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PREFACE

A substantial portion of this volume is based on my lectures at the NSF-CBMS
Regional Research Conference held at the Texas Christian University, May 19-24,
1996. When I was asked to give lectures at the conference and to write up eventually
the contents of the lectures in monograph form, my idea was rather different from,
if not unrelated to, what I am presenting now. At that time I thought I would
include the results I had published in a series of papers, which concerned Euler
products and Eisenstein series on symplectic and metaplectic groups, and I would
also discuss the arithmeticity problems of the special values of the Euler products.

After thinking about this project for a few weeks, I found the idea unexciting.
Though the question of arithmeticity had never been fully explored in those cases
and I still intend to treat it on a future occasion, the whole program lacked the
allure of making me brave the burden of writing a book of fair length. Therefore I
decided to take up something new and more challenging which had been occupying
my mind for some time, and on which I had only incomplete results but felt that I
had enough technical ideas to complete them. However, in addition to the obvious
question of whether those ideas were enough, there was another problem, namely,
whether the proposed book could be accessible to many readers. After a few more
months of experimenting, I convinced myself that I would be able to accomplish
my aims satisfactorily, and began the work of which the outcome is the present
volume.

What are then the main features of the book? Leaving the details to the Intro-
duction, let us merely say that there are three chief objectives: (i) the determina-
tion of local Euler factors on classical groups, in an explicit rational form; (ii) Euler
products and Eisenstein series on a unitary group of an arbitrary signature; (iii) a
class number formula for a totally definite hermitian form.

Though these form the principal new results obtained in the book, we start
with quite a general setting, and include many topics of expository nature so that
the book can be viewed as an introduction to the theory of automorphic forms of
several variables. We eventually specialize our exposition to unitary groups, but we
treat them as a model case so that the reader can easily formulate the corresponding
facts in other cases. For that purpose we find unitary groups better than symplectic
groups as will be explained in the Introduction.

Princeton,
October, 1996 Goro Shimura

Typeset by ApS-TEX
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INTRODUCTION

The first main theme of this book is to associate an Euler product to an auto-
morphic form that is a Hecke eigenform on a classical group in a suitable sense.
As the name indicates, Hecke treated the case of holomorphic modular forms with
respect to a congruence subgroup I' of SLy(Z). Each Hecke operator is given by a
double coset I'al’ with « belonging to a semigroup = of matrices, containing I,
whose entries are integers and determinants are positive. Taking an eigenform f
in the sense that f|I'al’ = A(«)f with a complex number A(«) for every a € =,
one considers a Dirichlet series of the form

(1) Ts)= > Aa)det(a)™".

acel'\E/T"

With a suitable choice of = one can show that ¥ has an Euler product whose
Euler factors have degree 2; moreover I'(s)%(s) can be continued to a meromorphic
function on the whole s-plane with at most two simple poles; I'(s)%(s) is entire if
f is a cusp form.

Various kinds of generalization of this theory of Hecke have been attempted
and carried out, but any attempt must be preceded by a choice of formulation
that is practicable. Though one might be able to present a framework including
every imaginable Euler product, it is of little use if one cannot indeed prove the
desired results. Therefore in this book we choose one type of Euler product which is
somewhat different from Hecke’s type. To be explicit, we take an algebraic number
field K with an automorphism p of order 1 or 2; we then put F' = { zeK ‘ ¥ =x }
and

(2) G(cp):G‘P:{aeGLn(K)|ag0-tap:go}

with a fixed ¢ € GL,(K) such that ‘@ = ep, e = +1. Thus our group is either
symplectic, orthogonal, or unitary. Suppose that we can speak of an automorphic
form with respect to a congruence subgroup I" of G¥ on a space on which G¥ acts.
Taking a certain subgroup = of G¥ which contains I' and is dense in almost all
nonarchimedean localizations of G¥ and an eigenform f of all I'al” with a € =
we consider a series

3) Ts)= Y M)

ael'\E/I

with a suitable function v on G¥ and A(«) defined as above in the present case.
Strictly speaking we have to formulate everything on the adelization G4 of G¥,
and the series of (3) is the right one only if “the class number is one” in a certain
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sense. But to avoid excessive details, we do not give here the precise definition in
the general case. Though this may not be the best way to produce a zeta function
in other cases, it has the advantage that we can connect the Hecke eigenvalues
naturally and directly to the desired Euler product for a large class of classical
groups. Also, in certain cases this definition allows us to express our Euler product
in terms of the Fourier coefficients of f, though we do not touch on that aspect in
this book.

For the purpose of illustration, let n = 2r, G¥ = Sp(r, Q), and I' = Sp(r, Z);
then we take =& = G¥ and v(a) to be the product of the denominators of the
elementary divisors of «. If r = 1, then the group is SL2(Q) and the series has
the form

(4) T(s) = Z )\(diag[m_l, m])m_s7

m=1

which produces an Euler product of degree 3, that is usually called the symmetric
square zeta function associated to a series of type (1), but it is also natural to call
it an Euler product on SL2(Q), with no reference to GL2(Q).

Now our first main task is to show that this type of series with v defined in a
similar manner has an expression

(5) A()T(s) = [[We (N () ™),
p

where A is a product of L-functions of F, p runs over all the prime ideals in F,
and W, is a polynomial with constant term 1 whose degree is n[K : F] for almost
all p, except when G¥ is a symplectic group or an orthogonal group of odd degree,
in which case the degree of W, is n 41 or n — 1 accordingly. This fact is purely
algebraic, or rather local, and can be formulated without the notion of automorphic
forms. Therefore we obtain the result for an arbitrary G¥ of type (2) (Theorem
16.16).

Now, assuming that K # F, take an arbitrary Hecke character y of K and
denote by x1 its restriction to F; denote also by T(s, x) and Z(s, x) the twists of
% and the right-hand side of (5) by x by viewing them as Euler products over K;
further denote by A(s, x1) the twist of A by x1. Then

Our next problem is to prove that if f is a holomorphic cusp form in the unitary
case, then Z(s, x) times suitable gamma factors can be continued to a meromorphic
function on the whole plane with finitely many possible simple poles. In principle
our methods are applicable to nonholomorphic forms, but the incomplete state of
knowledge of such forms makes it difficult to find explicit forms of the gamma
factors. In the holomorphic case, however, it is relatively easy to calculate the
gamma factors, which is the main reason why we restrict our exposition in later
sections to holomorphic forms.

We prove the desired result on Z for G¥ when K is a totally imaginary quadratic
extension of totally real F), in which case G¥ is a unitary group acting on a hermitian
symmetric space 3%. There are several reasons why we consider unitary groups
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instead of symplectic or orthogonal groups: (i) Unitary groups can be split or
nonsplit, and therefore they have the characteristics of general reductive algebraic
groups, while symplectic groups are split and special in that sense. (ii) Besides,
the symplectic case has been treated in detail in a series of recent papers by the
author, and so it seems desirable to present the “nonsplit aspect” of the theory.
(iii) Holomorphic forms can be considered also on orthogonal groups of a restricted
type. A uniform treatment of all these classical groups is not impossible, but at
some point the task will become cumbersome. For example, it requires a careful
analysis of certain Eisenstein series in the orthogonal case, which would have made
the book much longer. For this reason, we discuss only the arithmetic aspect of the
orthogonal case, but not its analytic aspect.

Now the function Z is closely connected with an Eisenstein series of the following
type. Given G¥ as above with ¢ = *”, we consider G¥ and G" with

e O . 10 1,

where m is a positive integer. Let P be the parabolic subgroup of G¥ consisting
of all the matrices whose lower left m x (m + n)-block is 0. Given a congruence
subgroup A of G¥, a holomorphic cusp form f with respect to a congruence sub-
group of G¥ defined as a function on 3%, and a Hecke character x of K, we can
define an infinite series E(z, s; f, x) for (z, s) € 3% x C under a natural consistency
condition on A, f, and x. In the simplest case in which F' = Q, it can be given in
the form

E(z 5 £, ) = Y sen(do(@)*x* (Ao(@)Z)6(z, 53 ke,

acR
R=P\GY, 0z s [) = [(p(2)) [0(2)/0,(p())]

Here Ag(«) is the determinant of the lower right m x m-block of «, g is a certain
projection map of 3% into 3%, 4, is the function on 3% such that &,(yw) =
|jy ()] 25, (w) for every v € G¥ with the standard scalar factor of automorphy
gy (w), 8y is similarly defined on 3%, k is the weight of f, and (g|[x)(z) =
jy(2) " g(az) for a function g on 3Y.

In order to study the analytic nature of this series, we consider another group
G¥ with w = diag[t), —p]. Now it can easily be seen that G* is isomorphic to
G (Nm+n), and we can define an Eisenstein series £ on G(1m+r) with respect to its
standard parabolic subgroup. Since G¥ x G¥ can be embedded in G¥ in an obvious
fashion, we obtain a function H(z, w; s) of (z, w; s) € 3% x 3% x C by pulling back
a suitable transform & of £ to 3% x 3%. Then we prove a formula which in the
simplest case can be written

s—k/2

(7) . H(z, w; ) f(w)d,(w)"dw = c(s)T(s, X)E(2, 53 f, ),
r »
where c is a product of explicitly given gamma factors.
To define E(z, s; f, x), we assumed m > 0. However, we can make H and the
integral meaningful even when m = 0 by taking ¢ = ¢. Then we obtain

(8) H(z, w; s) f(w)dg(w)*dw = ¢ ()% (s, x) f(2),
Ir\3%
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where ¢’ is the function ¢ in the present case. Now we can find a product A’ of L-
functions of I’ and a product G of gamma, factors such that A’'GE can be continued
to a meromorphic function of s on the whole plane with finitely many poles which
are all simple. Clearly we can say the same for A'GH. In the setting of (8), this
A’ coincides with A(s, x1), and hence from (8) we obtain the desired meromorphic
continuation of ¢'(s)G(s)Z(s, x) (Theorem 20.5). In a similar way, multiplying
by a factor of the type A’G, we can show that Z(s, x)E(z, s; f, x) times suitable
gamma factors can be continued to a meromorphic function on the whole plane
with finitely many poles which are all simple (Theorem 20.7).

Strictly speaking, (8) is valid only for the character y whose archimedean factor
is consistent with the weight of f in a certain sense. To obtain (s, x) for an
arbitrary , we have to replace £ by AE’ with a differential operator A which is
not so simple.

It should be noted that Garrett gave in [Ga] a formula for the pullback of the
standard Eisenstein series on Sp(r, Z), from which one could derive an equality of
type (7) in that case. However, he did not carry out the calculation, which was
later done by Bocherer in [B6]. It may be noted also that equalities of type (8)
were employed in a few earlier papers of the author when the group in question is
obtained from a quaternion algebra.

The final main theorem of the book concerns a generalization of the class num-
ber of a hermitian form, which we call the mass of G¥ relative to a specified open
subgroup of G%. To explain the concept, denote by V the vector space of all n-
dimensional row vectors with components in K on which G¥ acts by right multi-
plication, and by t the maximal order of K. Then we can find a finitely generated
t-submodule M of V with the property that zp - ‘z? € t for every z € M and M
is maximal among such submodules of V. To make a transparent formulation of the
problem, we now have to consider the adelization G4 of G¥, which we have avoided
so far. Taking an arbitrary integral ideal ¢ in F, we define an open subgroup D
of G% containing the archimedean factor of G such that its v-factor D, for each
nonarchimedean prime v of F' is defined by

Dv:{aeG;’f}Mva:Mv, Mv(a—l)Ccva}.

Then we can find a finite set B so that G = | |,z G¥aD. Let T be the set of
elements of G¥ that act trivially on 3%; let I'* = G¥ NaDa "' for each a € B. We
then put

(9) m(p, ¢) =Y _[I*NT: 1] 'vol(I"\3%),
a€B

where we understand that T'= G¥ and vol(I"*\3%) = 1 if ¢ is totally definite, so
that we have

(10) m(p, o) =y _[[*: 1]

a€B

for such a . In this special case clearly m(y, ¢) = #(B) if I'* is trivial for every
a, which can happen under a suitable condition on ¢. Thus m(y, ¢) is similar to
the class number. The point of our formulation is that this quantity is computable
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if ¢ is anisotropic. Namely, for such a ¢ we shall prove, as the last main result of
this book, a formula which takes the following form if n is odd, the discriminat of
¢ is represented by a unit, and ¢ = (1) (Theorem 24.4):

(11) m(yp, (1)) = 21_tb¢ﬁ(k!)d . Dgz%n)/z
k=1

{020 @m Lk, 1)}
k=1

Here t is the number of prime ideals in £ ramified in K, b, is an explicitly given
constant depending only on the type of 3¢, d = [F' : Q], Dp is the discriminant
of F, 0 is the different of K relative to F, 7 is the Hecke character of F' corre-
sponding to K/F, and L(s, 7%) is the L-function of 7*. Similar and somewhat more
complicated formulas can be given for an arbitary ¢ and also for even n. (Strictly
speaking, we prove the formula for a group D which is somewhat different from the
above one.) We have b, = 1if ¢ is totally definite.

If ¢ = (1), the quantity of (10) in the orthogonal case is what Siegel called,
following Eisenstein and Minkowski, the mass of a genus in his celebrated theory
of quadratic forms. Therefore one should be able to deduce (11) from his formula
stated in the hermitian case, and vice versa, except that the deduction of one
formula from the other is highly nontrivial. Also, the formulation of Siegel’s formula
in terms of the Tamagawa number has popularized the subject, but at the same
time it has obscured the significance of other classical problems in this area well
worthy of further investigations. Indeed, one important aspect of Siegel’s formula
is that the mass is theoretically computable as he showed by some examples, but
later researchers completely neglected that aspect, apparently thinking that the
computation is impracticable in general.

Without relying on the formula of Siegel’s type, we derive (11) as an easy conse-
quence of our methods. To be exact, we first prove an equality of type (8) with the
constant 1 as f for each class belonging to a fixed genus, and compare the residues
of its both sides. Adding the results for all such classes, we obtain (11) with no
ambiguous factors, thus fulfilling one of Siegel’s wishes at least in the unitary case.
Though this by no means supersedes his method, it offers a new insight into the
nature of the quantity m. Indeed, our proof shows that m is, up to some factors,
the residue of our Euler product for f =1, which may be called the zeta function
of G¥. We believe also that the consideration of m(y, ¢) with an arbitrary ¢ is
natural and at least technically advantageous. Our methods are applicable to the
orthogonal case, which the author intends to treat in a separate article.

Let us now briefly describe the contents of each section. We first develop in
Section 1 a purely algebraic theory of quadratic or hermitian forms over an invo-
lutorial division algebra K which is not necessarily commutative. We consider G¥
as in (2) with such a K, and define in Section 2 its parabolic subgroup P with
respect to a totally isotropic subspace J of V. We then prove in Propositions 2.4
and 2.7 two basic facts on P“\G¥/(GY x G¥) for w = diag[t, —¢] as above, which
hold in a general setting and which play crucial roles in the proof of (7). Here P¥
is a parabolic subgroup of G* with respect to a maximal totally isotropic subspace.

In Section 3 we introduce the notion of the denominator ideal of a matrix with
entries in the field of quotients of a principal ideal domain, which is essentially the
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quantity v(«a) of (3). Most noteworthy among several facts proved in this section
are Propositions 3.9 and 3.10 concerning v(«a) for « belonging to a parabolic
subgroup of a general linear group and also for « of “degenerate type.” Sections
4 and 5 concern quadratic and hermitian forms over the field of quotients of a
ring which is first a Dedekind domain, later a principal ideal domain, and finally a
discrete valuation ring. We introduce the notion of maximal lattices, and describe
them in terms of a refined form of Witt’s decomposition. We prove a product
expression of the type G¥ = Py C with the stabilizer C' of a maximal lattice.

In Section 6 we define the space 3% and also basic factors of automorphy in
the unitary case. Various elementary facts concerning the archimedean version of
G¥ = PJC and the projection map ¢ : 3% — 3¢ are collected in this section. The
symplectic case, not included in these three sections, is treated in Section 7.

The adelization Ga of an algebraic group G and some related concepts are
introduced in Section 8. For our purposes it is essential to examine the coset
decompositions of G relative to an open subgroup and a parabolic subgroup.
This will be done in Section 9. We introduce the notion of automorphic forms in
Section 10, prove easy facts on Hecke operators in Section 11, and define Eisenstein
series in Section 12. We treat these as functions and operators on 3%, and also as
objects on G% . Our exposition in these sections is restricted to the unitary case,
though we add some comments in the symplectic case.

Sections 13 through 15 are devoted to the investigation of a type of local Dirichlet
series that appears as an Euler factor of a Fourier coefficient of an Eisenstein series
on a split group. This local series plays also a crucial role in the computation of the
Euler factors of our zeta functions. In Section 16 we determine the explicit rational
expression for W, of (5). The key fact in this is Proposition 16.10, which gives v(«)
for a € PJ. Section 17 concerns several formulas for the group indices which are
necessary for the proof of (11). We investigate in Sections 18 and 19 the Eisenstein
series on G" which we denoted by £ in the above. We first give an explicit form
for each Fourier coefficient and determine a product A’ of L-functions and another
product G of gamma factors such that A’GE has only finitely many poles on the
whole plane. We then give an explicit formula for the residue at a special pole when
the weight is 0.

We state our main theorems on Z(s, x) and E(z, s, f, x) in Section 20, and prove
them in the next three sections. One of the main technical difficulties arises in the
analysis of the pullback denoted by H(z, w; s) in the above. Though the description
of PY\G*/(G¥ x G¥) given in Section 2 is not complicated, we have to describe it
in connection with various open subgroups of the adelized groups. It should also be
mentioned that in order to obtain (7) and (8), we must choose &’ carefully, because
an arbitrary or a seemingly natural choice of £ often produces a vanishing integral
or ambiguous factors. It is one of the main points of our treatment to give such
formulas in nonvanishing exact forms with all factors explicitly determined.

As we said earlier, to establish the meromorphic continuation of Z(s, x) in the
most general case, it is necessary to apply a certain differential operator to £. In
Section 23 we define such an operator and prove a formula on its effect on each term
of £, which eventually leads to the proof of the desired fact. Finally in Section 24
we prove a formula for m(y, ¢) when ¢ is anisotropic. If ¢ is not totally definite,
we can derive from it another formula concerning vol(I"*\3¥) (Theorem 24.7).

The Appendix at the end of the book consisting of eight sections contains various
facts which could have been included in the main text, but would have interrupted



INTRODUCTION xiii

the smooth flow of the principal ideas. Some of these sections are quite elementary
and contain only the results which are either well known or essentially known. They
are intended for the reader who is not familiar with such standard facts. However,
it seems that some results in less elementary sections, A4 and A7 for example, have
never been stated in the forms we present them.



