Contents

Pı	reface		xiii
С	HAP	TER 1 COMPUTER NUMBERS	1
1	Th	e Algebra of Complex Numbers	1
		Square Roots	1 3 4 6 9
2	Th	e Geometric Representation of Complex Numbers	12
	$\frac{2.2}{2.3}$	Geometric Addition and Multiplication The Binomial Equation Analytic Geometry The Spherical Representation	12 15 17 18
C	HAP	TER 2 COMPLEX FUNCTIONS	21
1	Int	roduction to the Concept of Analytic Function	21
	1.1 1.2 1.3 1.4	Analytic Functions	22 24 28 30
2	Ele	mentary Theory of Power Series	33
	$\frac{2.1}{2.2}$	Sequences Series	33 35
			vii

viii CONTENTS

	2.3	Uniform Convergence	35
	2.4	Power Series	38
	2.5	Abel's Limit Theorem	41
3	Th	e Exponential and Trigonometric Functions	42
	3.1	The Exponential	42
	3.2	The Trigonometric Functions	43
	3.3	The Periodicity	44
	3.4	The Logarithm	46
CI	HAP	TER 3 ANALYTIC FUNCTIONS AS MAPPINGS	49
1	Ele	mentary Point Set Topology	50
	1.1	Sets and Elements	50
	1.2	Metric Spaces	51
	1.3	Connectedness	54
	1.4	Compactness	59
	1.5	Continuous Functions	63
	1.6	Topological Spaces	66
2	Co	nformality	67
	2.1	Arcs and Closed Curves	67
	2.2	Analytic Functions in Regions	69
	2.3	Conformal Mapping	73
	2.4	Length and Area	75
3	Lin	ear Transformations	76
	3.1	The Linear Group	76
	3.2	The Cross Ratio	78
	3.3	Symmetry	80
	3.4	Oriented Circles	83
	3.5	Families of Circles	84
4	Ele	mentary Conformal Mappings	89
	4.1	The Use of Level Curves	89
	4.2	A Survey of Elementary Mappings	93
	4.3	Elementary Riemann Surfaces	97
CI	łΑΡ	TER 4 COMPLEX INTEGRATION	101
1	Fu	ndamental Theorems	101
	1.1	Line Integrals	101
	1.2	Rectifiable Arcs	101
	1.3	Line Integrals as Functions of Arcs	105
	1.4	Cauchy's Theorem for a Rectangle	109
	1.5	Cauchy's Theorem in a Disk	112

	CONTEN	ITS	ix
2	Cauchy's Integral Formula		114
	2.1 The Index of a Point with Respect to a Closed Curve		114
	2.2 The Integral Formula		118
	2.3 Higher Derivatives		120
3	Local Properties of Analytical Functions		124
	3.1 Removable Singularities. Taylor's Theorem		124
	3.2 Zeros and Poles		126
	3.3 The Local Mapping		130
	3.4 The Maximum Principle		133
4	The General Form of Cauchy's Theorem		137
	4.1 Chains and Cycles		137
	4.2 Simple Connectivity		138
	4.3 Homology		141
	4.4 The General Statement of Cauchy's Theorem4.5 Proof of Cauchy's Theorem		141 142
	4.6 Locally Exact Differentials		144
	4.7 Multiply Connected Regions		146
5	The Calculus of Residues		148
	5.1 The Residue Theorem		148
	5.2 The Argument Principle		152
	5.3 Evaluation of Definite Integrals		154
6	Harmonic Functions		162
	6.1 Definition and Basic Properties		162
	6.2 The Mean-value Property		165
	6.3 Poisson's Formula		166
	6.4 Schwarz's Theorem		168
	6.5 The Reflection Principle		172
CI	HAPTER 5 SERIES AND PRODUCT DEVELOPMENTS		175
1	Power Series Expansions		175
	1.1 Weierstrass's Theorem		175
	1.2 The Taylor Series		179
	1.3 The Laurent Series		184
2	Partial Fractions and Factorization		187
	2.1 Partial Fractions		187
	2.2 Infinite Products		191
	2.3 Canonical Products		193
	2.4 The Gamma Function		198
	2.5 Stirling's Formula		201

x CONTENTS

3	Entire Functions	206		
	3.1 Jensen's Formula3.2 Hadamard's Theorem	207 208		
4	The Riemann Zeta Function	212		
	 4.1 The Product Development 4.2 Extension of ζ(s) to the Whole Plane 4.3 The Functional Equation 4.4 The Zeros of the Zeta Function 	213 214 216 218		
5	Normal Families			
	 5.1 Equicontinuity 5.2 Normality and Compactness 5.3 Arzela's Theorem 5.4 Families of Analytic Functions 5.5 The Classical Definition 	219 220 222 223 225		
C	CHAPTER 6 CONFORMAL MAPPING. DIRICHL PROBLEM	ET'S 229		
1	The Riemann Mapping Theorem	229		
	 1.1 Statement and Proof 1.2 Boundary Behavior 1.3 Use of the Reflection Principle 1.4 Analytic Arcs 	229 232 233 234		
2	Conformal Mapping of Polygons			
	 2.1 The Behavior at an Angle 2.2 The Schwarz-Christoffel Formula 2.3 Mapping on a Rectangle 2.4 The Triangle Functions of Schwarz 	235 236 238 241		
3	A Closer Look at Harmonic Functions			
	3.1 Functions with the Mean-value Property3.2 Harnack's Principle	242 243		
4	The Dirichlet Problem			
	4.1 Subharmonic Functions4.2 Solution of Dirichlet's Problem	245 248		
5	Canonical Mappings of Multiply Connected Regions			
	5.1 Harmonic Measures5.2 Green's Function5.3 Parallel Slit Regions	252 257 259		

		CONTENTS	xi	
Cł	HAPTER 7 ELLIPTIC FUNCTIONS		263	
1	Simply Periodic Functions		263	
	 1.1 Representation by Exponentials 1.2 The Fourier Development 1.3 Functions of Finite Order 		263 264 264	
2	Doubly Periodic Functions		265	
	 2.1 The Period Module 2.2 Unimodular Transformations 2.3 The Canonical Basis 2.4 General Properties of Elliptic Functions 		265 266 268 270	
3	The Weierstrass Theory			
	 3.1 The Weierstrass ρ-function 3.2 The Functions ζ(z) and σ(z) 3.3 The Differential Equation 3.4 The Modular Function λ(τ) 3.5 The Conformal Mapping by λ(τ) 		272 273 275 277 279	
CI	HAPTER 8 GLOBAL ANALYTIC FUNCTION	ONS	283	
1	Analytic Continuation		283	
	 1.1 The Weierstrass Theory 1.2 Germs and Sheaves 1.3 Sections and Riemann Surfaces 1.4 Analytic Continuations along Arcs 1.5 Homotopic Curves 1.6 The Monodromy Theorem 1.7 Branch Points 		283 284 287 289 291 295 297	
2	Algebraic Functions		300	
	 2.1 The Resultant of Two Polynomials 2.2 Definition and Properties of Algebraic Functions 2.3 Behavior at the Critical Points 	ions	300 301 304	
3	Picard's Theorem		306	
	3.1 Lacunary Values		307	
4	Linear Differential Equations			
	 4.1 Ordinary Points 4.2 Regular Singular Points 4.3 Solutions at Infinity 4.4 The Hypergeometric Differential Equation 4.5 Riemann's Point of View 		309 311 313 315 318	
Ir	ndex		323	