
CHAPTER 4

Cancer and the immune system

A solid tumor is an abnormal new growth of tissue that has no physiological
function. If this new growth is localized, it is called a benign tumor, while, if it
spreads to other parts of the body, it is called a malignant tumor, or a cancer.
However, people often use the words tumor and cancer interchangeably.

Cancer cells are normal cells that have been transformed by mutations in genes
that regulate growth and proliferation. These genes are either oncogenes which
promote growth and reproduction, or suppressor genes which inhibit cell division
and survival. Tumor occurs when oncogenes become abnormally overexpressed, or
when suppressor genes are disabled or become abnormally underexpressed. Tumor
is believed to develop as a result of mutations in several genes, not just one.

There are more than 100 types of cancer, characterized by the organ or tissue
where the cancer forms, or by the type of cells that form the cancer. In what follows
we consider only solid tumors, that is, tumors that develop in a tissue, rather than
in blood cells.

Tumor growth and malignancy typically induce moderate cellular response.
While the immune system attempts to destroy cancer cells, cancer cells try to evade
the immune response by manipulating it in different ways. The interaction between
cancer cells and the immune system is currently an intensive area of research,
including animal experiments and clinical trials.

The aim of clinical trials is to determine whether a specific drug will be effective
in suppressing or eliminating the tumor without causing unacceptable negative side-
effects. But clinical trials take several years and they can be very expensive. On the
other hand, mathematical models that correctly capture the biology of the cancer
and its microenvironment, can serve as “clinical trials in silico,” and may be used
to support the choice of specific drugs for clinical trials. The mathematical models
can also be used to suggest optimal protocols for applying the drug; that is, how
often and at what amounts should the drugs be administered.

In this chapter we introduce two mathematical models that involve tumor-
immune interactions in the context of two different drugs.

In the first model the drug is TGF-β inhibitor, which is currently used for some
types of cancer. The list of variables of the model is given in Table 4.1, and the
units are all in g/cm3.

Figure 4.1 is a schematics of a network showing how cells and cytokines interact
with each other. The mathematical model will be represented by a system of partial
differential equations based on Fig. 4.1. We note that the tumor region, Ω(t), varies
in time, and its boundary ∂Ω is a “free boundary,” that is, it is a boundary which
is not a priori prescribed and needs to be determined together with the solution of
the differential equations.
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26 4. CANCER AND THE IMMUNE SYSTEM

Table 1. List of variables (in unit of g/cm3).

Notation Description
C density of cancer cells
D density of dentritic cells
T1 density of Th1 cells
T8 density of CD8+ T cells
Tr density of T regulatory cells (Tregs)
I12 concentration of IL-12
I2 concentration of IL-2
Tβ concentration of TGF-β
I concentration of TGF-β inhibitor

Figure 4.1. Network of cells and cytokines; sharp arrows repre-
sent reproduction/activation, and blocked arrows represent inhibi-
tion/killing.

We assume that the density of the cells in the tumor tissue is uniform, and take

(4.1) C +D + T1 + T8 + Tr ≡ θ g/cm3 in Ω(t), t > 0,

where 0 < θ ≤ 1.
Since cancer cells proliferate abnormally fast while immune cells migrate into

the tumor, Eq. (4.1) implies that there is an internal pressure among the cells within
Ω(t), which gives rise to velocity �u. We assume that all the cells are subject to the
same velocity, �u.

As tumor grows, the cells in the inner core do not receive enough oxygen, a
condition called hypoxic, and they undergo death by necrosis. Cells undergoing
necrosis secrete cytokine HMGB-1 which is known to activate dendritic cells. The
activation of the immature, or inactive, dendritic cells, D0, is proportional to

D0
HMGB-1

K +HMGB-1

for some parameter K. We assume that HMGB-1 is proportional to the density of
necrotic cells, and that the density of necrotic cells is proportional to the density
of cancer cells, C. Hence, the activation of dendritic cells is given by

λDD0
C

KC + C

for some positive parameters λD and KC .



4. CANCER AND THE IMMUNE SYSTEM 27

We recall that D cells move with velocity �u, and we assume that they are also
subject to small dispersion, or diffusion. Hence

(4.2)
∂D

∂t
+∇ · (�uD)− δD∇2D = λDD0

C

KC + C
− dDD,

where δD is the diffusion coefficient, and dD is the death rate of dendritic cells.
Naive CD4+ T cells, Th0, can differentiate into several types of cells: Th1,

Th2, Th17 and T regulatory cells (Tr). In the context of cancer the most relevant
types are Th1 (T1) and Tr: T1 is anti-cancer and Tr is pro-cancer.

Dentritic cells produce IL-12 and IL-12 activates T1, while Tr resists the ac-
tivation of T1. Hence the differentiation of naive Th0 cells, T0, into T1 cells is
proportional to

T0
I12

KI12 + I12
· 1

1 + Tr/KTrT1

,

where the inhibition of T1 by Tr is represented by the factor 1/(1 + Tr/KTrT1
).

T1 cells are known to produce IL-2 which then attaches to these cells and
promotes their replication. Thus, T1 cells proliferate at a rate proportional to

T1
I2

KI2 + I2
;

here we used the Michaelis-Menten law to account for the receptor recycling time.
We can now write the equation for T1 as follows:

∂T1

∂t
+∇ · (�uT1)− δT1

∇2T1 =λT1I12T0
I12

KI12 + I12

1

1 + Tr/KTrT1

+ λT1I2T1
I2

KI2 + I2
− dT1

T1,

(4.3)

where δT1
is the diffusion coefficient of T1 cells, and dT1

is the death rate of T1 cells.
For CD8+ T cells we have a similar equation,

∂T8

∂t
+∇ · (�uT8)− δT8

∇2T8 =λT8I12T80
I12

KI12 + I12

1

1 + Tr/KTrT8

+ λT8I2T8
I2

KI2 + I2
− dT8

T8.

(4.4)

The reason why we do not combine T1 and T8 into one variable is that T1 cells
produce I2 and do not kill cancer cells effectively, while T8 cells do not produce I2
but kill cancer cells effectively.

Cytokine TGF-β stimulates the production of Tregs; hence the equation for Tr

has the following form:

∂Tr

∂t
+∇ · (�uTr)− δTr

∇2Tr =λTrTβ
T0

Tβ

KTβ
+ Tβ

− dTr
Tr.(4.5)

Since Tr inhibits the proliferation of T1 and T8 cells, it acts to promote cancer.
And since Tβ activates Tr, it is a pro-cancer cytokine and hence it is a target of
anti-cancer drugs.

We assume that cancer cells undergo a logistic growth,

constant× C

(
1− C

C0

)
,
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and they are killed by CD8+ T cells at rate constant× T8C; we neglect the killing
of cancer cells by T1. Cancer cells die, either by apoptosis or by necrosis, at a rate
dC . Hence,

∂C

∂t
+∇ · (�uC)− δC∇2C =λCC

(
1− C

C0

)
− dCT8

T8C − dCC.(4.6)

We next turn to the dynamics of the cytokines. Since cytokines are much
smaller than cells, their diffusion coefficients are several order of magnitude larger
than those of cells. Hence the advection term ∇·(�uX) for a cytokine X is negligible
compared to its diffusion term δX∇2X, and may therefore be dropped out.

It is known that I12 is produced by activated dendritic cells, I2 is produced by
T1 cells, and Tβ is produced by cancer cells and by Tr cells. Hence we have the
following equations:

∂I12
∂t

− δI12∇2I12 = λI12DD − dI12I12,(4.7)

∂I2
∂t

− δI2∇2I2 = λI2T1
T1 − dI2I2,(4.8)

∂Tβ

∂t
− δTβ

∇2Tβ = λTβCC + λTβTr
Tr − dTβ

Tβ.(4.9)

Notice that the velocity �u has not yet been determined and, at the same time,
we have not yet exploited the assumption (4.1). In order to derive an equation for
�u we make two assumptions.

The first assumption is that all the cell types in Eq. (4.1) have the same diffusion
coefficient, that is,

δD = δT1
= δT8

= δTr
= δC .

If we then add Eqs. (4.2)-(4.6) and use Eq. (4.1), we get an equation for ∇ · �u,
namely,

θ∇ · �u =

6∑
j=2

(R.H.S. of Eq.(4.j)).

The second assumption is about the tissue where the tumor is growing. We assume
that it has the structure of a porous medium. This means that the velocity �u is
related to the pressure p among the cells by Darcy’s law,

�u = −∇p.

Hence

∇2p =− 1

θ

6∑
j=2

(R.H.S. of Eq.(4.j)).(4.10)

We proceed to impose boundary conditions on all the variables in Eqs. (4.2)-
(4.10).

We assume that naive T cells from the lymph nodes migrate into the tumor and
that their density, at the tumor boundary ∂Ω(t), is a constant, T̂0. Under the I12
environment these cells are induced to become T1 cells, while under Tβ environment
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these cells are induced to become Tr cells. Hence we have the flux conditions:

∂T1

∂n
+ α

I12
KI12 + I12

(T1 − T̂0) = 0 on ∂Ω(t),(4.11)

∂Tr

∂n
+ α

Tβ

KTβ
+ Tβ

(Tr − T̂0) = 0 on ∂Ω(t),(4.12)

for some α > 0, where ∂/∂n is the derivative in the direction of the outward normal.
Similarly we take

∂T8

∂n
+ α

I12
KI12 + I12

(T8 − T̂80) = 0 on ∂Ω(t),(4.13)

for some constant density T̂80.
We next assume that D and C, as well as all the cytokines, satisfy a no-flux

condition on the boundary of the tumor:

∂X

∂n
= 0 for X = D,C, I12, I2, Tβ on ∂Ω(t).(4.14)

It remains to prescribe a boundary condition for the pressure p. To do that we use
two facts: (i) tumor tissue is more dense than the tissue surrounding it, and (ii)
there are adhesive forces between cells. It follows that the cell-to-cell adhesion at
the tumor boundary produces surface tension, and we express it in the form

p = ηκ on ∂Ω(t) (η > 0),(4.15)

where η is proportional to the adhesive forces of the cells, and κ is the mean
curvature; κ = 1/R(t) if Ω(t) is a ball of radius R(t).

If we denote by �n the outward normal to the boundary ∂Ω(t), then the velocity
of the cells at the boundary is �u · �n. We assume that this is also the velocity of the
boundary points. Hence

Vn = − ∂p

∂n
on ∂Ω(t)(4.16)

where Vn is the velocity of the boundary points in the direction of the outward
normal. Since the free boundary ∂Ω(t) is moving with velocity u, the advection
terms do not appear in the flux conditions for cells.

We assume that the total density of cells is approximately 0.4 g/cm3 (i.e. θ ∼
0.4 g/cm3).

We finally prescribe initial conditions, noticing that the densities of D and the
T cells is typically much smaller than the density of the cancer cells; for example:

D = 1.2× 10−5g/cm3, T1 = T8 = 4× 10−3g/cm3,

Tr = 1× 10−3g/cm3, C = 0.3956g/cm3,
(4.17)

and, correspondingly, take in Eqs. (4.1) and (4.10),

θ = 0.404612g/cm3.(4.18)

We expect that the choice of the initial values does not appreciately affect the
simulations of the model after a relatively short time.

So far our model does not include the TGF-β inhibitor, I. This drug inhibits
the production of Tβ in Eq. (4.9). We can express its effect by modifying Eq. (4.9)



30 4. CANCER AND THE IMMUNE SYSTEM

as follows:

∂Tβ

∂t
− δTβ

∇2Tβ = (λTβCC + λTβTr
Tr)

1

1 + I/KTβI
− dTβ

Tβ ,(4.19)

where KTβI is a constant. The drug, taken in pills, circulates in the blood. It is
depleted as it is absorbed by C and Tr cells, while some of it is washed out at rate
dI . If we represent by γ(t) the source of the drug from the capillary system and
by Γ(t) the flux of the drug at the tumor boundary, then we have the following
equation:

∂I

∂t
− δI∇2I = γ(t)− dICTr

I

KI + I
− dII in Ω(t),(4.20)

where dICTr
is the rate of drug absorption by the C and Tr cells, and the boundary

condition

∂I

∂n
= Γ(t) on ∂Ω(t).(4.21)

In order to simulate the model and determine the efficacy of the drug we need
to first estimate all the parameters that appear in the system (4.1)-(4.21). This
will be done in the next chapter.

Cancer model with GM-CSF

The cancer model (4.1)-(4.16) was developed in order to study the efficacy of
TGF-β inhibitor as anti-cancer drug, We shall now proceed to describe a differ-
ent mathematical model aimed at studying the effect of a different drug, namely,
granular macrophage colony stimulating factor (GM-CSF).

Since cancer cells proliferate abnormally fast, they require more oxygen and
other nutrients than the normal capillary system can provide. So cancer cells ini-
tiate a process, called angiogenesis, that leads to a new supply of blood. They
secrete vascular endothelial growth factor (VEGF), a chemokine that attracts
endothelial cells. Tips consisting of endothelial cells begin to grow and move toward
the cancer and eventually form new blood vessels that provide additional oxygen
and other nutrients to the tumor.

There are several anti-VEGF drugs that aim to block angiogenesis, and thus
starve the cancer and suppress its growth. Here we focus on an experimental
drug, GM-CSF. The drug was administrated to nude mice, that is, to mice whose
immune system lacks T cells. We introduce a model which is a simplification of one
developed in [2,45]. The model includes the following species:

C = cancer cells, E = endothelial cells, M = macrophages, V = VEGF,
W = oxygen, P = MCP-1, F = M-CSF, G = GM-CSF, and soluble VEGF receptor
(sVEGFR). Fig. 4.2 is a diagram showing the network of interactions among these
species.

Cancer cells secrete VEGF, M-CSF, and MCP-1. MCP-1 recruits macrophages
into the tumor microenvironment. The macrophages, like the tumor, also produce
VEGF and MCP-1, both productions being facilitated by M-CSF. We note that
the tumor has ‘manipulated’ cells of the immune system, namely, the macrophages,
so that they increase the VEGF production. We refer to these tumor-manipulated
macrophages as tumor associated macrophages (TAM), but we will not include
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Figure 4.2. Network of cells and cytokines; sharp arrows repre-
sent reproduction/activation/enhancement, the blocked arrow rep-
resents blocking, and inverted sharp arrows represent chemoattrac-
tion.

in our model the actual process of how the tumor changes the phenotype of the
macrophages to become TAM.

When the drug GM-CSF is absorbed by macrophages, it induces the macro-
phages to produce sVEGFR, which sequesters VEGF by binding to it. This neu-
tralizes the pro-cancer activity of the tumor associated macrophages.

Setting R =sVEGFR, we can represent the dynamics associated with Fig. 4.2
by the following equations:

∂C

∂t
+∇ · (�uC)− δC∇2C = λ(W )C

(
1− C

C0

)
− dCC,

∂E

∂t
+∇ · (�uE)− δE∇2E = λE(V )−∇ · (E∇V )− dEE,

∂M

∂t
+∇ · (�uM)− δM∇2M = λM (C)−∇ · (M∇P )− dMM,

∂P

∂t
− δP∇2P = λPCC + λPMM

(
1 + λPF

F

KF + F

)
− dPP,

∂W

∂t
− δW∇2W = λWEE − δWCC − δWMM − dWW,

∂F

∂t
− δF∇2F = λFCC − δFMM

F

KF + F
− dFF,

∂V

∂t
− δV ∇2V = λV CC + λVMM

(
1 + λV F

F

KF + F

)
− δV RV R− dV V,

∂R

∂t
− δR∇2R = Mf(t)− δV RV R− dRR,

where f(t) is the effect of the GM-CSF drug, injected into the tumor, on the
production of sVEGFR by M . The equations for E and M include chemoattractant
terms; the proliferation rate of C depends on oxygen concentration, λC(W ) = 0 if
W is below a critical value; the macrophages proliferation rate λM (C) depends on
C in somewhat complicated way; and the absorption of M-CSF (F ) by M appears
in the equations for P and V as enhancement terms and in the equation for M-CSF
as a loss term. We note that the process of angiogenesis includes a proliferation of
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endothelial cells, represented by the production rate λE(V ), which is a monotone
increasing function of V .

The above model can be used to study the effect of the drug GM-CSF in nude
mice. However, if we wish to study its effect on normal mice (i.e., on wild type
mice) then we need to include T cells in the model.

Minimal models.
We develop a mathematical model in order to address a specific biological ques-

tion. Since there is always uncertainty in estimating some of the model parameters
(as will be seen in Chapter 5), the model should be “minimal”. That is, the model
should include all the biological species (variables) that are absolutely necessary in
order to address the biological question, but exclude species that are thought to
affect only little the answer to the biological question.

The decision what to include and what to exclude in order to build a mini-
mal model is a judgement call, and we can illustrate it in the case of the model
associated with Fig. 4.1. We recall that our focus in the model of Fig. 4.1 was
on studying the effect of the drug TGF-β inhibitor. Since TGF-β activates Tr,
and Tr secretes TGF-β, we had to include Tr in the model, and hence also the T
cells which Tr inhibits, and, in particular, the T8 cells which directly kill cancer
cells. But macrophages do not directly kill cancer cells, although they are involved
in changing the microenvironment of the tumor, as seen from Fig. 4.2. Since our
aim was to compare the growth of cancer with or without an anti-TGF-β drug, it
seemed reasonable to expect that the results on the efficacy of anti-TGF-β will not
be significantly affected by the influence of macrophages on the tumor microenvi-
ronment. For this reason we excluded macrophages, and similarly also endothelial
cells, VEGF and other species that appear in Fig. 4.2, when we developed the
minimal model which focused on the efficacy of anti-TGF-β in reducing cancer
growth.


