about the behavior of Mars, Mercury, and the
other planets to an open research question, allow me a slight digression to
describe, in what is intended to be a reader friendly introduction to certain
basic concepts from chaotic dynamics. Since this book describes Newtonian
mechanics, it is appropriate to describe this behavior in terms of Newton’s
method for finding zeros of a function.” After introducing certain basic
points, I briefly touch on that well-known “Period Three implies Chaos”
paper by T-Y Li and James Yorke [33].

9The material and exposition for this section comes from Saari and Urenko [93] and
from Saari [89].
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Let me stress that I have no intensions to fully analyze Newton’s method
nor to describe the subtle features of chaotic dynamics. The intent is strictly
to help develop intuition by suggesting what features are indicators of the
potential complexity of motion for the Newton’s N-body problem. Hopefully
this brief, intuitive description will entice readers not familiar with this
topic to learn more about these standard tools for the study of the N-body
problem and celestial mechanics. More complete descriptions are readily
available in books such as Alligood, Sauer, and Yorke [2], Devaney [14] and
Robinson [68, 69].

1.4.1 Newton’s method

To review, Newton’s method for finding a zero of a function y = f(z) starts
with an initial guess, x1, and finds an improved estimate. As indicated in
Fig. 1.6, this next choice is found by replacing the specified function with
its straight line approximation passing through (z1, f(z1)). The zero of
this linear equation y = f(z1) + f'(z1)(x — 1), denoted by x4, is the new
estimate. If xo is not a zero, the process continues. The iteration process
has the expression

Tpil = Tp — Flan)’ (1.14)

But rather than using the Eq. 1.14 analytic expression, the geometry of this
process as indicated in Fig. 1.6 suffices for our purposes.

Fig. 1.6. Newton’s Method

As it is easy to establish, and as indicated in Fig. 1.6 where the third
iterate x3 already has nearly located the zero, once an iterate is sufficiently
near a zero, the process converges to this zero. But as this convergence
assertion describes only highly local behavior, it is natural to question what
happens globally. Figure 1.7, for instance, represents a polynomial of degree
five. The goal is to determine the general dynamical behavior of Newton’s
method when applied to this function.

Stated in words, other than converging to a zero, what can go wrong?
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What else can happen with Newton’s method? A little experimentation
suggests that there exist period two points: points where Newton’s method
bounces between them forever. Other points have more serious conse-
quences because they cause Newton’s method to cease to exist. In Fig. 1.7,
four of these points, depicted by bullets, identify the function’s critical
points. Since f'(x;) = 0 at the critical points, the horizontal linear ap-
proximation never meets the x-axis, so the next iterate is not defined.

Fig. 1.7. Fifth order polynomial

C - - - — -

These four critical points divide the line into five intervals; the two ex-
treme regions are unbounded and the three bounded intervals are labelled
A, B, and C'. Tt follows from the properties of polynomials (i.e., the convex-
ity of the curve) that if an iterate ever lands in one of the two unbounded
regions, the subsequent iterates converge to the zero of that region. Conse-
quently, all unusual and nonconvergent properties of Newton’s method must
be limited to the AU B U C' region.

Finding nonconvergent properties

The natural and traditional way to discover “nonconvergent” properties of
Newton’s method is to examine the behavior of the orbit z1,x9,..., Ty, ...
and experiment with the choice of x1. If, for instance, iterate x19; ends up
near x1, then it is reasonable to expect from continuity considerations that a
slight and suitable change in the choice of x1 will force x1 = x191. Stated in
other terms, this means that we should expect the existence of a 100-period
orbit. This is an overly simplified, but not inaccurate, description of how
various properties about Newton’s method were obtained. Have no doubts:
while this approach necessarily uncovers only limited conclusions, it can be
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technically very difficult.

To motivate an alternative way to examine Newton’s method, first re-
member that anything new or interesting requires keeping all iterates within
the region AU BUC. To introduce the approach, after determining an orbit
{x1,x9,23,...,Zn, ...}, replace each iterate with a label identifying the in-
terval in which it belongs. For instance, if z1 € C,z2 € A,z3 € B, ... then
the initial condition z1 and its iterates defines the sequence

gf(z1) ={C,A,B,...}.

This listing of intervals is not random—it is specified by the dynamic process—
so give it status by calling it a word or an itinerary.

Let U2 = {A, B, C}" be the universal set where N is the set of natural
numbers. In words, U? consists of the uncountable number of all possible
sequences that can be constructed with the entries A, B, and C: call it the
universal set. With this notation, a word generated by the initial condition
x1 and function f is given by a mapping!®

g AUBUC — U (1.15)

A way to measure the complexity of Newton’s method applied to function
f is to determine all entries—all words—in the dictionary

Dy ={gs(x) e U* |z € AUBUC}.

After all, common sense dictates that if D; is a large subset of U 3 then
Newton’s method admits rich, complex, chaotic dynamics. But if Dy has
only a limited number of words, then it corresponds to a relatively benign
dynamic. These comments suggest that a way to measure the complexity
of the admissible dynamics is to determine the dictionary Dy. Notice the
changed emphasis. Rather than finding particular properties of Newton’s
method, the ambitious new goal is to completely characterize and catalogue
all long term dynamical properties—it is to identify all itineraries in Dy.

The surprising complexity of Newton’s method

As shown next (from Saari and Urenko [93]), Newton’s method can be highly
complex in terms of this complexity measure.

10Some choices of = will have their iterates in an unbounded region. Either ignore them
as I am doing, or handle them in an obvious manner.
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Theorem 1.1 (Saari and Urenko [93]) For a fifth-order polynomial y =
f(x) with distinct real roots
Dy =U>.

This theorem means that we can choose any sequence consisting of the
letters A, B, and C—even a sequence generated by rolling a die—and we are
assured that there exists an initial iterate in the specified first interval where
the jth Newton method iterate lies in the region specified by the jth entry
of the sequence; j = 1,2,.... As indicated below, this means that periodic
orbits of any length must exist, as well as far more complex behavior.

The theorem asserts that gy, defined in Eq. 1.15, is surjective. The
method to establish the surjectivity of gy uses an “iterated inverse image”
approach that I illustrate with the sequence

w={B,A,C,CA,.. .} (1.16)

The approach is to keep refining the set of initial iterates that accomplish
each portion of the proposed itinerary.

To see how to do this, let N, be the portion of Newton’s map restricted
to interval & where k = A, B,C. By using the inverse mappings IV, L we
have, for instance, that the set of initial iterates starting in the specified first
interval B of the Eq. 1.16 sequence and ending in the closed second specified
interval A is given by Ngl(Z). The key fact is that N maps interval k onto
(—00,00). To see why this is true, notice that as  moves closer to the left
endpoint of the bounded interval k, Ni(x) — oo, while as x moves toward
the right-hand endpoint, Ni(z) — —oo. The conclusion now follows from
the continuity of Ny on interval k = A, B, C.

Because Ny : k — (—o0,00) is surjective for k = A, B, C, it follows that
Ngl(Z) is a closed subset of B. Actually, as indicated in Fig. 1.7 with
the dotted lines, this set is easy to roughly determine: just find the inverse
Newton image of the two endpoints of interval A. That is, in interval B find
tangent lines to the graph of y = f(x) that terminate on the endpoints of
A. The corresponding = values define the endpoints of N L(A).

Set N 1(Z), which identifies all points starting in B that are mapped
to A, is much more than we want. After all, our interest is to land only
on those points in A that are then mapped to C: we are only interested in
the points that are mapped to Ngl(é). This set Ngl(é) is determined in
precisely the same fashion. Thus, refining our set of initial conditions to the
closed set N5'(N;'(C)) identifies all initial iterates in B that are mapped
to A and then to C.
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The approach now is obvious. To find all initial points satisfying the
future specified in the Eq. 1.16 sequence, continue this iterated inverse image
approach to obtain the nested sequence of bounded, closed subsets

BONZ'(A) o Nz'(N(C) D DNgH(N .. N () ) D
(1.17)
By construction, a point in the intersection of all subsets in Eq. 1.17 must
satisfy the specified future. But, by appealing to standard results from a
first course in real analysis about a nested sequence of bounded, closed sets,
we know that such a point must exist. Thus, whatever the envisioned future,
it can occur.

Sensitivity and Cantor sets

This construction provides an intuitive description of the source of sev-
eral of the phrases— “sensitivity to initial conditions,” “Cantor sets,” etc.—
common to this area. To start with the sensitivity phrase, notice how the
expanding nature of Nj ensures that when Ny is examined in the inverse
direction, the inverse image Ngl(Z) must be a small subset of B. Indeed,
by checking Fig. 1.7, it is clear that Ng 1(ﬂ) is a very tiny subinterval.

While set N;*(A4) is quite small, its subset N * (N ;*(C)) is much smaller.
But by construction, this N'(N;*(C)) subset contains all points starting
in B that Newton’s method moves to A and then to C'. After the points
arrive in C'; what happens next? Anything you want: this comment is a di-
rect consequence of the image of N¢ being (—o00, 00). Stated in words, this
surjectivity of No along with the small size of N5'(N;'(C)) means that
even the slightest difference between points in N5' (N !(C)) could result in
radically different futures: the dynamic behavior is “sensitive with respect
to initial conditions.”

Similarly, for each extension of {B, A,C, ...}, each step of the iterated
inverse image approach identifies all points that eventually are mapped onto
the next specified interval. Included among these points are open intervals
that converge to the zero in this interval or in one of the two unbounded
regions. Thus, to construct the set of points of nonconvergence of Newton’s
method, open sets need to be excised at each step—just as in the construc-
tion of the “middle thirds” Cantor set. In other words, expect Cantor sets.

With the exception of the behavior of Newton’s method on the un-
bounded regions, nothing in this description restricts the story to polyno-
mials with five real, distinct roots, or even to polynomials. This means, for
instance, that the same phenomenon will arise in any polynomial with at
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least four real and distinct roots. Just imagine what happens with Newton’s
method applied to y = cos(x) with the infinite number of symbols!

All that is needed for this story is that the map incurs an expansion—
given by the fact that the image of each continuous Ny, includes AUBUC—
and a recurrence effect—captured by those AUBUC points that are mapped
back to AU B U C. Tt is this expansion and recurrence combination—a
common combination for celestial mechanics— that provides the interest
for the N-body problem. Namely, anticipate complex, chaotic behavior in
the N-body problem.

1.4.2 Period three and circle maps

To reinforce the basic notions, they are described again using the “Period
three implies chaos” title of the influential 1975 paper written by Tien-Yien
Li and James Yorke [33]. Beyond the nice mathematics, this paper has
historical interest because it is where the term “chaos” originated. As the
story goes, after the paper was accepted, the editor of the journal asked the
authors to change the title to something mathematically more acceptable
and descriptive—maybe something such as “Period three implies topological
transitivity.” How dull. Fortunately Yorke remained firm in his intent to
retain the original title, and the term “chaos” was coined.

Sarkovskii sequence

Unknown to Li and Yorke, eleven years earlier A. N. Sarkovskii [99] published
a remarkable and stronger result that if a continuous mapping from the line
to the line had a period three orbit, then it also has periodic points of any
period. More precisely, Sarkovskii proved for the following sequence, now
called the Sarkovskii sequence,

3, 5, 7, 9, 11, 13,
2.3, 2.5, 2-7, 2.9, 2-11, 2-13,
22.3, 22.5 22.7, 22.9 22.11, 22.13,

(1.18)
on.3, 2n.5 2n.7, 0.9, 27.11, 27.13,

omn ... 23 22 21 1

that a continuous mapping from the line to itself with a periodic point of
period k also has periodic points for each period that follow k in the above
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listing. Thus, for instance, if such a mapping has a period k = 3 point, then,
because all positive integers follow 3 in this Sarkovskii sequence, initial points
can be found where the same map has a period 1,000,345 point, or a fixed
point, or points of any other possible period.

Period three maps

Suppose f is a continuous map from the line back to the line that has the
period three point

f(z1) =z,  f(z2) =23, f(23) = 71

Choose some ordering of these three points, it does not matter what it is,
and then plot the three (xj, f(z;)) points. The assertion is that any way
these points can be connected to form a graph of a continuous function,
the resulting function admits periodic points of any period along with far
more complex behavior. The choice of the mapping selected for Fig. 1.8
provides an unimaginative but minimal straight-line way to connect these
points where the selected ordering is 1 < x2 < x3.

By definition, this Fig. 1.8 mapping takes z; and xo—the endpoints of
the interval A—respectively to points xo and x3—the endpoints of interval
B. It now follows from continuity that this mapping—however it may be
drawn—must, at the minimum, map interval A onto interval B.

Fig. 1.8. A period three map

Similarly, since the endpoints of B, given by zs and x3, are mapped
respectively to x3 and x1—these are the endpoints of AUB—the period-three
mapping must experience an expansion effect where interval B is reversed
and then stretched to be mapped to AU B. Cataloguing this information as

f(A)> B, f(B)D>AUB,
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it now follows by using the above “iterated inverse image” argument that this
f admits a rich variety of different dynamics. In particular, at a minimum
(“minimum” because by drawing more expansive maps rather than just
connecting the three points, wilder possibilities become possible), we know
that any sequence is a word if it satisfies the conditions where

an A always is followed by a B; a B can be followed by an A or
a B.

For any such sequence, we know there exists an initial iterate satisfying this
future. Again, it is the combination of expansion and recurrence that creates
the complicated dynamics.

Presumably, a period-five point would be given by a sequence that con-
tinually repeats the block ABBBB, or maybe the block ABABB, while a
period seven point is obtained from repeated blocks of, say, ABBABBDB.
More complicated orbits that avoid having any periodicity, but skirt arbi-
trarily close to various period points, are represented by sequences where no
block ever repeats itself. One example of this is

ABABBABBBABBBBABBBBBA...

where each A is followed by even longer sequence of B’s.

Circle maps

The preceding paragraph cautiously states that “Presumably, a period-five
point would be given by a [repeating] sequence.” It does, and a simple way
to prove this assertion can be illustrated by using a mapping from the circle
to the circle.

Actually, we already have analyzed a mapping f : S! — S': a mapping
from the circle to the circle. This is Newton’s method because, by the usual
trick of adding a point at infinity, the infinite line becames a circle where the
infinity point is the North Pole. With this representation, Newton’s method
is continuous as the critical points of a function are mapped to the North
Pole.

Suppose we have a simple continuous mapping f : S' — S! that wraps
around the circle twice: for simplicity, consider f = €2, 0 < 6 < 2x. The
goal is to demonstrate that this mapping has periodic points of all periods.
By slicing the circle open at the North Pole and flattening it into a line
interval [0, 27), the graph becomes as displayed in Fig. 1.9a.
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Subintervals A and B are as designated in Fig. 1.9a, and the figure shows
that
f(A)=AUB, f(B)=AUB.

According to the above argument, it now follows that any sequence consist-
ing of A’s and B’s can be realized by some initial iterate. Presumably, this
means that a sequence repeating the block AB is a period-two point while
the one repeating, say, the block ABB, is a period three point. A simple
argument using the graph shows that, indeed, these are periodic points.

Vs
Y 1 [
e L |
| | |
AN Y [
0 AT R 27 0 ™ 27 0 T 27
a. y=f(0) b. y = f(6) c. y=f2(0)

Fig. 1.9. Periodic points of circle map
First, if a period two point does exist, then f(6;) = 02 and f(62) = 6;.
Combining the terms leads to the arrangement

01 = f(62) = f(f(61)),

which means that a period two point is the fixed point for f2(#) where f2
represents the composition f o f. So, a way to find the period two points is
to create a rough graph for y = f2(6) and find whether it has fixed points.
That is, we wish to identify all points where the graph of y = f2?(#) crosses
the y = = diagonal.

Actually it is easy to create a rough graph of y = f2(). After all,
since f2(A) = f(f(A)) = f(AU B), the graph of f? over A must resemble
the graph of f over f(A) = AU B; that is, the graph of f over [0,27).
The approach, then, is to squeeze the Fig. 1.9a graph of y = f(6) over
the interval A: this is done in the first half of Fig. 1.9b. Similarly, since
f2(B) = f(f(B)) = f(AU B) where the orientation is preserved, the graph
of y = f% over B squeezes the full Fig. 1.9a graph of f over interval B.
Even if the details are not correct, the number of times this rough graph
must cross the y = = diagonal proves that there are two new fixed points
for f2(0); let them be #; and 6, = f(61).

Notice how this construction divides the full interval into four subinter-
vals. These subintervals correspond to terms AA, AB, BA, and BB. So,
the first f? fixed point corresponds to repeating the sequence AB while the



1.4. CHAOTIC BEHAVIOR 23

second one represents a repeating BA. (Notice the tacit use of the fact that
f is continuous and monotonic on each interval; in particular, the f image
does not reverse direction as it does with the f over B in Fig. 1.8.)

To find the period 3 points, or the fixed points of y = f2(0) = f(f(f(0))),
notice that f3(A) = f2(f(A4)) = f?(AU B). In other words, over the
A = [0, 7) region, squeeze in the full graph of Fig. 1.9b. Similarly, since the
mappings are orientation preserving, the graph of y = f3(B) is a squeezing
of the graph of y = f? from Fig. 1.9b over region B. All of this identifies
the Fig. 1.9c graph of y = f? with its six fixed points. Using the above
argument, the eight regions from left to right are

AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB

so the six period three points are identified, respectively, with the repeated
blocks of AAB, ABA, ABB, BAA, BAB, BBA.

The same kind of argument applies to Newton’s method and the period-
three graph of Fig. 1.8. The main difference is that with Fig. 1.8, the image
of the B region is reversed, so the “squeezed graph” must be reversed. Of
course, while Newton’s method reproduces portions of regions, the existence
of periodic points follows from the geometry. Simple arguments; nice con-
clusions!

1.4.3 The forced Van der Pol equations

All of this material is being introduced in order to describe a problem about
the rings of Saturn. But, before doing so, I need to outline a nice argument
developed by Mark Levi [36, 37] to analyze the periodically forced Van der
Pol equation. While a plausibility argument outlining Levi’s arguments
suffices for my purposes, the reader is strongly encouraged to read Levi’s
papers to fully enjoy the details.

The periodically forced Van der Pol equations are given by

ex’ 4 (2% — 1)z’ + ex = bsin(t), (1.19)

where € has a small but fixed value and b is the forcing amplitude: these
equations arise from the study of electrical circuits containing that ancient
device of vacuum tubes. As shown next, solutions for these equations have
a nice and regular “beat.” Of course, each of us, if we wish to stay alive,
consistently experience another kind of “regular, periodic beat” in our chest.
Thus it is interesting but not surprising that Van de Pol used versions of
these equations to model and understand the heart’s behavior. In fact,
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friends of mine from the medical field who study the mathematics of body
organs know the Van der Pol equations strictly from this medical context.
Intuition about the behavior of the Eq. 1.19 system can be obtained
by rewriting these equations in the following form that uses the equality
3

 —x = [(2* — 1) dx. It follows that

1 3

¥="(y— [% — 1)), Yy = —ex+ bsin(t).

€
If b = 0 and € has a sufficiently small value, then the intuitive sense derived
from the second equation is that the miniscule 3" value allows only slow and
minor changes in the y value. On the other hand, the large e ~! multiplier for
2’ significantly accentuates differences in the first equation. This argument
suggests an active x’ change causes the solution to rapidly approach and
remain close to the curve given by z’ = 0; that is, the solution should

remain near the curve

3

Yy=—-—2.

3
The graph of this curve is given in Fig. 1.10a.

| .
| bsin(?)
b R .
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a. y= x—; —x b. Effects of the bsin(t) force

Fig. 1.10. The forced Van der Pol equation

This story argues that the solution should follow reasonably close to the
dashed lines where, when sliding over the two precipices given by the local
maximum and minimum of y = 363—3 — x, the solution rapidly moves to the
other leg in an essentially horizontal manner. (It is essentially horizontal
because y’ has a small value compared to z’.) This argument has been
made precise in different ways.

Now consider the periodic forcing effect of bsin(¢). To develop intuition
for what should happen, Levi considered the effect of the dynamics on line

segments, or strips, of initial conditions. Without the forcing term, this line
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segment moves like a well-behaved water snake sliding along the current
given by the dashed Fig. 1.10a curve. Something different, however, can
occur with the forcing function and a sufficiently large value of b.

At this stage we need a “thought experiment.” Suppose, just suppose,
that when the strip—that snake—starts to slide over the edge and prepares
for a rapid movement to the right as depicted in Fig. 1.10b, the sin(¢) timing
allows a large b value to force portions of the strip downwards. The front
part of our snake, then, is forced to twist into a “V.” However, only a portion
of this strip encounters this force; the sin(¢) term reverses sign so that it no
longer is forcing the solution downwards. This means that the rest of the
strip is not affected when it crosses the threshold. The combined effect is
that our “snake” is chasing its tail to create a compressed and rotated “V”
that now slides along the solid Fig. 1.10 curve.

The consequences should be fairly clear. Instead of a long strip monoton-
ically making its rounds of the curve, this strip has a kink as represented by
the dashed lines to the right of Fig. 1.10. Thus this kinky affect, somewhat
resembling the graph in Fig. 1.8, goes around and around to get further
kinks representing higher iterates. Consequently, with appropriate care, an
analysis similar to that given about Fig. 1.8 applies showing the chaotic
effects allowed by this system.

With this approach of following a strip of initial conditions, Levi reduces
portions of periodically forced systems to maps from the interval to the inter-
val. In other words, this kinky mathematics captures subtle expansion and
recurrence effects of the motion: it identifies potentially complex dynamical
behavior.

What is next?

A message to be taken from the above geometric arguments is that it is
possible for the combination of expansion and recurrence of motion to cause
surprisingly complex dynamical behavior. This claim is of particular interest
to anyone interested in the N-body problem and celestial mechanics. After
all, our solar system enjoys plenty of recurrence with the planets making
their regular trips about the Sun. Expansion? Well, the first two sections
of this chapter showed how expansion and strong forces accompany close
approaches of even well-behaved bodies. Maybe this combination will lead
to interesting problems. As indicated in the next section, this is the case.
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1.5 The rings of Saturn

This chapter started with Galileo’s forced recantation of his views: it ends
with a problem linked to his wondrous 1610 discovery of the rings of Saturn
by use of his telescope.!! A problem, of course, is to understand why the
rings are there. This is a general issue because, as space exploration has
proved, rings have been sighted with other planets. While the rings of other
planets are not as dramatic, the important point is that they are there.
What are the dynamics? One aspect of these dynamical concerns will be
addressed in this section; another will be described at the end of the third
chapter.

We now know that while the ring system extends quite a distance from
Saturn, the thickness is, in fact, quite thin on the astronomical scale: it is
only that of a two story building. The particles forming the rings range
from dust to objects about 15 feet in diameter. But rather than forming
a nice, circular ring, there are portions that resemble the braiding of hair.
The research problem proposed here—a problem that is not necessarily easy
but it does seem to be doable— is to develop a dynamical explanation.

1.5.1 Kinky behavior

To provide background, in April, 1973, Pioneer 11 was launched on a long
journey to visit Jupiter; later it dropped by Saturn to make the first direct
observations of this planet (in 1979). One of the Pioneer 11 discoveries was
a new ring for Saturn, imaginatively called the “F ring.” What made the
discovery unusual, as clarified by pictures from a November 1980 visit by
Voyager 1, is that the F-ring appeared to be involved in some kind of “kinky”
behavior: two of its three strands provide a braided appearance. Whatever
the source, this kinkiness appears to be have been short-lived, rather than a
permanent phenomenon, as judged by the pictures of Voyager 2 taken less
than a year later. At the later time, the F-ring now was more regular with
non-intersecting braided strands.

Adding to the mix are the two shepherds of the F-ring, Prometheus
and Pandora.!? Prometheus, the inner moon, is named after brother of
Atlas and Epimetheus—he is the one who stole fire from Zeus and gave

'More precisely, Galileo knew he found something, but, because of the limited power
of his equipment, he was not completely sure what were the “ear like” appendages that
he observed. Were these moons, or, as Galileo initially thought, two stars circling Saturn?
It took a stronger telescope to recognize that they are rings.

12Both of these moons of Saturn were discovered in 1980 by S. A. Collins and D. Carlson
by carefully examining Voyager 1 photos.
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it to mankind. Pandora, the outer moon, is named after the first woman
who was created by Zeus to punish man for Prometheus’ stealing of fire—
the punishment consisted of the evils released once Pandora opened her
“Pandora’s box.” The astronomical situation, not the mythological one, is
beautifully displayed in one of Voyager’s photos given by Fig. 1.11.

Fig. 1.11. Prometheus, F-ring, and Pandora;
this picture is used thanks to the courtesy of NASA /JPL-Caltech.

The question is whether the motions of these two moons are responsible
for the braiding of the F-ring. This is conjecture is so natural that I must
assume it has been advanced by many people, yet I do not know of anyone
who has provided a mathematical verification of this suggestion. On the
other hand, by pulling together all that has been discussed in this chapter,
it is possible to propose a natural model—and a mathematical approach—to
explain these braids. Let me outline the notions.

1.5.2 A model

The first step is to compute a portion of the obit of Pandora relative to the
position of Prometheus (i.e., put the system in a rotating coordinate system
based on the motion of Prometheus). According to what we determined
earlier (page 5) when discussing the orbit of Mars relative to the Earth,
we know that in this system Pandora’s orbit must exhibit a loop. Even
more: the size of the loop can be slightly enhanced because, although the
eccentricity of Pandora’s orbit, 0.0042, is small, it is about twice that of
Prometheus’s eccentricity of 0.0024. By using the earlier argument about
the apparent location of the Sun as viewed from Mercury, it can be shown
that the loop size of Pandora’s apparent orbit can be slightly expanded.
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Now consider a dust particle circling Saturn between Prometheus and
Pandora. Just because the particle goes about Saturn, its motion has a
sense of “recurrence.” But, should that particle be somewhere near Pandora
when her looping occurs, this proximity creates a stronger pull on the dust—
it generates an expansion effect. In other words, the F-ring dynamics, as
modified by the presence of Prometheus and Pandora, provides a setting
of “expansion and recurrence.” This setting is precisely what is needed to
suggest the complicated dynamics discussed earlier.

The situation is depicted in Fig. 1.12 where the dot on the left locates the
position of Prometheus, the curved line corresponds to a strip of particles
in the F-ring, and the loop represents the close incursion of Pandora. To
understand the effects of the loop, borrow Levi’s approach of using a moving
strip—his snake traveling through the region—and consider what happens
to various parts of its body. To do so, start with Pandora on the upper
part of the loop not yet near its closest approach and where a small F-ring
strip is not quite symmetrically centered on the figure because its head is
on the circle directly between Pandora and Prometheus. For purposes of
argument, assume that both particles in the F-ring and Pandora are moving
in a general counter-clockwise direction. (This assumption just corresponds
to whether we are looking at the ring from the North or South pole of
Saturn.) According to Kepler’s second law (Eq. 1.10), particles in the F-
ring are moving faster than Pandora.

- § mem——s

Fig. 1.12. Prometheus, F-ring, and Pandora in a rotating system

The “thought-experiment” shows that with this orientation, Pandora
pulls harder on the snake’s head than tail. As the snake slithers past, Pan-
dora reaches the bottom of the loop and now exerts an even stronger pull
on the snake’s midsection. With its faster motion, the snake moves on,
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while Pandora is receding in the opposite direction causing the tail to be
influenced more by Prometheus than Pandora.

What we have, then, is that various portions of the snake are pulled
toward Pandora, and even pulled backwards when the relative motion of
Pandora is going backwards. While I know nothing about knitting, this
descriptions of how the strip is being pulled and pushed around sounds
much like the “Knit one, purl two” phrases uttered by my grandmother.

Now, if two braids that normally would be well behaved run into this
looping effect, the differences in speed (again, according to Kepler’s law)
would require the strips on the braids to encounter this difference in gravi-
tational pull at changing times; we must expect that they would cross and
look like a braid. Can this (weak) plausibility argument be made into a more
rigorous argument? I don’t know, but all the elements suggesting something
like this must occur are in place. To continue, notice how this argument
suggests that when Prometheus and Pandora are sufficiently separated—a
setting where we will not expect this kinky looping behavior to occur— then
we must expect the appearance of the F-ring to be more standard: this is
consistent with what Voyager 2 reported.

The challenge is given: the technical difficulty derives from the added
degrees of freedom that are above that of the Levi example. Yet, I expect
that this is the kind of problem that can be solved.





