
Introduction

In the past 25 years or so, there has been considerable interest in the study of
nonlinear partial differential equations, modeling phenomena of wave propagation,
coming from physics and engineering. The areas that gave rise to these equations
are water waves, optics, lasers, ferromagnetism, general relativity, sigma models
and many others. These equations also have connections to geometric flows and to
Kähler and Minkowski geometries. Examples of such equations are the generalized
KdV equations: {

∂tu+ ∂3
xu+ uk∂xu = 0, x ∈ R, t ∈ R

u|t=0 = u0,

the nonlinear Schrödinger equations:{
i∂tu+Δu± |u|pu = 0, x ∈ RN , t ∈ R

u|t=0 = u0,

and the nonlinear wave equation:⎧⎪⎨⎪⎩
∂2
t u−Δu = ±|u|pu, x ∈ RN , t ∈ R

u|t=0 = u0

∂tu|t=0 = u1.

Inspired by the theory of ODE one defines a notion of well-posedness for these
initial value problems (IVP), with data u0 ((u0, u1)) in a given function space B.
Since these equations are time reversible, the intervals of time to be considered
are symmetric around the origin. Well-posedness entails existence, uniqueness of a
solution which describes a continuous curve in the space B, for t ∈ I, the interval of
existence, and continuous dependence of the curve on the initial data. If I is finite
we call this local well-posedness (lwp); if I is the whole line, we call this global
well-posedness (gwp). The first stage of development of the theory concentrated on
the “local theory of the Cauchy problem”, which established local well-posedness
results on Sobolev spacesB, or global well-posedness for small data inB. Pioneering
works were due to Segal, Strichartz, Kato, Ginibre-Velo, Pecher and many others.
In the late 80’s, in collaboration with Ponce and Vega we introduced the systematic
use of the machinery of modern harmonic analysis to study the “local theory of the
Cauchy problem”. Further contributions came from work of Bourgain, Klainerman-
Machedon, Tataru, Tao and many others.

In recent years, there has been a lot of interest in the study, for nonlinear
dispersive equations, of the long-time behaviour of solutions, for large data. Issues
like blow-up, global existence and scattering have come to the forefront, especially
in critical problems. These problems are natural extensions of nonlinear elliptic
problems, which were studied earlier. To explain this connection, recall that in
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the late 1970’s and early 1980’s, there was a great deal of interest in the study of
semilinear elliptic equations, to a great degree motivated by geometric applications.

For instance, recall the Yamabe problem: Let (M, g) be a compact Riemannian
manifold of dimension n ≥ 3. Is there a conformal metric g̃ = cg, so that the scalar
curvature of (M, g̃) is constant?

In this context, the following equation was studied extensively: Δu+ |u| 4
n−2 u =

0, x ∈ Rn where u ∈ Ḣ1(Rn) =
{
u : ∇u ∈ L2(Rn)

}
. Using this information,

Trudinger, Aubin and Schoen solved the Yamabe problem in the affirmative (see
[89] and references therein). We will concentrate in the case n = 3, so that the

equation becomes Δu + u5 = 0, x ∈ R3, u ∈ Ḣ1(R3). This equation is “critical”
because the linear part (Δ) and the nonlinear part (u5) have the same “strength”,
since if u is a solution, so is 1

λ
1
2
u
(
x
λ

)
and both the linear part and the nonlinear

part transform “in the same way” under this change. The equation is “focusing”
because the linear part (Δ) and the nonlinear part (u5) have opposite signs and
hence they “fight each other”. Note that for the much easier “defocusing” problem
Δu−u5 = 0, u ∈ Ḣ1(R3), it is easy to see that there are no non-zero solutions. The
difficulty in the study of Δu+ u5 = 0 in R3 comes from the “lack of compactness”
in the Sobolev embedding ‖u‖L6(R3) ≤ C3‖∇u‖L2(R3), where C3 is the best con-

stant.

(
C3 = π− 1

2 3−
1
2

[
Γ(3)

Γ( 3
2 )

] 1
3

)
(See [100]). Modulo translation and scaling, the

only non-negative solution to Δu + u5 = 0, u ∈ Ḣ1(R3) is W (x) =
(
1 + |x|2

3

)− 1
2

(Gidas-Ni-Nirenberg [42], Kwong [72]). Also W is the unique minimizer to the
Sobolev inequality above (Talenti [100]). W is called the “ground state”. W is

also the unique radial solution in Ḣ1
(
R3
)
, (without imposing a sign condition).

(Pohozaev [88], Kwong [72]). On the other hand, Ding [22] constructed infinitely
many variable sign solutions, which are non-radial. Pohozaev [88] also showed that
the only solution to the boundary value problem{

Δu+ u5 = 0 in B1ßR
3

u|∂B1
≡ 0

is u ≡ 0. If instead, we consider the problem{
Δuε + u5

ε = 0 in B1\Bε

uε|∂B1∪∂Bε
= 0

then there are non-zero solutions. If we normalize them and let ε → 0, we have

uε ∼
∑J

j=1(−1)j
W

(
x
λj

)

λ
1
2
j

, where 0 ≤ λ1(ε) 
 λ2(ε) 
 · · · 
 λJ (ε) (Musso-Pistoia

[84], “towers of bubbles”).
Through the study of these and related problems, in works of Talenti, Trudinger,

Aubin, Schoen, Taubes, Schoen-Uhlenbeck, Sachs-Unlenbeck, Bahri-Coron, Struwe,
Brézis-Coron, etc., many important techniques were developed. In particular,
through these and others works, the study of the “defect of compactness” and
the “bubble decomposition” were systematized through the work of P-L. Lions on
concentration-compactness.

For nonlinear dispersive equations there are also critical problems, which are
related to Δu+ u5 = 0.
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In this monograph we will concentrate on the energy critical nonlinear wave
equation in 3d,

(NLW±)

⎧⎪⎪⎨⎪⎪⎩
∂2
t u−Δu = ∓u5, x ∈ R3, t ∈ R

u|t=0 = u0 ∈ Ḣ1(R3)

∂tu|t=0 = u1 ∈ L2
(
R3
)
.

The hope is that the results obtained for (NLW±) will be a model for what to
strive for in other critical dispersive problems. In (NLW+) we have the “defocusing
case”, while in (NLW−) we have the “focusing case”. (NLW±) are “energy critical”
because if u is a solution, so is 1

λ
1
2
u
(
x
λ ,

t
λ

)
, and the scaling leaves invariant the

norm of the Cauchy data in Ḣ1(R3) × L2(R3). Both problems have energies that
are constant in time

E± (u(t), ∂tu(t)) =
1

2

∫
|∇u(t)|2 + (∂tu(t))

2 ± 1

6

∫
u6(t).

where + on the right hand side, corresponds to the defocusing case and − on the
right hand side corresponds to the focusing case.

We now summarize the “local theory of the Cauchy problem”, for equations
(NLW±). This is described in detail in Chapter 1.

If ‖(u0, u1)‖Ḣ1×L2 is small, ∃! solution u, defined for all time, such that u ∈
C
(
(−∞,+∞); Ḣ1 × L2

)
∩ L8

xt, which scatters, i.e.,∥∥(u(t), ∂tu(t))− S(t)
(
u±
0 , u

±
1

)∥∥
Ḣ1×L2

t→±∞−→ 0,

for some
(
u±
0 , u

±
1

)
∈ Ḣ1 × L2.

Moreover, for any data (u0, u1) ∈ Ḣ1 × L2, we have short time existence and
hence there exists a maximal interval of existence I = (T−(u), T+(u)).

Here, S(t) (u0, u1) is the solution of the linear wave equation ∂2
t − Δ, with

initial Cauchy data (u0, u1). Also, the meaning of, say, T+(u) < ∞, is that if
{tn} is a sequence of times converging to T+(u), (u(tn), ∂tu(tn)) has no convergent

subsequence in Ḣ1 × L2.
Question: What about large data?
We first turn to the defocusing case, which was studied in works of Struwe [97],

Grillakis [46], [47], Shatah-Struwe [92],[93], Kapitanski [43], Bahouri-Shatah [5]
(80’s and 90’s). They established:

(+) Global regularity and well-posedness conjecture

(For critical defocusing problems): There is global in time well-posedness and scat-

tering for arbitrary data in Ḣ1×L2. Moreover more regular data keep this regularity
for all time. This closes the study of the dynamics in (NLW+).

For the focusing problem, (+) fails. In fact, H. Levine (1974) [73] showed that

if (u0, u1) ∈ H1 × L2, E(u0, u1) ≤ 0, (u0, u1) �= (0, 0), (Ḣ1 × L2 in the radial case),
then |T±(u0, u1)| <∞.

Levine’s proof is of the “obstruction” type. He shows that there is an obstruc-
tion for the global existence, but does not give information on the nature of the
“blow-up”.

Moreover, u(x, t) =
(
3
4

) 1
4 (1− t)

− 1
2 is a solution. It is not in Ḣ1 × L2, but

we can truncate it and use finite speed of propagation to find data in Ḣ1 × L2
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such that limt↑1‖(u(t), ∂tu(t))‖Ḣ1×L2 = ∞. (Type I blow-up, or ODE blow-up).

Also, W , which solves ΔW +W 5 = 0 and is independent of time, is a global in time

solution, which does not scatter. (If a solution u scatters,
∫
|x|≤1

|∇u(x, t)|2dx t→∞−→ 0.

This clearly fails for W ). Moreover, Krieger-Schlag-Tataru [71], Krieger-Schlag
[69] have constructed type II blow-up solutions, i.e., solutions with T+ < ∞, and
sup0<t<T+

‖(u(t), ∂tu(t))‖Ḣ1×L2 < ∞, which are radial. Also, Donninger-Krieger

[29] have constructed radial, global in time solutions, bounded in Ḣ1 × L2, which
do not scatter to either a linear solution or to W .

In the rest of this monograph, we will study the focusing case and call it (NLW)
and its energy E. Here, the analog of (+) is

(++) Ground State Conjecture

(For critical focusing problems): There exists a “ground state”, whose energy is a
threshold for global existence and scattering.

In 2006-09, Frank Merle and I developed a program to attack critical dispersive
problems and establish (+) and, for the first time (++) in focusing problems.
We call this the “concentration-compactness/rigidity theorem method”, which was
partly inspired by the earlier elliptic problems. The method gives a “road map” to
attack both (+) and for the first time (++). The “road map” has already found an
enormous range of applicability, to previously intractable problems, in work of many
researchers. See for instance [64], [65], [66], [67], [23], [24], [25],[26],[27],[28],[6],
[70] and many others.

The result of Kenig-Merle [62], establishing the ground state conjecture (++)
for (NLW), using the “concentration-compactness/rigidity theorem method” is:

Theorem 2.6. If E(u0, u1) < E(W, 0) then

i) If ‖∇u0‖ < ‖∇W‖, global existence, scattering.
ii) If ‖∇u0‖ > ‖∇W‖, T+, |T−| <∞.
iii) The case ‖∇u0‖ = ‖∇W‖ is impossible.

The “concentration-compactness/rigidity theorem” method, as well as the proof
of Theorem 2.6 above are discussed in detail in Chapters 2 and 3 of this monograph.
In Chapters 4 and 5 of this monograph, we study solutions of (NLW) with the “com-
pactness property”, an important class of “non-dispersive” solutions. In proving
Theorem 2.6, a rigidity theorem for solutions with the compactness property and
further size restrictions is crucial. In Chapter 4 we study solutions with the com-
pactness property and no further size restriction. The main results are collected in
Theorem 4.77. The main conjecture here is the “rigidity conjecture” for solutions
with the compactness property, namely that they are all solitary waves, i.e., Lorentz
transforms of stationary solutions (stationary solutions solve the elliptic equation
ΔQ + Q5 = 0). This conjecture was established in [32] in the radial case, and in
[35] under a non-degeneracy assumption. These results are dealt with in Chapter
5. They comprise Theorem 4.17, Theorem 4.18 and Theorem 5.6. In Chapter 4
we also give an extension (Theorem 4.4) of i) in Theorem 2.6, which was proved in
[31] and uses the rigidity results of Chapter 5.

In Chapter 6, we begin the systematic study of type II blow-up solutions and
more generally, of extended type II solutions, namely non-zero solutions u for which
sup0<t<T+(u) ‖(u(t), ∂tu(t))‖Ḣ1×L2 <∞.
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As was mentioned earlier there are examples of type II solutions, constructed
in [69] and [71] and of generalized type II solutions, such as W , or more generally
the solitary waves, i.e., Lorentz transforms Q�l of non-zero solutions to ΔQ+Q5 = 0
(this class of Q is denoted by Σ), as well as constructions in [29] with complicated
asymptotics. In [36], Duyckaerts-Kenig-Merle developed a very general compact-
ness argument, which connects extended type II solutions and solutions with the
compactness property (see Theorem 6.12). In the case of NLW, a more detailed
result is possible, Theorem 6.13, obtained in [36]. A simple version of this is:

Theorem 6.14. Let u be an extended type (II) solution of (NLW). Then there

exists Q ∈ Σ,�l ∈ R3,
∣∣∣�l∣∣∣ < 1 and sequences {tn} ∈ [0, T+(u)), {xn} ∈ R3, {λn} ∈

R+, tn → T+(u) and such that(
λ

1
2
nu (xn + λnx, tn) , λ

3
2
n∂tu (xn + λnx, tn)

)
n
⇀
(
Q�l(0), ∂tQ�l(0)

)
,

where the convergence is weak in Ḣ1 × L2.(
Q�l(x, t) = Q

(
x+

[
1

l2

(
1√

1− l2
− 1

)
�l · x− t√

1− t2

]
�l

)
, l =

∣∣∣�l∣∣∣) .

Theorem 6.14 is proved in Chapter 6. We regard the result in Theorem 6.13
of Chapter 6 as a first step towards the proof of a full decomposition, for u an
extended type II solution,

u(x, tn) =
J∑

j=1

1

λ
1
2

j,n

Qj
�lj

(
x− xj,n

λj,n
, 0

)
+ v (x, tn) + on(1)

∂tu(x, tn) =
J∑

j=1

1

λ
3
2

j,n

∂tQ
j
�lj

(
x− xj,n

λj,n
, 0

)
+ ∂tv (x, tn) + on(1),

where v is a radiation term (a solution of the linear equation), on(1) goes to 0 in

Ḣ1 × L2,
∣∣∣�lj∣∣∣ < 1, �lj ∈ R3, Qj ∈ Σ, {xj,n} ∈ R3, {λj,n} > 0, and tn → T+(u), which

is a special case of the soliton resolution conjecture for (NLW), which says that any
extended type II solution u of (NLW) can be written, as t → T+(u) as a sum of

decoupled solitary waves and a radiation term, plus a term that goes to 0 in Ḣ1×L2.
The proof of this conjecture is our final goal in this direction. In Chapter 7, we
discuss “channels of energy” and “outer energy lower bounds” for the linear wave
equation, see Corollary 7.6 and Proposition 7.9, which were discovered in [31], [32],
and which are our main tools in passing from weak convergence results, of the type
in Theorem 6.13 and Theorem 6.14, to strong convergence results. The first such
result is discussed in Chapter 8. It shows the universality of the construction in
[69], [71], as well as establishing a case of the soliton resolution conjecture discussed
earlier, when T+(u) <∞, under an additional smallness hypothesis. This result is
from [31] and [32].

Theorem 8.1. Assume that u is a type II solution, T+ = 1.

i) If u is radial and

sup
0<t<1

‖∇u(t)‖ ≤ ‖∇W‖+ η0,
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η0 > 0, small. Then ∃(v0, v1) ∈ Ḣ1 × L2, λ(t) > 0, t ∈ (0, 1), i0 ∈ {±1}
such that (u(t), ∂tu(t)) =

(
i0

λ(t)
1
2
W
(

x
λ(t)

)
, 0

)
+(v0, v1)+o(1) in Ḣ1×L2,

where λ(t) = o(1− t).
ii) Non-radial case. Assume that

sup
0<t<1

‖∇u(t)‖2 + 1

2
‖∂tu(t)‖2 ≤ ‖∇W‖2 + η0,

η0 small. Then, after rotation, translation of R3, ∃(v0, v1) ∈ Ḣ1 × L2,
i0 ∈ {±1}, l small, x(t) ∈ R3, λ(t) > 0, t ∈ (0, 1) such that (u(t), ∂tv(t)) =(

i0

λ(t)
1
2
Wl

(
x−x(t)
λ(t) , 0

)
, i0

λ(t)
3
2
∂tWl

(
x−x(t)
λ(t) , 0

))
+(v0, v1)+o(1) in Ḣ1×L2,

where λ(t) = o(1 − t), limt↑1
x(t)
1−t = l �e1, �e1 = (1, 0, 0), |l| ≤ Cη

1
4
0 , and

Wl(x, t) = W
(

x1−tl√
1−l2

, x2, x3

)
is the Lorentz transform of W .

The final three chapters of the monograph are devoted to the proof of the
soliton resolution conjecture for (NLW) in the radial case, by Duyckaerts-Kenig-
Merle. This was obtained, for a particular sequence of times, in [30] and in [33]
for general times. The result is:

Theorem 9.1. Let u be a radial solution of (NLW). Then, one of the following
holds:

a) Type I blow-up: T+ <∞ and

lim
t↑T+

‖(u(t), ∂tu(t))‖Ḣ1×L2 =∞.

b) Type II blow-up: T+ < ∞ and ∃(v0, v1) ∈ Ḣ1 × L2, J ∈ N\ {0} and
∀j ∈ {1, . . . , J} , ij ∈ {±1} and λj(t) > 0 such that 0 < λ1(t) 
 λ2(t) 


· · · 
 λJ(t)
 T+− t, and (u(t), ∂tu(t)) =

(∑J
j=1

ij

λj(t)
1
2
W
(

x
λj(t)

)
, 0

)
+

(v0, v1) + o(1) in Ḣ1 × L2.
c) T+ =∞ and ∃ a solution vL of (LW), J ∈ N and for all j ∈ {1, . . . , J} ,

iJ ∈ {±1} , λj(t) > 0 such that 0 < λ1(t) 
 λ2(t) 
 · · · 
 λJ (t) 
 t,

and (u(t), ∂tu(t)) =

(∑J
j=1

ij

λj(t)
1
2
W
(

x
λj(t)

)
, 0

)
+ (vL(t), ∂tvL(t)) + o(1)

in Ḣ1 × L2.
Here a(t) 
 b(t) means that a(t)

b(t) → 0, and (LW) denotes the linear

wave equation.

A fundamental new ingredient of the proof of Theorem 9.1 is the following
dispersive property that all global in time radial solutions to (NLW) (other than
0,±W up to scaling) must have:∫

|x|>R+|t|
|∇x,tu(x, t)|2dx ≥ η, for some R > 0, η > 0 and all t ≥ 0 or all t ≤ 0.

This is in Proposition 9.17. The proof is a consequence of the “channel of
energy” property in Chapter 7.

As far as exposition goes, most of the results mentioned above are proved in
full, for others the proofs are merely sketched or ommitted completely. In the last
two cases, appropriate references are given.
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Warning: We generally use ‖ ‖ and ‖ ‖L2 interchangeably, and the same goes
for expressions like “orthogonality of parameters” and “pseudo-orthogonality of
parameters”.
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