
CHAPTER 2

The “Road Map”: The Concentration
Compactness/Rigidity Theorem Method

for Critical Problems I

In this chapter and the next, we will describe the concentration/compactness
rigidity theorem method introduced by Kenig-Merle [61],[62] in order to study
global well-posedness and scattering in critical problems. We will do so in the
context of the focusing, energy-critical non-linear wave equation. This method is
designed to address the large data/large time situation left out from the “local
theory of the Cauchy problem” discussed in Chapter 1. The proofs presented in
this chapter are from [61], [62], [59], [60]. See also the surveys [50], [51], [52],
[54]. We first discuss briefly the defocusing case.

(NLW+)

⎧⎪⎪⎨⎪⎪⎩
∂2
t u−Δu = −u5, x ∈ R3, t ∈ R

u|t=0 = u0 ∈ Ḣ1(R3)

∂tu|t=0 = u1 ∈ L2
(
R3
)
.

In the focusing case of (NLW), the energy is

(2.1) E(u0, u1) =
1

2

∫
|∇u0|2 + (u1)

2 − 1

6

∫
u6
0.

From the identity

(2.2) ∂te(u)(x, t) =

3∑
j=1

∂xj

(
∂xj

u(x, t) · ∂tu(x, t)
)
,

with e(u)(x, t) = 1
2 (∂tu)

2 (x, t) + 1
2 |∇u|2 (x, t)− 1

6u
6(x, t), for smooth solutions of

(NLW) and Remark 1.15, we see that, if u is a solution of (NLW), t ∈ Imax(u),

(2.3) E (u(t), ∂tu(t)) = E(u0, u1).

For the defocusing (NLW+), similar considerations, with

E+(u0, u1) =
1

2

∫
|∇u0|2 + u2

1 +
1

6

∫
u6
0,

lead to the “a priori” bound

sup
t∈Imax(u)

1

2

∫
|∇u(t)|2 + (∂tu(t))

2 ≤ C ‖(u0, u1)‖2Ḣ1×L2 .

The defocusing case was studied in the 80’s and early 90’s, in a series of works by
Struwe, Grillakis, Shatah-Struwe, Kapitanski, Bahouri-Shatah ([97],[46],[47],[92],
[93],[48],[5]) who established:

(2.4) Global Regularity and Well-Posedness Conjecture
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18 2. THE “ROAD MAP” I

(For critical defocusing problems): There is global in time well-posedness and scat-

tering for arbitrary data in Ḣ1×L2. Moreover more regular data keep this regularity
for all time. (This closes the study of the dynamics for defocusing (NLW+)).

For the focusing problem (2.4) fails. In fact, H. Levine ([73]) showed that if

(u0, u1) ∈ H1 × L2, E(u0, u1) ≤ 0, (u0, u1) �= (0, 0). (Ḣ1 × L2 in the radial case),
then |T±(u0, u1)| < ∞. This is done by an indirect argument (“an obstruction
argument”) that does not explicitly analyze the singularity formation.

Moreover, u(x, t) =
(
3
4

) 1
4 (1− t)

− 1
2 is a solution. It is not in Ḣ1 × L2, but

we can truncate it and use finite speed of propagation to find data in Ḣ1 × L2

such that limt↑1‖(u(t), ∂tu(t))‖Ḣ1×L2 = ∞. (Type I blow-up, or ODE blow-up).

Also, W , which solves ΔW +W 5 = 0 and is independent of time, is a global in time

solution, which does not scatter. (If a solution u scatters,
∫
|x|≤1

|∇u(x, t)|2dx t→∞−→ 0.

This clearly fails for W ). Moreover, Krieger-Schlag-Tataru ([71]), Krieger-Schlag
([70]) have constructed type II blow-up solutions, i.e., solutions with T+ <∞, and
sup0<t<T+

‖(u(t), ∂tu(t))‖Ḣ1×L2 < ∞, which are radial. More on these solutions

later on. Also, Donninger-Krieger ([29]) have constructed radial, global in time

solutions, bounded in Ḣ1 × L2, which do not scatter to either a linear solution or
to W .

In the rest of this monograph we will try to understand the focusing case. Here
the analog of (2.4) is

(2.5) Ground State Conjecture

(For critical focusing problems): There exists a “ground state”, whose energy is a
threshold for global existence and scattering.

In 2006-09, Frank Merle and I developed a program to attack critical dispersive
problems and establish (2.4) and, for the first time (2.5) in focusing problems.
We call this the “concentration-compactness/rigidity theorem method”, which was
partly inspired by the earlier elliptic problems. The method gives a “road map” to
attack both (2.4) and for the first time (2.5). The “road map” has already found
an enormous range of applicability, to previously intractable problems, in work of
many researchers. I will now describe the results on (NLW) in the last few years,
which we are going to be discussing in these two chapters, starting with the proof
of (2.5) for (NLW), via the “road map”.

Theorem 2.6 ([62]). If E(u0, u1) < E(W, 0) then

i) If ‖∇u0‖ < ‖∇W‖, global existence, scattering.
ii) If ‖∇u0‖ > ‖∇W‖, T+, |T−| <∞.
iii) The case ‖∇u0‖ = ‖∇W‖ is impossible.

(2.7) The road map: A quick summary

We next describe, in a schematic way, the “road map” for the concentration-
compactness/rigidity theorem method.

a) Variational arguments (Only needed in focusing problems). These are “static”
arguments, which exploit the variational characterization of the ground state W .
In our case, it is the extremal in the Sobolev embedding ‖u‖L6(R3) ≤ C3‖∇u‖L2(R3).
Combining these variational arguments with preservation of the energy and con-
tinuity of the flow, yields: if E(u0, u1) < E(W, 0), ‖∇u0‖ < ‖∇W‖, then, for
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t ∈ I = (T−, T+), E(u(t), ∂tu(t)) � ‖(u(t), ∂tu(t))‖2Ḣ1×L2 � ‖(u0, u1)‖2Ḣ1×L2 , so

that supt∈I‖(u(t), ∂tu(t))‖Ḣ1×L2 < ∞. Because of the Krieger-Schlag-Tataru [71]
example, this does not suffice.

b) Concentration-compactness procedure. Since in our situation, by a)
E(u(t), ∂tu(t)) � ‖(u0, u1)‖2Ḣ1×L2 , if E(u0, u1) is small, by the “local theory of

Cauchy Problem”, we have global existence and scattering. Hence, there is a critical
level of energy Ec, with

0 ≤ δ1 ≤ Ec ≤ E(W, 0)

such that if E(u0, u1) < Ec, ‖∇u0‖ < ‖∇W‖, we have global existence and scat-
tering, and Ec is optimal with this property. i) in our Theorem is the statement
Ec = E(W, 0). If Ec < E(W, 0) we will reach a contradiction by proving:

Proposition A (Existence of critical elements). ∃(u0,c, u1,c) with
E(u0,c, u1,c) = Ec, ‖∇u0,c‖ < ‖∇W‖, such that either I is finite or if I is infinite,
uc does not scatter. uc is called a “critical element”.

Proposition B (Compactness of critical elements). There exists λ(t) ∈ R+,
x(t) ∈ R3, t ∈ I+ = Iß[0,∞) such that

K =

{(
1

λ(t)
1
2

uc

(
x− x(t)

λ(t)
, t

)
,

1

λ(t)
3
2

∂tuc

(
x− x(t)

λ(t)
, t

))
: t ∈ I+

}
has compact closure in Ḣ1 × L2. (non-dispersive property of uc, “minimality”).
(Or corresponding proposition for I−).

c) Rigidity Theorem. If K, corresponding to a solution u is compact, and
E(u0, u1) < E(W, 0), ‖∇u0‖ < ‖∇W‖, then (u0, u1) = (0, 0).

This gives a contradiction, since E(u0,c, u1,c)) = Ec ≥ δ1 > 0.
We now proceed to the proof of Theorem 2.6, using the “road map”. The first

part of the proof is

a) Variational Estimates : Recall that W (x) =
(
1 + |x|2

3

)− 1
2

is a stationary

solution which solves the elliptic equation ΔW + W 5 = 0,W ≥ 0 and is radi-
ally decreasing. By the obvious invariances of the elliptic equation Wλ0,x0

(x) =

λ
1
2
0 W (λ0 (x− x0)) is still a solution. Aubin and Talenti ([3],[100]) gave the follow-

ing variational characterization of W : let C3 be the best constant in the Sobolev

embedding ‖u‖L6 ≤ C3 ‖∇u‖L2 , C3 = (3π)
− 1

2

(
Γ(3)

Γ( 3
2 )

) 1
2

. Then, if u is real val-

ued, ‖u‖L6 = C3 ‖∇u‖L2 , u �≡ 0, we have u = Wλ0,x0
. Note that by the elliptic

equation
∫
|∇W |2 =

∫
W 6. Also, C3 ‖∇W‖L2 = ‖W‖L6 , so that C2

3 ‖∇W‖2L2 =(∫
|∇W |2

) 1
3

. Hence,
∫
|∇W |2 = 1

C3
3
. Moreover, E ((W, 0)) =

(
1
2 −

1
6

) ∫
|∇W |2 =

1
3C3

3
.

Lemma 2.8. Assume that ‖∇v‖ < ‖∇W‖, E(v, 0) ≤ (1 − δ0)E(W, 0), δ0 > 0.
Then, ∃δ = δ(δ0) such that

i) ‖∇v‖2 ≤ (1− δ)‖∇W‖2
ii)
∫
|∇v|2 − |v|6 ≥ δ

∫
|∇v|2

Proof. Let f(y) = 1
2y −

C6
3

6 y3. Note that if y = ‖v‖2, f(y) ≤ E(v, 0). Note

that f(y) = 0 ⇔ y = 0 or y = y∗ =
√
3

C3
3

=
√
3
∫
|∇W |2 (for y ≥ 0), so that
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f(y) > 0, 0 < y < y∗. Also, f ′(y) = 0, y > 0 ⇔ y = yc = 1
C3

3
= ‖∇W‖2. Also,

f(yc) = 1
3C3

3
= E(W, 0), and f ′′(yc) �= 0. Since 0 ≤ y < yc, f(y) ≤ (1 − δ0)f(yc)

and f is non-negative, strictly increasing in 0 ≤ y < yc, we obtain y ≤ (1− δ)yc =
(1− δ)‖∇W‖2, that is i).

For ii), note that

∫
|∇v|2 − v6 ≥

∫
|∇v|2 − C6

3

(∫
|∇v|2

)3

=

∫
|∇v|2

[
1− C6

3

(∫
|∇v|2

)2
]

≥
∫
|∇v|2

[
1− C6

3 (1− δ)2
(∫

|∇W |2
)2
]
=

∫
|∇v|2

[
1− (1− δ)2

]
,

which gives ii). �

Corollary 2.9. If ‖∇v‖2 ≤
√
3‖∇W‖2, E(v, 0) ≥ 0.

(Follows from the proof above).

Lemma 2.10. If ‖∇v‖ ≤ ‖∇W‖, E(v, 0) ≤ E(W, 0)⇒ ‖∇v‖2 ≤ ‖∇W‖2

E(W,0)E(v, 0)

= 3E(v, 0).

Proof. Let f be as in previous lemma. Note that f is concave on R+, f(0) =
0, f(‖∇W‖2) = E(W, 0), f(‖∇v‖2) ≤ E(v, 0). For s ∈ (0, 1), f

(
s‖∇W‖2

)
≥

sf
(
‖∇W‖2

)
= sE(W, 0). Choose s = ‖∇v‖2

‖∇W‖2 . �

Corollary 2.11. E(v, 0) < E(W, 0), ‖∇v‖ = ‖∇W‖2 is impossible.

Corollary 2.12 (Energy trapping). (u0, u1) ∈ Ḣ1 × L2, E(u0, u1) < (1 −
δ0)E(W, 0),
‖∇u0‖ < ‖∇W‖. Then, if u is the solution with maximal interval I, ∃δ = δ(δ0) such

that ∀t ∈ I, ‖∇u(t)‖ ≤ (1−δ) ‖∇W‖ ,
∫
|∇u(t)|2−u6(t) ≥ δ

∫
|∇u(t)|2 , E(u(t), 0) ≥

0, E (u(t), ∂tu(t)) � ‖(u(t), ∂tu(t))‖2Ḣ1×L2 � ‖(u0, u1)‖2Ḣ1×L2 , with comparability

constants depending only on δ0.

Remark 2.13. If E(u0, u1) ≤ (1 − δ0)E(W, 0), ‖∇u0‖2 > ‖∇W‖2, then, for
t ∈ I, ‖∇u(t)‖2 ≥ (1 + δ) ‖∇W‖2. This follows as in Lemma 2.8 i).

Let us now turn to the proof of Theorem 2.6, ii), having already dealt with iii).
We will do it in the case u0 ∈ L2. This additional assumption can be eliminated
easily using finite speed of propagation. (See [62]). The argument comes from [73].

Thus, assume u0 ∈ L2, E(u0, u1) < (1− δ0)E(W, 0), ‖∇u0‖ > ‖∇W‖. We

want to show T+ <∞. Assume not. By Remark 2.13,
∫
|∇u(t)|2 ≥ (1+δ)

∫
|∇W |2 ,

t ∈ I, E(W, 0) ≥ E(u(t), ∂tu(t)) + δ̃, t ∈ I, so that 1
6

∫
u(t)6 ≥ 1

2

∫
(∂tu(t))

2
+

1
2

∫
|∇u(t)|2−E(W, 0)+ δ̃ and so

∫
u(t)6 ≥ 3

∫
(∂tu(t))

2+3
∫
|∇u(t)|2−6E(W, 0)+
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6δ̃. Let y(t) =
∫
u2(t), y′(t) = 2

∫
u(t)∂tu(t). A simple calculation using the equa-

tion, integration by parts, gives y′′(t) = 2
∫ [

∂tu(t)
2 + u(t)6 − |∇u(t)|2

]
. Thus,

y′′(t) ≥ 2

∫
(∂tu(t))

2
+ 6

∫
(∂tu(t))

2
+ 4

∫
|∇u(t)|2 − 12E(W, 0) +

˜̃
δ

= 8

∫
(∂tu(t))

2 + 4

∫
|∇u(t)|2 − 4

∫
|∇W |2 + ˜̃δ

≥ 8

∫
(∂tu(t))

2
+
˜̃
δ.

Since I ∩ [0,∞) = [0,∞), ∃t0 > 0 such that y′(t0) > 0, y′(t) > 0, t > t0. For t > t0,

y(t)y′′(t) ≥ 8
(∫

∂tu(t)
2
) (∫

u2(t)
)
≥ 2y′(t)2, so that y′′(t)

y′(t) ≥ 2y′(t)
y(t) or y′(t) ≥

C0y(t)
2 for t > t0, which leads to finite time blow-up for y(t), a contradiction.

We next turn to b) in the road map, namely the “concentration-compactness”
procedure, in order to establish i) in Theorem 2.6. Note that in the defocusing case,
the variational estimates are not needed. Note also that because of Corollary 2.12,
we already know that supt∈I ‖(u(t), ∂tu(t))‖ � ‖(u0, u1)‖Ḣ1×L2 . However, because
of the Krieger-Schlag-Tataru [71] example, this does not suffice, and this is typical
of critical problems.

b) Concentration-Compactness Procedure.
We recall the norms, introduced in “the local theory of the Cauchy problem”,

‖u‖S(I) = ‖u‖L8(R3×I) ,
∥∥∥D 1

2 u
∥∥∥
W (I)

=
∥∥∥D 1

2u
∥∥∥
L4(R3×I)

. Recall that if I is the max-

imal interval, if T+ < ∞, ‖u‖S(I+) = ∞. Also if T+ = ∞, u does not scatter, iff

‖u‖S(I+) = ∞. Because of a), if ‖∇u0‖2 < ‖∇W‖2 and E(u0, u1) ≤ η0, η0 small,

then ‖(u0, u1)‖Ḣ1×L2 is small, so that u exists globally in time and scatters, from
the “local theory of the Cauchy problem”. Consider now

G = {E : 0 ≤ E < E(W, 0), with the property that if

‖∇u0‖2 < ‖∇W‖2 and E(u0, u1) < E, then ‖u‖S(I) <∞
}
.

Let Ec = supG, so that 0 < η0 ≤ Ec ≤ E(W, 0) and, if ‖∇u0‖2 < ‖∇W‖2,
E(u0, u1) < Ec, I = (−∞,+∞), u scatters and Ec is optimal with this property.
Theorem 2.6 i) is the same as Ec = E(W, 0). Assume Ec < E(W, 0), to reach

a contradiction. Fix δ0 > 0 such that Ec = (1 − δ0)E(W, 0). If ‖∇u0‖2 <

‖∇W‖2 , E(u0, u1) < E, with E < Ec, then ‖u‖S(I) < ∞, while if E > Ec, E <

E(W, 0), ∃(u0, u1), ‖∇u0‖2 < ‖∇W‖2 , Ec ≤ E(u0, u1) ≤ E and ‖u‖S(I) = ∞. The

concentration - compactness procedure allows us to prove:

Proposition 2.14. ∃(u0,c, u1,c) ∈ Ḣ1 × L2 : ‖∇u0,c‖2 < ‖∇W‖2 , E(u0,c, u1,c)
= Ec, ‖uc‖S(I) =∞, where uc solves (NLW) with data (u0,c, u1,c) , I = Imax(uc).

Proposition 2.15. Let uc be as in Prop 2.14, with (say), ‖∇uc‖S(I+) = ∞
with I+ = I ∩ [0,∞). Then ∃x(t) ∈ R3, λ(t) ∈ R+, t ∈ I+, such that

K =

{(
1

λ(t)
1
2

uc

(
x− x(t)

λ(t)
, t

)
,

1

λ(t)
3
2

∂tuc

(
x− x(t)

λ(t)
, t

))
: t ∈ I+

}
has compact closure in Ḣ1 × L2.
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The proofs of the propositions use our variational estimates and a “profile
decomposition” due to Bahouri-Gérard ([4]). A corresponding “profile decomposi-
tion” for NLS in the mass-critical case was obtained independently by Merle-Vega
([80]).

Theorem 2.16 (Concentration-compactness, profile decomposition, Bahouri-

Gérard 99). Let {(v0,n, v1,n)}∞n=1 ∈ Ḣ1 × L2, with ‖(v0,n, v1,n)‖Ḣ1×L2 ≤ A. As-

sume that ‖S(t) (v0,n, v1,n)‖S(−∞,+∞) ≥ δ > 0, where δ = δ(A) is as in “the

local theory of Cauchy problem”. Then, there exists a sequence {(V0,j , V1,j)}∞j=1 in

Ḣ1×L2, a subsequence of {(v0,n, v1,n)} (which we still call (v0,n, v1,n)) and a triple
(λj,n;xj,n; tj,n) ∈ R+ × R3 × R, with the orthogonality property:

λj,n

λj′,n
+

λj′,n

λj,n
+
|tj,n − tj′,n|

λj,n
+
|xj,n − xj′,n|

λj,n

n→∞→ +∞.

for j �= j′, such that

i) ‖(V0,1, V1,1)‖Ḣ1×L2 > α0(A) > 0.

ii) If V l
j = S(t) ((V0,j , V1,j)), then given ε0 > 0, ∃J = J(ε0) such that

v0,n =
J∑

j=1

1

λ
1
2

j,n

V l
j

(
x− xj,n

λj,n
,− tj,n

λj,n

)
+ wJ

0,n

v1,n =
J∑

j=1

1

λ
3
2

j,n

∂tV
l
j

(
x− xj,n

λj,n
,− tj,n

λj,n

)
+ wJ

1,n

with
∥∥S(t) (wJ

0,n, w
J
1,n

)∥∥
S(−∞,+∞)

≤ ε0, for n large.

iii)a

‖∇xv0,n‖2 =
J∑

j=1

∥∥∥∥∇xV
l
j

(
− tj,n
λj,n

)∥∥∥∥2 + ∥∥∇wJ
0,n

∥∥2 + o(1)

‖v1,n‖2 =
J∑

j=1

∥∥∥∥∂tV l
j

(
− tj,n
λj,n

)∥∥∥∥2 + ∥∥wJ
1,n

∥∥2 + o(1)

iii)b

E ((v0,n, v1,n)) =

J∑
j=1

E

((
V l
j

(
− tj,n
λj,n

)
, ∂tV

l
j

(
− tj,n
λj,n

)))
+E

(
(wJ

0,n, w
J
1,n)
)
+o(1)

as n→∞.

A first consequence of the “profile decomposition”, which already appears in
Bahouri-Gérard [4] (implicitly, since they only treat the defocusing case) is the
following:

Corollary 2.17. There exists a decreasing function g : (0, Ec]→ [0,∞), such

that for every (u0, u1) with ‖∇u0‖2 < ‖∇W‖2 , E ((u0, u1)) = Ec − η, we have
‖u‖S(−∞,+∞) ≤ g(η).

Remark. A precise form of g was obtained in work of Duyckaerts-Merle ([38]).
The proof of the Corollary also follows from the arguments that we will use in the
proof of Proposition 2.18 below.
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In order to apply the linear theorem above to the non-linear Propositions 2.14,
2.15, we need the notion of a “non-linear profile”. Thus, let (v0, v1) ∈ Ḣ1 × L2,
v(x, t) = S(t) (v0, v1), let {tn}∞n=1 be a sequence with limn→∞ tn = t ∈ [−∞,+∞].
We say that u(x, t) is a non-linear profile associated with ((v0, v1), {tn}∞n=1) if there

exists an interval I, with t ∈ I̊ (if t = ±∞, then I = [a,∞) or I = (−∞, a])) such
that u is a solution of the Cauchy problem in I and

lim
n→∞

‖(u(tn), ∂tu(tn)) , (v(tn), ∂tv(tn))‖Ḣ1×L2 = 0.

There always exists a non-linear profile associated with ((v0, v1), {tn}). Indeed, if
t ∈ (−∞,+∞), we solve (NLW) with data

(
v(x, t), ∂tv(x, t)

)
at t. If t = +∞ (say),

we solve the integral equation

u(t) = S(t) ((v0, v1)) +

∫ +∞

t

sin
(
(t− t′)

√
−Δ
)

√
−Δ

F (u)(t′)dt′,

using the fact that w(t) =
∫∞
t

sin((t−t′)
√
−Δ)√

−Δ
h(t′)dt′ verifies the same Strichartz

estimates as before, working now on R3 × [tn0
,+∞), where n0 is so large that

‖S(t)(v0, v1)‖S(tn0
,+∞) < δ. Then, u(tn)−v(tn) =

∫ +∞
tn

sin((t−t′)
√
−Δ)√

−Δ
F (u)(t′)dt′ →

0 in Ḣ1 × L2 since D
1
2F (u) ∈ L

4
3 (t > tn0

)L
4
3
x . It is easy to see that if u(1), u(2) are

non-linear profiles associated to ((v0, v1), {tn}), on I � t, u(1) ≡ u(2) on I. Hence,
there exists a maximal interval I of existence for the non-linear profile. Note that
it might not contain 0. Near finite end-points of I, the S norm is infinite, while if
t = +∞ (say), I = (a,+∞), the S norm is finite near +∞ by construction. In order
to use these concepts to prove Proposition 2.14, Proposition 2.15, we will need:

Proposition 2.18. Let {(z0,n, z1,n)} ∈ Ḣ1×L2, with ‖∇z0,n‖2 < ‖∇W‖2 and
E ((z0,n, z1,n)) → Ec < E ((W, 0)). Assume that ‖S(t)(z0,n, z1,n)‖S(−∞,+∞) ≥ δ >

0.
Let (V0,j , V1,j)

∞
j=1 be as in the profile decomposition. Assume that one of

a) limn→∞ E
((

V l
1

(
− t1,n

λ1,n

)
, ∂tV

l
1

(
− t1,n

λ1,n

)))
< Ec

b) limn→∞ E
((

V l
1

(
− t1,n

λ1,n

)
, ∂tV

l
1

(
− t1,n

λ1,n

)))
= Ec, and

for sn = − t1,n
λ1,n

, after passing to a subsequence so that sn → s ∈ [−∞,+∞] and

E
((

V l
1

(
− t1,n

λ1,n

)
, ∂tV

l
1

(
− t1,n

λ1,n

)))
→ Ec, if U1 is the non-linear profile associated

to ((V0,1, V1,1) , {sn}), then I = (−∞,+∞), ‖U1‖S(−∞,+∞) <∞.

Then, (after passing to a subsequence) if {zn} solves (NLW) with data (z0,n, z1,n),
we have ‖zn‖S(−∞,+∞) <∞ for n large (and in fact is uniformly bounded in n).

We first assume Proposition 2.18, and use it to prove Proposition 2.14, 2.15

Proof of Proposition 2.14. Find (u0,n, u1,n) ∈ Ḣ1 × L2,
∫
|∇u0,n|2 <∫

|∇W |2 , E ((u0,n, u1,n)) → Ec, ‖un‖S(In)
= +∞, In = max interval . We must

have

‖S(t) (u0,n, u1,n)‖S(−∞,+∞) ≥ δ > 0,

by “the local theory of Cauchy problem”. Since Ec = (1 − δ0)E ((W, 0)), for
n large E ((u0,n, u1,n)) ≤

(
1− δ0

2

)
E ((W, 0)). By energy trapping, ∃δ such that



24 2. THE “ROAD MAP” I

‖∇un(t)‖ ≤ (1− δ) ‖∇W‖2 , t ∈ In. Fix J ≥ 1, applying the profile decomposition
to {(u0,n, u1,n)}, after passing to a subsequence, we have

‖∇u0,n‖2 =
J∑

j=1

∥∥∥∥∇V l
j

(
− tj,n
λj,n

)∥∥∥∥2 + ∥∥∇wJ
0,n

∥∥2 + o(1)(2.19)

‖u1,n‖2 =
J∑

j=1

∥∥∥∥∂tV l
j

(
− tj,n
λj,n

)∥∥∥∥2 + ∥∥wJ
1,n

∥∥2 + o(1)(2.20)

(2.21)

E ((u0,n, u1,n)) =

J∑
j=1

E

((
V l
j

(
− tj,n
λj,n

)
, ∂tV

l
j

(
− tj,n
λj,n

)))
+E

(
(wJ

0,n, w
J
1,n)
)
+o(1)

From (2.21), for n large,

∥∥∇wJ
0,n

∥∥ ≤ (1− δ

2
) ‖∇W‖2 ,

∥∥∥∥∇V l
j

(
− tj,n
λj,n

)∥∥∥∥2 ≤ (1− δ

2
) ‖∇W‖2 , 1 ≤ j ≤ J.

Hence, by energy trapping, for large n we have

E

((
V l
j

(
− tj,n
λj,n

)
, ∂tV

l
j

(
− tj,n
λj,n

)))
≥ 0, E

(
(wJ

0,n, w
J
1,n)
)
≥ 0.

Thus, by (2.21), E
((

V l
1

(
− t1,n

λ1,n

)
, ∂tV

l
1

(
− t1,n

λ1,n

)))
≤ E ((u0,n, u1,n))+o(1) and so,

lim
n→∞

E

((
V l
1

(
− t1,n
λ1,n

)
, ∂tV

l
1

(
− t1,n
λ1,n

)))
≤ Ec.

Assume first that we have strict inequality. Then, Proposition 2.18 a) gives a contra-

diction for large n. Thus, we must have limn→∞ E
((

V l
1

(
− t1,n

λ1,n

)
, ∂tV

l
1

(
− t1,n

λ1,n

)))
=

Ec. Let U1 be the non-linear profile associated to
{
sn = − t1,n

λ1,n

}
, ((V0,1, V1,1), {sn}).

The first observation is that (V0,j , V1,j) = (0, 0), j > 1. Indeed, by (2.21) and
E ((u0,n, u1,n)) → Ec, E

((
V l
1 (sn), ∂tV

l
1 (sn)

))
→ Ec (after passing to a subse-

quence), we see that E
(
(wJ

0,n, w
J
1,n)
)
→ 0, and E

(
(V l

j

(
− tj,n

λj,n
, ∂tV

l
j

(
− tj,n

λj,n

)))
→

0, j ≥ 2. Hence, using coercivity in the x variable, ii) in Lemma 2.8, we see that∥∥∇wJ
0,n

∥∥2+∑J
j=2

∥∥∥∇V l
j

(
− tj,n

λj,n

)∥∥∥2→ 0. But then,
∥∥wJ

1,n

∥∥2+∑J
j=2

∥∥∥∂tV l
j

(
− tj,n

λj,n

)∥∥∥2
→ 0. Finally, since ‖∇V0,j‖2 + ‖V1,j‖2 =

∥∥∥∇V l
j

(
− tj,n

λj,n

)∥∥∥2 + ∥∥∥∂tV l
j

(
− tj,n

λj,n

)∥∥∥2, we
conclude (V0,j , V1,j) = (0, 0) , 2 ≤ j ≤ J . In addition,

∥∥∇wJ
0,n

∥∥2 + ∥∥wJ
1,n

∥∥2 → 0, so
that

u0,n =
1

λ
1
2
1,n

V l
1

(
x− x1,n

λ1,n
, sn

)
+ wJ

0,n

u1,n =
1

λ
3
2
1,n

∂tV
l
1

(
x− x1,n

λ1,n
, sn

)
+ wJ

1,n
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with
∥∥(wJ

0,n, w
J
1,n

)∥∥
Ḣ1×L2 → 0. Renormalize, setting

v0,n = λ
1
2
1,nu0,n (λ1,n (x+ x1,n)) , v1,n = λ

3
2
1,nu1,n (λ1,n (x+ x1,n)). By scaling, trans-

lation invariance, (v0,n, v1,n) has the same properties as (u0,n, u1,n) and

v0,n = V l
1 (sn) + w̃J

0,n, v1,n = ∂tV
l
1 (sn) + w̃J

1,n

where ‖(w̃0,n, w̃1,n)‖Ḣ1×L2 → 0. Let I1 = max interval of U1. By definition of non-

linear profile, E (U1(sn), ∂tU1(sn)) = E
((
V l
1 (sn), ∂tV

l
1 (sn)

))
+ o(1) = Ec + o(1),

‖∇U1(sn)‖2 =
∥∥∇V l

1 (sn)
∥∥2 + o(1) = ‖∇u0,n‖2 + o(1) < ‖∇W‖2, for n large.

Fix s ∈ I1, then E ((U1(s), ∂tU1(s))) = E ((U1(sn), ∂tU1(sn))) → Ec, so that

E ((U1(s), ∂tU1(s))) = Ec. Also, ‖∇U1(sn)‖2 < ‖∇W‖2 for n large, so that, by

energy trapping, ‖∇U1(s)‖2 < ‖∇W‖2. If ‖∇U1‖S(I1)
< +∞, Proposition 2.18 b)

gives a contradiction. Hence, ‖U1‖S(I1)
= +∞, we take uc = U1. �

Proof of Proposition 2.15. : (By contradiction). Let u(x, t) = uc(x, t). If
not, ∃η0 > 0, {tn}∞n=1 , tn ≥ 0 such that ∀λ0 ∈ R+, x0 ∈ R3 we have (after rescaling)∥∥∥∥∥ 1

λ
1
2
0

u

(
x− x0

λ0
, tn

)
− u

(
x

λ0
, t′n

)∥∥∥∥∥
2

Ḣ1

+

∥∥∥∥∥ 1

λ
3
2
0

∂tu

(
x− x0

λ0
, tn

)
− ∂tu

(
x

λ0
, t′n

)∥∥∥∥∥
2

Ḣ1

≥ η0 > 0,

for n �= n′.
After passing to a subsequence, tn → t ∈ [0, T+(u0, u1)] so that by continuity

of the flow, t = T+ (u0, u1). By the local theory of the Cauchy problem, we can
also assume ‖S(t) (u(tn), ∂tu(tn))‖S(0,+∞) ≥ δ > 0.

We apply the profile decomposition to (v0,n, v1,n) = (u(tn), ∂tu(tn)). We have

E ((u(t), ∂tu(t))) = E ((u0,c, u1,c)) = Ec < E ((W, 0)) , ‖∇u0,c‖2 < ‖∇W‖2, so that

‖∇u(t)‖2 ≤ (1− δ) ‖∇W‖2 , t ∈ I+. Then,

limn→∞ E
(
(V l

1

(
− t1,n

λ1,n

)
, ∂tV

l
1

(
− t1,n

λ1,n

))
≤ Ec. If we have strict inequality, Propos-

itoin 2.18 a) gives a contradiction. Hence we have equality and as in the previous
proof, (V0,j , V1,j) = 0, j > 1,

∥∥(wJ
0,n, w

J
1,n

)∥∥
Ḣ1×L2 → 0.

Thus,

u(tn) =
1

λ
1
2
1,n

V l
1

(
x− x1,n

λ1,n
,− t1,n

λ1,n

)
+ wJ

0,n,

∂tu(tn) =
1

λ
3
2
1,n

∂tV
l
1

(
x− x1,n

λ1,n
,− t1,n

λ1,n

)
+ wJ

1,n,

∥∥(wJ
0,n, w

J
1,n

)∥∥
Ḣ1×L2 → 0. Let sn = − t1,n

λ1,n
. We claim that sn must be bounded.

In fact, if
t1,n
λ1,n

≤ −C0, C0 a large positive constant, since for n large,∥∥S(t) (wJ
0,n, w

J
1,n

)∥∥
S(−∞,+∞)

≤ δ
2 and∥∥∥∥∥∥ 1

λ
1
2
1,n

V l
1

(
x− x1,n

λ1,n
,
t− t1,n
λ1,n

)∥∥∥∥∥∥
S(0,+∞)

≤
∥∥V l

1

∥∥
S(C0,+∞)

≤ δ

2
,
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we reach a contradiction by the Perturbation Theorem (Theorem 1.12). If on the

other hand,
t1,n
λ1,n

≥ C0, C0 large positive, for n large we have∥∥∥∥∥∥ 1

λ
1
2
1,n

V l
1

(
x− x1,n

λ1,n
,
t− t1,n
λ1,n

)∥∥∥∥∥∥
S(−∞,0)

≤
∥∥V l

1

∥∥
S(,−∞,−C0)

≤ δ

2
,

for C0 large. Thus, for n large, we would have ‖S(t) (u(tn), ∂tu(tn))‖S(−∞,0) ≤ δ, so

that Theorem 1.4 gives ‖u‖S(−∞,tn)
≤ 2δ. But, tn ↑ T+ ((u0, u1)), a contradiction.

Thus, after passing to a subsequence,
t1,n
λ1,n

→ t0 ∈ (−∞,+∞). But then,

(2.22)
∥∥(wJ

0,n, w
J
1,n

)∥∥
Ḣ1×L2 → 0

gives that for n �= n′, both large,∥∥∥∥∥∥ 1

λ
1
2
0

1

λ
1
2
1,n

V l
1

(
x−x0

λ0
− x1,n

λ1,n
,− t1,n

λ1,n

)
− 1

λ
1
2

1,n′

V l
1

(
x− x1,n′

λ1,n′
− t1,n′

λ1,n′

)∥∥∥∥∥∥
2

Ḣ1

+

∥∥∥∥∥∥ 1

λ
3
2
0

1

λ
3
2
1,n

∂tV
l
1

(
x−x0

λ0
− x1,n

λ1,n
,− t1,n

λ1,n

)
− 1

λ
3
2

1,n′

∂tV
l
1

(
x− x1,n′

λ1,n′
− t1,n′

λ1,n′

)∥∥∥∥∥∥
2

L2

≥ η0
2
.

for all λ0, x0. After changing variables, this gives, for all λ0, x̃0, that∥∥∥∥∥
(

λ1,n′

λ0λ1,n

)2

V l
1

(
λ1,n′y

λ0λ1,n
+ xn,n′ − x̃0,−

t1,n
λ1,n

)
− V l

1

(
y,− t1,n′

λ1,n′

)∥∥∥∥∥
2

Ḣ1

+

∥∥∥∥∥
(

λ1,n′

λ0λ1,n

) 3
2

∂tV
l
1

(
λ1,n′y

λ0λ1,n
+ xn,n′ − x̃0,−

t1,n
λ1,n

)
− ∂tV

l
1

(
y,− t1,n′

λ1,n′

)∥∥∥∥∥ ≥ η0
2
.

Choosing now λ0, x̃0 suitably, this is a contradiction, since
t1,n′
λ1,n′

→ t0,
t1,n
λ1,n

→ t0.

�

Proof of Proposition 2.18. Assume first, that

limE

((
V l
1

(
− t1,n
λ1,n

)
, ∂tV

l
1

(
− t1,n
λ1,n

)))
= Ec.

Fix J ≥ 1 and note that, as in the proof of Proposition 2.14, we have (V0,j , V1,j) =
(0, 0), j > 1,

∥∥(wJ
0,n, w

J
1,n)
∥∥
Ḣ1×L2 → 0.

Moreover, if v0,n = λ
1
2
1,nz0,n (λ1,n(x+ x1,n)) , v1,n = λ

3
2
1,nz1,n (λ1,n(x+ x1,n)) ,

w̃J
0,n = λ

1
2
1,nw

J
0,n (λ1,n(x+ x1,n)) , w̃

J
1,n = λ

3
2
1,nw

J
1,n (λ1,n(x+ x1,n)) ,∥∥(w̃J

0,n, w̃
J
1,n

)∥∥
Ḣ1×L2 → 0, v0,n = V l

1 (sn) + w̃J
0,n, v1,n = ∂tV

l
1 (sn) + w̃J

1,n, with

E ((v0,n, v1,n))→ Ec < E ((W, 0)), ‖∇v0,n‖2 < ‖∇W‖2. By definition of non-linear
profile, ∥∥(V l

1 (sn)− U1(sn), ∂tV
l
1 (sn)− ∂tU1(sn)

)∥∥
Ḣ1×L2 → 0,

so that v0,n = U1(sn) + ˜̃wJ

0,n, v1,n = ∂tU1(sn) + ˜̃wJ

1,n,
∥∥∥(˜̃wJ

0,n,
˜̃wJ

1,n

)∥∥∥
Ḣ1×L2

→ 0.

From this, we see that E ((U1, ∂tU1)) = Ec < E ((W, 0)) , ‖∇U1(sn)‖2 < ‖∇W‖2,
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for n large, so that, by Lemma 2.8, supt∈I1 ‖∇U1(t)‖2 < ‖∇W‖2. Since∥∥∥∥(∇ ˜̃wJ

0,n,
˜̃w1,n

J
)∥∥∥∥

L2×L2

→ 0, Theorem 1.12 now gives the case b). Assume next

that

limE

((
V l
1

(
− t1,n
λ1,n

)
, ∂tV

l
1

(
− t1,n
λ1,n

)))
< Ec

and, passing to a subsequence, limE
((

V l
1

(
− t1,n

λ1,n

)
, ∂tV

l
1

(
− t1,n

λ1,n

)))
< Ec. We

next show that limE
((

V l
j

(
− tj,n

λj,n

)
, ∂tV

l
j

(
− tj,n

λj,n

)))
< Ec, j = 2, . . . , J . In fact,

‖∇z0,n‖2 =

J∑
j=1

∥∥∥∥∇V l
j

(
− tj,n
λj,n

)∥∥∥∥2 + ∥∥∇wJ
0,n

∥∥2 + o(1),

‖z1,n‖2 =
J∑

j=1

∥∥∥∥∂tV l
j

(
− tj,n
λj,n

)∥∥∥∥2 + ∥∥wJ
1,n

∥∥2 + o(1),

and since E ((z0,n, z1,n)) → Ec < E ((W, 0)), for n large, E ((z0,n, z1,n)) ≤ (1 −
δ0)E ((W, 0)). Since ‖∇z0,n‖2 < ‖∇W‖2, Lemma 2.8 gives that ‖∇z0,n‖2 ≤ (1 −
δ) ‖∇W‖2. Thus, for all n large,

∥∥∥∇V l
j

(
− tj,n

λj,n

)∥∥∥2 ≤ (1− δ
2

)
‖∇W‖2. Corollary

2.9 now shows that E
((

V l
j

(
− tj,n

λj,n

)
, ∂tV

l
j

(
− tj,n

λj,n

)))
≥ 0, E

((
wJ

0,n, w
J
1,n

))
≥ 0,

E
(
V l
1 (−sn), ∂tV l

1 (−sn)
)
≥ Cα0 = α0 > 0, for n large (this fact follows from Lemma

2.8 ii)). Thus,

E ((z0,n, z1,n)) ≥ α0 +

J∑
j=2

E

((
V l
j

(
− tj,n
λj,n

)
, ∂tV

l
j

(
− tj,n
λj,n

)))
+ o(1),

so our claim follows from E ((z0,n, z1,n))→ Ec.

Next, note that if Uj is the non-linear profile associated to
(
(V0,j , V1,j) ,

{
− tj,n

λj,n

})
,

(after passing to a subsequence in n), then Uj exists for all time and ‖Uj‖S(−∞,+∞)

< ∞, 1 ≤ j ≤ J . In fact, for n large, E
((

V l
j

(
− tj,n

λj,n

)
, ∂tV

l
j

(
− tj,n

λj,n

)))
< Ec,

so E ((Uj , ∂tUj)) < Ec by definition of non-linear profile. Moreover,
∥∥∥∇V l

j

(
− tj,n

λj,n

)∥∥∥2
≤ ‖∇z0,n‖2 + o(1) ≤

(
1− δ

)
‖∇W‖2 + o(1), so by Lemma 2.8 we have ‖∇Uj(t)‖ <

‖∇W‖ , ∀t ∈ Ij . But then, by definition of Ec, Ij = (−∞,+∞), ‖Uj‖S(−∞,+∞) <

∞. Next, note that ∃j0 such that for j ≥ j0 we have

‖Uj‖2S(−∞,+∞) ≤ C ‖(V0,j , V1,j)‖2Ḣ1×L2 .

In fact, for J fixed, choosing n large, we have

J∑
j=1

‖∇V0,j‖2 + ‖V1,j‖2 =

J∑
j=1

∥∥∥∥∇V l
j

(
− tj,n
λj,n

)∥∥∥∥2

+

∥∥∥∥∂tV l
j

(
− tj,n
λj,n

)∥∥∥∥2 ≤ ‖(z0,n, z1,n)‖2 + o(1).

Note that ‖∇z0,n‖2 < ‖∇W‖2, E (z0,n, z1,n) < E ((W, 0)), so that the right hand

side < C ‖∇W‖2. Hence, for j ≥ j0, ‖∇V ‖20,j + ‖V1,j‖2 ≤ δ̃, where δ̃ is so small
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that ‖S(t) (V0,j , V1,j)‖S(−∞,+∞) ≤ δ. From the definition of non-linear profile, this

gives that ‖Uj‖S(−∞,+∞) ≤ 2δ, and that

sup
t
‖(Uj(t), ∂tUj(t))‖Ḣ1×L2 +

∥∥∥D 1
2Uj

∥∥∥
W (−∞,+∞)

≤ C ‖(V0,j , V1,j)‖Ḣ1×L2 .

But then, the integral equation for Uj gives ‖Uj‖S(−∞,+∞) ≤ C ‖(V0,j , V1,j)‖Ḣ1×L2 ,

as desired. Next, for ε0 > 0, to be chosen, define

Hn,ε0 =

J(ε0)∑
j=1

1

λ
1
2
j,n

Uj

(
x− xj,n

λj,n
,
t− tj,n
λj,n

)
.

Then, we claim that ‖Hn,ε0‖S(−∞,+∞) ≤ C0, uniformly in ε0, for n ≥ n(ε0). In

fact,

‖Hn,ε0‖
8
S(−∞,+∞) =

� ⎡⎣J(ε0)∑
j=1

1

λj, n
1
2

Uj

(
x− xj,n

λj,n
,
t− tj,n
λj,n

)⎤⎦8

≤
J(ε0)∑
j=1

� ∣∣∣∣∣∣ 1

λ
1
2
j,n

Uj

(
x− xj,n

λj,n
,
t− tj,n
λj,n

)∣∣∣∣∣∣
8

+CJ(ε0)

∑
j �=j′

� ∣∣∣∣∣∣ 1

λ
1
2
j,n

Uj

(
x− xj,n

λj,n
,
t− tj,n
λj,n

)∣∣∣∣∣∣
∣∣∣∣∣∣ 1

λ
1
2
j,n

Uj

(
x− xj,n

λj,n
,
t− tj,n
λj,n

)∣∣∣∣∣∣
7

= I + II.

For n large, II
n→ 0 by orthogonality of (λj,n, xj,n, tj,n). Thus, for n large, II ≤ I.

But,

I ≤
j0∑
j=1

‖Uj‖8S(−∞,+∞) +

J(ε0)∑
j=j0+1

‖Uj‖8S(−∞,+∞)

≤
j0∑
j=1

‖Uj‖8S(−∞,+∞) + C

J(ε0)∑
j=j0+1

‖(V0,j , V1,j)‖8Ḣ1×L2

≤
j0∑
j=1

‖Uj‖8S(−∞,+∞) + C sup
j>j0

‖(V0,j , V1,j)‖6Ḣ1×L2 ·
J(ε0)∑
j>j0

‖(V0,j , V1,j)‖2Ḣ1×L2

≤ C0

2
,

as desired.

Let now Rn,ε0 = H5
n,ε0−

∑J(ε0)
j=1 Ũ5

j,n, where Ũj,n = 1

λ
1
2
j,n

Uj

(
x−xj,n

λj,n
,
t−tj,n
λj,n

)
. We

have
∥∥∥D 1

2
xRn,ε0

∥∥∥
L

4
3
t L

4
3
x

n→∞−→ 0. This uses orthogonality, the chain rule, ‖Uj‖S(−∞,+∞)

< ∞,
∥∥∥D 1

2Uj

∥∥∥
W (−∞,+∞)

< ∞. We now define ũ = Hn,ε0 , e = Rn,ε0 . Choose

J(ε0) so large, that for n large,
∥∥∥S(t)(wJ(ε0)

0,n , w
J(ε0)
1,n

)∥∥∥
S(−∞,+∞)

≤ ε0
2 . Note that

by the profile decomposition, the definition of non-linear profile, we have, for n

large z0,n = Hn,ε0(0) + w̃
J(ε0)
0,n , z1,n = ∂tHn,ε0(0) + w̃

J(ε0)
1,n , where, for n large
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0,n , w̃

J(ε0)
1,n

)∥∥∥
S(−∞,+∞)

≤ ε0. Arguments similar to those above also

show that supt ‖(Hn,ε0(t), ∂tHn,ε0(t))‖Ḣ1×L2 ≤ C̃0, uniformly in ε0, for n large,

and
∥∥∥(w̃J(ε0)

0,n , w̃
J(ε0)
1,n

)∥∥∥
Ḣ1×L2

≤ C ‖∇W‖. Choose now ε0 < ε0

(
C0, C̃0, C ‖∇W‖

)
as in Theorem 1.12, and n so large that

∥∥∥D 1
2
xRn,ε0

∥∥∥
L

4
3
t L

4
3
x

≤ ε0. Then, Theorem

1.12 gives Proposition 2.18 a). This concludes the concentration - compactness
procedure. �



CHAPTER 9

Soliton Resolution
for Radial Solutions to (NLW), I

In this chapter, we start our discussion of the recent proof of the soliton reso-
lution conjecture for radial solutions of (NLW), by Duyckaerts, Kenig and Merle,
in [30] and [33]. The proofs in Chapters 9–11 are from [33]. Notice that we have
already had a preliminary discussion of soliton resolution in Remark 6.15.

For a long time there has been a widespread belief that global in time solutions
of dispersive equations, asymptotically in time, decouple into a sum of finitely many
modulated solitons, a free radiation term and a term that goes to 0 at infinity. Such
a result should hold for globally well-posed equations, or in general, with the addi-
tional condition that the solution does not blow up. When dealing with an equation
for which blow-up can occur, such decompositions are always expected to be unsta-
ble. So far, the only cases where results of the type have been proved are for the in-
tegrable KdV and NLS equations in one space dimension. For ∂tu+∂3

xu+u∂xu = 0,
for data with regularity and decay, this has been established by Eckhaus-Schuur
([40]). Corresponding results for the other integrable KdV equation, the modified
KdV, ∂tu+∂3

xu+u2∂xu = 0, were also obtained by the same authors via the Miura
transform. Heuristic arguments for this conjecture, in the case of the cubic NLS in
1-d, i∂tu+∂2

xu+ |u|2u = 0, another integrable model, were given by Ablowitz-Segur
[91] and Zakharov-Shabat [103]. For a rigorous proof in this case, see Novoksenov
[86]. All of these equations are globally well-posed and so the decompositions are
expected to be stable, unlike the case of equations for which blow-up may occur.
For more general dispersive equations, so far results have only been found, for sub-
critical nonlinearities, for data close to the soliton. (Buslaev-Perelman [9], [10] for
NLS with specific nonlinearities in 1d, Soffer-Weinstein [96], in higher dimensions,
Martel-Merle for gKdV (generalized KdV equations) [76], . . . ). Corresponding re-
sults near the soliton, in the case of finite time blow-up for critical problems, are in
the works of Martel-Merle for gKdV [77], Merle-Raphael [78] for mass critical NLS,
etc. There have also been large solution results for critical equivariant wave maps
into the sphere, due to Christodoulou-Tahvildar-Zadeh, Shatah-Tahvilder-Zadeh,
Struwe,[11],[95] and [98]. These are results for finite time blow-up, which show
convergence along some sequence of times converging to the blow-up time, locally
in space-time, to a soliton (harmonic map). Recently, this has been strengthened
(with size restrictions) in works of Côte-Kenig-Lawrie-Schlag [14], [15] and by Côte
[13] without size restriction, but only for a sequence of times.

In the finite time blow-up case, for the 1-d nonlinear wave equation, Merle-Zaag
have obtained results of the “resolution” type, through the use of a global Lyapunov
functional in self-similar variables [82]. Also, in critical problems of elliptic type,

121



122 9. SOLITON RESOLUTION FOR RADIAL SOLUTIONS TO (NLW), I

there have been “towering bubbles” detected in asymptotic problems, where the
size of an excluded hole goes to 0, see [84], etc.

The first general results for radial solutions of (NLW), were obtained in [30].
They held for extended type II solutions, for a specific sequence of times. We now
have the full soliton resolution for radial solutions of (NLW), in the two asymptotic
regimes, finite time type II blow-up, and global in time. Our result here is, [33]:

Theorem 9.1. Let u be a radial solution of (NLW). Then, one of the following
holds:

a) Type I blow-up: T+ <∞ and

lim
t↑T+

‖(u(t), ∂tu(t))‖Ḣ1×L2 =∞.

b) Type II blow-up: T+ < ∞ and ∃(v0, v1) ∈ Ḣ1 × L2, J ∈ N\ {0} and
∀j ∈ {1, . . . , J} , ij ∈ {±1} and λj(t) > 0 such that 0 < λ1(t) 
 λ2(t) 


· · · 
 λJ(t)
 T+− t, and (u(t), ∂tu(t)) =

(∑J
j=1

ij

λj(t)
1
2
W
(

x
λj(t)

)
, 0

)
+

(v0, v1) + o(1) in Ḣ1 × L2.
c) T+ =∞ and ∃ a solution vL of (LW), J ∈ N and for all j ∈ {1, . . . , J} , iJ
∈ {±1} , λj(t) > 0 such that 0 < λ1(t) 
 λ2(t) 
 · · · 
 λJ (t) 
 t, and

(u(t), ∂tu(t)) =

(∑J
j=1

ij

λj(t)
1
2
W
(

x
λj(t)

)
, 0

)
+ (vL(t), ∂tvL(t)) + o(1) in

Ḣ1 × L2.

Here, a(t)
 b(t) as t→ T (T <∞, or T = ±∞) means limt→T
a(t)
b(t) = 0.

Remark 9.2. When T+ <∞, a), b) imply that limt↑T+
‖(u(t), ∂tu(t))‖Ḣ1×L2 =

l exist, l ∈ [‖∇W‖2,+∞], i.e., solutions split into type I, II, no mixed asymptotics
exist. Recall that both type I, II blow-up exist. We expect that solutions as in b),
with J > 1, exist. For the 1-d nonlinear wave equation this has been shown by
Côte-Zaag [18].

As mentioned earlier, in the elliptic setting, “towering bubbles” do exist [84].

Remark 9.3. When T+ =∞, c) in particular implies that
supt>0‖(u(t), ∂tu(t))‖Ḣ1×L2 <∞. More precisely, lim supt↑∞‖(u(t), ∂tu(t))‖2Ḣ1×L2

= l and 2E(u0, u1) ≤ l ≤ 3E(u0, u1). Also, J ≤ E(u0,u1)
E(W,0) .

In this case we also expect that solutions with J > 1 exist.

Remark 9.4. It is known that the set S1 of initial data such that the corre-
sponding solution scatters to a linear solution is open. It is believed that the set S2

of initial data leading to type I blow-up is also open. Theorem 9.1 gives a descrip-
tion of solutions whose data is in S3, the complement of S1 ∪ S2. We believe that
from Theorem 9.1 one can show that S3 is the boundary of S1 ∪ S2. In particular,
we conjecture that the asymptotic behavior of data in S3 is unstable.

A fundamental new ingredient of the proof of Theorem 9.1 is the following
dispersive property that all global in time radial solutions to (NLW) (other than
0,±W up to scaling) must have:
(9.5)∫

|x|>R+|t|
|∇x,tu(x, t)|2dx ≥ η, for some R > 0, η > 0 and all t ≥ 0 or all t ≤ 0.
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We establish this only using the behavior of u in “outside regions”, |x| > R+|t|,
without using any global integral identity of virial or Pohozaev type. (This can
also be used to give a new proof of the results of Pohozaev (elliptic) and also of the
rigidity theorem, Theorem 4.17, in an important special case, as we will see).

Remark. With Lawrie and Schlag [58], we have used these ideas to give a
soliton resolution in a stable situation, for 1-equivariant wave maps from R3\B1

into S3, thus establishing a conjecture of Bizon-Chmaj-Maliborski [7]. This shows
that the ideas in the proof of Theorem 9.1 can also apply to show stable soliton
resolutions. The extension to the general k-equivariant case has been recently
carried out by Kenig-Lawrie-Liu-Schlag [56], [57].

We now turn to the proof of Theorem 9.1.
We start with some notation and preliminary results. We will give the proof of

c), the one of a), b) being similar.

Let (u0, u1) ∈ Ḣ1 × L2, R > 0, radial. We define

(9.6) (ũ0, ũ1) = ΨR (u0, u1)

by:

ũ0(r) =

{
u0(r) if r ≥ R

u0(R) if 0 < r < R

ũ1(r) =

{
u1(r) if r ≥ R

0 if 0 < r < R

Note that (ũ0, ũ1) ∈ Ḣ1 × L2, (u0(r), u1(r)) = (ũ0(r), ũ1(r)) for r ≥ R and

‖(ũ0, ũ1)‖2Ḣ1×L2 =
∫
|x|>R

|∇u0|2 + u2
1. We will need the following version of the

“local theory of the Cauchy problem”, involving potentials.

Lemma 9.7. ∃δ0 > 0 such that if 0 ∈ I, V = V (x, t) ∈ L8
(
R3 × I

)
and

‖V ‖L8(R3×I) +
∥∥∥D 1

2
x V
∥∥∥
L4(R3×I)

+
∥∥∥D 1

2
x V

2
∥∥∥
L

8
3 (R3×I)

+
∥∥∥D 1

2
x V

3
∥∥∥
L2(R3×I)

+
∥∥∥D 1

2
x V

4
∥∥∥
L

8
5 (R3×I)

≤ δ0, ‖(h0, h1)‖Ḣ1×L2 ≤ δ0,

then ∃! solution h of

(9.8)

⎧⎪⎨⎪⎩
∂2
t −Δh = 5v4h+ 10v3h2 + 10v2h3 + h5 + 5h4v = (v + h)5 − v5

h|t=0 = h0

∂th|t=0 = h1

with �h = (h, ∂th) ∈ C
(
I; Ḣ1 × L2

)
, h ∈ L8

(
R3 × I

)
. Also, letting hL be the

solution of the (LW), we have

sup
t∈I

∥∥∥ �h(t)− �hL(t)
∥∥∥
Ḣ1×L2

≤ 1

10
‖(h1, h2)‖Ḣ1×L2 .
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The proof ([33]) is the same as the one of the “local theory of the CP” of (NLW)
(See Theorem 1.4, Remark 1.6). In our applications, we will use the following
remark:

Remark 9.9.

a) V (x, t) = W (x). Then ∃ small t0 > 0 such that the conditions hold, with
I = (−2t0, 2t0).

b)

V (x, t) =

{
W (x), if |x| > R0 + |t|

W (R0 + |t|), if |x| ≤ R0 + |t| ,
whereR0 > 0. Then, forR0 large, the conditions hold with I=(−∞,+∞).

Remark 9.9 is proved using the Leibniz rule for fractional derivatives (See [33],
Appendix A).

To motivate what follows, we start out by pointing out the following “dispersive
property” of non-zero solutions v to (LW): ∃R > 0, η > 0 such that for all t ≥ 0,
or for all t ≤ 0, ∫

|x|≥R+|t|
|∇v(x, t)|2 + (∂tv(x, t))

2
dx ≥ η > 0.

Indeed, if
∫
|∇v0|2 + v21 �= 0, since, as we saw earlier, this equals

∫∞
0

[∂r(rv0)]
2 +

(rv0)
2dr �= 0, we can find R > 0 such that

∫∞
R

[∂r(rv0)]
2
+ (rv1)

2dr ≥ 2η > 0.
By our outer energy lower bound, Corollary 7.6, for t ≥ 0 or for t ≤ 0, we have∫
|x|≥R+|t| |∇v(x, t)|2 + (∂tv(x, t))

2 dx ≥ η > 0, as claimed. We call this property

the “channel of energy” property. We will extend this property to non-zero radial
solutions of (NLW), which are global in time and which are not scalings of W , thus
providing a dynamical characterization of W .

We start out with two simple claims which will clarify the result.

Claim 9.10. Let u be a solution of (NLW), which exists for all time (positive).

Then, limR→∞ supt>0

∫
|x|>t+R

|∇u(t)|2 + |∂tu(t)|2 = 0.

Proof. Let η > 0 be given, choose R0 large such that
∫
|x|>R0

|∇u0|2+u2
1 ≤ η2.

Let
(
ũ0,R0

, ũ1,R0

)
= ΨR0

(u0, u1). For η small, ũR0
exists for all time, scatters and

we have supt

∥∥∥�̃uR0
(t)
∥∥∥
Ḣ1×L2

≤ Cη. But, finite speed of propagation shows that for

|x| ≥ R0 + t, ũR0
(x, t) = u(x, t), giving our result. �

Claim 9.11. Let u be a global in time solution of (NLW), such that for

some R > 0, limt↑∞
∫
|x|>R+t

|∇u(t)|2 + |∂tu(t)|2 > 0. Then, ∃η > 0 such that∫
|x|>R+t

|∇u(t)|2 + |∂tu(t)|2 ≥ η, ∀t ≥ 0.

Proof. If not, ∃ {tn} , tn ≥ 0 such that tn ↑ t̄ ∈ (0,∞], and

lim
n→∞

∫
|x|≥R+tn

|∇u(tn)|2 + |∂tu(tn)|2 = 0.

Let un be the solution of (NLW) such that

(un(tn), ∂tun(tn)) = ΨR+tn (u(tn), ∂tu(tn)) .
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Then, limn ‖(un(tn), ∂tun(tn))‖Ḣ1×L2 = 0. Thus, for large n, un exists globally
and scatters. By the small data theory, if ε > 0 is given and n is chosen so large
that

‖ �un(tn)‖Ḣ1×L2 ≤ ε,

then for all t, ‖ �un(t)‖Ḣ1×L2 ≤ Cε. By finite speed of propagation, for all t, we have

�un(tn + t) = �u(tn + t)

for |x| > R + tn + |t|. Hence, limt↑∞
∫
|x|≥R+t

|∇xu(t)|2 + |∂tu(t)|2 < Cε. Since

ε > 0 is arbitrary, we reach a contradiction. �

Remark 9.12. Both claims are also valid for t ≤ 0.

Proposition 9.13. Let u be a global in time, radial solution of (NLW) such
that for some R > 0,

lim
t↑+∞

∫
|x|>R+t

|∇u(t)|2 + (∂tu(t))
2 = lim

t↓−∞

∫
|x|>R+|t|

|∇u(t)|2 + (∂tu(t))
2 = 0.

Then, either (u0, u1) is compactly supported, or ∃λ > 0, i ∈ {±1} such that (u0, u1)

−
(

i

λ
1
2
W
(
x
λ

)
, 0
)
is compactly supported.

In order to prove Proposition 9.13, we need a couple of lemmas.

Lemma 9.14. Let u be as in Proposition 9.13. Let v(r, t) = ru, v0 = ru0, v1 =
ru1. Then, there exists C0 > 0 such that if for some r0 > 0 we have∫ ∞

r0

[
(∂ru0)

2 + u2
1

]
r2dr ≤ δ0,

where δ0 is small, then∫ ∞

r0

[
(∂rv0)

2 + v21
]
dr ≤ C0

|v0(r0)|10

r50
.

Furthermore, for r, r′, r0 ≤ r ≤ r′ ≤ 2r, we have

|v0(r)− v0(r
′)| ≤

√
C0
|v0(r)|5

r2
≤
√
C0δ

2
0 |v0(r)| .

Proof. Assume first the first statement. We then show the second one. By
the fundamental theorem,

|v0(r)− v0(r
′)| ≤

∣∣∣∣∣
∫ r′

r

∂rv0(s)ds

∣∣∣∣∣ ≤ √r

√∫ ∞

r

[∂rv0(s)]
2 ds

≤
√
C0r

|v0(r)|5

r
5
2
0

=
√

C0
|v0(r)|5

r20
.

Also, if r ≥ r0,
1
r v

2
0(r) = ru2

0(r) ≤
∫∞
r

[∂su0(s)]
2
s2ds ≤ δ0, which gives the second

inequality in the last line of the statement.
We now prove the first inequality. Let uL be the solution of (LW), with data

(u0, u1) and let vL = ruL. By Corollary 7.6 (outer energy lower bound), for all
t ≥ 0, or for all t ≤ 0,∫ ∞

r0+|t|

[
(∂ruL(t))

2 + (∂tuL(t))
2
]
r2dr ≥ 1

2

∫ ∞

r0

(∂rv0)
2 + v21 .
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Let now (ũ0, ũ1) = Ψr0(u0, u1), ũL the solution of (LW) with data (ũ0, ũ1). By

assumption, ‖(ũ0, ũ1)‖2Ḣ1×L2 ≤ δ0. If δ0 is taken small enough, the “local theory of
the Cauchy problem” (Theorem 1.4, Remark 1.6) gives that for all t ∈ R,∥∥∥(�̃u− �̃uL

)
(t)
∥∥∥
Ḣ1×L2

≤ C ‖(ũ0, ũ1)‖5Ḣ1×L2

= C

[∫ ∞

r0

(
[∂ru0]

2 + u2
1

)
r2dr

] 5
2

(integration by parts)
= C

[∫ ∞

r0

(
[∂rv0]

2 + v21

)
dr + r0u

2
0(r0)

] 5
2

.

Hence,∫ ∞

r0+|t|

(
[∂rũL(t)]

2
+ [∂tũL(t)]

2
)
r2dr ≤ 2

∫ ∞

r0+|t|

(
[∂rũ(t)]

2
+ [∂tũ(t)]

2
)
r2dr

+C

[∫ ∞

r0

[
(∂rv0)

2 + v21

]
dr + r0u

2
0(r0)

]5
.

By finite speed of propagation, �u(r, t) = �̃u(r, t) and �uL(r, t) = �̃uL(r, t), for r >
r0 + |t|. Thus,∫ ∞

r0+|t|

(
[∂ruL(t)]

2
+ [∂tuL(t)]

2
)
r2dr ≤ 2

∫ ∞

r0+|t|

(
[∂ru(t)]

2
+ [∂tu(t)]

2
)
r2dr

+C

[∫ ∞

r0

[
(∂rv0)

2 + v21

]
dr + r0u

2
0(r0)

]5
.

Combining this with our outer energy lower for uL, we see that, for all t ≥ 0, or for
all t ≤ 0,∫ ∞

r0

[
(∂rv0)

2 + v21
]
dr ≤ 4

∫ ∞

r0+|t|

(
[∂ru(t)]

2
+ [∂tu(t)]

2
)
r2dr

+C

[∫ ∞

r0

[
(∂rv0)

2 + v21

]
dr + r0u

2
0(r0)

]5
.

Letting t → ±∞, according to whether the above holds for t ≥ 0, or t ≤ 0 and
using our hypothesis, we obtain∫ ∞

r0

[
(∂rv0)

2 + v21

]
dr ≤ C

[∫ ∞

r0

[
(∂rv0)

2 + v21

]
dr + r0u

2
0(r0)

]5
.

Since
∫∞
r0

[
(∂rv0)

2 + v21
]
dr ≤

∫∞
0

[
(∂ru0)

2
+ u2

1

]
r2dr ≤ δ0, if δ0 is small we can

neglect this term in the right hand side. Noticing that r50u
10
0 (r0) =

v10
0 (r0)

r50
, we

obtain ∫ ∞

r0

[
(∂rv0)

2 + v21
]
dr ≤ C

v100 (r0)

r50
,

as desired. �

Lemma 9.15. The function v0(r) has a limit l ∈ R as r → ∞. Furthermore,
∃C > 0 such that ∀r ≥ 1, |v0(r)− l| ≤ C

r2 .
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Proof. First note that ∃C > 0 such that

|v0(r)| ≤ Cr
1
10 .

Indeed, by the second bound in the second line in Lemma 9.14,∣∣v0(2n+1r0)− v0(2
nr0)

∣∣ ≤√C0δ
2
0 |v0(2nr0)| ,

so that
∣∣v0(2n+1r0

∣∣ ≤ [1 +√C0δ
2
0

]
|v0(2nr0)|. Iterating, we obtain |v0(2nr0)| ≤[

1 +
√
C0δ

2
0

]n |v0(r0)|. Choosing a smaller δ0 if necessary, we can assume that(
1 +

√
C0δ

2
0

)
≤ 2

1
10 , which then shows that

|v0(2nr0)| ≤ 2
n
10 |v0(r0)| .

This shows the inequality for r = 2nr0. The general case follows from the difference
estimate in the second bound in the second line in Lemma 9.14.

Next, we prove that

lim
r→∞

v0(r) = l ∈ R.

By the first inequality in the second line of the conclusion in Lemma 9.14, we have,
for n ∈ N, ∣∣v0(2nr0)− v0(2

n+1r0)
∣∣ ≤√C0

|v0| (2nr0)5
(2nr0)2

.

Using our bound on |v0(r)|, we then obtain∣∣v0(2nr0)− v0(2
n+1r0)

∣∣ ≤ C

[2n]2−
5
10

=
C

2
3n
2

.

Hence,
∑

n≥0

∣∣v0(2nr0)− v0(2
n+1r0)

∣∣ <∞, which gives that limn→∞ v0(2
nr) = l ∈

R. Using again that |v0(r)| ≤ Cr
1
10 and our difference estimate, we conclude that

limr→∞ v0(r) = l.
Now, since v0(r) converges as r →∞, it is bounded. Thus, for r ≥ r0, n ∈ N,∣∣v0(2n+1r)− v0(2

nr)
∣∣ ≤ C

(2nr)2
,

by the first estimate in the second line of Lemma 9.14. Adding, we get

|l − v0(r)| =

∣∣∣∣∣∣
∑
n≥0

[
v0(2

n+1r)− v0(2
nr)
]∣∣∣∣∣∣ ≤ C

r2

∑
n≥0

1

4n
=

C

r2
.

as desired. �

We now conclude the proof of Proposition 9.13. We distinguish two cases, l = 0
and l �= 0.

Case l = 0: In this case we will show that (v0, v1) is compactly supported.
Fix a large r and use the second inequality in Lemma 9.14, together

with the smallness of δ0, to see that∣∣v0(2n+1r)− v0(2
nr)
∣∣ ≤√C0δ

2
0 |v0(2nr)| ≤

1

4
|v0(2nr)|

and hence,
∣∣v0(2n+1r)

∣∣ ≥ 3
4 |v0(2nr)|. Iterating, we get |v0(2nr)| ≥(

3
4

)n |v0(r)|. Since l = 0, Lemma 9.15 gives that |v0(2nr)| ≤ C
22nr2 = C

4nr2 .
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Hence for all n ∈ N, |v0(r)|
(
3
4

)n ≤ C
4nr2 , which shows that v0(r) ≡ 0 for

r > r0. Since, by the first inequality in Lemma 9.14, we have∫ ∞

r

[
∂sv0(s) + v21(s)

]
ds ≤ C0

|v0(r)|10

r5
,

we see that v1 also has compact support.
Case l �= 0: In this case, we show that ∃λ > 0 and sign ± such that(

u0 ±
1

λ
1
2

W
(x
λ

)
, u1

)
has compact support.

Note that, for large r,

∣∣∣∣ 1

λ
1
2
W
(
r
λ

)
−

√
3λ

1
2

r

∣∣∣∣ ≤ C
r3 , which follows from

W (r) = 1

(1+ r2

3 )
1
2
. Hence, Lemma 9.15 implies that ∃C > 0 such that∣∣∣∣± 1

λ
1
2

W
(x
λ

)
− u0(r)

∣∣∣∣ ≤ C

r3
,

where λ = l2

3 , and the sign± is the sign of l (by Lemma 9.15, |ru0(r)− l| ≤
C
r2 , r ≥ 1).

Rescaling u and possibly replacing u by −u, we can assume that
|u0(r)−W (r)| ≤ C

r3 , r ≥ 1. Let h = u−W,H = rh.

Claim: For a large R0, ∀r0 > R0, we have∫ ∞

r0

[
(∂rH0)

2
+H2

1

]
dr ≤ 1

16

H2
0 (r0)

r0
,

where (H0, H1) = (H, ∂tH)|t=0. Let us assume the Claim, and conclude that
(H0(r), H1(r)) = (0, 0) for large r. Indeed, the claim implies, for large r, n ∈ N

that

∣∣H0(2
n+1r)−H0(2

nr)
∣∣ ≤ 2

n
2
√
r

(∫ 2n+1r

2nr

[∂sH0(s)]
2
ds

) 1
2

≤ 2
n
2
√
r
1

4

|H0(2
nr)|

2
n
2
√
r

=
1

4
|H0 (2

nr)| ,

so that
∣∣H0(2

n+1r)
∣∣ ≥ ( 34) |H0(2

nr)| and hence,

|H0(2
nr)| ≥

(
3

4

)n

|H0(r)| .

Since |u0(R)−W (r)| ≤ C
r3 , r ≥ 1, |H0 (2

nr)| ≤ C
4nr2 , which letting n → ∞

gives H0(r) ≡ 0. Thus, H0 is compactly supported and the claim shows that the
same holds for H1. It remains to show the claim.

To do this, let R0 be large,

V (x, t) =

{
W (x) if |x| > R0 + |t|

W (R0 + |t|) if |x| ≤ R0 + |t|

as in Remark 9.9.
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Define (g0, g1) = Ψr0(h0, h1). Let gL be the solution of (LW) with this data.
Let g be the solution of ⎧⎪⎨⎪⎩

∂2
t g −Δg = (V + g)5 − v5

g|t=0 = g0

∂tg|t=0 = g1

given by Lemma 9.7. Thus, g is globally defined and supt∈R

∥∥∥ �g(t)− �gL(t)
∥∥∥
Ḣ1×L2

≤
1
10 ‖(g0, g1)‖Ḣ1×L2 .

Recall also from our outer energy lower bound (Corollary 7.6) that, for all t ≥ 0
or for all t ≤ 0,∫

|x|>r0+|t|

[
|∇gL(t)|2 + |∂tgL(t)|2

]
≥ 1

2

∫ ∞

r0

[
(∂rH0)

2 +H2
1

]
dr.

Hence, for all t ≥ 0 or all t ≤ 0,∫ ∞

r0

[
(∂rH0)

2 +H2
1

]
dr ≤ 2

∫
|x|≥r0+|t|

[
|∇gL(t)|2 + (∂tgL(t))

2
]

≤ 4

∫
|x|≥r0+|t|

[
|∇g(t)|2 + (∂tg(t))

2
]

+
1

25

∫ ∞

r0

[
(∂rg0)

2
+ g21

]
r2dr.

By finite speed of propagation, �g(r, t) = �h(r, t), r ≥ r0 + |t|. Using that

lim
t→±∞

∫ ∞

r0+|t|
|∂rW |2 r2dr = 0,

and our hypothesis in Proposition 9.13, (h(r, t) = u(r, t) −W (r)) and letting t →
+∞ or −∞, according to where the above holds, we obtain∫ ∞

r0

[
(∂rH0)

2
+H2

1

]
≤ 1

25

∫ ∞

r0

[
(∂rg0)

2
+ g21

]
r2dr

=
1

25

[∫ ∞

r0

[
(∂rH0)

2
+H2

1

]
dr +

1

r0
H2

0 (r0)

]
,

since (H0, H1) = (rh0, rh1) = (rg0, rg1) for r > r0 and where we have used integra-
tion by parts. This gives the Claim, and thus Proposition 9.13.

Before proceeding towards the proof of Theorem 9.1, we would like to point
out that Proposition 9.13 can be used to give a proof of the rigidity Theorem 4.17
(from [32]) which says that if a radial solution of (NLW) has the “compactness
property”, up to scaling , it must be 0 or ±W . This proof comes from [34].

Theorem 9.16 (Rigidity Theorem). Let u be a non-zero radial solution of

(NLW), K =
{(

λ− 1
2 (t)u

(
x

λ(t) , t
)
, λ(t)−

3
2 ∂tu

(
x

λ(t) , t
))

: t ∈ Imax(ω), λ(t) > 0
}
.

Assume that for some λ(t), with inft∈I λ(t) > 0 K is compact in Ḣ1 × L2. Then,

∃λ0 > 0, i0 ∈ {±1} such that u(x, t) = i0

λ
1
2
0

W
(

x
λ0

)
.

Theorem 9.16 many times suffices. To obtain the full Theorem 4.17, extra work
is needed.
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It should be pointed out though, that Theorem 9.16, combined with the “no

self-similar compact blow-up” result in [62], Property 4.29 (if T+ = 1 and K̃ ={
(1− t)−

1
2 u ((1− t)x, t) , (1− t)

3
2 ∂tu ((1− t)x, t)

}
is precompact in Ḣ1 ×L2, then

u cannot exist) show that it suffices to prove the full Theorem 4.17, when I =
(−∞,+∞). This is a “general property” that can be found in [34]. In the radial
case, the proof of Property 4.29 simplifies considerably (see [34] for this). A proof,
also in the radial case, of Property 4.29 using the “channel of energy property” can
also be obtained, for this, see [30]. We will now sketch the proof of Theorem 9.16,
I = (−∞,+∞), using Proposition 9.13. Let A0 = inft∈(−∞,+∞) λ(t) > 0.

The pre-compactness in L2(R3) of{
�v(t) =

(
λ(t)−

3
2∇u

(
x

λ(t)
, t

)
, λ(t)−

3
2 ∂tu

(
x

λ(t)
, t

))
, t ∈ (−∞,+∞)

}
implies that, given ε > 0, there exist R0 > 0, uniformly in t, such that∫

|x|>R

|�v(t)|2 dx ≤ ε,

for R ≥ R0, (and all t).

Changing variables, and using that A0 > 0, we see that ∃R̃0

(
= R0

A0

)
such that

if R ≥ R̃0, then ∫
|x|>R̃0

|∇u(t)|2 + |∂tu(t)|2 ≤ ε.

As a consequence, for any R > 0, we have that

lim
t→±∞

∫
|x|>R+|t|

|∇u(t)|2 + |∂tu(t)|2 = 0.

Hence, Proposition 9.13 says that, either (u0, u1) has compact support, or ∃λ0 >

0, i0 ∈ (±1) such that

(
u0 − i0

λ
1
2
0

W
(
x
λ

)
, u1

)
has compact support. To continue

with the proof, for (f0, f1) radial, (f0, f1) ∈ Ḣ1 × L2, we denote ρ(f0, f1) =
inf {r > 0 : |{s > r : (f0(s), f1(s)) �= (0, 0)}| = 0}. We make the convention ρ(f0, f1)
=∞ if the set over which the inf is taken is ∅.

Assume first that ρ0 = ρ(u0, u1) > 0, ρ0 < ∞. (This means that (u0, u1)
has compact support, but is not ≡ (0, 0)). We will reach a contradiction. Let

ε = min
(

1
2
√
C0

, δ0

)
, where C0, δ0 come from Lemma 9.14. Using the definition

of r0 and the continuity of u0 outside the origin, we can choose r1 ∈ (0, r0), r1

close to r0, such that u0(r1) �= 0 and
∫∞
r1

[
(∂ru0)

2 + u2
1

]
r2dr + |v0(r1)|4

r21
< ε, where

v0(r) = ru0(r), v1(r) = ru1(r).

By the estimate from Lemma 9.14, which says that, if
∫∞
r0

[
(∂ru0)

2
+ u2

1

]
r2dr ≤

δ0, δ0 small, then |v0(r)− v0(r
′)| ≤

√
C0

|v0(r)|5
r2 , when r0 ≤ r ≤ r′ ≤ 2r, we obtain

|v0(ρ1)| = |v0(ρ1)− v0(ρ0)| ≤
√
C0 |v0(ρ1)|5

ρ21
≤
√
C0ε |v0(ρ1)| ,

a contradiction since ε
√
C0 < 1 and v0(ρ1) �= 0.

Next, after rescaling and possible change of sign, we know that (u0−W (x), u1)
has compact support. Repeating the proof of Proposition 9.13, for each t, and
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noticing that the compactness property, with the lower bound on λ(t), gives uniform

in t estimates, we see that Lemma 9.15 gives that, for each t,
∣∣∣u(r, t)− l(t)

r

∣∣∣ ≤ C
r3 , r ≥

1 where l(t) is bounded in t and C is independent of t. Moreover, our normalization
gives l(0) = 1

3 . We next show that l(t) is independent of t. Fix t1 < t2. Then,

l(t2)− l(t1) =
1
R

∫ 2R

R
[u(r, t2)− u(r, t2)] rdr +O(R−2) as R→∞. Thus,

|l(t2)− l(t1)| =

∣∣∣∣∣ 1R
∫ 2R

R

∫ t2

t1

∂tu(r, t)rdrdt

∣∣∣∣∣+O(R−2)

≤
∫ t2

t1

(
1

R

∫ 2R

R

|∂tu(r, t)|2 r2dr
) 1

2

dt+O(R−2)

≤ CR− 1
2 |t1 − t2|+O(R−2),

so that l(t1) = l(t2) and hence, by our normalization at t = 0, l(t) ≡ 1
3 . Following

the proof of Proposition 9.13, we see that ∃R0 such that supp (u(t)−W,∂tu(t)) ⊂
BR0

, where R0 is independent of t.
For each t ∈ R, we let ρ(t) = ρ (u(t)−W,∂tu(t)). We also let ρmax =

supt∈R
ρ(t), r0 = ρmax

2 . By contradiction, assume that (u0, u1) �≡ (W, 0). Then,
ρmax > 0, and ρmax ≤ R0. Let V (x, t) = W (x), choose t0 as in Remark 9.9 a).
Choosing a smaller t0 if necessary, we can assume that ρmax − t0

2 > 0. Choose

t1 ∈ R such that ρ(t1) ≥ ρmax − t0
2 > 0. Translating in time, we assume t1 = 0.

Choose r1 ∈ (0, ρ(0)) such that 0 < ρ(0)−r1
10r1

< 1
2 , r1 + t0 > ρmax, and

0 <

∫ ∞

r1

[
(∂rh0)

2 + h2
1

]
r2dr < δ0,

(where (h0, h1) = (u(0)−W,∂tu(0))). We now apply the argument in the proof of
Proposition 9.13, case l �= 0, in the interval I = [−t0, t0]. Then, for all t ∈ [0, t0] or
all t ∈ [−t0, 0], we have∫ ∞

r1

[
(∂rH0)

2
+H2

1

]
≤ 5

∫ ∞

r1+|t|

[
(∂rg(r, t))

2
+ (∂tg(r, t))

2
]
r2dr +

1

10r1
H2

0 (r1).

(h = u−W,H = rh, g = Ψr1(h0, h1)).

Since r1 + t0 > ρmax,
∫
r1+|t|

[
(∂rg(r, t))

2
+ (∂tg(r, t))

2
]
r2dr = 0 at t = ±t0.

Hence, ∫ ∞

r1

[
(∂rH0)

2 +H2
1

]
dr ≤ 1

10r1
H2

0 (r1)

≤ 1

10r1

(∫ ρ(0)

r1

|∂rH0| dr
)2

≤ 1

10r1
[ρ(0)− r1]

∫ ρ(0)

r1

[∂rH0]
2 dr.

Since 1
10r1

[ρ(0)− r1] ≤ 1
2 , we see that

∫∞
r1

[
(∂rH0)

2 +H2
1

]
dr = 0. By the compact

support of H0, it follows that
∫∞
r1

[
(∂rh0)

2
+ h2

1

]
r2dr = 0, which contradicts the

fact that 0 <
∫∞
r1

[
(∂rh0)

2 + h2
1

]
r2dr. This completes the proof.
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We now return to the proof of Theorem 9.1. We will need two propositions:

Proposition 9.17. Let u be a non-zero radial solution of (NLW) such that

∀λ > 0 and all ± signs,
(
u0 ± 1

λ
1
2
W
(
x
λ

)
, u1

)
is not compactly supported. Then,

there exist R > 0, η > 0 and ũ a globally defined solution of (NLW), such that ũ
scatters in both time directions and for all t ≥ 0 or for all t ≤ 0∫

|x|>R+|t|
|∇ũ(x, t)|2 + (∂tũ(x, t))

2
dx ≥ η,

and ũ(x, t) = u(x, t) for |x| > R + |t|.

Proof. Assume first that (u0, u1) is not compactly supported. Let (ũ0, ũ1) =

ΨR (u0, u1), where R > 0 is chosen so large that 0 < ‖(ũ0, ũ1)‖Ḣ1×L2 < δ̃, where δ̃
is given by the Remark 1.6. By Claim 9.11, the conclusion is verified for ũ unless
limt↑+∞

∫
|x|>R+|t| |∇xũ(t)|2+(∂tũ(t))

2
= limt↓−∞

∫
|x|>R+|t| |∇xũ(t)|2+(∂tũ(t))

2
=

0.
But, in this case, by Proposition 9.13, (ũ0, ũ1) is either compactly supported

(which is excluded since we assumed that (u0, u1) is not compactly supported), or

∃λ > 0, i ∈ {±1} such that (ũ0, ũ1)−
(

i

λ
1
2
W
(
x
λ

)
, 0
)
is compactly supported, which

contradicts our hypothesis.
Thus, let us assume that (u0, u1) is compactly supported, and not (0, 0). Thus,

0 < ρ(u0, u1) < ∞. Let 0 < R < ρ(u0, u1) and let (ũ0, ũ1) = ΨR (u0, u1). Choose

now R so close to ρ(u0, u1) that 0 < ‖(ũ0, ũ1)‖Ḣ1×L2 ≤ δ̃, where δ̃ is given by
Remark 1.6. Let ũ be the corresponding solution of (NLW), which exists globally
and scatters, and ũL the solution of (LW). Thus, we have

sup
t

∥∥∥�̃u(t)− �̃uL(t)
∥∥∥
Ḣ1×L2

≤ 1

10
‖(ũ0, ũ1)‖ ,

and for all t ≥ 0, or for all t ≤ 0,∫
|x|≥R+|t|

|∇ũL(t)|2 + |∂tũL(t)|2 ≥
1

2

[
‖∇ũ0‖2 + ‖ũ0‖2 −Rũ2

0(R)
]
.

But, since ρ (ũ0, ũ1) = ρ (u0, u1), if R is close enough to ρ (ũ0, ũ1), then R |ũ0(R)|2 ≤
1
4 ‖∇ũ0‖2, so that 1

2

[
‖∇ũ0‖2 + ‖ũ1‖2 −Rũ2

0(R)
]
≥ 3

8

[
‖∇ũ0‖2 + ‖ũ1‖2

]
. Combin-

ing our inequalities we obtain the “channel property” for ũ, as desired. �

Proposition 9.18. Let R0 > 0 be a large constant to be chosen. Then, the fol-
lowing holds: let u be a radial solution of (NLW) such that (h0, h1) = (u0 ±W,u1)
is compactly supported and not ≡ 0. Then,

a) ∃ a solution ǔ of (NLW), defined for t ∈ [−R0, R0] and R′ ∈ (0, ρ(h0, h1))
such that

(ǔ0(r), ǔ1(r)) = (u0(r), u1(r))

for r > R′, and the following holds: for all t ∈ [0, R0] or for all t ∈
[−R0, 0]:

ρ(ǔ(t)±W,∂tǔ(t)) = ρ(h0, h1) + |t| .
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b) Assume further that ρ(h0, h1) > R0. Let R < ρ(h0, h1) be close to
ρ(h0, h1). Then, ∃η > 0 and a global radial solution ũ, which scatters,
such that

(ũ0(r), ũ1(r)) = (u0(r), u1(r)) , for r > R

and for all t ≥ 0 or for all t ≤ 0∫
|x|>R+|t|

|∇ũ(t)|2 + [∂tũ(t)]
2 ≥ η.

Proof. We first prove a), by linearization around W . By assumption, up to
a sign change (u0, u1) = (W, 0) + (h0, h1), where 0 < ρ(h0, h1) < ∞. Since W
is globally defined, Theorem 1.12 shows that ∃ε > 0 such that for any U with
‖(W, 0)− (U0, U1)‖Ḣ1×L2 ≤ ε, we have [−R0, R0] ⊂ Imax(U).

Let (ȟ0, ȟ1) = ΨR′(h0, h1), where R′ < ρ(h0, h1) is chosen so close to ρ(h0, h1)
that 0 <

∥∥(ȟ0, ȟ1)
∥∥
Ḣ1×L2 ≤ ε. Let ǔ be the solution of (NLW), with initial data

(W + ȟ0, ȟ1). Equivalently, ȟ = ǔ−W solves{
∂2
t ȟ−Δȟ = (W + ȟ)5 −W 5(

ȟ, ∂tȟ
)
|t=0 =

(
ȟ0, ȟ1

)
.

By finite speed, (ȟ, ∂tǔ) = (W, 0), r ≥ ρ(h0, h1) + |t|. Thus, ρ
(
ȟ(t), ∂tȟ(t)

)
≤

ρ(h0, h1) + |t|, for t ∈ [−R0, R0]. We need to show that for all t ∈ [−R0, 0], or for
all t ∈ [0, R0],

(9.19) ρ(ȟ(t), ∂tȟ(t)) = ρ(h0, h1) + |t| .

We first do this for a small time interval. We know that ∃t0 > 0, small, such that W
verifies Lemma 9.7, I = [−t0, t0] (Remark 9.9 a)). In this step, we show that (9.19)
holds for all t ∈ [−t0, 0] or for all t ∈ [0, t0]. Indeed, let ρ0 be close to ρ(h0, h1)
such that R′ < ρ0 < ρ(h0, h1), and let (g0, g1) = Ψρ0

(
ȟ0, ȟ1

)
. If ρ (h0, h1) − ρ0 is

small enough, ‖(g0, g1)‖Ḣ1×L2 ≤ δ0, where δ0 is as in Lemma 9.7. By Lemma 9.7,
∃! solution g to {

∂2
t g −Δg = (W + g)5 −W 5

(g, ∂tg) |t=0 = (g0, g1) .

Also if gL solves (LW) with the same initial data, sup−t0≤t≤t0 ‖�g(t)− �gL(t)‖ ≤
1
10 ‖(g0, g1)‖Ḣ1×L2 . By Corollary 7.6, for all t ∈ [−t0, 0], or all t ∈ [0, t0], we have∫

|x|≥ρ0+|t|
|∇gL(t)|2 + (∂tgL(t))

2 ≥ 1

2

∫
|x|≥ρ0

|∇g0|2 + g21 −
1

2
ρ0g

2
0(ρ0).

By the argument at the end of the proof of Proposition 9.17, if ρ0 is close enough
to ρ(h0, h1), ρ0g

2
0(ρ0) ≤ 1

4 ‖∇g0‖. Thus, for all t ≥ 0 or all t ≥ 0, t ∈ [−t0, t0],∫
‖x‖≥ρ0+|t|

|∇g(t)|2 + |∂tg(t)|2 ≥
1

40

∫
|x|≥ρ0

|∇g0|2 + |g1|2 > 0.

By finite speed, we can replace g by ȟ in the left hand side. Hence, ρ
(
ȟ(t), ∂tȟ(t)

)
≥

ρ0+|t|, ∀t ∈ [−t0, 0] or ∀t ∈ [0, t0]. Letting ρ0 → ρ(h0, h1) we see that ρ
(
ȟ(t), ∂tȟ(t)

)
= ρ(h0, h1) + |t| , t ∈ [−t0, 0] or t ∈ [0, t0]. It is now easy to conclude the proof.
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Assume, for instance that this holds, for t ∈ [0, t0], we apply the previous argument
to ȟ(t+ t0), to conclude that ∀t ∈ [−t0, 0] or ∀t ∈ [0,min[t0, R0 − t0]],

ρ
(
ȟ(t0 + t), ∂tȟ(t0 + t)

)
= ρ(h0, h1) + t0 + |t| .

If the above holds ∀t ∈ [−t0, 0], we get a contradiction with ρ(ȟ(0), ∂tȟ(0)) =
ρ(h0, h1). Thus, ∀t ∈ [0,min(t0, R0 − t0)], ρ

(
ȟ(t0 + t), ∂tȟ(t0 + t)

)
= ρ(h0, h1) +

t0 + t. Continuing we get the desired result.
To prove b), we use the argument in the proof of Proposition 9.17, (u0, u1)

compactly supported, using instead of (NLW) the equation in Lemma 9.7 with V
as in Remark 9.9 b), which determines who R0 is. �
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