CHAPTER 2

The "Road Map": The Concentration Compactness/Rigidity Theorem Method for Critical Problems I

In this chapter and the next, we will describe the concentration/compactness rigidity theorem method introduced by Kenig-Merle [61],[62] in order to study global well-posedness and scattering in critical problems. We will do so in the context of the focusing, energy-critical non-linear wave equation. This method is designed to address the large data/large time situation left out from the "local theory of the Cauchy problem" discussed in Chapter 1. The proofs presented in this chapter are from $[\mathbf{6 1}],[\mathbf{6 2}],[\mathbf{5 9}],[\mathbf{6 0}]$. See also the surveys $[\mathbf{5 0}],[\mathbf{5 1}],[52]$, [54]. We first discuss briefly the defocusing case.
$\left(\mathrm{NLW}_{+}\right)$

$$
\left\{\begin{aligned}
\partial_{t}^{2} u-\Delta u & =-u^{5}, x \in \mathbb{R}^{3}, t \in \mathbb{R} \\
\left.u\right|_{t=0} & =u_{0} \in \dot{H}^{1}\left(\mathbb{R}^{3}\right) \\
\left.\partial_{t} u\right|_{t=0} & =u_{1} \in L^{2}\left(\mathbb{R}^{3}\right)
\end{aligned}\right.
$$

In the focusing case of (NLW), the energy is

$$
\begin{equation*}
E\left(u_{0}, u_{1}\right)=\frac{1}{2} \int\left|\nabla u_{0}\right|^{2}+\left(u_{1}\right)^{2}-\frac{1}{6} \int u_{0}^{6} . \tag{2.1}
\end{equation*}
$$

From the identity

$$
\begin{equation*}
\partial_{t} e(u)(x, t)=\sum_{j=1}^{3} \partial_{x_{j}}\left(\partial_{x_{j}} u(x, t) \cdot \partial_{t} u(x, t)\right), \tag{2.2}
\end{equation*}
$$

with $e(u)(x, t)=\frac{1}{2}\left(\partial_{t} u\right)^{2}(x, t)+\frac{1}{2}|\nabla u|^{2}(x, t)-\frac{1}{6} u^{6}(x, t)$, for smooth solutions of (NLW) and Remark 1.15, we see that, if u is a solution of (NLW), $t \in I_{\max }(u)$,

$$
\begin{equation*}
E\left(u(t), \partial_{t} u(t)\right)=E\left(u_{0}, u_{1}\right) \tag{2.3}
\end{equation*}
$$

For the defocusing $\left(\mathrm{NLW}_{+}\right)$, similar considerations, with

$$
E_{+}\left(u_{0}, u_{1}\right)=\frac{1}{2} \int\left|\nabla u_{0}\right|^{2}+u_{1}^{2}+\frac{1}{6} \int u_{0}^{6},
$$

lead to the "a priori" bound

$$
\sup _{t \in I_{\max }(u)} \frac{1}{2} \int|\nabla u(t)|^{2}+\left(\partial_{t} u(t)\right)^{2} \leq C\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2} .
$$

The defocusing case was studied in the 80 's and early 90 's, in a series of works by Struwe, Grillakis, Shatah-Struwe, Kapitanski, Bahouri-Shatah ([97],[46],[47],[92], [93],[48],[5]) who established:
(For critical defocusing problems): There is global in time well-posedness and scattering for arbitrary data in $\dot{H}^{1} \times L^{2}$. Moreover more regular data keep this regularity for all time. (This closes the study of the dynamics for defocusing (NLW_{+})).

For the focusing problem (2.4) fails. In fact, H. Levine ([73]) showed that if $\left(u_{0}, u_{1}\right) \in H^{1} \times L^{2}, E\left(u_{0}, u_{1}\right) \leq 0,\left(u_{0}, u_{1}\right) \neq(0,0) .\left(\dot{H}^{1} \times L^{2}\right.$ in the radial case $)$, then $\left|T_{ \pm}\left(u_{0}, u_{1}\right)\right|<\infty$. This is done by an indirect argument ("an obstruction argument") that does not explicitly analyze the singularity formation.

Moreover, $u(x, t)=\left(\frac{3}{4}\right)^{\frac{1}{4}}(1-t)^{-\frac{1}{2}}$ is a solution. It is not in $\dot{H}^{1} \times L^{2}$, but we can truncate it and use finite speed of propagation to find data in $\dot{H}^{1} \times L^{2}$ such that $\lim _{t \uparrow 1}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}=\infty$. (Type I blow-up, or ODE blow-up). Also, W, which solves $\Delta W+W^{5}=0$ and is independent of time, is a global in time solution, which does not scatter. (If a solution u scatters, $\int_{|x| \leq 1}|\nabla u(x, t)|^{2} d x \xrightarrow{t \rightarrow \infty} 0$. This clearly fails for W). Moreover, Krieger-Schlag-Tataru ([71]), Krieger-Schlag ([70]) have constructed type II blow-up solutions, i.e., solutions with $T_{+}<\infty$, and $\sup _{0<t<T_{+}}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}<\infty$, which are radial. More on these solutions later on. Also, Donninger-Krieger ([29]) have constructed radial, global in time solutions, bounded in $\dot{H}^{1} \times L^{2}$, which do not scatter to either a linear solution or to W.

In the rest of this monograph we will try to understand the focusing case. Here the analog of (2.4) is

Ground State Conjecture

(For critical focusing problems): There exists a "ground state", whose energy is a threshold for global existence and scattering.

In 2006-09, Frank Merle and I developed a program to attack critical dispersive problems and establish (2.4) and, for the first time (2.5) in focusing problems. We call this the "concentration-compactness/rigidity theorem method", which was partly inspired by the earlier elliptic problems. The method gives a "road map" to attack both (2.4) and for the first time (2.5). The "road map" has already found an enormous range of applicability, to previously intractable problems, in work of many researchers. I will now describe the results on (NLW) in the last few years, which we are going to be discussing in these two chapters, starting with the proof of (2.5) for (NLW), via the "road map".

Theorem $2.6([\mathbf{6 2}])$. If $E\left(u_{0}, u_{1}\right)<E(W, 0)$ then
i) If $\left\|\nabla u_{0}\right\|<\|\nabla W\|$, global existence, scattering.
ii) If $\left\|\nabla u_{0}\right\|>\|\nabla W\|, T_{+},\left|T_{-}\right|<\infty$.
iii) The case $\left\|\nabla u_{0}\right\|=\|\nabla W\|$ is impossible.

The road map: A quick summary
We next describe, in a schematic way, the "road map" for the concentrationcompactness/rigidity theorem method.
a) Variational arguments (Only needed in focusing problems). These are "static" arguments, which exploit the variational characterization of the ground state W. In our case, it is the extremal in the Sobolev embedding $\|u\|_{L^{6}\left(\mathbb{R}^{3}\right)} \leq C_{3}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{3}\right)}$. Combining these variational arguments with preservation of the energy and continuity of the flow, yields: if $E\left(u_{0}, u_{1}\right)<E(W, 0),\left\|\nabla u_{0}\right\|<\|\nabla W\|$, then, for
$t \in I=\left(T_{-}, T_{+}\right), E\left(u(t), \partial_{t} u(t)\right) \simeq\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2} \simeq\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2}$, so that $\sup _{t \in I}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}<\infty$. Because of the Krieger-Schlag-Tataru [71] example, this does not suffice.
b) Concentration-compactness procedure. Since in our situation, by a)
$E\left(u(t), \partial_{t} u(t)\right) \simeq\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2}$, if $E\left(u_{0}, u_{1}\right)$ is small, by the "local theory of Cauchy Problem", we have global existence and scattering. Hence, there is a critical level of energy E_{c}, with

$$
0 \leq \delta_{1} \leq E_{c} \leq E(W, 0)
$$

such that if $E\left(u_{0}, u_{1}\right)<E_{c},\left\|\nabla u_{0}\right\|<\|\nabla W\|$, we have global existence and scattering, and E_{c} is optimal with this property. i) in our Theorem is the statement $E_{c}=E(W, 0)$. If $E_{c}<E(W, 0)$ we will reach a contradiction by proving:

Proposition A (Existence of critical elements). $\exists\left(u_{0, c}, u_{1, c}\right)$ with $E\left(u_{0, c}, u_{1, c}\right)=E_{c},\left\|\nabla u_{0, c}\right\|<\|\nabla W\|$, such that either I is finite or if I is infinite, u_{c} does not scatter. u_{c} is called a "critical element".

Proposition B (Compactness of critical elements). There exists $\lambda(t) \in \mathbb{R}^{+}$, $x(t) \in \mathbb{R}^{3}, t \in I_{+}=I \beta[0, \infty)$ such that

$$
K=\left\{\left(\frac{1}{\lambda(t)^{\frac{1}{2}}} u_{c}\left(\frac{x-x(t)}{\lambda(t)}, t\right), \frac{1}{\lambda(t)^{\frac{3}{2}}} \partial_{t} u_{c}\left(\frac{x-x(t)}{\lambda(t)}, t\right)\right): t \in I_{+}\right\}
$$

has compact closure in $\dot{H}^{1} \times L^{2}$. (non-dispersive property of u_{c}, "minimality"). (Or corresponding proposition for I_{-}).
c) Rigidity Theorem. If \bar{K}, corresponding to a solution u is compact, and $E\left(u_{0}, u_{1}\right)<E(W, 0),\left\|\nabla u_{0}\right\|<\|\nabla W\|$, then $\left(u_{0}, u_{1}\right)=(0,0)$.

This gives a contradiction, since $\left.E\left(u_{0, c}, u_{1, c}\right)\right)=E_{c} \geq \delta_{1}>0$.
We now proceed to the proof of Theorem 2.6, using the "road map". The first part of the proof is
a) Variational Estimates: Recall that $W(x)=\left(1+\frac{|x|^{2}}{3}\right)^{-\frac{1}{2}}$ is a stationary solution which solves the elliptic equation $\Delta W+W^{5}=0, W \geq 0$ and is radially decreasing. By the obvious invariances of the elliptic equation $W_{\lambda_{0}, x_{0}}(x)=$ $\lambda_{0}^{\frac{1}{2}} W\left(\lambda_{0}\left(x-x_{0}\right)\right)$ is still a solution. Aubin and Talenti $([\mathbf{3}],[\mathbf{1 0 0}])$ gave the following variational characterization of W : let C_{3} be the best constant in the Sobolev embedding $\|u\|_{L^{6}} \leq C_{3}\|\nabla u\|_{L^{2}}, C_{3}=(3 \pi)^{-\frac{1}{2}}\left(\frac{\Gamma(3)}{\Gamma\left(\frac{3}{2}\right)}\right)^{\frac{1}{2}}$. Then, if u is real valued, $\|u\|_{L^{6}}=C_{3}\|\nabla u\|_{L^{2}}, u \not \equiv 0$, we have $u=W_{\lambda_{0}, x_{0}}$. Note that by the elliptic equation $\int|\nabla W|^{2}=\int W^{6}$. Also, $C_{3}\|\nabla W\|_{L^{2}}=\|W\|_{L^{6}}$, so that $C_{3}^{2}\|\nabla W\|_{L^{2}}^{2}=$ $\left(\int|\nabla W|^{2}\right)^{\frac{1}{3}}$. Hence, $\int|\nabla W|^{2}=\frac{1}{C_{3}^{3}}$. Moreover, $E((W, 0))=\left(\frac{1}{2}-\frac{1}{6}\right) \int|\nabla W|^{2}=$ $\frac{1}{3 C_{3}^{3}}$.

Lemma 2.8. Assume that $\|\nabla v\|<\|\nabla W\|, E(v, 0) \leq\left(1-\delta_{0}\right) E(W, 0), \delta_{0}>0$. Then, $\exists \bar{\delta}=\bar{\delta}\left(\delta_{0}\right)$ such that
i) $\|\nabla v\|^{2} \leq(1-\bar{\delta})\|\nabla W\|^{2}$
ii) $\int|\nabla v|^{2}-|v|^{6} \geq \bar{\delta} \int|\nabla v|^{2}$

Proof. Let $f(y)=\frac{1}{2} y-\frac{C_{3}^{6}}{6} y^{3}$. Note that if $\bar{y}=\|v\|^{2}, f(\bar{y}) \leq E(v, 0)$. Note that $f(y)=0 \Leftrightarrow y=0$ or $y=y^{*}=\frac{\sqrt{3}}{C_{3}^{3}}=\sqrt{3} \int|\nabla W|^{2}($ for $y \geq 0)$, so that
$f(y)>0,0<y<y^{*}$. Also, $f^{\prime}(y)=0, y>0 \Leftrightarrow y=y_{c}=\frac{1}{C_{3}^{3}}=\|\nabla W\|^{2}$. Also, $f\left(y_{c}\right)=\frac{1}{3 C_{3}^{3}}=E(W, 0)$, and $f^{\prime \prime}\left(y_{c}\right) \neq 0$. Since $0 \leq \bar{y}<y_{c}, f(\bar{y}) \leq\left(1-\delta_{0}\right) f\left(y_{c}\right)$ and f is non-negative, strictly increasing in $0 \leq y<y_{c}$, we obtain $\bar{y} \leq(1-\bar{\delta}) y_{c}=$ $(1-\bar{\delta})\|\nabla W\|^{2}$, that is i).

For ii), note that

$$
\begin{aligned}
& \int|\nabla v|^{2}-v^{6} \geq \int|\nabla v|^{2}-C_{3}^{6}\left(\int|\nabla v|^{2}\right)^{3}=\int|\nabla v|^{2}\left[1-C_{3}^{6}\left(\int|\nabla v|^{2}\right)^{2}\right] \\
& \geq \int|\nabla v|^{2}\left[1-C_{3}^{6}(1-\bar{\delta})^{2}\left(\int|\nabla W|^{2}\right)^{2}\right]=\int|\nabla v|^{2}\left[1-(1-\bar{\delta})^{2}\right]
\end{aligned}
$$

which gives ii).

Corollary 2.9. If $\|\nabla v\|^{2} \leq \sqrt{3}\|\nabla W\|^{2}, E(v, 0) \geq 0$.
(Follows from the proof above).
Lemma 2.10. If $\|\nabla v\| \leq\|\nabla W\|, E(v, 0) \leq E(W, 0) \Rightarrow\|\nabla v\|^{2} \leq \frac{\|\nabla W\|^{2}}{E(W, 0)} E(v, 0)$ $=3 E(v, 0)$.

Proof. Let f be as in previous lemma. Note that f is concave on $\mathbb{R}^{+}, f(0)=$ $0, f\left(\|\nabla W\|^{2}\right)=E(W, 0), f\left(\|\nabla v\|^{2}\right) \leq E(v, 0)$. For $s \in(0,1), f\left(s\|\nabla W\|^{2}\right) \geq$ $s f\left(\|\nabla W\|^{2}\right)=s E(W, 0)$. Choose $s=\frac{\|\nabla v\|^{2}}{\|\nabla W\|^{2}}$.

Corollary 2.11. $E(v, 0)<E(W, 0),\|\nabla v\|=\|\nabla W\|^{2}$ is impossible.
Corollary 2.12 (Energy trapping). $\left(u_{0}, u_{1}\right) \in \dot{H}^{1} \times L^{2}, E\left(u_{0}, u_{1}\right)<(1-$ $\left.\delta_{0}\right) E(W, 0)$,
$\left\|\nabla u_{0}\right\|<\|\nabla W\|$. Then, if u is the solution with maximal interval $I, \exists \bar{\delta}=\bar{\delta}\left(\delta_{0}\right)$ such that $\forall t \in I,\|\nabla u(t)\| \leq(1-\bar{\delta})\|\nabla W\|, \int|\nabla u(t)|^{2}-u^{6}(t) \geq \bar{\delta} \int|\nabla u(t)|^{2}, E(u(t), 0) \geq$ $0, E\left(u(t), \partial_{t} u(t)\right) \simeq\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2} \simeq\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2}$, with comparability constants depending only on δ_{0}.

Remark 2.13. If $E\left(u_{0}, u_{1}\right) \leq\left(1-\delta_{0}\right) E(W, 0),\left\|\nabla u_{0}\right\|^{2}>\|\nabla W\|^{2}$, then, for $t \in I,\|\nabla u(t)\|^{2} \geq(1+\bar{\delta})\|\nabla W\|^{2}$. This follows as in Lemma 2.8 i).

Let us now turn to the proof of Theorem 2.6, ii), having already dealt with iii). We will do it in the case $u_{0} \in L^{2}$. This additional assumption can be eliminated easily using finite speed of propagation. (See [62]). The argument comes from [73].

Thus, assume $u_{0} \in L^{2}, E\left(u_{0}, u_{1}\right)<\left(1-\delta_{0}\right) E(W, 0),\left\|\nabla u_{0}\right\|>\|\nabla W\|$. We want to show $T_{+}<\infty$. Assume not. By Remark 2.13, $\int|\nabla u(t)|^{2} \geq(1+\bar{\delta}) \int|\nabla W|^{2}$, $t \in I, E(W, 0) \geq E\left(u(t), \partial_{t} u(t)\right)+\widetilde{\delta}, t \in I$, so that $\frac{1}{6} \int u(t)^{6} \geq \frac{1}{2} \int\left(\partial_{t} u(t)\right)^{2}+$ $\frac{1}{2} \int|\nabla u(t)|^{2}-E(W, 0)+\widetilde{\delta}$ and so $\int u(t)^{6} \geq 3 \int\left(\partial_{t} u(t)\right)^{2}+3 \int|\nabla u(t)|^{2}-6 E(W, 0)+$
$6 \widetilde{\delta}$. Let $y(t)=\int u^{2}(t), y^{\prime}(t)=2 \int u(t) \partial_{t} u(t)$. A simple calculation using the equation, integration by parts, gives $y^{\prime \prime}(t)=2 \int\left[\partial_{t} u(t)^{2}+u(t)^{6}-|\nabla u(t)|^{2}\right]$. Thus,

$$
\begin{aligned}
y^{\prime \prime}(t) & \geq 2 \int\left(\partial_{t} u(t)\right)^{2}+6 \int\left(\partial_{t} u(t)\right)^{2}+4 \int|\nabla u(t)|^{2}-12 E(W, 0)+\widetilde{\widetilde{\delta}} \\
& =8 \int\left(\partial_{t} u(t)\right)^{2}+4 \int|\nabla u(t)|^{2}-4 \int|\nabla W|^{2}+\widetilde{\widetilde{\delta}} \\
& \geq 8 \int\left(\partial_{t} u(t)\right)^{2}+\widetilde{\widetilde{\delta}}
\end{aligned}
$$

Since $I \cap[0, \infty)=[0, \infty), \exists t_{0}>0$ such that $y^{\prime}\left(t_{0}\right)>0, y^{\prime}(t)>0, t>t_{0}$. For $t>t_{0}$, $y(t) y^{\prime \prime}(t) \geq 8\left(\int \partial_{t} u(t)^{2}\right)\left(\int u^{2}(t)\right) \geq 2 y^{\prime}(t)^{2}$, so that $\frac{y^{\prime \prime}(t)}{y^{\prime}(t)} \geq 2 \frac{y^{\prime}(t)}{y(t)}$ or $y^{\prime}(t) \geq$ $C_{0} y(t)^{2}$ for $t>t_{0}$, which leads to finite time blow-up for $y(t)$, a contradiction.

We next turn to b) in the road map, namely the "concentration-compactness" procedure, in order to establish i) in Theorem 2.6. Note that in the defocusing case, the variational estimates are not needed. Note also that because of Corollary 2.12, we already know that $\sup _{t \in I}\left\|\left(u(t), \partial_{t} u(t)\right)\right\| \leqq\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}$. However, because of the Krieger-Schlag-Tataru [71] example, this does not suffice, and this is typical of critical problems.
b) Concentration-Compactness Procedure.

We recall the norms, introduced in "the local theory of the Cauchy problem", $\|u\|_{S(I)}=\|u\|_{L^{8}\left(\mathbb{R}^{3} \times I\right)},\left\|D^{\frac{1}{2}} u\right\|_{W(I)}=\left\|D^{\frac{1}{2}} u\right\|_{L^{4}\left(\mathbb{R}^{3} \times I\right)}$. Recall that if I is the maximal interval, if $T_{+}<\infty,\|u\|_{S\left(I_{+}\right)}=\infty$. Also if $T_{+}=\infty, u$ does not scatter, iff $\|u\|_{S\left(I_{+}\right)}=\infty$. Because of a), if $\left\|\nabla u_{0}\right\|^{2}<\|\nabla W\|^{2}$ and $E\left(u_{0}, u_{1}\right) \leq \eta_{0}, \eta_{0}$ small, then $\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}$ is small, so that u exists globally in time and scatters, from the "local theory of the Cauchy problem". Consider now

$$
\begin{aligned}
& G=\{E: 0 \leq E<E(W, 0), \text { with the property that if } \\
& \left.\qquad\left\|\nabla u_{0}\right\|^{2}<\|\nabla W\|^{2} \text { and } E\left(u_{0}, u_{1}\right)<E \text {, then }\|u\|_{S(I)}<\infty\right\} .
\end{aligned}
$$

Let $E_{c}=\sup G$, so that $0<\eta_{0} \leq E_{c} \leq E(W, 0)$ and, if $\left\|\nabla u_{0}\right\|^{2}<\|\nabla W\|^{2}$, $E\left(u_{0}, u_{1}\right)<E_{c}, I=(-\infty,+\infty), u$ scatters and E_{c} is optimal with this property. Theorem 2.6 i) is the same as $E_{c}=E(W, 0)$. Assume $E_{c}<E(W, 0)$, to reach a contradiction. Fix $\delta_{0}>0$ such that $E_{c}=\left(1-\delta_{0}\right) E(W, 0)$. If $\left\|\nabla u_{0}\right\|^{2}<$ $\|\nabla W\|^{2}, E\left(u_{0}, u_{1}\right)<E$, with $E<E_{c}$, then $\|u\|_{S(I)}<\infty$, while if $E>E_{c}, E<$ $E(W, 0), \exists\left(u_{0}, u_{1}\right),\left\|\nabla u_{0}\right\|^{2}<\|\nabla W\|^{2}, E_{c} \leq E\left(u_{0}, u_{1}\right) \leq E$ and $\|u\|_{S(I)}=\infty$. The concentration - compactness procedure allows us to prove:

Proposition 2.14. $\exists\left(u_{0, c}, u_{1, c}\right) \in \dot{H}^{1} \times L^{2}:\left\|\nabla u_{0, c}\right\|^{2}<\|\nabla W\|^{2}, E\left(u_{0, c}, u_{1, c}\right)$ $=E_{c},\left\|u_{c}\right\|_{S(I)}=\infty$, where u_{c} solves (NLW) with data $\left(u_{0, c}, u_{1, c}\right), I=I_{\max }\left(u_{c}\right)$.

Proposition 2.15. Let u_{c} be as in Prop 2.14, with (say), $\left\|\nabla u_{c}\right\|_{S\left(I_{+}\right)}=\infty$ with $I_{+}=I \cap[0, \infty)$. Then $\exists x(t) \in \mathbb{R}^{3}, \lambda(t) \in \mathbb{R}_{+}, t \in I_{+}$, such that

$$
K=\left\{\left(\frac{1}{\lambda(t)^{\frac{1}{2}}} u_{c}\left(\frac{x-x(t)}{\lambda(t)}, t\right), \frac{1}{\lambda(t)^{\frac{3}{2}}} \partial_{t} u_{c}\left(\frac{x-x(t)}{\lambda(t)}, t\right)\right): t \in I_{+}\right\}
$$

has compact closure in $\dot{H}^{1} \times L^{2}$.

The proofs of the propositions use our variational estimates and a "profile decomposition" due to Bahouri-Gérard ([4]). A corresponding "profile decomposition" for NLS in the mass-critical case was obtained independently by Merle-Vega ([80]).

Theorem 2.16 (Concentration-compactness, profile decomposition, BahouriGérard 99). Let $\left\{\left(v_{0, n}, v_{1, n}\right)\right\}_{n=1}^{\infty} \in \dot{H}^{1} \times L^{2}$, with $\left\|\left(v_{0, n}, v_{1, n}\right)\right\|_{\dot{H}^{1} \times L^{2}} \leq A$. Assume that $\left\|S(t)\left(v_{0, n}, v_{1, n}\right)\right\|_{S(-\infty,+\infty)} \geq \delta>0$, where $\delta=\delta(A)$ is as in "the local theory of Cauchy problem". Then, there exists a sequence $\left\{\left(V_{0, j}, V_{1, j}\right)\right\}_{j=1}^{\infty}$ in $\dot{H}^{1} \times L^{2}$, a subsequence of $\left\{\left(v_{0, n}, v_{1, n}\right)\right\}$ (which we still call $\left(v_{0, n}, v_{1, n}\right)$) and a triple $\left(\lambda_{j, n} ; x_{j, n} ; t_{j, n}\right) \in \mathbb{R}^{+} \times \mathbb{R}^{3} \times \mathbb{R}$, with the orthogonality property:

$$
\frac{\lambda_{j, n}}{\lambda_{j^{\prime}, n}}+\frac{\lambda_{j^{\prime}, n}}{\lambda_{j, n}}+\frac{\left|t_{j, n}-t_{j^{\prime}, n}\right|}{\lambda_{j, n}}+\frac{\left|x_{j, n}-x_{j^{\prime}, n}\right|}{\lambda_{j, n}} \xrightarrow{n \rightarrow \infty}+\infty .
$$

for $j \neq j^{\prime}$, such that
i) $\left\|\left(V_{0,1}, V_{1,1}\right)\right\|_{\dot{H}^{1} \times L^{2}}>\alpha_{0}(A)>0$.
ii) If $V_{j}^{l}=S(t)\left(\left(V_{0, j}, V_{1, j}\right)\right)$, then given $\varepsilon_{0}>0, \exists J=J\left(\varepsilon_{0}\right)$ such that

$$
\begin{gathered}
v_{0, n}=\sum_{j=1}^{J} \frac{1}{\lambda_{j, n}^{\frac{1}{2}}} V_{j}^{l}\left(\frac{x-x_{j, n}}{\lambda_{j, n}},-\frac{t_{j, n}}{\lambda_{j, n}}\right)+w_{0, n}^{J} \\
v_{1, n}=\sum_{j=1}^{J} \frac{1}{\lambda_{j, n}^{\frac{3}{2}}} \partial_{t} V_{j}^{l}\left(\frac{x-x_{j, n}}{\lambda_{j, n}},-\frac{t_{j, n}}{\lambda_{j, n}}\right)+w_{1, n}^{J} \\
\text { with }\left\|S(t)\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right\|_{S(-\infty,+\infty)} \leq \varepsilon_{0}, \text { for } n \text { large. }
\end{gathered}
$$

iii) ${ }_{a}$

$$
\begin{array}{r}
\left\|\nabla_{x} v_{0, n}\right\|^{2}=\sum_{j=1}^{J}\left\|\nabla_{x} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}+\left\|\nabla w_{0, n}^{J}\right\|^{2}+o(1) \\
\left\|v_{1, n}\right\|^{2}=\sum_{j=1}^{J}\left\|\partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}+\left\|w_{1, n}^{J}\right\|^{2}+o(1)
\end{array}
$$

iii) b_{b}

$$
\begin{aligned}
E\left(\left(v_{0, n}, v_{1, n}\right)\right) & =\sum_{j=1}^{J} E\left(\left(V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right), \partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right)\right)+E\left(\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right)+o(1) \\
\text { as } n & \rightarrow \infty
\end{aligned}
$$

A first consequence of the "profile decomposition", which already appears in Bahouri-Gérard [4] (implicitly, since they only treat the defocusing case) is the following:

Corollary 2.17. There exists a decreasing function $g:\left(0, E_{c}\right] \rightarrow[0, \infty)$, such that for every $\left(u_{0}, u_{1}\right)$ with $\left\|\nabla u_{0}\right\|^{2}<\|\nabla W\|^{2}, E\left(\left(u_{0}, u_{1}\right)\right)=E_{c}-\eta$, we have $\|u\|_{S(-\infty,+\infty)} \leq g(\eta)$.

Remark. A precise form of g was obtained in work of Duyckaerts-Merle ([38]). The proof of the Corollary also follows from the arguments that we will use in the proof of Proposition 2.18 below.

In order to apply the linear theorem above to the non-linear Propositions 2.14, 2.15, we need the notion of a "non-linear profile". Thus, let $\left(v_{0}, v_{1}\right) \in \dot{H}^{1} \times L^{2}$, $v(x, t)=S(t)\left(v_{0}, v_{1}\right)$, let $\left\{t_{n}\right\}_{n=1}^{\infty}$ be a sequence with $\lim _{n \rightarrow \infty} t_{n}=\bar{t} \in[-\infty,+\infty]$. We say that $u(x, t)$ is a non-linear profile associated with $\left(\left(v_{0}, v_{1}\right),\left\{t_{n}\right\}_{n=1}^{\infty}\right)$ if there exists an interval I, with $\bar{t} \in \stackrel{\circ}{I}$ (if $t= \pm \infty$, then $I=[a, \infty)$ or $I=(-\infty, a])$) such that u is a solution of the Cauchy problem in I and

$$
\lim _{n \rightarrow \infty}\left\|\left(u\left(t_{n}\right), \partial_{t} u\left(t_{n}\right)\right),\left(v\left(t_{n}\right), \partial_{t} v\left(t_{n}\right)\right)\right\|_{\dot{H}^{1} \times L^{2}}=0
$$

There always exists a non-linear profile associated with $\left(\left(v_{0}, v_{1}\right),\left\{t_{n}\right\}\right)$. Indeed, if $\bar{t} \in(-\infty,+\infty)$, we solve (NLW) with data $\left(v(x, \bar{t}), \partial_{t} v(x, \bar{t})\right)$ at \bar{t}. If $\bar{t}=+\infty$ (say), we solve the integral equation

$$
u(t)=S(t)\left(\left(v_{0}, v_{1}\right)\right)+\int_{t}^{+\infty} \frac{\sin \left(\left(t-t^{\prime}\right) \sqrt{-\Delta}\right)}{\sqrt{-\Delta}} F(u)\left(t^{\prime}\right) d t^{\prime}
$$

using the fact that $w(t)=\int_{t}^{\infty} \frac{\sin \left(\left(t-t^{\prime}\right) \sqrt{-\Delta}\right)}{\sqrt{-\Delta}} h\left(t^{\prime}\right) d t^{\prime}$ verifies the same Strichartz estimates as before, working now on $\mathbb{R}^{3} \times\left[t_{n_{0}},+\infty\right)$, where n_{0} is so large that $\left\|S(t)\left(v_{0}, v_{1}\right)\right\|_{S\left(t_{n_{0}},+\infty\right)}<\delta$. Then, $u\left(t_{n}\right)-v\left(t_{n}\right)=\int_{t_{n}}^{+\infty} \frac{\sin \left(\left(t-t^{\prime}\right) \sqrt{-\Delta}\right)}{\sqrt{-\Delta}} F(u)\left(t^{\prime}\right) d t^{\prime} \rightarrow$ 0 in $\dot{H}^{1} \times L^{2}$ since $D^{\frac{1}{2}} F(u) \in L^{\frac{4}{3}}\left(t>t_{n_{0}}\right) L_{x}^{\frac{4}{3}}$. It is easy to see that if $u^{(1)}, u^{(2)}$ are non-linear profiles associated to $\left(\left(v_{0}, v_{1}\right),\left\{t_{n}\right\}\right)$, on $I \ni \bar{t}, u^{(1)} \equiv u^{(2)}$ on I. Hence, there exists a maximal interval I of existence for the non-linear profile. Note that it might not contain 0 . Near finite end-points of I, the S norm is infinite, while if $\bar{t}=+\infty$ (say), $I=(a,+\infty)$, the S norm is finite near $+\infty$ by construction. In order to use these concepts to prove Proposition 2.14 , Proposition 2.15 , we will need:

Proposition 2.18. Let $\left\{\left(z_{0, n}, z_{1, n}\right)\right\} \in \dot{H}^{1} \times L^{2}$, with $\left\|\nabla z_{0, n}\right\|^{2}<\|\nabla W\|^{2}$ and $E\left(\left(z_{0, n}, z_{1, n}\right)\right) \rightarrow E_{c}<E((W, 0))$. Assume that $\left\|S(t)\left(z_{0, n}, z_{1, n}\right)\right\|_{S(-\infty,+\infty)} \geq \delta>$ 0 .

Let $\left(V_{0, j}, V_{1, j}\right)_{j=1}^{\infty}$ be as in the profile decomposition. Assume that one of
a) $\underline{\lim }_{n \rightarrow \infty} E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right)\right)<E_{c}$
b) $\underline{\lim }_{n \rightarrow \infty} E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right)\right)=E_{c}$, and
for $s_{n}=-\frac{t_{1, n}}{\lambda_{1, n}}$, after passing to a subsequence so that $s_{n} \rightarrow \bar{s} \in[-\infty,+\infty]$ and $E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right)\right) \rightarrow E_{c}$, if U_{1} is the non-linear profile associated to $\left(\left(V_{0,1}, V_{1,1}\right),\left\{s_{n}\right\}\right)$, then $I=(-\infty,+\infty),\left\|U_{1}\right\|_{S(-\infty,+\infty)}<\infty$.

Then, (after passing to a subsequence) if $\left\{z_{n}\right\}$ solves (NLW) with data $\left(z_{0, n}, z_{1, n}\right)$, we have $\left\|z_{n}\right\|_{S(-\infty,+\infty)}<\infty$ for n large (and in fact is uniformly bounded in n).

We first assume Proposition 2.18, and use it to prove Proposition 2.14, 2.15
Proof of Proposition 2.14. Find $\left(u_{0, n}, u_{1, n}\right) \in \dot{H}^{1} \times L^{2}, \int\left|\nabla u_{0, n}\right|^{2}<$ $\int|\nabla W|^{2}, E\left(\left(u_{0, n}, u_{1, n}\right)\right) \rightarrow E_{c},\left\|u_{n}\right\|_{S\left(I_{n}\right)}=+\infty, I_{n}=$ max interval. We must have

$$
\left\|S(t)\left(u_{0, n}, u_{1, n}\right)\right\|_{S(-\infty,+\infty)} \geq \delta>0
$$

by "the local theory of Cauchy problem". Since $E_{c}=\left(1-\delta_{0}\right) E((W, 0))$, for n large $E\left(\left(u_{0, n}, u_{1, n}\right)\right) \leq\left(1-\frac{\delta_{0}}{2}\right) E((W, 0))$. By energy trapping, $\exists \bar{\delta}$ such that
$\left\|\nabla u_{n}(t)\right\| \leq(1-\bar{\delta})\|\nabla W\|^{2}, t \in I_{n}$. Fix $J \geq 1$, applying the profile decomposition to $\left\{\left(u_{0, n}, u_{1, n}\right)\right\}$, after passing to a subsequence, we have

$$
\begin{array}{r}
\left\|\nabla u_{0, n}\right\|^{2}=\sum_{j=1}^{J}\left\|\nabla V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}+\left\|\nabla w_{0, n}^{J}\right\|^{2}+o(1) \\
\left\|u_{1, n}\right\|^{2}=\sum_{j=1}^{J}\left\|\partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}+\left\|w_{1, n}^{J}\right\|^{2}+o(1) \tag{2.20}
\end{array}
$$

$E\left(\left(u_{0, n}, u_{1, n}\right)\right)=\sum_{j=1}^{J} E\left(\left(V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right), \partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right)\right)+E\left(\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right)+o(1)$
From (2.21), for n large,

$$
\left\|\nabla w_{0, n}^{J}\right\| \leq\left(1-\frac{\bar{\delta}}{2}\right)\|\nabla W\|^{2},\left\|\nabla V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2} \leq\left(1-\frac{\bar{\delta}}{2}\right)\|\nabla W\|^{2}, 1 \leq j \leq J
$$

Hence, by energy trapping, for large n we have

$$
E\left(\left(V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right), \partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right)\right) \geq 0, E\left(\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right) \geq 0
$$

Thus, by $(2.21), E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right)\right) \leq E\left(\left(u_{0, n}, u_{1, n}\right)\right)+o(1)$ and so,

$$
\underline{\lim _{n \rightarrow \infty}} E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right)\right) \leq E_{c} .
$$

Assume first that we have strict inequality. Then, Proposition 2.18 a) gives a contradiction for large n. Thus, we must have $\underline{\lim }_{n \rightarrow \infty} E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right)\right)=$ E_{c}. Let U_{1} be the non-linear profile associated to $\left\{s_{n}=-\frac{t_{1, n}}{\lambda_{1, n}}\right\},\left(\left(V_{0,1}, V_{1,1}\right),\left\{s_{n}\right\}\right)$. The first observation is that $\left(V_{0, j}, V_{1, j}\right)=(0,0), j>1$. Indeed, by (2.21) and $E\left(\left(u_{0, n}, u_{1, n}\right)\right) \rightarrow E_{c}, E\left(\left(V_{1}^{l}\left(s_{n}\right), \partial_{t} V_{1}^{l}\left(s_{n}\right)\right)\right) \rightarrow E_{c}$ (after passing to a subsequence), we see that $E\left(\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right) \rightarrow 0$, and $E\left(\left(V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}, \partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right)\right) \rightarrow\right.$ $0, j \geq 2$. Hence, using coercivity in the x variable, ii) in Lemma 2.8, we see that $\left\|\nabla w_{0, n}^{J}\right\|^{2}+\sum_{j=2}^{J}\left\|\nabla V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2} \rightarrow 0$. But then, $\left\|w_{1, n}^{J}\right\|^{2}+\sum_{j=2}^{J}\left\|\partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}$ $\rightarrow 0$. Finally, since $\left\|\nabla V_{0, j}\right\|^{2}+\left\|V_{1, j}\right\|^{2}=\left\|\nabla V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}+\left\|\partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}$, we conclude $\left(V_{0, j}, V_{1, j}\right)=(0,0), 2 \leq j \leq J$. In addition, $\left\|\nabla w_{0, n}^{J}\right\|^{2}+\left\|w_{1, n}^{J}\right\|^{2} \rightarrow 0$, so that

$$
\begin{aligned}
& u_{0, n}=\frac{1}{\lambda_{1, n}^{\frac{1}{2}}} V_{1}^{l}\left(\frac{x-x_{1, n}}{\lambda_{1, n}}, s_{n}\right)+w_{0, n}^{J} \\
& u_{1, n}=\frac{1}{\lambda_{1, n}^{\frac{3}{2}}} \partial_{t} V_{1}^{l}\left(\frac{x-x_{1, n}}{\lambda_{1, n}}, s_{n}\right)+w_{1, n}^{J}
\end{aligned}
$$

with $\left\|\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right\|_{\dot{H}^{1} \times L^{2}} \rightarrow 0$. Renormalize, setting
$v_{0, n}=\lambda_{1, n}^{\frac{1}{2}} u_{0, n}\left(\lambda_{1, n}\left(x+x_{1, n}\right)\right), v_{1, n}=\lambda_{1, n}^{\frac{3}{2}} u_{1, n}\left(\lambda_{1, n}\left(x+x_{1, n}\right)\right)$. By scaling, translation invariance, $\left(v_{0, n}, v_{1, n}\right)$ has the same properties as $\left(u_{0, n}, u_{1, n}\right)$ and

$$
v_{0, n}=V_{1}^{l}\left(s_{n}\right)+\widetilde{w}_{0, n}^{J}, v_{1, n}=\partial_{t} V_{1}^{l}\left(s_{n}\right)+\widetilde{w}_{1, n}^{J}
$$

where $\left\|\left(\widetilde{w}_{0, n}, \widetilde{w}_{1, n}\right)\right\|_{\dot{H}^{1} \times L^{2}} \rightarrow 0$. Let $I_{1}=$ max interval of U_{1}. By definition of nonlinear profile, $E\left(U_{1}\left(s_{n}\right), \partial_{t} U_{1}\left(s_{n}\right)\right)=E\left(\left(V_{1}^{l}\left(s_{n}\right), \partial_{t} V_{1}^{l}\left(s_{n}\right)\right)\right)+o(1)=E_{c}+o(1)$, $\left\|\nabla U_{1}\left(s_{n}\right)\right\|^{2}=\left\|\nabla V_{1}^{l}\left(s_{n}\right)\right\|^{2}+o(1)=\left\|\nabla u_{0, n}\right\|^{2}+o(1)<\|\nabla W\|^{2}$, for n large. Fix $\bar{s} \in I_{1}$, then $E\left(\left(U_{1}(\bar{s}), \partial_{t} U_{1}(\bar{s})\right)\right)=E\left(\left(U_{1}\left(s_{n}\right), \partial_{t} U_{1}\left(s_{n}\right)\right)\right) \rightarrow E_{c}$, so that $E\left(\left(U_{1}(\bar{s}), \partial_{t} U_{1}(\bar{s})\right)\right)=E_{c}$. Also, $\left\|\nabla U_{1}\left(s_{n}\right)\right\|^{2}<\|\nabla W\|^{2}$ for n large, so that, by energy trapping, $\left\|\nabla U_{1}(\bar{s})\right\|^{2}<\|\nabla W\|^{2}$. If $\left\|\nabla U_{1}\right\|_{S\left(I_{1}\right)}<+\infty$, Proposition 2.18 b) gives a contradiction. Hence, $\left\|U_{1}\right\|_{S\left(I_{1}\right)}=+\infty$, we take $u_{c}=U_{1}$.

Proof of Proposition 2.15. : (By contradiction). Let $u(x, t)=u_{c}(x, t)$. If not, $\exists \eta_{0}>0,\left\{t_{n}\right\}_{n=1}^{\infty}, t_{n} \geq 0$ such that $\forall \lambda_{0} \in \mathbb{R}^{+}, x_{0} \in \mathbb{R}^{3}$ we have (after rescaling)

$$
\begin{aligned}
& \left\|\frac{1}{\lambda_{0}^{\frac{1}{2}}} u\left(\frac{x-x_{0}}{\lambda_{0}}, t_{n}\right)-u\left(\frac{x}{\lambda_{0}}, t_{n}^{\prime}\right)\right\|_{\dot{H}^{1}}^{2}+\left\|\frac{1}{\lambda_{0}^{\frac{3}{2}}} \partial_{t} u\left(\frac{x-x_{0}}{\lambda_{0}}, t_{n}\right)-\partial_{t} u\left(\frac{x}{\lambda_{0}}, t_{n}^{\prime}\right)\right\|_{\dot{H}^{1}}^{2} \\
& \geq \eta_{0}>0
\end{aligned}
$$

for $n \neq n^{\prime}$.
After passing to a subsequence, $t_{n} \rightarrow \bar{t} \in\left[0, T_{+}\left(u_{0}, u_{1}\right)\right]$ so that by continuity of the flow, $\bar{t}=T_{+}\left(u_{0}, u_{1}\right)$. By the local theory of the Cauchy problem, we can also assume $\left\|S(t)\left(u\left(t_{n}\right), \partial_{t} u\left(t_{n}\right)\right)\right\|_{S(0,+\infty)} \geq \delta>0$.

We apply the profile decomposition to $\left(v_{0, n}, v_{1, n}\right)=\left(u\left(t_{n}\right), \partial_{t} u\left(t_{n}\right)\right)$. We have $E\left(\left(u(t), \partial_{t} u(t)\right)\right)=E\left(\left(u_{0, c}, u_{1, c}\right)\right)=E_{c}<E((W, 0)),\left\|\nabla u_{0, c}\right\|^{2}<\|\nabla W\|^{2}$, so that $\|\nabla u(t)\|^{2} \leq(1-\bar{\delta})\|\nabla W\|^{2}, t \in I_{+}$. Then,
$\underline{\lim }_{n \rightarrow \infty} E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right) \leq E_{c}\right.$. If we have strict inequality, Propositoin 2.18 a) gives a contradiction. Hence we have equality and as in the previous proof, $\left(V_{0, j}, V_{1, j}\right)=0, j>1,\left\|\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right\|_{\dot{H}^{1} \times L^{2}} \rightarrow 0$.

Thus,

$$
\begin{aligned}
u\left(t_{n}\right) & =\frac{1}{\lambda_{1, n}^{\frac{1}{2}}} V_{1}^{l}\left(\frac{x-x_{1, n}}{\lambda_{1, n}},-\frac{t_{1, n}}{\lambda_{1, n}}\right)+w_{0, n}^{J} \\
\partial_{t} u\left(t_{n}\right) & =\frac{1}{\lambda_{1, n}^{\frac{3}{2}}} \partial_{t} V_{1}^{l}\left(\frac{x-x_{1, n}}{\lambda_{1, n}},-\frac{t_{1, n}}{\lambda_{1, n}}\right)+w_{1, n}^{J}
\end{aligned}
$$

$\left\|\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right\|_{\dot{H}^{1} \times L^{2}} \rightarrow 0$. Let $s_{n}=-\frac{t_{1, n}}{\lambda_{1, n}}$. We claim that s_{n} must be bounded. In fact, if $\frac{t_{1, n}}{\lambda_{1, n}} \leq-C_{0}, C_{0}$ a large positive constant, since for n large, $\left\|S(t)\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right\|_{S(-\infty,+\infty)} \leq \frac{\delta}{2}$ and

$$
\left\|\frac{1}{\lambda_{1, n}^{\frac{1}{2}}} V_{1}^{l}\left(\frac{x-x_{1, n}}{\lambda_{1, n}}, \frac{t-t_{1, n}}{\lambda_{1, n}}\right)\right\|_{S(0,+\infty)} \leq\left\|V_{1}^{l}\right\|_{S\left(C_{0},+\infty\right)} \leq \frac{\delta}{2}
$$

we reach a contradiction by the Perturbation Theorem (Theorem 1.12). If on the other hand, $\frac{t_{1, n}}{\lambda_{1, n}} \geq C_{0}, C_{0}$ large positive, for n large we have

$$
\left\|\frac{1}{\lambda_{1, n}^{\frac{1}{2}}} V_{1}^{l}\left(\frac{x-x_{1, n}}{\lambda_{1, n}}, \frac{t-t_{1, n}}{\lambda_{1, n}}\right)\right\|_{S(-\infty, 0)} \leq\left\|V_{1}^{l}\right\|_{S\left(,-\infty,-C_{0}\right)} \leq \frac{\delta}{2},
$$

for C_{0} large. Thus, for n large, we would have $\left\|S(t)\left(u\left(t_{n}\right), \partial_{t} u\left(t_{n}\right)\right)\right\|_{S(-\infty, 0)} \leq \delta$, so that Theorem 1.4 gives $\|u\|_{S\left(-\infty, t_{n}\right)} \leq 2 \delta$. But, $t_{n} \uparrow T_{+}\left(\left(u_{0}, u_{1}\right)\right)$, a contradiction. Thus, after passing to a subsequence, $\frac{t_{1, n}}{\lambda_{1, n}} \rightarrow t_{0} \in(-\infty,+\infty)$. But then,

$$
\begin{equation*}
\left\|\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right\|_{\dot{H}^{1} \times L^{2}} \rightarrow 0 \tag{2.22}
\end{equation*}
$$

gives that for $n \neq n^{\prime}$, both large,

$$
\begin{aligned}
& \left\|\frac{1}{\lambda_{0}^{\frac{1}{2}}} \frac{1}{\lambda_{1, n}^{\frac{1}{2}}} V_{1}^{l}\left(\frac{\frac{x-x_{0}}{\lambda_{0}}-x_{1, n}}{\lambda_{1, n}},-\frac{t_{1, n}}{\lambda_{1, n}}\right)-\frac{1}{\lambda_{1, n^{\prime}}^{\frac{1}{2}}} V_{1}^{l}\left(\frac{x-x_{1, n^{\prime}}}{\lambda_{1, n^{\prime}}}-\frac{t_{1, n^{\prime}}}{\lambda_{1, n^{\prime}}}\right)\right\|_{\dot{H}^{1}}^{2} \\
& +\left\|\frac{1}{\lambda_{0}^{\frac{3}{2}}} \frac{1}{\lambda_{1, n}^{\frac{3}{2}}} \partial_{t} V_{1}^{l}\left(\frac{\frac{x-x_{0}}{\lambda_{0}}-x_{1, n}}{\lambda_{1, n}},-\frac{t_{1, n}}{\lambda_{1, n}}\right)-\frac{1}{\lambda_{1, n^{\prime}}^{\frac{3}{2}}} \partial_{t} V_{1}^{l}\left(\frac{x-x_{1, n^{\prime}}}{\lambda_{1, n^{\prime}}}-\frac{t_{1, n^{\prime}}}{\lambda_{1, n^{\prime}}}\right)\right\|_{L^{2}}^{2} \\
& \geq \frac{\eta_{0}}{2} .
\end{aligned}
$$

for all λ_{0}, x_{0}. After changing variables, this gives, for all $\lambda_{0}, \widetilde{x}_{0}$, that

$$
\begin{aligned}
& \left\|\left(\frac{\lambda_{1, n^{\prime}}}{\lambda_{0} \lambda_{1, n}}\right)^{2} V_{1}^{l}\left(\frac{\lambda_{1, n^{\prime}} y}{\lambda_{0} \lambda_{1, n}}+x_{n, n^{\prime}}-\widetilde{x}_{0},-\frac{t_{1, n}}{\lambda_{1, n}}\right)-V_{1}^{l}\left(y,-\frac{t_{1, n^{\prime}}}{\lambda_{1, n^{\prime}}}\right)\right\|_{\dot{H}^{1}}^{2} \\
& +\left\|\left(\frac{\lambda_{1, n^{\prime}}}{\lambda_{0} \lambda_{1, n}}\right)^{\frac{3}{2}} \partial_{t} V_{1}^{l}\left(\frac{\lambda_{1, n^{\prime}} y}{\lambda_{0} \lambda_{1, n}}+x_{n, n^{\prime}}-\widetilde{x}_{0},-\frac{t_{1, n}}{\lambda_{1, n}}\right)-\partial_{t} V_{1}^{l}\left(y,-\frac{t_{1, n^{\prime}}}{\lambda_{1, n^{\prime}}}\right)\right\| \geq \frac{\eta_{0}}{2} .
\end{aligned}
$$

Choosing now $\lambda_{0}, \widetilde{x}_{0}$ suitably, this is a contradiction, since $\frac{t_{1, n^{\prime}}}{\lambda_{1, n^{\prime}}} \rightarrow t_{0}, \frac{t_{1, n}}{\lambda_{1, n}} \rightarrow t_{0}$.

Proof of Proposition 2.18. Assume first, that

$$
\underline{\lim } E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right)\right)=E_{c} .
$$

Fix $J \geq 1$ and note that, as in the proof of Proposition 2.14, we have $\left(V_{0, j}, V_{1, j}\right)=$ $(0,0), j>1,\left\|\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right\|_{\dot{H}^{1} \times L^{2}} \rightarrow 0$.

Moreover, if $v_{0, n}=\lambda_{1, n}^{\frac{1}{2}} z_{0, n}\left(\lambda_{1, n}\left(x+x_{1, n}\right)\right), v_{1, n}=\lambda_{1, n}^{\frac{3}{2}} z_{1, n}\left(\lambda_{1, n}\left(x+x_{1, n}\right)\right)$, $\widetilde{w}_{0, n}^{J}=\lambda_{1, n}^{\frac{1}{2}} w_{0, n}^{J}\left(\lambda_{1, n}\left(x+x_{1, n}\right)\right), \widetilde{w}_{1, n}^{J}=\lambda_{1, n}^{\frac{3}{2}} w_{1, n}^{J}\left(\lambda_{1, n}\left(x+x_{1, n}\right)\right)$, $\left\|\left(\widetilde{w}_{0, n}^{J}, \widetilde{w}_{1, n}^{J}\right)\right\|_{\dot{H}^{1} \times L^{2}} \rightarrow 0, v_{0, n}=V_{1}^{l}\left(s_{n}\right)+\widetilde{w}_{0, n}^{J}, v_{1, n}=\partial_{t} V_{1}^{l}\left(s_{n}\right)+\widetilde{w}_{1, n}^{J}$, with $E\left(\left(v_{0, n}, v_{1, n}\right)\right) \rightarrow E_{c}<E((W, 0)),\left\|\nabla v_{0, n}\right\|^{2}<\|\nabla W\|^{2}$. By definition of non-linear profile,

$$
\left\|\left(V_{1}^{l}\left(s_{n}\right)-U_{1}\left(s_{n}\right), \partial_{t} V_{1}^{l}\left(s_{n}\right)-\partial_{t} U_{1}\left(s_{n}\right)\right)\right\|_{\dot{H}^{1} \times L^{2}} \rightarrow 0
$$

so that $v_{0, n}=U_{1}\left(s_{n}\right)+\widetilde{\widetilde{w}}_{0, n}^{J}, v_{1, n}=\partial_{t} U_{1}\left(s_{n}\right)+\widetilde{\widetilde{w}}_{1, n}^{J},\left\|\left(\widetilde{\widetilde{w}}_{0, n}^{J}, \widetilde{\widetilde{w}}_{1, n}^{J}\right)\right\|_{\dot{H}^{1} \times L^{2}} \rightarrow 0$. From this, we see that $E\left(\left(U_{1}, \partial_{t} U_{1}\right)\right)=E_{c}<E((W, 0)),\left\|\nabla U_{1}\left(s_{n}\right)\right\|^{2}<\|\nabla W\|^{2}$,
for n large, so that, by Lemma 2.8, $\sup _{t \in I_{1}}\left\|\nabla U_{1}(t)\right\|^{2}<\|\nabla W\|^{2}$. Since $\left\|\left(\nabla \widetilde{\widetilde{w}}_{0, n}^{J}, \widetilde{{\widetilde{w_{1, n}}}^{J}}\right)\right\|_{L^{2} \times L^{2}} \rightarrow 0$, Theorem 1.12 now gives the case b). Assume next that

$$
\underline{\lim } E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right)\right)<E_{c}
$$

and, passing to a subsequence, $\lim E\left(\left(V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right), \partial_{t} V_{1}^{l}\left(-\frac{t_{1, n}}{\lambda_{1, n}}\right)\right)\right)<E_{c}$. We next show that $\underline{\lim } E\left(\left(V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right), \partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right)\right)<E_{c}, j=2, \ldots, J$. In fact,

$$
\begin{aligned}
& \left\|\nabla z_{0, n}\right\|^{2}=\sum_{j=1}^{J}\left\|\nabla V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}+\left\|\nabla w_{0, n}^{J}\right\|^{2}+o(1) \\
& \left\|z_{1, n}\right\|^{2}=\sum_{j=1}^{J}\left\|\partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}+\left\|w_{1, n}^{J}\right\|^{2}+o(1)
\end{aligned}
$$

and since $E\left(\left(z_{0, n}, z_{1, n}\right)\right) \rightarrow E_{c}<E((W, 0))$, for n large, $E\left(\left(z_{0, n}, z_{1, n}\right)\right) \leq(1-$ $\left.\delta_{0}\right) E((W, 0))$. Since $\left\|\nabla z_{0, n}\right\|^{2}<\|\nabla W\|^{2}$, Lemma 2.8 gives that $\left\|\nabla z_{0, n}\right\|^{2} \leq(1-$ $\bar{\delta})\|\nabla W\|^{2}$. Thus, for all n large, $\left\|\nabla V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2} \leq\left(1-\frac{\bar{\delta}}{2}\right)\|\nabla W\|^{2}$. Corollary 2.9 now shows that $E\left(\left(V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right), \partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right)\right) \geq 0, E\left(\left(w_{0, n}^{J}, w_{1, n}^{J}\right)\right) \geq 0$, $E\left(V_{1}^{l}\left(-s_{n}\right), \partial_{t} V_{1}^{l}\left(-s_{n}\right)\right) \geq C \alpha_{0}=\bar{\alpha}_{0}>0$, for n large (this fact follows from Lemma 2.8 ii)). Thus,

$$
E\left(\left(z_{0, n}, z_{1, n}\right)\right) \geq \overline{\alpha_{0}}+\sum_{j=2}^{J} E\left(\left(V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right), \partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right)\right)+o(1)
$$

so our claim follows from $E\left(\left(z_{0, n}, z_{1, n}\right)\right) \rightarrow E_{c}$.
Next, note that if U_{j} is the non-linear profile associated to $\left(\left(V_{0, j}, V_{1, j}\right),\left\{-\frac{t_{j, n}}{\lambda_{j, n}}\right\}\right)$, (after passing to a subsequence in n), then U_{j} exists for all time and $\left\|U_{j}\right\|_{S(-\infty,+\infty)}$ $<\infty, 1 \leq j \leq J$. In fact, for n large, $E\left(\left(V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right), \partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right)\right)<E_{c}$, so $E\left(\left(U_{j}, \partial_{t} U_{j}\right)\right)<E_{c}$ by definition of non-linear profile. Moreover, $\left\|\nabla V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2}$ $\leq\left\|\nabla z_{0, n}\right\|^{2}+o(1) \leq(1-\bar{\delta})\|\nabla W\|^{2}+o(1)$, so by Lemma 2.8 we have $\left\|\nabla U_{j}(t)\right\|<$ $\|\nabla W\|, \forall t \in I_{j}$. But then, by definition of $E_{c}, I_{j}=(-\infty,+\infty),\left\|U_{j}\right\|_{S(-\infty,+\infty)}<$ ∞. Next, note that $\exists j_{0}$ such that for $j \geq j_{0}$ we have

$$
\left\|U_{j}\right\|_{S(-\infty,+\infty)}^{2} \leq C\left\|\left(V_{0, j}, V_{1, j}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2}
$$

In fact, for J fixed, choosing n large, we have

$$
\begin{aligned}
\sum_{j=1}^{J}\left\|\nabla V_{0, j}\right\|^{2}+\left\|V_{1, j}\right\|^{2}= & \sum_{j=1}^{J}\left\|\nabla V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2} \\
& +\left\|\partial_{t} V_{j}^{l}\left(-\frac{t_{j, n}}{\lambda_{j, n}}\right)\right\|^{2} \leq\left\|\left(z_{0, n}, z_{1, n}\right)\right\|^{2}+o(1)
\end{aligned}
$$

Note that $\left\|\nabla z_{0, n}\right\|^{2}<\|\nabla W\|^{2}, E\left(z_{0, n}, z_{1, n}\right)<E((W, 0))$, so that the right hand side $<C\|\nabla W\|^{2}$. Hence, for $j \geq j_{0},\|\nabla V\|_{0, j}^{2}+\left\|V_{1, j}\right\|^{2} \leq \widetilde{\delta}$, where $\widetilde{\delta}$ is so small
that $\left\|S(t)\left(V_{0, j}, V_{1, j}\right)\right\|_{S(-\infty,+\infty)} \leq \delta$. From the definition of non-linear profile, this gives that $\left\|U_{j}\right\|_{S(-\infty,+\infty)} \leq 2 \delta$, and that

$$
\sup _{t}\left\|\left(U_{j}(t), \partial_{t} U_{j}(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}+\left\|D^{\frac{1}{2}} U_{j}\right\|_{W(-\infty,+\infty)} \leq C\left\|\left(V_{0, j}, V_{1, j}\right)\right\|_{\dot{H}^{1} \times L^{2}}
$$

But then, the integral equation for U_{j} gives $\left\|U_{j}\right\|_{S(-\infty,+\infty)} \leq C\left\|\left(V_{0, j}, V_{1, j}\right)\right\|_{\dot{H}^{1} \times L^{2}}$, as desired. Next, for $\varepsilon_{0}>0$, to be chosen, define

$$
H_{n, \varepsilon_{0}}=\sum_{j=1}^{J\left(\varepsilon_{0}\right)} \frac{1}{\lambda_{j, n}^{\frac{1}{2}}} U_{j}\left(\frac{x-x_{j, n}}{\lambda_{j, n}}, \frac{t-t_{j, n}}{\lambda_{j, n}}\right) .
$$

Then, we claim that $\left\|H_{n, \varepsilon_{0}}\right\|_{S(-\infty,+\infty)} \leq C_{0}$, uniformly in ε_{0}, for $n \geq n\left(\varepsilon_{0}\right)$. In fact,

$$
\begin{aligned}
& \left\|H_{n, \varepsilon_{0}}\right\|_{S(-\infty,+\infty)}^{8}=\iint\left[\sum_{j=1}^{J\left(\varepsilon_{0}\right)} \frac{1}{\lambda j, n^{\frac{1}{2}}} U_{j}\left(\frac{x-x_{j, n}}{\lambda_{j, n}}, \frac{t-t_{j, n}}{\lambda_{j, n}}\right)\right]^{8} \\
& \leq \sum_{j=1}^{J\left(\varepsilon_{0}\right)} \iint\left|\frac{1}{\lambda_{j, n}^{\frac{1}{2}}} U_{j}\left(\frac{x-x_{j, n}}{\lambda_{j, n}}, \frac{t-t_{j, n}}{\lambda_{j, n}}\right)\right|^{8} \\
& +C_{J\left(\varepsilon_{0}\right)} \sum_{j \neq j^{\prime}} \iint\left|\frac{1}{\lambda_{j, n}^{\frac{1}{2}}} U_{j}\left(\frac{x-x_{j, n}}{\lambda_{j, n}}, \frac{t-t_{j, n}}{\lambda_{j, n}}\right)\right|\left|\frac{1}{\lambda_{j, n}^{\frac{1}{2}}} U_{j}\left(\frac{x-x_{j, n}}{\lambda_{j, n}}, \frac{t-t_{j, n}}{\lambda_{j, n}}\right)\right|^{7} \\
= & I+I I .
\end{aligned}
$$

For n large, $I I \xrightarrow{n} 0$ by orthogonality of $\left(\lambda_{j, n}, x_{j, n}, t_{j, n}\right)$. Thus, for n large, $I I \leq I$. But,

$$
\begin{aligned}
I & \leq \sum_{j=1}^{j_{0}}\left\|U_{j}\right\|_{S(-\infty,+\infty)}^{8}+\sum_{j=j_{0}+1}^{J\left(\varepsilon_{0}\right)}\left\|U_{j}\right\|_{S(-\infty,+\infty)}^{8} \\
& \leq \sum_{j=1}^{j_{0}}\left\|U_{j}\right\|_{S(-\infty,+\infty)}^{8}+C \sum_{j=j_{0}+1}^{J\left(\varepsilon_{0}\right)}\left\|\left(V_{0, j}, V_{1, j}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{8} \\
& \leq \sum_{j=1}^{j_{0}}\left\|U_{j}\right\|_{S(-\infty,+\infty)}^{8}+C \sup _{j>j_{0}}\left\|\left(V_{0, j}, V_{1, j}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{6} \cdot \sum_{j>j_{0}}^{J\left(\varepsilon_{0}\right)}\left\|\left(V_{0, j}, V_{1, j}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2} \\
& \leq \frac{C_{0}}{2}
\end{aligned}
$$

as desired.
Let now $R_{n, \varepsilon_{0}}=H_{n, \varepsilon_{0}}^{5}-\sum_{j=1}^{J\left(\varepsilon_{0}\right)} \widetilde{U}_{j, n}^{5}$, where $\widetilde{U}_{j, n}=\frac{1}{\lambda_{j, n}^{\frac{1}{2}}} U_{j}\left(\frac{x-x_{j, n}}{\lambda_{j, n}}, \frac{t-t_{j, n}}{\lambda_{j, n}}\right)$. We have $\left\|D_{x}^{\frac{1}{2}} R_{n, \varepsilon_{0}}\right\|_{L_{t}^{\frac{4}{3}} L_{x}^{\frac{4}{3}}} \xrightarrow{n \rightarrow \infty} 0$. This uses orthogonality, the chain rule, $\left\|U_{j}\right\|_{S(-\infty,+\infty)}$ $<\infty,\left\|D^{\frac{1}{2}} U_{j}\right\|_{W(-\infty,+\infty)}<\infty$. We now define $\widetilde{u}=H_{n, \varepsilon_{0}}, e=R_{n, \varepsilon_{0}}$. Choose $J\left(\varepsilon_{0}\right)$ so large, that for n large, $\left\|S(t)\left(w_{0, n}^{J\left(\varepsilon_{0}\right)}, w_{1, n}^{J\left(\varepsilon_{0}\right)}\right)\right\|_{S(-\infty,+\infty)} \leq \frac{\varepsilon_{0}}{2}$. Note that by the profile decomposition, the definition of non-linear profile, we have, for n large $z_{0, n}=H_{n, \varepsilon_{0}}(0)+\widetilde{w}_{0, n}^{J\left(\varepsilon_{0}\right)}, z_{1, n}=\partial_{t} H_{n, \varepsilon_{0}}(0)+\widetilde{w}_{1, n}^{J\left(\varepsilon_{0}\right)}$, where, for n large
$\left\|S(t)\left(\widetilde{w}_{0, n}^{J\left(\varepsilon_{0}\right)}, \widetilde{w}_{1, n}^{J\left(\varepsilon_{0}\right)}\right)\right\|_{S(-\infty,+\infty)} \leq \varepsilon_{0}$. Arguments similar to those above also show that $\sup _{t}\left\|\left(H_{n, \varepsilon_{0}}(t), \partial_{t} H_{n, \varepsilon_{0}}(t)\right)\right\|_{\dot{H}^{1} \times L^{2}} \leq \widetilde{C_{0}}$, uniformly in ε_{0}, for n large, and $\left\|\left(\widetilde{w}_{0, n}^{J\left(\varepsilon_{0}\right)}, \widetilde{w}_{1, n}^{J\left(\varepsilon_{0}\right)}\right)\right\|_{\dot{H}^{1} \times L^{2}} \leq C\|\nabla W\|$. Choose now $\varepsilon_{0}<\varepsilon_{0}\left(C_{0}, \widetilde{C}_{0}, C\|\nabla W\|\right)$ as in Theorem 1.12, and n so large that $\left\|D_{x}^{\frac{1}{2}} R_{n, \varepsilon_{0}}\right\|_{L_{t}^{\frac{4}{3}} L_{x}^{\frac{4}{3}}} \leq \varepsilon_{0}$. Then, Theorem 1.12 gives Proposition 2.18 a). This concludes the concentration - compactness procedure.

CHAPTER 9

Soliton Resolution for Radial Solutions to (NLW), I

In this chapter, we start our discussion of the recent proof of the soliton resolution conjecture for radial solutions of (NLW), by Duyckaerts, Kenig and Merle, in [30] and [33]. The proofs in Chapters $9-11$ are from [33]. Notice that we have already had a preliminary discussion of soliton resolution in Remark 6.15.

For a long time there has been a widespread belief that global in time solutions of dispersive equations, asymptotically in time, decouple into a sum of finitely many modulated solitons, a free radiation term and a term that goes to 0 at infinity. Such a result should hold for globally well-posed equations, or in general, with the additional condition that the solution does not blow up. When dealing with an equation for which blow-up can occur, such decompositions are always expected to be unstable. So far, the only cases where results of the type have been proved are for the integrable KdV and NLS equations in one space dimension. For $\partial_{t} u+\partial_{x}^{3} u+u \partial_{x} u=0$, for data with regularity and decay, this has been established by Eckhaus-Schuur ([40]). Corresponding results for the other integrable KdV equation, the modified $\mathrm{KdV}, \partial_{t} u+\partial_{x}^{3} u+u^{2} \partial_{x} u=0$, were also obtained by the same authors via the Miura transform. Heuristic arguments for this conjecture, in the case of the cubic NLS in 1 -d, $i \partial_{t} u+\partial_{x}^{2} u+|u|^{2} u=0$, another integrable model, were given by Ablowitz-Segur [91] and Zakharov-Shabat [103]. For a rigorous proof in this case, see Novoksenov [86]. All of these equations are globally well-posed and so the decompositions are expected to be stable, unlike the case of equations for which blow-up may occur. For more general dispersive equations, so far results have only been found, for subcritical nonlinearities, for data close to the soliton. (Buslaev-Perelman [9], [10] for NLS with specific nonlinearities in $1 d$, Soffer-Weinstein [96], in higher dimensions, Martel-Merle for gKdV (generalized KdV equations) [76], ...). Corresponding results near the soliton, in the case of finite time blow-up for critical problems, are in the works of Martel-Merle for gKdV [77], Merle-Raphael [78] for mass critical NLS, etc. There have also been large solution results for critical equivariant wave maps into the sphere, due to Christodoulou-Tahvildar-Zadeh, Shatah-Tahvilder-Zadeh, Struwe, $[\mathbf{1 1}],[\mathbf{9 5}]$ and $[\mathbf{9 8}]$. These are results for finite time blow-up, which show convergence along some sequence of times converging to the blow-up time, locally in space-time, to a soliton (harmonic map). Recently, this has been strengthened (with size restrictions) in works of Côte-Kenig-Lawrie-Schlag [14], [15] and by Côte [13] without size restriction, but only for a sequence of times.

In the finite time blow-up case, for the 1- d nonlinear wave equation, Merle-Zaag have obtained results of the "resolution" type, through the use of a global Lyapunov functional in self-similar variables [82]. Also, in critical problems of elliptic type,
there have been "towering bubbles" detected in asymptotic problems, where the size of an excluded hole goes to 0 , see [84], etc.

The first general results for radial solutions of (NLW), were obtained in [30]. They held for extended type II solutions, for a specific sequence of times. We now have the full soliton resolution for radial solutions of (NLW), in the two asymptotic regimes, finite time type II blow-up, and global in time. Our result here is, [33]:

Theorem 9.1. Let u be a radial solution of (NLW). Then, one of the following holds:
a) Type I blow-up: $T_{+}<\infty$ and

$$
\lim _{t \uparrow T_{+}}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}=\infty
$$

b) Type II blow-up: $T_{+}<\infty$ and $\exists\left(v_{0}, v_{1}\right) \in \dot{H}^{1} \times L^{2}, J \in \mathbb{N} \backslash\{0\}$ and $\forall j \in\{1, \ldots, J\}, i_{j} \in\{ \pm 1\}$ and $\lambda_{j}(t)>0$ such that $0<\lambda_{1}(t) \ll \lambda_{2}(t) \ll$ $\cdots \ll \lambda_{J}(t) \ll T_{+}-t$, and $\left(u(t), \partial_{t} u(t)\right)=\left(\sum_{j=1}^{J} \frac{i_{j}}{\lambda_{j}(t)^{\frac{1}{2}}} W\left(\frac{x}{\lambda_{j}(t)}\right), 0\right)+$ $\left(v_{0}, v_{1}\right)+o(1)$ in $\dot{H}^{1} \times L^{2}$.
c) $T_{+}=\infty$ and \exists a solution v_{L} of $(\mathrm{LW}), J \in \mathbb{N}$ and for all $j \in\{1, \ldots, J\}, i_{J}$ $\in\{ \pm 1\}, \lambda_{j}(t)>0$ such that $0<\lambda_{1}(t) \ll \lambda_{2}(t) \ll \cdots \ll \lambda_{J}(t) \ll t$, and $\left(u(t), \partial_{t} u(t)\right)=\left(\sum_{j=1}^{J} \frac{i_{j}}{\lambda_{j}(t)^{\frac{1}{2}}} W\left(\frac{x}{\lambda_{j}(t)}\right), 0\right)+\left(v_{L}(t), \partial_{t} v_{L}(t)\right)+o(1)$ in $\dot{H}^{1} \times L^{2}$.
Here, $a(t) \ll b(t)$ as $t \rightarrow T(T<\infty$, or $T= \pm \infty)$ means $\lim _{t \rightarrow T} \frac{a(t)}{b(t)}=0$.
Remark 9.2. When $\left.\left.T_{+}<\infty, \mathrm{a}\right), \mathrm{b}\right)$ imply that $\lim _{t \uparrow T_{+}}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}=$ l exist, $l \in\left[\|\nabla W\|^{2},+\infty\right]$, i.e., solutions split into type I, II, no mixed asymptotics exist. Recall that both type I, II blow-up exist. We expect that solutions as in b), with $J>1$, exist. For the 1-d nonlinear wave equation this has been shown by Côte-Zaag [18].

As mentioned earlier, in the elliptic setting, "towering bubbles" do exist [84].
Remark 9.3. When $T_{+}=\infty$, c) in particular implies that $\sup _{t>0}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}<\infty$. More precisely, $\limsup _{t \uparrow \infty}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2}$ $=l$ and $2 E\left(u_{0}, u_{1}\right) \leq l \leq 3 E\left(u_{0}, u_{1}\right)$. Also, $J \leq \frac{E\left(u_{0}, u_{1}\right)}{E(W, 0)}$.

In this case we also expect that solutions with $J>1$ exist.
Remark 9.4. It is known that the set S_{1} of initial data such that the corresponding solution scatters to a linear solution is open. It is believed that the set S_{2} of initial data leading to type I blow-up is also open. Theorem 9.1 gives a description of solutions whose data is in S_{3}, the complement of $S_{1} \cup S_{2}$. We believe that from Theorem 9.1 one can show that S_{3} is the boundary of $S_{1} \cup S_{2}$. In particular, we conjecture that the asymptotic behavior of data in S_{3} is unstable.

A fundamental new ingredient of the proof of Theorem 9.1 is the following dispersive property that all global in time radial solutions to (NLW) (other than $0, \pm W$ up to scaling) must have:
(9.5)

$$
\int_{|x|>R+|t|}\left|\nabla_{x, t} u(x, t)\right|^{2} d x \geq \eta, \text { for some } R>0, \eta>0 \text { and all } t \geq 0 \text { or all } t \leq 0
$$

We establish this only using the behavior of u in "outside regions", $|x|>R+|t|$, without using any global integral identity of virial or Pohozaev type. (This can also be used to give a new proof of the results of Pohozaev (elliptic) and also of the rigidity theorem, Theorem 4.17, in an important special case, as we will see).

Remark. With Lawrie and Schlag [58], we have used these ideas to give a soliton resolution in a stable situation, for 1-equivariant wave maps from $\mathbb{R}^{3} \backslash B_{1}$ into S^{3}, thus establishing a conjecture of Bizon-Chmaj-Maliborski $[\mathbf{7}]$. This shows that the ideas in the proof of Theorem 9.1 can also apply to show stable soliton resolutions. The extension to the general k-equivariant case has been recently carried out by Kenig-Lawrie-Liu-Schlag [56], [57].

We now turn to the proof of Theorem 9.1.
We start with some notation and preliminary results. We will give the proof of c), the one of a), b) being similar.

Let $\left(u_{0}, u_{1}\right) \in \dot{H}^{1} \times L^{2}, R>0$, radial. We define

$$
\begin{equation*}
\left(\widetilde{u_{0}}, \widetilde{u_{1}}\right)=\Psi_{R}\left(u_{0}, u_{1}\right) \tag{9.6}
\end{equation*}
$$

by:

$$
\begin{aligned}
& \widetilde{u_{0}}(r)=\left\{\begin{array}{r}
u_{0}(r) \text { if } r \geq R \\
u_{0}(R) \text { if } 0<r<R
\end{array}\right. \\
& \widetilde{u_{1}}(r)=\left\{\begin{array}{r}
u_{1}(r) \text { if } r \geq R \\
0 \text { if } 0<r<R
\end{array}\right.
\end{aligned}
$$

Note that $\left(\widetilde{u_{0}}, \widetilde{u_{1}}\right) \in \dot{H}^{1} \times L^{2},\left(u_{0}(r), u_{1}(r)\right)=\left(\widetilde{u_{0}}(r), \widetilde{u_{1}}(r)\right)$ for $r \geq R$ and $\left\|\left(\widetilde{u_{0}}, \widetilde{u_{1}}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2}=\int_{|x|>R}\left|\nabla u_{0}\right|^{2}+u_{1}^{2}$. We will need the following version of the "local theory of the Cauchy problem", involving potentials.

Lemma 9.7. $\exists \delta_{0}>0$ such that if $0 \in I, V=V(x, t) \in L^{8}\left(\mathbb{R}^{3} \times I\right)$ and

$$
\begin{aligned}
& \|V\|_{L^{8}\left(\mathbb{R}^{3} \times I\right)}+\left\|D_{x}^{\frac{1}{2}} V\right\|_{L^{4}\left(\mathbb{R}^{3} \times I\right)}+\left\|D_{x}^{\frac{1}{2}} V^{2}\right\|_{L^{\frac{8}{3}}\left(\mathbb{R}^{3} \times I\right)}+\left\|D_{x}^{\frac{1}{2}} V^{3}\right\|_{L^{2}\left(\mathbb{R}^{3} \times I\right)} \\
& +\left\|D_{x}^{\frac{1}{2}} V^{4}\right\|_{L^{\frac{8}{5}}\left(\mathbb{R}^{3} \times I\right)} \leq \delta_{0},\left\|\left(h_{0}, h_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}} \leq \delta_{0}
\end{aligned}
$$

then \exists ! solution h of

$$
\left\{\begin{align*}
\partial_{t}^{2}-\Delta h & =5 v^{4} h+10 v^{3} h^{2}+10 v^{2} h^{3}+h^{5}+5 h^{4} v=(v+h)^{5}-v^{5} \tag{9.8}\\
\left.h\right|_{t=0} & =h_{0} \\
\left.\partial_{t} h\right|_{t=0} & =h_{1}
\end{align*}\right.
$$

with $\vec{h}=\left(h, \partial_{t} h\right) \in C\left(I ; \dot{H}^{1} \times L^{2}\right), h \in L^{8}\left(\mathbb{R}^{3} \times I\right)$. Also, letting h_{L} be the solution of the (LW), we have

$$
\sup _{t \in I}\left\|h \overrightarrow{(t)}-\overrightarrow{h_{L}(t)}\right\|_{\dot{H}^{1} \times L^{2}} \leq \frac{1}{10}\left\|\left(h_{1}, h_{2}\right)\right\|_{\dot{H}^{1} \times L^{2}}
$$

The proof ([33]) is the same as the one of the "local theory of the CP" of (NLW) (See Theorem 1.4, Remark 1.6). In our applications, we will use the following remark:

Remark 9.9.

a) $V(x, t)=W(x)$. Then \exists small $t_{0}>0$ such that the conditions hold, with $I=\left(-2 t_{0}, 2 t_{0}\right)$.
b)

$$
V(x, t)=\left\{\begin{array}{r}
W(x), \text { if }|x|>R_{0}+|t| \\
W\left(R_{0}+|t|\right), \text { if }|x| \leq R_{0}+|t|
\end{array}\right.
$$

where $R_{0}>0$. Then, for R_{0} large, the conditions hold with $I=(-\infty,+\infty)$.
Remark 9.9 is proved using the Leibniz rule for fractional derivatives (See [33], Appendix A).

To motivate what follows, we start out by pointing out the following "dispersive property" of non-zero solutions v to (LW): $\exists R>0, \eta>0$ such that for all $t \geq 0$, or for all $t \leq 0$,

$$
\int_{|x| \geq R+|t|}|\nabla v(x, t)|^{2}+\left(\partial_{t} v(x, t)\right)^{2} d x \geq \eta>0 .
$$

Indeed, if $\int\left|\nabla v_{0}\right|^{2}+v_{1}^{2} \neq 0$, since, as we saw earlier, this equals $\int_{0}^{\infty}\left[\partial_{r}\left(r v_{0}\right)\right]^{2}+$ $\left(r v_{0}\right)^{2} d r \neq 0$, we can find $R>0$ such that $\int_{R}^{\infty}\left[\partial_{r}\left(r v_{0}\right)\right]^{2}+\left(r v_{1}\right)^{2} d r \geq 2 \eta>0$. By our outer energy lower bound, Corollary 7.6 , for $t \geq 0$ or for $t \leq 0$, we have $\int_{|x| \geq R+|t|}|\nabla v(x, t)|^{2}+\left(\partial_{t} v(x, t)\right)^{2} d x \geq \eta>0$, as claimed. We call this property the "channel of energy" property. We will extend this property to non-zero radial solutions of (NLW), which are global in time and which are not scalings of W, thus providing a dynamical characterization of W.

We start out with two simple claims which will clarify the result.
Claim 9.10. Let u be a solution of (NLW), which exists for all time (positive). Then, $\lim _{R \rightarrow \infty} \sup _{t>0} \int_{|x|>t+R}|\nabla u(t)|^{2}+\left|\partial_{t} u(t)\right|^{2}=0$.

Proof. Let $\eta>0$ be given, choose R_{0} large such that $\int_{|x|>R_{0}}\left|\nabla u_{0}\right|^{2}+u_{1}^{2} \leq \eta^{2}$. Let $\left(\widetilde{u_{0, R_{0}}}, \widetilde{u_{1, R_{0}}}\right)=\Psi_{R_{0}}\left(u_{0}, u_{1}\right)$. For η small, $\widetilde{u_{R_{0}}}$ exists for all time, scatters and we have $\sup _{t}\| \|_{\vec{u}}^{R_{0}}(t) \|_{\dot{H}^{1} \times L^{2}} \leq C \eta$. But, finite speed of propagation shows that for $|x| \geq R_{0}+t, \widetilde{u}_{R_{0}}(x, t)=u(x, t)$, giving our result.

Claim 9.11. Let u be a global in time solution of (NLW), such that for some $R>0, \overline{\lim }_{t \uparrow \infty} \int_{|x|>R+t}|\nabla u(t)|^{2}+\left|\partial_{t} u(t)\right|^{2}>0$. Then, $\exists \eta>0$ such that $\int_{|x|>R+t}|\nabla u(t)|^{2}+\left|\partial_{t} u(t)\right|^{2} \geq \eta, \forall t \geq 0$.

Proof. If not, $\exists\left\{t_{n}\right\}, t_{n} \geq 0$ such that $t_{n} \uparrow \bar{t} \in(0, \infty]$, and

$$
\lim _{n \rightarrow \infty} \int_{|x| \geq R+t_{n}}\left|\nabla u\left(t_{n}\right)\right|^{2}+\left|\partial_{t} u\left(t_{n}\right)\right|^{2}=0 .
$$

Let u_{n} be the solution of (NLW) such that

$$
\left(u_{n}\left(t_{n}\right), \partial_{t} u_{n}\left(t_{n}\right)\right)=\Psi_{R+t_{n}}\left(u\left(t_{n}\right), \partial_{t} u\left(t_{n}\right)\right) .
$$

Then, $\lim _{n}\left\|\left(u_{n}\left(t_{n}\right), \partial_{t} u_{n}\left(t_{n}\right)\right)\right\|_{\dot{H}^{1} \times L^{2}}=0$. Thus, for large n, u_{n} exists globally and scatters. By the small data theory, if $\varepsilon>0$ is given and n is chosen so large that

$$
\left\|\overrightarrow{u_{n}}\left(t_{n}\right)\right\|_{\dot{H}^{1} \times L^{2}} \leq \varepsilon,
$$

then for all $t,\left\|\overrightarrow{u_{n}}(t)\right\|_{\dot{H}^{1} \times L^{2}} \leq C \varepsilon$. By finite speed of propagation, for all t, we have

$$
\overrightarrow{u_{n}}\left(t_{n}+t\right)=\vec{u}\left(t_{n}+t\right)
$$

for $|x|>R+t_{n}+|t|$. Hence, $\varlimsup_{t \uparrow \infty} \int_{|x| \geq R+t}\left|\nabla_{x} u(t)\right|^{2}+\left|\partial_{t} u(t)\right|^{2}<C \varepsilon$. Since $\varepsilon>0$ is arbitrary, we reach a contradiction.

Remark 9.12. Both claims are also valid for $t \leq 0$.
Proposition 9.13. Let u be a global in time, radial solution of (NLW) such that for some $R>0$,

$$
\lim _{t \uparrow+\infty} \int_{|x|>R+t}|\nabla u(t)|^{2}+\left(\partial_{t} u(t)\right)^{2}=\lim _{t \downarrow-\infty} \int_{|x|>R+|t|}|\nabla u(t)|^{2}+\left(\partial_{t} u(t)\right)^{2}=0
$$

Then, either $\left(u_{0}, u_{1}\right)$ is compactly supported, or $\exists \lambda>0, i \in\{ \pm 1\}$ such that $\left(u_{0}, u_{1}\right)$ - $\left(\frac{i}{\lambda^{\frac{1}{2}}} W\left(\frac{x}{\lambda}\right), 0\right)$ is compactly supported.

In order to prove Proposition 9.13, we need a couple of lemmas.
Lemma 9.14. Let u be as in Proposition 9.13. Let $v(r, t)=r u, v_{0}=r u_{0}, v_{1}=$ $r u_{1}$. Then, there exists $C_{0}>0$ such that if for some $r_{0}>0$ we have

$$
\int_{r_{0}}^{\infty}\left[\left(\partial_{r} u_{0}\right)^{2}+u_{1}^{2}\right] r^{2} d r \leq \delta_{0}
$$

where δ_{0} is small, then

$$
\int_{r_{0}}^{\infty}\left[\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}\right] d r \leq C_{0} \frac{\left|v_{0}\left(r_{0}\right)\right|^{10}}{r_{0}^{5}}
$$

Furthermore, for $r, r^{\prime}, r_{0} \leq r \leq r^{\prime} \leq 2 r$, we have

$$
\left|v_{0}(r)-v_{0}\left(r^{\prime}\right)\right| \leq \sqrt{C_{0}} \frac{\left|v_{0}(r)\right|^{5}}{r^{2}} \leq \sqrt{C_{0}} \delta_{0}^{2}\left|v_{0}(r)\right|
$$

Proof. Assume first the first statement. We then show the second one. By the fundamental theorem,

$$
\begin{aligned}
\left|v_{0}(r)-v_{0}\left(r^{\prime}\right)\right| & \leq\left|\int_{r}^{r^{\prime}} \partial_{r} v_{0}(s) d s\right| \leq \sqrt{r} \sqrt{\int_{r}^{\infty}\left[\partial_{r} v_{0}(s)\right]^{2} d s} \\
& \leq \sqrt{C_{0} r} \frac{\left|v_{0}(r)\right|^{5}}{r_{0}^{5}}=\sqrt{C_{0}} \frac{\left|v_{0}(r)\right|^{5}}{r_{0}^{2}}
\end{aligned}
$$

Also, if $r \geq r_{0}, \frac{1}{r} v_{0}^{2}(r)=r u_{0}^{2}(r) \leq \int_{r}^{\infty}\left[\partial_{s} u_{0}(s)\right]^{2} s^{2} d s \leq \delta_{0}$, which gives the second inequality in the last line of the statement.

We now prove the first inequality. Let u_{L} be the solution of (LW), with data (u_{0}, u_{1}) and let $v_{L}=r u_{L}$. By Corollary 7.6 (outer energy lower bound), for all $t \geq 0$, or for all $t \leq 0$,

$$
\int_{r_{0}+|t|}^{\infty}\left[\left(\partial_{r} u_{L}(t)\right)^{2}+\left(\partial_{t} u_{L}(t)\right)^{2}\right] r^{2} d r \geq \frac{1}{2} \int_{r_{0}}^{\infty}\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}
$$

Let now $\left(\widetilde{u_{0}}, \widetilde{u_{1}}\right)=\Psi_{r_{0}}\left(u_{0}, u_{1}\right), \widetilde{u_{L}}$ the solution of (LW) with data $\left(\widetilde{u_{0}}, \widetilde{u_{1}}\right)$. By assumption, $\left\|\left(\widetilde{u_{0}}, \widetilde{u_{1}}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{2} \leq \delta_{0}$. If δ_{0} is taken small enough, the "local theory of the Cauchy problem" (Theorem 1.4, Remark 1.6) gives that for all $t \in \mathbb{R}$,

$$
\begin{aligned}
& \left\|\left(\overrightarrow{\vec{u}}-\vec{u}_{L}\right)(t)\right\|_{\dot{H}^{1} \times L^{2}} \leq C\left\|\left(\widetilde{u_{0}}, \widetilde{u_{1}}\right)\right\|_{\dot{H}^{1} \times L^{2}}^{5} \\
& =C\left[\int_{r_{0}}^{\infty}\left(\left[\partial_{r} u_{0}\right]^{2}+u_{1}^{2}\right) r^{2} d r\right]^{\frac{5}{2}} \\
& \stackrel{\text { (integration by parts) }}{=} C\left[\int_{r_{0}}^{\infty}\left(\left[\partial_{r} v_{0}\right]^{2}+v_{1}^{2}\right) d r+r_{0} u_{0}^{2}\left(r_{0}\right)\right]^{\frac{5}{2}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{r_{0}+|t|}^{\infty}\left(\left[\partial_{r} \widetilde{u}_{L}(t)\right]^{2}+\left[\partial_{t} \widetilde{u}_{L}(t)\right]^{2}\right) r^{2} d r \leq & 2 \int_{r_{0}+|t|}^{\infty}\left(\left[\partial_{r} \widetilde{u}(t)\right]^{2}+\left[\partial_{t} \widetilde{u}(t)\right]^{2}\right) r^{2} d r \\
& +C\left[\int_{r_{0}}^{\infty}\left[\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}\right] d r+r_{0} u_{0}^{2}\left(r_{0}\right)\right]^{5} .
\end{aligned}
$$

By finite speed of propagation, $\vec{u}(r, t)=\overrightarrow{\widetilde{u}}(r, t)$ and $\vec{u}_{L}(r, t)=\overrightarrow{\vec{u}}_{L}(r, t)$, for $r>$ $r_{0}+|t|$. Thus,

$$
\begin{aligned}
\int_{r_{0}+|t|}^{\infty}\left(\left[\partial_{r} u_{L}(t)\right]^{2}+\left[\partial_{t} u_{L}(t)\right]^{2}\right) r^{2} d r \leq & 2 \int_{r_{0}+|t|}^{\infty}\left(\left[\partial_{r} u(t)\right]^{2}+\left[\partial_{t} u(t)\right]^{2}\right) r^{2} d r \\
& +C\left[\int_{r_{0}}^{\infty}\left[\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}\right] d r+r_{0} u_{0}^{2}\left(r_{0}\right)\right]^{5} .
\end{aligned}
$$

Combining this with our outer energy lower for u_{L}, we see that, for all $t \geq 0$, or for all $t \leq 0$,

$$
\begin{aligned}
\int_{r_{0}}^{\infty}\left[\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}\right] d r \leq & 4 \int_{r_{0}+|t|}^{\infty}\left(\left[\partial_{r} u(t)\right]^{2}+\left[\partial_{t} u(t)\right]^{2}\right) r^{2} d r \\
& +C\left[\int_{r_{0}}^{\infty}\left[\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}\right] d r+r_{0} u_{0}^{2}\left(r_{0}\right)\right]^{5}
\end{aligned}
$$

Letting $t \rightarrow \pm \infty$, according to whether the above holds for $t \geq 0$, or $t \leq 0$ and using our hypothesis, we obtain

$$
\int_{r_{0}}^{\infty}\left[\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}\right] d r \leq C\left[\int_{r_{0}}^{\infty}\left[\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}\right] d r+r_{0} u_{0}^{2}\left(r_{0}\right)\right]^{5}
$$

Since $\int_{r_{0}}^{\infty}\left[\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}\right] d r \leq \int_{0}^{\infty}\left[\left(\partial_{r} u_{0}\right)^{2}+u_{1}^{2}\right] r^{2} d r \leq \delta_{0}$, if δ_{0} is small we can neglect this term in the right hand side. Noticing that $r_{0}^{5} u_{0}^{10}\left(r_{0}\right)=\frac{v_{0}^{10}\left(r_{0}\right)}{r_{0}^{5}}$, we obtain

$$
\int_{r_{0}}^{\infty}\left[\left(\partial_{r} v_{0}\right)^{2}+v_{1}^{2}\right] d r \leq C \frac{v_{0}^{10}\left(r_{0}\right)}{r_{0}^{5}}
$$

as desired.
Lemma 9.15. The function $v_{0}(r)$ has a limit $l \in \mathbb{R}$ as $r \rightarrow \infty$. Furthermore, $\exists C>0$ such that $\forall r \geq 1,\left|v_{0}(r)-l\right| \leq \frac{C}{r^{2}}$.

Proof. First note that $\exists C>0$ such that

$$
\left|v_{0}(r)\right| \leq C r^{\frac{1}{10}}
$$

Indeed, by the second bound in the second line in Lemma 9.14,

$$
\left|v_{0}\left(2^{n+1} r_{0}\right)-v_{0}\left(2^{n} r_{0}\right)\right| \leq \sqrt{C_{0}} \delta_{0}^{2}\left|v_{0}\left(2^{n} r_{0}\right)\right|
$$

so that $\mid v_{0}\left(2^{n+1} r_{0}\left|\leq\left[1+\sqrt{C_{0}} \delta_{0}^{2}\right]\right| v_{0}\left(2^{n} r_{0}\right) \mid\right.$. Iterating, we obtain $\left|v_{0}\left(2^{n} r_{0}\right)\right| \leq$ $\left[1+\sqrt{C_{0}} \delta_{0}^{2}\right]^{n}\left|v_{0}\left(r_{0}\right)\right|$. Choosing a smaller δ_{0} if necessary, we can assume that $\left(1+\sqrt{C_{0}} \delta_{0}^{2}\right) \leq 2^{\frac{1}{10}}$, which then shows that

$$
\left|v_{0}\left(2^{n} r_{0}\right)\right| \leq 2^{\frac{n}{10}}\left|v_{0}\left(r_{0}\right)\right|
$$

This shows the inequality for $r=2^{n} r_{0}$. The general case follows from the difference estimate in the second bound in the second line in Lemma 9.14.

Next, we prove that

$$
\lim _{r \rightarrow \infty} v_{0}(r)=l \in \mathbb{R}
$$

By the first inequality in the second line of the conclusion in Lemma 9.14, we have, for $n \in \mathbb{N}$,

$$
\left|v_{0}\left(2^{n} r_{0}\right)-v_{0}\left(2^{n+1} r_{0}\right)\right| \leq \sqrt{C_{0}} \frac{\left|v_{0}\right|\left(2^{n} r_{0}\right)^{5}}{\left(2^{n} r_{0}\right)^{2}}
$$

Using our bound on $\left|v_{0}(r)\right|$, we then obtain

$$
\left|v_{0}\left(2^{n} r_{0}\right)-v_{0}\left(2^{n+1} r_{0}\right)\right| \leq \frac{C}{\left[2^{n}\right]^{2-\frac{5}{10}}}=\frac{C}{2^{\frac{3 n}{2}}}
$$

Hence, $\sum_{n \geq 0}\left|v_{0}\left(2^{n} r_{0}\right)-v_{0}\left(2^{n+1} r_{0}\right)\right|<\infty$, which gives that $\lim _{n \rightarrow \infty} v_{0}\left(2^{n} r\right)=l \in$ \mathbb{R}. Using again that $\left|v_{0}(r)\right| \leq C r^{\frac{1}{10}}$ and our difference estimate, we conclude that $\lim _{r \rightarrow \infty} v_{0}(r)=l$.

Now, since $v_{0}(r)$ converges as $r \rightarrow \infty$, it is bounded. Thus, for $r \geq r_{0}, n \in \mathbb{N}$,

$$
\left|v_{0}\left(2^{n+1} r\right)-v_{0}\left(2^{n} r\right)\right| \leq \frac{C}{\left(2^{n} r\right)^{2}}
$$

by the first estimate in the second line of Lemma 9.14. Adding, we get

$$
\left|l-v_{0}(r)\right|=\left|\sum_{n \geq 0}\left[v_{0}\left(2^{n+1} r\right)-v_{0}\left(2^{n} r\right)\right]\right| \leq \frac{C}{r^{2}} \sum_{n \geq 0} \frac{1}{4^{n}}=\frac{C}{r^{2}}
$$

as desired.
We now conclude the proof of Proposition 9.13. We distinguish two cases, $l=0$ and $l \neq 0$.

Case $l=0$: In this case we will show that $\left(v_{0}, v_{1}\right)$ is compactly supported.
Fix a large r and use the second inequality in Lemma 9.14, together with the smallness of δ_{0}, to see that

$$
\left|v_{0}\left(2^{n+1} r\right)-v_{0}\left(2^{n} r\right)\right| \leq \sqrt{C_{0}} \delta_{0}^{2}\left|v_{0}\left(2^{n} r\right)\right| \leq \frac{1}{4}\left|v_{0}\left(2^{n} r\right)\right|
$$

and hence, $\left|v_{0}\left(2^{n+1} r\right)\right| \geq \frac{3}{4}\left|v_{0}\left(2^{n} r\right)\right|$. Iterating, we get $\left|v_{0}\left(2^{n} r\right)\right| \geq$
$\left(\frac{3}{4}\right)^{n}\left|v_{0}(r)\right|$. Since $l=0$, Lemma 9.15 gives that $\left|v_{0}\left(2^{n} r\right)\right| \leq \frac{C}{2^{2 n} r^{2}}=\frac{C}{4^{n} r^{2}}$.

Hence for all $n \in \mathbb{N},\left|v_{0}(r)\right|\left(\frac{3}{4}\right)^{n} \leq \frac{C}{4^{n} r^{2}}$, which shows that $v_{0}(r) \equiv 0$ for $r>r_{0}$. Since, by the first inequality in Lemma 9.14, we have

$$
\int_{r}^{\infty}\left[\partial_{s} v_{0}(s)+v_{1}^{2}(s)\right] d s \leq C_{0} \frac{\left|v_{0}(r)\right|^{10}}{r^{5}}
$$

we see that v_{1} also has compact support.
Case $l \neq 0$: In this case, we show that $\exists \lambda>0$ and sign \pm such that

$$
\left(u_{0} \pm \frac{1}{\lambda^{\frac{1}{2}}} W\left(\frac{x}{\lambda}\right), u_{1}\right)
$$

has compact support.
Note that, for large $r,\left|\frac{1}{\lambda^{\frac{1}{2}}} W\left(\frac{r}{\lambda}\right)-\frac{\sqrt{3} \lambda^{\frac{1}{2}}}{r}\right| \leq \frac{C}{r^{3}}$, which follows from $W(r)=\frac{1}{\left(1+\frac{r^{2}}{3}\right)^{\frac{1}{2}}}$. Hence, Lemma 9.15 implies that $\exists C>0$ such that

$$
\left| \pm \frac{1}{\lambda^{\frac{1}{2}}} W\left(\frac{x}{\lambda}\right)-u_{0}(r)\right| \leq \frac{C}{r^{3}}
$$

where $\lambda=\frac{l^{2}}{3}$, and the sign \pm is the sign of l (by Lemma 9.15, $\left|r u_{0}(r)-l\right| \leq$ $\frac{C}{r^{2}}, r \geq 1$).

Rescaling u and possibly replacing u by $-u$, we can assume that $\left|u_{0}(r)-W(r)\right| \leq \frac{C}{r^{3}}, r \geq 1$. Let $h=u-W, H=r h$.
Claim: For a large $R_{0}, \forall r_{0}>R_{0}$, we have

$$
\int_{r_{0}}^{\infty}\left[\left(\partial_{r} H_{0}\right)^{2}+H_{1}^{2}\right] d r \leq \frac{1}{16} \frac{H_{0}^{2}\left(r_{0}\right)}{r_{0}}
$$

where $\left(H_{0}, H_{1}\right)=\left.\left(H, \partial_{t} H\right)\right|_{t=0}$. Let us assume the Claim, and conclude that $\left(H_{0}(r), H_{1}(r)\right)=(0,0)$ for large r. Indeed, the claim implies, for large $r, n \in \mathbb{N}$ that

$$
\begin{aligned}
\left|H_{0}\left(2^{n+1} r\right)-H_{0}\left(2^{n} r\right)\right| & \leq 2^{\frac{n}{2}} \sqrt{r}\left(\int_{2^{n} r}^{2^{n+1} r}\left[\partial_{s} H_{0}(s)\right]^{2} d s\right)^{\frac{1}{2}} \\
& \leq 2^{\frac{n}{2}} \sqrt{r} \frac{1}{4} \frac{\left|H_{0}\left(2^{n} r\right)\right|}{2^{\frac{n}{2}} \sqrt{r}}=\frac{1}{4}\left|H_{0}\left(2^{n} r\right)\right|
\end{aligned}
$$

so that $\left|H_{0}\left(2^{n+1} r\right)\right| \geq\left(\frac{3}{4}\right)\left|H_{0}\left(2^{n} r\right)\right|$ and hence,

$$
\left|H_{0}\left(2^{n} r\right)\right| \geq\left(\frac{3}{4}\right)^{n}\left|H_{0}(r)\right|
$$

Since $\left|u_{0}(R)-W(r)\right| \leq \frac{C}{r^{3}}, r \geq 1,\left|H_{0}\left(2^{n} r\right)\right| \leq \frac{C}{4^{n} r^{2}}$, which letting $n \rightarrow \infty$ gives $H_{0}(r) \equiv 0$. Thus, H_{0} is compactly supported and the claim shows that the same holds for H_{1}. It remains to show the claim.

To do this, let R_{0} be large,

$$
V(x, t)=\left\{\begin{array}{r}
W(x) \text { if }|x|>R_{0}+|t| \\
W\left(R_{0}+|t|\right) \text { if }|x| \leq R_{0}+|t|
\end{array}\right.
$$

as in Remark 9.9.

Define $\left(g_{0}, g_{1}\right)=\Psi_{r_{0}}\left(h_{0}, h_{1}\right)$. Let g_{L} be the solution of (LW) with this data. Let g be the solution of

$$
\left\{\begin{array}{c}
\partial_{t}^{2} g-\Delta g=(V+g)^{5}-v^{5} \\
\left.g\right|_{t=0}=g_{0} \\
\left.\partial_{t} g\right|_{t=0}=g_{1}
\end{array}\right.
$$

given by Lemma 9.7. Thus, g is globally defined and $\sup _{t \in \mathbb{R}}\left\|g \overrightarrow{(t)}-\overrightarrow{g_{L}}(t)\right\|_{\dot{H}^{1} \times L^{2}} \leq$ $\frac{1}{10}\left\|\left(g_{0}, g_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}$.

Recall also from our outer energy lower bound (Corollary 7.6) that, for all $t \geq 0$ or for all $t \leq 0$,

$$
\int_{|x|>r_{0}+|t|}\left[\left|\nabla g_{L}(t)\right|^{2}+\left|\partial_{t} g_{L}(t)\right|^{2}\right] \geq \frac{1}{2} \int_{r_{0}}^{\infty}\left[\left(\partial_{r} H_{0}\right)^{2}+H_{1}^{2}\right] d r
$$

Hence, for all $t \geq 0$ or all $t \leq 0$,

$$
\begin{aligned}
\int_{r_{0}}^{\infty}\left[\left(\partial_{r} H_{0}\right)^{2}+H_{1}^{2}\right] d r \leq & 2 \int_{|x| \geq r_{0}+|t|}\left[\left|\nabla g_{L}(t)\right|^{2}+\left(\partial_{t} g_{L}(t)\right)^{2}\right] \\
\leq & 4 \int_{|x| \geq r_{0}+|t|}\left[|\nabla g(t)|^{2}+\left(\partial_{t} g(t)\right)^{2}\right] \\
& +\frac{1}{25} \int_{r_{0}}^{\infty}\left[\left(\partial_{r} g_{0}\right)^{2}+g_{1}^{2}\right] r^{2} d r .
\end{aligned}
$$

By finite speed of propagation, $\vec{g}(r, t)=\vec{h}(r, t), r \geq r_{0}+|t|$. Using that

$$
\lim _{t \rightarrow \pm \infty} \int_{r_{0}+|t|}^{\infty}\left|\partial_{r} W\right|^{2} r^{2} d r=0
$$

and our hypothesis in Proposition 9.13, $(h(r, t)=u(r, t)-W(r))$ and letting $t \rightarrow$ $+\infty$ or $-\infty$, according to where the above holds, we obtain

$$
\begin{aligned}
\int_{r_{0}}^{\infty}\left[\left(\partial_{r} H_{0}\right)^{2}+H_{1}^{2}\right] & \leq \frac{1}{25} \int_{r_{0}}^{\infty}\left[\left(\partial_{r} g_{0}\right)^{2}+g_{1}^{2}\right] r^{2} d r \\
& =\frac{1}{25}\left[\int_{r_{0}}^{\infty}\left[\left(\partial_{r} H_{0}\right)^{2}+H_{1}^{2}\right] d r+\frac{1}{r_{0}} H_{0}^{2}\left(r_{0}\right)\right]
\end{aligned}
$$

since $\left(H_{0}, H_{1}\right)=\left(r h_{0}, r h_{1}\right)=\left(r g_{0}, r g_{1}\right)$ for $r>r_{0}$ and where we have used integration by parts. This gives the Claim, and thus Proposition 9.13.

Before proceeding towards the proof of Theorem 9.1, we would like to point out that Proposition 9.13 can be used to give a proof of the rigidity Theorem 4.17 (from [32]) which says that if a radial solution of (NLW) has the "compactness property", up to scaling, it must be 0 or $\pm W$. This proof comes from [34].

Theorem 9.16 (Rigidity Theorem). Let u be a non-zero radial solution of $(\mathrm{NLW}), K=\left\{\left(\lambda^{-\frac{1}{2}}(t) u\left(\frac{x}{\lambda(t)}, t\right), \lambda(t)^{-\frac{3}{2}} \partial_{t} u\left(\frac{x}{\lambda(t)}, t\right)\right): t \in I_{\max }(\omega), \lambda(t)>0\right\}$. Assume that for some $\lambda(t)$, with $\inf _{t \in I} \lambda(t)>0 \bar{K}$ is compact in $\dot{H}^{1} \times L^{2}$. Then, $\exists \lambda_{0}>0, i_{0} \in\{ \pm 1\}$ such that $u(x, t)=\frac{i_{0}}{\lambda_{0}^{\frac{1}{2}}} W\left(\frac{x}{\lambda_{0}}\right)$.

Theorem 9.16 many times suffices. To obtain the full Theorem 4.17, extra work is needed.

It should be pointed out though, that Theorem 9.16, combined with the "no self-similar compact blow-up" result in [62], Property 4.29 (if $T_{+}=1$ and $\widetilde{K}=$ $\left\{(1-t)^{-\frac{1}{2}} u((1-t) x, t),(1-t)^{\frac{3}{2}} \partial_{t} u((1-t) x, t)\right\}$ is precompact in $\dot{H}^{1} \times L^{2}$, then u cannot exist) show that it suffices to prove the full Theorem 4.17, when $I=$ $(-\infty,+\infty)$. This is a "general property" that can be found in [34]. In the radial case, the proof of Property 4.29 simplifies considerably (see [34] for this). A proof, also in the radial case, of Property 4.29 using the "channel of energy property" can also be obtained, for this, see [30]. We will now sketch the proof of Theorem 9.16, $I=(-\infty,+\infty)$, using Proposition 9.13. Let $A_{0}=\inf _{t \in(-\infty,+\infty)} \lambda(t)>0$.

The pre-compactness in $L^{2}\left(\mathbb{R}^{3}\right)$ of

$$
\left\{\vec{v}(t)=\left(\lambda(t)^{-\frac{3}{2}} \nabla u\left(\frac{x}{\lambda(t)}, t\right), \lambda(t)^{-\frac{3}{2}} \partial_{t} u\left(\frac{x}{\lambda(t)}, t\right)\right), t \in(-\infty,+\infty)\right\}
$$

implies that, given $\varepsilon>0$, there exist $R_{0}>0$, uniformly in t, such that

$$
\int_{|x|>R}|\vec{v}(t)|^{2} d x \leq \varepsilon
$$

for $R \geq R_{0}$, (and all $\left.t\right)$.
Changing variables, and using that $A_{0}>0$, we see that $\exists \widetilde{R_{0}}\left(=\frac{R_{0}}{A_{0}}\right)$ such that if $R \geq \widetilde{R_{0}}$, then

$$
\int_{|x|>\widetilde{R_{0}}}|\nabla u(t)|^{2}+\left|\partial_{t} u(t)\right|^{2} \leq \varepsilon .
$$

As a consequence, for any $R>0$, we have that

$$
\lim _{t \rightarrow \pm \infty} \int_{|x|>R+|t|}|\nabla u(t)|^{2}+\left|\partial_{t} u(t)\right|^{2}=0
$$

Hence, Proposition 9.13 says that, either $\left(u_{0}, u_{1}\right)$ has compact support, or $\exists \lambda_{0}>$ $0, i_{0} \in(\pm 1)$ such that $\left(u_{0}-\frac{i_{0}}{\lambda_{0}^{\frac{1}{2}}} W\left(\frac{x}{\lambda}\right), u_{1}\right)$ has compact support. To continue with the proof, for $\left(f_{0}, f_{1}\right)$ radial, $\left(f_{0}, f_{1}\right) \in \dot{H}^{1} \times L^{2}$, we denote $\rho\left(f_{0}, f_{1}\right)=$ $\inf \left\{r>0:\left|\left\{s>r:\left(f_{0}(s), f_{1}(s)\right) \neq(0,0)\right\}\right|=0\right\}$. We make the convention $\rho\left(f_{0}, f_{1}\right)$ $=\infty$ if the set over which the inf is taken is \emptyset.

Assume first that $\rho_{0}=\rho\left(u_{0}, u_{1}\right)>0, \rho_{0}<\infty$. (This means that $\left(u_{0}, u_{1}\right)$ has compact support, but is not $\equiv(0,0)$). We will reach a contradiction. Let $\varepsilon=\min \left(\frac{1}{2 \sqrt{C_{0}}}, \delta_{0}\right)$, where C_{0}, δ_{0} come from Lemma 9.14. Using the definition of r_{0} and the continuity of u_{0} outside the origin, we can choose $r_{1} \in\left(0, r_{0}\right), r_{1}$ close to r_{0}, such that $u_{0}\left(r_{1}\right) \neq 0$ and $\int_{r_{1}}^{\infty}\left[\left(\partial_{r} u_{0}\right)^{2}+u_{1}^{2}\right] r^{2} d r+\frac{\left|v_{0}\left(r_{1}\right)\right|^{4}}{r_{1}^{2}}<\varepsilon$, where $v_{0}(r)=r u_{0}(r), v_{1}(r)=r u_{1}(r)$.

By the estimate from Lemma 9.14, which says that, if $\int_{r_{0}}^{\infty}\left[\left(\partial_{r} u_{0}\right)^{2}+u_{1}^{2}\right] r^{2} d r \leq$ δ_{0}, δ_{0} small, then $\left|v_{0}(r)-v_{0}\left(r^{\prime}\right)\right| \leq \sqrt{C_{0}} \frac{\left|v_{0}(r)\right|^{5}}{r^{2}}$, when $r_{0} \leq r \leq r^{\prime} \leq 2 r$, we obtain

$$
\left|v_{0}\left(\rho_{1}\right)\right|=\left|v_{0}\left(\rho_{1}\right)-v_{0}\left(\rho_{0}\right)\right| \leq \frac{\sqrt{C_{0}}\left|v_{0}\left(\rho_{1}\right)\right|^{5}}{\rho_{1}^{2}} \leq \sqrt{C_{0}} \varepsilon\left|v_{0}\left(\rho_{1}\right)\right|,
$$

a contradiction since $\varepsilon \sqrt{C_{0}}<1$ and $v_{0}\left(\rho_{1}\right) \neq 0$.
Next, after rescaling and possible change of sign, we know that ($u_{0}-W(x), u_{1}$) has compact support. Repeating the proof of Proposition 9.13, for each t, and
noticing that the compactness property, with the lower bound on $\lambda(t)$, gives uniform in t estimates, we see that Lemma 9.15 gives that, for each $t,\left|u(r, t)-\frac{l(t)}{r}\right| \leq \frac{C}{r^{3}}, r \geq$ 1 where $l(t)$ is bounded in t and C is independent of t. Moreover, our normalization gives $l(0)=\frac{1}{3}$. We next show that $l(t)$ is independent of t. Fix $t_{1}<t_{2}$. Then, $l\left(t_{2}\right)-l\left(t_{1}\right)=\frac{1}{R} \int_{R}^{2 R}\left[u\left(r, t_{2}\right)-u\left(r, t_{2}\right)\right] r d r+O\left(R^{-2}\right)$ as $R \rightarrow \infty$. Thus,

$$
\begin{aligned}
\left|l\left(t_{2}\right)-l\left(t_{1}\right)\right| & =\left|\frac{1}{R} \int_{R}^{2 R} \int_{t_{1}}^{t_{2}} \partial_{t} u(r, t) r d r d t\right|+O\left(R^{-2}\right) \\
& \leq \int_{t_{1}}^{t_{2}}\left(\frac{1}{R} \int_{R}^{2 R}\left|\partial_{t} u(r, t)\right|^{2} r^{2} d r\right)^{\frac{1}{2}} d t+O\left(R^{-2}\right) \\
& \leq C R^{-\frac{1}{2}}\left|t_{1}-t_{2}\right|+O\left(R^{-2}\right)
\end{aligned}
$$

so that $l\left(t_{1}\right)=l\left(t_{2}\right)$ and hence, by our normalization at $t=0, l(t) \equiv \frac{1}{3}$. Following the proof of Proposition 9.13, we see that $\exists R_{0}$ such that $\operatorname{supp}\left(u(t)-W, \partial_{t} u(t)\right) \subset$ $B_{R_{0}}$, where R_{0} is independent of t.

For each $t \in \mathbb{R}$, we let $\rho(t)=\rho\left(u(t)-W, \partial_{t} u(t)\right)$. We also let $\rho_{\max }=$ $\sup _{t \in \mathbb{R}} \rho(t), r_{0}=\frac{\rho_{\max }}{2}$. By contradiction, assume that $\left(u_{0}, u_{1}\right) \not \equiv(W, 0)$. Then, $\rho_{\max }>0$, and $\rho_{\max } \leq R_{0}$. Let $V(x, t)=W(x)$, choose t_{0} as in Remark 9.9 a). Choosing a smaller t_{0} if necessary, we can assume that $\rho_{\max }-\frac{t_{0}}{2}>0$. Choose $t_{1} \in \mathbb{R}$ such that $\rho\left(t_{1}\right) \geq \rho_{\max }-\frac{t_{0}}{2}>0$. Translating in time, we assume $t_{1}=0$. Choose $r_{1} \in(0, \rho(0))$ such that $0<\frac{\rho(0)-r_{1}}{10 r_{1}}<\frac{1}{2}, r_{1}+t_{0}>\rho_{\text {max }}$, and

$$
0<\int_{r_{1}}^{\infty}\left[\left(\partial_{r} h_{0}\right)^{2}+h_{1}^{2}\right] r^{2} d r<\delta_{0}
$$

(where $\left.\left(h_{0}, h_{1}\right)=\left(u(0)-W, \partial_{t} u(0)\right)\right)$. We now apply the argument in the proof of Proposition 9.13, case $l \neq 0$, in the interval $I=\left[-t_{0}, t_{0}\right]$. Then, for all $t \in\left[0, t_{0}\right]$ or all $t \in\left[-t_{0}, 0\right]$, we have

$$
\begin{aligned}
& \quad \int_{r_{1}}^{\infty}\left[\left(\partial_{r} H_{0}\right)^{2}+H_{1}^{2}\right] \leq 5 \int_{r_{1}+|t|}^{\infty}\left[\left(\partial_{r} g(r, t)\right)^{2}+\left(\partial_{t} g(r, t)\right)^{2}\right] r^{2} d r+\frac{1}{10 r_{1}} H_{0}^{2}\left(r_{1}\right) . \\
& \left(h=u-W, H=r h, g=\Psi_{r_{1}}\left(h_{0}, h_{1}\right)\right) . \\
& \quad \text { Since } r_{1}+t_{0}>\rho_{\max }, \int_{r_{1}+|t|}\left[\left(\partial_{r} g(r, t)\right)^{2}+\left(\partial_{t} g(r, t)\right)^{2}\right] r^{2} d r=0 \text { at } t= \pm t_{0} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{r_{1}}^{\infty}\left[\left(\partial_{r} H_{0}\right)^{2}+H_{1}^{2}\right] d r & \leq \frac{1}{10 r_{1}} H_{0}^{2}\left(r_{1}\right) \\
& \leq \frac{1}{10 r_{1}}\left(\int_{r_{1}}^{\rho(0)}\left|\partial_{r} H_{0}\right| d r\right)^{2} \\
& \leq \frac{1}{10 r_{1}}\left[\rho(0)-r_{1}\right] \int_{r_{1}}^{\rho(0)}\left[\partial_{r} H_{0}\right]^{2} d r
\end{aligned}
$$

Since $\frac{1}{10 r_{1}}\left[\rho(0)-r_{1}\right] \leq \frac{1}{2}$, we see that $\int_{r_{1}}^{\infty}\left[\left(\partial_{r} H_{0}\right)^{2}+H_{1}^{2}\right] d r=0$. By the compact support of H_{0}, it follows that $\int_{r_{1}}^{\infty}\left[\left(\partial_{r} h_{0}\right)^{2}+h_{1}^{2}\right] r^{2} d r=0$, which contradicts the fact that $0<\int_{r_{1}}^{\infty}\left[\left(\partial_{r} h_{0}\right)^{2}+h_{1}^{2}\right] r^{2} d r$. This completes the proof.

We now return to the proof of Theorem 9.1. We will need two propositions:
Proposition 9.17. Let u be a non-zero radial solution of (NLW) such that $\forall \lambda>0$ and all \pm signs, $\left(u_{0} \pm \frac{1}{\lambda^{\frac{1}{2}}} W\left(\frac{x}{\lambda}\right), u_{1}\right)$ is not compactly supported. Then, there exist $R>0, \eta>0$ and \widetilde{u} a globally defined solution of (NLW), such that \widetilde{u} scatters in both time directions and for all $t \geq 0$ or for all $t \leq 0$

$$
\int_{|x|>R+|t|}|\nabla \widetilde{u}(x, t)|^{2}+\left(\partial_{t} \widetilde{u}(x, t)\right)^{2} d x \geq \eta
$$

and $\widetilde{u}(x, t)=u(x, t)$ for $|x|>R+|t|$.
Proof. Assume first that $\left(u_{0}, u_{1}\right)$ is not compactly supported. Let $\left(\widetilde{u_{0}}, \widetilde{u_{1}}\right)=$ $\Psi_{R}\left(u_{0}, u_{1}\right)$, where $R>0$ is chosen so large that $0<\left\|\left(\widetilde{u}_{0}, \widetilde{u}_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}<\widetilde{\delta}$, where $\widetilde{\delta}$ is given by the Remark 1.6. By Claim 9.11, the conclusion is verified for \widetilde{u} unless $\lim _{t \uparrow+\infty} \int_{|x|>R+|t|}\left|\nabla_{x} \widetilde{u}(t)\right|^{2}+\left(\partial_{t} \widetilde{u}(t)\right)^{2}=\lim _{t \downarrow-\infty} \int_{|x|>R+|t|}\left|\nabla_{x} \widetilde{u}(t)\right|^{2}+\left(\partial_{t} \widetilde{u}(t)\right)^{2}=$ 0 .

But, in this case, by Proposition 9.13, ($\left.\widetilde{u}_{0}, \widetilde{u}_{1}\right)$ is either compactly supported (which is excluded since we assumed that $\left(u_{0}, u_{1}\right)$ is not compactly supported), or $\exists \lambda>0, i \in\{ \pm 1\}$ such that $\left(\widetilde{u}_{0}, \widetilde{u}_{1}\right)-\left(\frac{i}{\lambda^{\frac{1}{2}}} W\left(\frac{x}{\lambda}\right), 0\right)$ is compactly supported, which contradicts our hypothesis.

Thus, let us assume that (u_{0}, u_{1}) is compactly supported, and not $(0,0)$. Thus, $0<\rho\left(u_{0}, u_{1}\right)<\infty$. Let $0<R<\rho\left(u_{0}, u_{1}\right)$ and let $\left(\widetilde{u}_{0}, \widetilde{u}_{1}\right)=\Psi_{R}\left(u_{0}, u_{1}\right)$. Choose now R so close to $\rho\left(u_{0}, u_{1}\right)$ that $0<\left\|\left(\widetilde{u}_{0}, \widetilde{u}_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}} \leq \widetilde{\delta}$, where $\widetilde{\delta}$ is given by Remark 1.6. Let \widetilde{u} be the corresponding solution of (NLW), which exists globally and scatters, and \widetilde{u}_{L} the solution of (LW). Thus, we have

$$
\sup _{t}\left\|\overrightarrow{\widetilde{u}}(t)-\overrightarrow{\widetilde{u}}_{L}(t)\right\|_{\dot{H}^{1} \times L^{2}} \leq \frac{1}{10}\left\|\left(\widetilde{u}_{0}, \widetilde{u}_{1}\right)\right\|
$$

and for all $t \geq 0$, or for all $t \leq 0$,

$$
\int_{|x| \geq R+|t|}\left|\nabla \widetilde{u}_{L}(t)\right|^{2}+\left|\partial_{t} \widetilde{u}_{L}(t)\right|^{2} \geq \frac{1}{2}\left[\left\|\nabla \widetilde{u}_{0}\right\|^{2}+\left\|\widetilde{u}_{0}\right\|^{2}-R \widetilde{u}_{0}^{2}(R)\right]
$$

But, since $\rho\left(\widetilde{u}_{0}, \widetilde{u}_{1}\right)=\rho\left(u_{0}, u_{1}\right)$, if R is close enough to $\rho\left(\widetilde{u}_{0}, \widetilde{u}_{1}\right)$, then $R\left|\widetilde{u}_{0}(R)\right|^{2} \leq$ $\frac{1}{4}\left\|\nabla \widetilde{u}_{0}\right\|^{2}$, so that $\frac{1}{2}\left[\left\|\nabla \widetilde{u}_{0}\right\|^{2}+\left\|\widetilde{u}_{1}\right\|^{2}-R \widetilde{u}_{0}^{2}(R)\right] \geq \frac{3}{8}\left[\left\|\nabla \widetilde{u}_{0}\right\|^{2}+\left\|\widetilde{u}_{1}\right\|^{2}\right]$. Combining our inequalities we obtain the "channel property" for \widetilde{u}, as desired.

Proposition 9.18. Let $R_{0}>0$ be a large constant to be chosen. Then, the following holds: let u be a radial solution of (NLW) such that $\left(h_{0}, h_{1}\right)=\left(u_{0} \pm W, u_{1}\right)$ is compactly supported and not $\equiv 0$. Then,
a) \exists a solution \check{u} of (NLW), defined for $t \in\left[-R_{0}, R_{0}\right]$ and $R^{\prime} \in\left(0, \rho\left(h_{0}, h_{1}\right)\right)$ such that

$$
\left(\check{u}_{0}(r), \check{u}_{1}(r)\right)=\left(u_{0}(r), u_{1}(r)\right)
$$

for $r>R^{\prime}$, and the following holds: for all $t \in\left[0, R_{0}\right]$ or for all $t \in$ $\left[-R_{0}, 0\right]$:

$$
\rho\left(\check{u}(t) \pm W, \partial_{t} \check{u}(t)\right)=\rho\left(h_{0}, h_{1}\right)+|t| .
$$

b) Assume further that $\rho\left(h_{0}, h_{1}\right)>R_{0}$. Let $R<\rho\left(h_{0}, h_{1}\right)$ be close to $\rho\left(h_{0}, h_{1}\right)$. Then, $\exists \eta>0$ and a global radial solution \widetilde{u}, which scatters, such that

$$
\left(\widetilde{u}_{0}(r), \widetilde{u}_{1}(r)\right)=\left(u_{0}(r), u_{1}(r)\right), \text { for } r>R
$$

and for all $t \geq 0$ or for all $t \leq 0$

$$
\int_{|x|>R+|t|}|\nabla \widetilde{u}(t)|^{2}+\left[\partial_{t} \widetilde{u}(t)\right]^{2} \geq \eta
$$

Proof. We first prove a), by linearization around W. By assumption, up to a sign change $\left(u_{0}, u_{1}\right)=(W, 0)+\left(h_{0}, h_{1}\right)$, where $0<\rho\left(h_{0}, h_{1}\right)<\infty$. Since W is globally defined, Theorem 1.12 shows that $\exists \varepsilon>0$ such that for any U with $\left\|(W, 0)-\left(U_{0}, U_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}} \leq \varepsilon$, we have $\left[-R_{0}, R_{0}\right] \subset I_{\text {max }}(U)$.

Let $\left(\check{h}_{0}, \check{h}_{1}\right)=\Psi_{R^{\prime}}\left(h_{0}, h_{1}\right)$, where $R^{\prime}<\rho\left(h_{0}, h_{1}\right)$ is chosen so close to $\rho\left(h_{0}, h_{1}\right)$ that $0<\left\|\left(\check{h}_{0}, \check{h}_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}} \leq \varepsilon$. Let \check{u} be the solution of (NLW), with initial data ($W+\check{h}_{0}, \breve{h}_{1}$). Equivalently, $\check{h}=\check{u}-W$ solves

$$
\left\{\begin{aligned}
\partial_{t}^{2} \check{h}-\Delta \check{h} & =(W+\check{h})^{5}-W^{5} \\
\left.\left(\check{h}, \partial_{t} \check{h}\right)\right|_{t=0} & =\left(\breve{h}_{0}, \check{h}_{1}\right) .
\end{aligned}\right.
$$

By finite speed, $\left(\check{h}, \partial_{t} \check{u}\right)=(W, 0), r \geq \rho\left(h_{0}, h_{1}\right)+|t|$. Thus, $\rho\left(\breve{h}(t), \partial_{t} \check{h}(t)\right) \leq$ $\rho\left(h_{0}, h_{1}\right)+|t|$, for $t \in\left[-R_{0}, R_{0}\right]$. We need to show that for all $t \in\left[-R_{0}, 0\right]$, or for all $t \in\left[0, R_{0}\right]$,

$$
\begin{equation*}
\rho\left(\breve{h}(t), \partial_{t} \check{h}(t)\right)=\rho\left(h_{0}, h_{1}\right)+|t| . \tag{9.19}
\end{equation*}
$$

We first do this for a small time interval. We know that $\exists t_{0}>0$, small, such that W verifies Lemma 9.7, $I=\left[-t_{0}, t_{0}\right]$ (Remark 9.9 a$)$). In this step, we show that (9.19) holds for all $t \in\left[-t_{0}, 0\right]$ or for all $t \in\left[0, t_{0}\right]$. Indeed, let ρ_{0} be close to $\rho\left(h_{0}, h_{1}\right)$ such that $R^{\prime}<\rho_{0}<\rho\left(h_{0}, h_{1}\right)$, and let $\left(g_{0}, g_{1}\right)=\Psi_{\rho_{0}}\left(\breve{h}_{0}, \breve{h}_{1}\right)$. If $\rho\left(h_{0}, h_{1}\right)-\rho_{0}$ is small enough, $\left\|\left(g_{0}, g_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}} \leq \delta_{0}$, where δ_{0} is as in Lemma 9.7. By Lemma 9.7, \exists ! solution g to

$$
\left\{\begin{aligned}
\partial_{t}^{2} g-\Delta g & =(W+g)^{5}-W^{5} \\
\left.\left(g, \partial_{t} g\right)\right|_{t=0} & =\left(g_{0}, g_{1}\right)
\end{aligned}\right.
$$

Also if g_{L} solves (LW) with the same initial data, $\sup _{-t_{0} \leq t \leq t_{0}}\left\|\vec{g}(t)-\vec{g}_{L}(t)\right\| \leq$ $\frac{1}{10}\left\|\left(g_{0}, g_{1}\right)\right\|_{\dot{H}^{1} \times L^{2}}$. By Corollary 7.6, for all $t \in\left[-t_{0}, 0\right]$, or all $t \in\left[0, t_{0}\right]$, we have

$$
\int_{|x| \geq \rho_{0}+|t|}\left|\nabla g_{L}(t)\right|^{2}+\left(\partial_{t} g_{L}(t)\right)^{2} \geq \frac{1}{2} \int_{|x| \geq \rho_{0}}\left|\nabla g_{0}\right|^{2}+g_{1}^{2}-\frac{1}{2} \rho_{0} g_{0}^{2}\left(\rho_{0}\right)
$$

By the argument at the end of the proof of Proposition 9.17, if ρ_{0} is close enough to $\rho\left(h_{0}, h_{1}\right), \rho_{0} g_{0}^{2}\left(\rho_{0}\right) \leq \frac{1}{4}\left\|\nabla g_{0}\right\|$. Thus, for all $t \geq 0$ or all $t \geq 0, t \in\left[-t_{0}, t_{0}\right]$,

$$
\int_{\|x\| \geq \rho_{0}+|t|}|\nabla g(t)|^{2}+\left|\partial_{t} g(t)\right|^{2} \geq \frac{1}{40} \int_{|x| \geq \rho_{0}}\left|\nabla g_{0}\right|^{2}+\left|g_{1}\right|^{2}>0 .
$$

By finite speed, we can replace g by \check{h} in the left hand side. Hence, $\rho\left(\check{h}(t), \partial_{t} \check{h}(t)\right) \geq$ $\rho_{0}+|t|, \forall t \in\left[-t_{0}, 0\right]$ or $\forall t \in\left[0, t_{0}\right]$. Letting $\rho_{0} \rightarrow \rho\left(h_{0}, h_{1}\right)$ we see that $\rho\left(\breve{h}(t), \partial_{t} \breve{h}(t)\right)$ $=\rho\left(h_{0}, h_{1}\right)+|t|, t \in\left[-t_{0}, 0\right]$ or $t \in\left[0, t_{0}\right]$. It is now easy to conclude the proof.

Assume, for instance that this holds, for $t \in\left[0, t_{0}\right]$, we apply the previous argument to $\check{h}\left(t+t_{0}\right)$, to conclude that $\forall t \in\left[-t_{0}, 0\right]$ or $\forall t \in\left[0, \min \left[t_{0}, R_{0}-t_{0}\right]\right]$,

$$
\rho\left(\check{h}\left(t_{0}+t\right), \partial_{t} \check{h}\left(t_{0}+t\right)\right)=\rho\left(h_{0}, h_{1}\right)+t_{0}+|t|
$$

If the above holds $\forall t \in\left[-t_{0}, 0\right]$, we get a contradiction with $\rho\left(\breve{h}(0), \partial_{t} \check{h}(0)\right)=$ $\rho\left(h_{0}, h_{1}\right)$. Thus, $\forall t \in\left[0, \min \left(t_{0}, R_{0}-t_{0}\right)\right], \rho\left(\breve{h}\left(t_{0}+t\right), \partial_{t} \check{h}\left(t_{0}+t\right)\right)=\rho\left(h_{0}, h_{1}\right)+$ $t_{0}+t$. Continuing we get the desired result.

To prove b), we use the argument in the proof of Proposition 9.17, $\left(u_{0}, u_{1}\right)$ compactly supported, using instead of (NLW) the equation in Lemma 9.7 with V as in Remark 9.9 b), which determines who R_{0} is.

