
CHAPTER 1

Population Dynamics

A female may survive to reproductive age, be fertilized, survive to deliver vi-

able offspring, and then survive into the future. While the probabilities of these

events are estimated by observations of populations and are not directly applicable

to an individual member of a population, they do provide reliable information for a

population in aggregate, which is consistent (in some probabilistic sense) with the

Law of Large Numbers. How a population renews itself and thrives or declines is

the subject of renewal theory. More generally, renewal theory describes dynamics

of systems, such as populations or bank accounts, that have a feedback mechanism

for propagating themselves into the future.

Although probabilities do not apply to an individual’s path in a population,

they have great influence on an individual’s life. For most species, the relation

between population size and its environment governs the quality (and viability)

of life. On the other hand, humans have devised ingenious ways to increase the

carrying capacity of earth, but even then these probabilities play direct roles in an

individual’s quality of life through formulation of public policy, life (insurance)

tables, market analysis, etc., that are based on renewal theory.

The work in this chapter is devoted to modeling, by which is meant formulat-

ing a mathematical description of a system and then exploring it with mathemati-

cal analysis, computer simulations, and visualizations. In this chapter, we consider

models of particular population phenomena in both nonrandom and random en-

vironments. Probability theory shows how to define randomness in ways that are

reasonably faithful to observations, and yet can be analyzed using mathematical

methods. The work of statistics is to interface the results of such models to data in

specific applications. While some aspects of statistics are mentioned here, we fo-

cus on probabilistic aspects of models. Two approaches are taken here to modeling

systems with noisy components: First, a nonrandom model is derived, and then we

study the system when parameters are replaced by random processes. The second

approach taken here involves modeling a phenomenon in probabilistic terms from

the start, and in some cases deriving a nonrandom model from that using the Law

of Large Numbers and the Central Limit Theorem. Both approaches are used in

this book. It is worth noting now that chaotic dynamics are generated in many

nonrandom models, and while chaotic solutions may appear to be random, they are

distinct from random processes and are studied using other methods.

Another important aspect of modeling populations is the appearance of time

delays; for example, the delay between the time of first infection of a human with

parasites and the time that new parasites are produced by the human. Work in

1



2 1. POPULATION DYNAMICS

P
n

P
n+1

FIGURE 1.1. Reproduction data: From left the pairs .P1; P2/,

.P2; P3/; : : : are plotted. The dashed line is a one-to-one line drawn

for reference.

this chapter shows how time delays may be dealt with using renewal theory and

population wave equations. These ideas are used throughout the book.

EXAMPLE (“Simple” Reproduction Theory). There is a simple graphical heu-

ristic for describing renewal dynamics: It begins with the population’s renewal
function. Consider a population that is measured at regular sampling times, perhaps

in synchrony with a reproductive cycle. Let the observed numbers be denoted by

P1; P2; : : : . We hypothesize that the number in the next generation is directly

related to the number in the present generation, which we write as a mathematical

relation

(1.1) PnC1 D f .Pn/;

where the renewal function f may not be known. To determine f from ob-

servations, we might try to describe its graph by plotting the observed samples

.P1; P2/; .P2; P3/; : : : . The result might look like that shown in Figure 1.1. To

determine the reproduction function from these data, we would try to fit a curve to

the observed points and use that curve to estimate f . In this case, a straight-line fit

is the obvious first choice, and it can be found by using the least squares method.

The result would be written as

(1.2) PnC1 D rPn

where the slope r; called the renewal rate, is estimated from the data. In this case,

r appears to be approximately r � 1:3:

There are a number of difficulties with this approach that limit its usefulness.

For example, the population size in the next generation might depend on more than

the present population because several generations might contribute to reproduc-

tion. We study this and similar problems in this chapter.

Still, this simple heuristic gives insight to population behavior, and population

theorists have speculated what various shapes of renewal functions are possible and

what they might imply for a population’s dynamics. Malthus (1798) proposed that

a human reproduction function is linear as in Figure 1.1, where

(1.3) f .P / D rP:
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FIGURE 1.2. Ricker’s model P ! r exp.�P /P cobwebbed. Left: r D
10. Right: r D 20. Shown also is the one-to-one reference line. In

the top panel, the population approaches a stable oscillation where high

and low population sizes are observed in alternate generations. In the

bottom panel the population appears not to repeat itself, often coming

near extinction and sometimes hitting near its peak reproduction value.

These plots suggest that the model can exhibit dynamics that appears to

be random.

Others, such as Verhulst (1849) (and later Beverton and Holt [18, 21]) speculated

that the growth rate (r) gets smaller as population size increases, for example,

(1.4) f .P / D r

aC P
P:

Note that in this case the function 1=f .P / is a linear function of 1=P , so this itera-

tion is similar to Malthus’s except it is for the reciprocals of population size. Later,

Ricker (1957) speculated that reproduction of fish populations eventually tends to

zero as the population increases, perhaps through cannibalism; for example,

(1.5) f .P / D rPe�P=K ;

which peaks when P D K.

EXAMPLE (Cobwebbing Reproduction Curves). A useful method to determine

the fate of the population for a known reproduction curve is called the method of
cobwebbing. In this, the process begins with an initial population size P1, and

then the sequence P2 D f .P1/; P3 D f .P2/ D f .f .P1//; : : : is determined

graphically as shown in Figure 1.2. These plots are generated by the MATLAB®1

program in Section 7.1.1.

EXAMPLE (Fibonacci’s Model). A population’s age structure may be taken

into account directly by including reproduction information from previous gen-

erations. The simplest example that includes past generations in reproduction is

Fibonacci’s model (1202), where the number in each generation is related to the

1MATLAB® is a registered trademark of the MathWorks Inc.
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numbers in the preceding two generations:

(1.6) xn D xn�1 C xn�2 for n D 2; 3; : : : :

If x0 D 1 and x1 D 1 are known, then x2 D 2; x3 D 3; x4 D 5; x5 D 8; : : : .

Fibonacci’s model is sometimes referred to in the context of population growth

where xn denotes the births in the nth generation, which depends on the numbers

of births in the previous two generations, each new birth exactly reproducing itself

in the next and the one after that. The resulting births form the Fibonacci sequence,

which is an integer analogue of geometric growth. We will analyze this simple

model from various points of view in this chapter. This model also appears in

studies of economics.2

These two examples are classified as being discrete-event models. They are

examples of linear (Malthus (1.2) and Fibonacci (1.6)) models and nonlinear (Ver-

hulst (1.4) and Ricker (1.5)) models for discrete-event renewal processes. Such

models have been used in demographics, ecology, and economics to investigate a

variety of dynamical processes, which we will study in detail in this chapter.

1.1. Population Renewal

Discrete-event models are easy to formulate but are usually difficult to study,

partly because calculus is not available for them. As a result, many population

models are cast in terms of continuous-time differential or integral equations, some-

times referred to as being models for overlapping generations, and calculus is used

to study them. We first study an important class of continuous-time linear models.

1.1.1. The Renewal Equation. Let B.t/ denote the birth rate in a population

at time t . This can be related to earlier birth rates in the following way: A portion

of the births at time t � a will survive to age a and produce offspring. Let �.a/

denote the probability of survival to age a, and let f .a/ denote the fertility of those

of age a. Then the maternity function m.a/ is the probability of survival multiplied

by the expected number of births to those of age a: m.a/ D �.a/f .a/. Since B

is a birth rate (i.e., dimensions births/time), the number of newborns in a cohort

.a; a C da/ will be B.a/da. Adding the contributions from all births up to the

present time t gives an integral equation that describes renewal of a population’s

birth rate:

(1.7) B.t/ D B0.t/C
Z t

0

m.a/B.t � a/da � B0.t/C
Z t

0

m.t � t 0/B.t 0/dt 0

where B0.t/ is the birth rate at time t due to survivors from the initial time of the

process, at t D 0.3 In ordinary language, the number born a units ago is B.t�a/da,

the proportion of them who survive to age a is �.a/, and each of these survivors

produces f .a/ offspring. The equation results when we add up all contributions to

births at time t due to those who survived from earlier times. Note that the integral

may be written in two different but equivalent ways. The second is derived from

2http://www.branta.connectfree.co.uk/fibonacci.htm
3A formula for B0.t/ is derived in (1.19)
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the first by the change of variables a D t � t 0, so da D �dt 0. This form of integral

is referred to as being a convolution integral, and it defines a linear time-invariant
(LTI) operation.4

If one would simulate the renewal equation on a computer, he would be faced

with implementing a quadrature formula for evaluating the integral at each time

step of the solution process. This is reasonably straightforward.

On the other hand, the renewal equation may be formulated directly as a dis-

crete-event model, and in this way integrals are replaced by matrix multiplica-

tions. A discrete-event formulation of the renewal equation is described in Sec-

tion 1.3.2.1. There is an interesting numerical analysis question about the relation

between these two renewal models: The continuous-time model enables one to

perform mathematical analysis, but simulating it requires a significant amount of

numerical analysis, involving concepts about the relative and absolute errors, ac-

curacy, and stability of computer algorithms. These issues pertain to the numerical

solution of the continuous-time model, and not of the phenomenon being modeled.

A major advantage of the continuous-time model is that through the use of calculus

one can reveal how changing parameters in the model, such as �; f; and B0, will

influence dynamics of the solution.

Discrete-event simulations describe a birth rate trajectory for a single choice

of parameters, and further analysis is usually not possible. But the simulation

may be repeated many times for various values of the parameters, and the result-

ing data set of solutions can be studied further. A discrete-event process can be

“solved” on a computer by straightforward iteration without concern about numer-

ical errors, other than small roundoff errors.5 It is interesting that discrete-event

models emerged well before calculus was invented, and they were replaced by

continuous-time models to facilitate analysis of them. But now with developments

in high-capacity computers, discrete-event models are returning; they can now be

simulated and studied as desktop exercises. Moreover, by doing multiple simu-

lations of a discrete-event model in which parameters are replaced by “random”

elements, one obtains a huge database of outcomes that can be analyzed using data

mining methodologies. Still, analysis of the continuous-time model may reveal

how solutions depend on parameters, while the discrete-time model leaves only a

mass of data to be digested by some means or another.

1.1.2. Transform Analysis of the Renewal Equation (LTI). The renewal

equation (1.7) can be solved using a Laplace transform. The Laplace transform

L.f /.s/ �
Z 1

0

e�stf .t/dt;

4See http://en.wikipedia.org/wiki/LTI_system_theory. Note that mathematics ma-

jors often are not exposed to integral equations of this form. However, engineering students deal with

them regularly, so the material is not beyond students at the undergraduate level.
5Of course if the size of the system is large, there arise other problems.
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when this integral exists. This converts the problem from being in the time domain

t to one in the frequency domain s:6

The Laplace transform is a fundamental tool in solving and analyzing math-

ematical models in science and engineering. For example, the renewal equation

involves a convolution integral of the form

.f � g/.t/ D
Z 1

�1
f .t � a/g.a/da;

where f and g are some integrable functions. (In the case of the renewal equation,

g.a/ � 0 for a < 0.) A short computation from integral calculus shows that

L.f � g/.s/ D L.f /.s/ � L.g/.s/:

Since the renewal equation is a convolution equation,

B.t/ D B0.t/C .M � B/.t/

where

M.a/ D 0 for a � 0

and M.a/ D m.a/ for a > 0, it is amenable to the Laplace transform.

Applying the Laplace transform to the renewal equation gives

L.B/.s/ D L.B0/.s/C L.M/.s/L.B/.s/:

Solving for the transform of B gives

(1.8) L.B/.s/ D L.B0/.s/

1 � L.M/.s/
:

This may not seem to be a step forward. On one hand, something about B (viz.,

it’s a Laplace transform) is written explicitly in terms of known things. But to

complete the analysis, we must see how to recover B once its transform is known.

That is, we must create the inverse Laplace transform and apply it to

L.B0/.s/

1 � L.M/.s/
:

The following observation suggests a shortcut to calculating the inverse Laplace

transform:

(1.9) L.eat /.s/ D
Z 1

0

e�steat dt D
Z 1

0

e.a�s/t dt D 1

s � a

for any s > a. So, we may say that the inverse Laplace transform of 1=.s � a/ is

the function exp.at/.

6If t is a time variable, then s must be in units of 1/time. In other problems the independent

variable may be in units of length, and the transform variable has units of 1/length and it is then

referred to as being a wave number.
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1.1.2.1. The Characteristic Equation. For most of our applications here, the

denominator in (1.8) will be a polynomial in the transform variable s. This can

be factored and the result expanded using partial fractions. Then the calculation in

(1.9) may be used.

The denominator is critical to this analysis and it tells us important things about

how the birth rate will evolve: We seek its zeros

(1.10) 1 � L.M/.s/ D 0

This equation is called the characteristic equation of the renewal equation.

We suppose here that

(H1) m.a/ 	 0 for 0 < a <1,
R1

0 m.a/da exists, m.a/! 0 as a!1, and

m.a/ D 0 for a < 0. The forcing function B0.t/ is a continuous function

having support in some finite interval Œ0; A�, that is, B.t/ � 0 for t 	 A.

We consider the renewal equation under hypothesis (H1), which greatly sim-

plifies analysis.

We also assume that

(H2) The characteristic polynomial has the form of a factored polynomial,

1 � L.M/.s/ D .s � s1/k1.s � s2/k2 
 
 
 .s � sK/kK ;

whose roots are s1; s2; : : : ; sK , which occur with multiplicities k1; k2;

: : : ; kK , respectively.

With these assumptions, we have from the calculation in (1.9) that

(1.11) B.t/ D
KX

kD1

Ckeskt ;

which is a sum of exponentials whose amplification rates are the characteristic

roots and whose amplitudes (Ck) may be calculated from the Laplace transforms

of B0 and m.a/. This procedure is described next, but the details are not needed to

proceed with analysis of the renewal equation once we accept the result in (1.11).

A useful example has m.a/ D a2e�a as in Figure 1.3, then L.M/.s/ D 2.sC
1/�3. As a result,

B.t/ D C1e1:26t CO.es�t /

where s� < 0. (Note that the roots are s1 D 21=3 � 1:26, s2 D 21=3e2�{=3 � 1,

and s3 D 21=3e�2�{=3 � 1: The last two have negative real parts, so the terms they

represent in the solution die out. Let s� D <.s2/:7 Then s� < 0.) The root s1 is

referred to as being the intrinsic growth rate of the population, and the stable birth

rate is defined by C1:

(1.12) lim
t!1 e�s1tB.t/ D C1:

7A complex number s is written in terms of its real and imaginary parts, s D <.s/C {=.s/.
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FIGURE 1.3. Maternity function m.a/ / a2 exp.�a/. Age is in units

of 7 years.

1.1.2.2. Method of Residues. This section describes the method of residues,

and it requires some background in complex analysis. It may be skipped if one

accepts the formula (1.11).

The solution B can be recovered by applying the inverse Laplace transform to

both sides in formula (1.8) . This is defined by the contour integral

B.t/ D 1

2�{

Z cC{1

c�{1
est L.B0/.s/

1 � L.M/.s/
ds

where { D p�1 and the contour (<.s/ D c) is taken to lie to the right of all zeros

of the characteristic equation.

The simplest case arises when the singularities are poles of finite order. With

condition (H2) satisfied, the integrand can be expanded using partial fractions to

give

B.t/ D 1

2�{

Z cC{1

c�{1
estL.B0/.s/

MX
mD1

Rm

.s � sm/km
ds

where the numbers Rm are called the residues of the resolvent.

Recall Cauchy’s formula for a function of a complex variable, say F.z/. Sup-

pose that F is analytic near a point z0. Then

F.z0/ D 1

2�{

Z
C

F.z/

z � z0
da:

In the case of simple poles (km D 1 for m D 1; 2; : : : ; M ), we have

B.t/ D 1

2�{

Z cC{1

c�{1
estL.B0/.s/

MX
mD1

Rm

.s � sm/
ds

D
MX

mD1

RmL.B0/.sm/esmt ;
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FIGURE 1.4. Characteristic roots for m.a/ D a2 exp.�a/.

which shows the solution to be a linear combination of exponentials, each term

having an amplification rate <.sm/!

In the preceding example, the characteristic roots are proportional to the cube

roots of unity. These are plotted in Figure 1.4. The contour of integration may

be chosen to be any vertical line lying to the right of <s D 21=3. Figure 1.4 is

generated by the MATLAB program in 7.1.2.

Detailed accounts of the Laplace transform are available [50].

1.1.2.3. The Renewal Theorem. The renewal theorem describes how solutions

of the renewal equation behave for large time:

THEOREM (Renewal Theorem) Let x.t/ solve the renewal equation

x.t/ D x0.t/C
Z t

0

m.a/x.t � a/da

where hypothesis (H1) is satisfied. Then there is a unique real characteristic root
s� and

lim
t!1 e�s�tx.t/ D x�

where x� D residue of L.x0/.s/=.1 � L.m/.s// at s D s�. Moreover, all other
characteristic roots satisfy <.s/ < s�.

An important corollary of the Renewal Theorem is that the solution x.t/ be-

haves (asymptotically) like an exponential; that is, in some sense

x.t/ � es�tx�

for large times.
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Since c > <.sm/ for all m D 1; 2; : : : ; M , we can apply Cauchy’s formula to

each term to get B.t/ in the form of an exponential series:

B.t/ D x�es�t C slower growing or decaying terms.

as predicted by the Renewal Theorem where x� D ResL.B0/.s�/.

The exponent s� is called the population’s intrinsic growth rate, and x� is

called the stable birth rate. As a result, we may write

B.t/ � x�es�t

and observe that the birth rate will grow (or decay) exponentially.

A convenient choice for m is a Pearson type II function m.a/ D ra2 exp.��a/,

as illustrated in Figures 1.3 and 1.4 for r D 1, � D 1. Now because L.m/.s/ D
2r.� C s/�3, the poles are at s D .2r/1=3�n � � for n D 1; 2; 3, where � D
exp.2�{=3/ is the primitive third root of unity. The intrinsic growth rate in this

case is s D .2r/1=3 � �.

Note that if � is large, indicating especially high infant mortality, then death

swamps the population renewal process. But if � is not large, the birth rate can

exhibit significant, but damped, oscillations.

Example: Bernardelli Waves: The Delta Function and Residues. In the

extreme case where all reproduction is focused at one age, which occurs in many

species of insects for example, we write

(1.13) m.a/ D ˇe��aı.a � a0/

where ı is Dirac’s delta function, and a0 is the age at which reproduction occurs.

Substituting this into the renewal equation gives

x.t/ D x0.t/C
Z t

0

ˇe��aı.a � a0/x.t � a/da:

The delta function is a generalized function that only makes sense when inside of

an integral. For example, for any smooth function F.a/,Z 1

�1
ı.a � a0/F.a/da D F.a0/:

In this case, the renewal equation becomes

B.t/ D 0 for t < a0;

B.t/ D ˇe��a0B0.t � a0/ for t D a0:

Plotting the birth rate (B.t/) as a function of t would reveal a series of spikes

occurring at times a0; 2a0; 3a0; : : : ; separated by intervals of no births. The sizes

of the birth rates, say Bn D B.na0/, can be found from the formula

Bn D ˇe�a0Bn�1 D 
 
 
 D .ˇe�a0/nB0;

respectively, which is determined by simple back-substitutions. These numbers

would grow if ˇe�a0 > 1, that is, if each individual more than replaces himself.

This phenomenon — that very narrow reproductive windows may cause wavelike

birth rates — is referred to as Bernardelli waves [18].
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Example: Maternity Function (Pearson). The maternity function m.a/ D
ra2 exp.��a/ was considered earlier. We found in equation (1.12) that

stable birth rate D C1 � lim
t!1 e�s1tB.t/ D ResL.B0/.s1/;

s1 D .2r/1=3 � �I
that is,

B.t/ � e..2�/1=3��/tB0

for large values of t . The residue can be evaluated as described in the section on

the method of residues.

1.2. Population Wave Equation

How can the distribution of the total population among the age groups be de-

termined from knowing the birth rate? We do this by deriving an equation for the

total population age distribution that keeps track of time and age: Let P.a; t/ de-

note the population density (organisms/age) of those having age a at time t . Age

of humans is measured in terms of time since birth. In other species age may have

quite different interpretations; for example, in bacteria, age might be proportional

to its phase in the mitotic cycle.8 To account for the possibility of nonchronological

aging, we define the flux of organisms into age a at time t to be �.a; t/P.a; t/, but

age may be units of something other than time. The conservation equation for a

population is
@P

@t
D �r 
 fluxC sources � sinks:

In the present case, there are no sources, the flux is given above, and the only sink

is due to death, say the death rate of organisms of age a at time t is �.a; t/. Then

(1.14)
@P

@t
D � @

@a
.�.a; t/P.a; t// � �.a; t/P.a; t/:

If � is a differentiable function, we may write

@P

@t
C �.a; t/

@P

@a
D �

�
�.a; t/C @�

@a
.a; t/

�
P.a; t/:

We first consider the case of humans where � � 1:

(1.15)

@P

@t
C @P

@a
D ��.a; t/P.a; t/

P.0; t/ D B.t/; P.a; 0/ D P0.a/;

where we suppose that the birth rate P.0; t/ and the initial population age distri-

bution P0.a/ are known. This model enables us to study the age distribution at

each time, since it shows how various cohorts progress through life and how they

may contribute to the birth rate. The system (1.15) is referred to as being the pop-
ulation wave equation for the chronological age distribution, and it was derived

independently by A. G. McKendrick and by H. von Foerster.

8Species where aging is proportional to the rate at which nutrients are taken up are considered

in Section 1.2.5.
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FIGURE 1.5. Lexis diagram showing aging of a cohort with time. The

line starting at time t � a moves up one age unit for each time unit, so at

time t , the cohort has age a. The characteristic is a straight line having

slope 1.0.

1.2.1. The Method of Characteristics. A basic tool in demography is (in one

form or another) the Lexis diagram. This simply draws time versus age to show

how cohorts move through age-time from birth. Its form is shown in Figure 1.5.

The line in the Lexis diagram that a cohort travels on is called a cohort character-
istic curve.

The method of characteristics provides a way to solve problem (1.15). We

introduce a characteristic curve .a; t/ D .a.	/; t.	// and a characteristic variable 	

that are chosen so that the function

p.	/ D P.a.	/; t.	//

satisfies equation (1.15):

dp

d	
D @P

@a

da

d	
C @P

@t

dt

d	
D @P

@t
C @P

@a
D ��.a.	/; t.	//p.	/

provided we define the characteristic curve so that

da

d	
D 1 and

dt

d	
D 1:

Thus, the characteristic curve is a straight line parameterized by 	 and having

direction numbers (1,1). Along the characteristic curve, the function p.	/ D
P.a.	/; t.	// must satisfy the differential equation

dp

d	
D ��.a.	/; t.	//p.	/:

Two cases of interest depend on whether the characteristic curve starts at t D 0,

a D a0 (a cohort starting from the initial population) or at t D t0, a D 0 (a

cohort starting from new births at t D t0). We first solve the problem along the

characteristic curve starting at .a0; 0/; namely,

a.	/ D a0 C 	; t.	/ D 	; p.	/ D p.0/ exp

�
�
Z �

0

�.a0 C s0; s0/ds0
�

:
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To relate this formula to the original distribution function P , we first eliminate 	

by writing t D 	 and a D a0 C t . Substituting P for p gives

P.a; t/ D P.a0; 0/ exp

�
�
Z t

0

�.a0 C t 0; t 0/dt 0
�

:

Next, eliminate a0 by observing that a0 D a � t . The result is

(1.16) P.a; t/ D P0.a � t / exp

�
�
Z t

0

�.a � t C t 0; t 0/dt 0
�

for a > t . This formula gives the solution of the population wave equation for

a > t .

In the same way, but starting from .0; t0/ we derive the formula

P.a; t/ D B.t0/ exp

�
�
Z a

0

�.a0; t0 C a0/da0
�

:

Since t0 D t � a,

(1.17) P.a; t/ D B.t � a/ exp

�
�
Z a

0

�.a0; t � aC a0/da0
�

for t > a. This formula gives the solution of the population wave equation for

t > a. Formulas (1.16) and (1.17) describe the population’s age distribution for

each time t .9 Now, if the birth rate were known, for example by solving the associ-

ated renewal equation, then the population age distribution would be fully known

using the solution of the population wave equation. This is helpful since it is not

apparent from the renewal equation’s solution how to construct the actual popula-

tion distribution at any fixed time.

1.2.1.1. Recovering the Birth Rate from the Age Distribution. The method of

characteristics shows how to derive a solution of the population wave equation

given the initial population (P.a; 0/) and given the birth rate (B.t/). How can the

birth rate (B.t/) be found if the population age distribution P.a; t/ is known?

The birth rate is defined by the formula

B.t/ D
Z 1

0

f .a; t/P.a; t/da;

where f .a; t/ is the expected number of births to a population member of age a at

time t . Substituting in the solution we derived for P , we have

B.t/ D
Z 1

0

f .a; t/P.a; t/da

D
�Z t

0

C
Z 1

t

�
f .a; t/P.a; t/da

D
Z t

0

f .a; t/ exp

�
�
Z a

0

�.a0; t � aC a0/
�

B.t � a/da0 C B0.t/;

9Note that there may be a discontinuity in the age distribution along the cohort where t D a.

This can be avoided by assuming that P0.0/ D B.0/, but this case may require further investigation,

which is not carried out here.
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where

B0.t/ D
Z 1

t

P0.a � t / exp

�
�
Z t

0

�.a � t C t 0; t 0/dt 0
�

da:

Now, the maternity function

m.a; t/ D f .a; t/ exp

�
�
Z a

0

�.a0; t � aC a0/
�

may depend explicitly on time, and if so, we may not use the Laplace transform

method to solve this equation.

If the fertility f and death rate � depend only on a and not on t , then

B.t/ D
Z t

0

f .a/P.a; t/daC
Z 1

t

f .a/P.a; t/da;

which, according to the solutions in (1.16)–(1.17), gives

B.t/ D
Z t

0

f .a/B.t � a/ exp

�Z a

0

��.a0/da0
�

da

C
Z 1

t

f .a/P.a � t; 0/ exp

�Z t

0

��.a � t C t 0/dt 0
�

da:

As a result, we have

(1.18) B.t/ D
Z t

0

f .a/B.t � a/ exp

�Z a

0

��.a0/da0
�

daC B0.t/;

where

(1.19) B0.t/ D
Z 1

t

f .a/P0.a � t / exp

�Z t

0

��.a � t C t 0/dt 0
�

da

represents the residual births from the initial population. Equation (1.18) is the

renewal equation where the maternity function is given by the formula

m.a/ D f .a/ exp

�
�
Z a

0

�.a0/da0
�

:

This shows that the population wave model is consistent with the renewal equa-

tion, and it identifies the components of the maternity function that are due to

age-specific death and fertility rates.

1.2.2. Stable Age Distribution. Applying the Renewal Theorem to (1.18) im-

plies that there is a unique dominant solution s� of the characteristic equation

1 � L.m/.s�/ D 0

and a number B� such that

lim
t!1 e�s�tB.t/ D B�:

Therefore, for each age a > t , we have that

P.a; t/e�s�t D e�s�.t�a/B.t � a/ exp

�
�
Z a

0

�.a0/da0 � s�a

�
:
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Taking the limit t !1 in this equation shows that

P.a; t/e�s�t ! p�.a/

where

p�.a/ D B� exp

�
�
Z a

0

�.a0/da0 � s�a

�
;

which is called the stable age distribution of the population. This is stable in the

sense that the relative ratio of population sizes in various cohorts remains constant

(i.e., since es�t cancels out of both numerator and denominator in the ratio,R a1

a0
P.a; t/daR1

0 P.a; t/da
�
R a1

a0
p�.a/daR1

0 p�.a/da

for large times.

The stable age distribution is often plotted for each sex in a population to form

the age pyramid. The age pyramid for a population is often used to describe the

economic circumstances of a population [6, 31].

1.2.3. Total Population: Malthus’s Model. The model (1.15) is also consis-

tent with Malthus’s model: If there is a constant death rate � and a constant fertility

f0, then m.a/ D f0 exp .��a/, and

B.t/ D B0.t/C
Z t

0

f0 exp .��.t � a//B.a/da:

Differentiating this formula gives

dB

dt
D dB0

dt
.t/C f0B.t/ � �

Z t

0

f0 exp .��.t � a//B.a/da

D f .t/C .f0 � �/B.t/

(1.20)

where f .t/ D .dB0=dt/.t/��B0.t/. Equation (1.20) is a continuous-time version

of Malthus’s model of geometric population growth, but with an external forcing

f .t/ that describes lingering contributions to growth from the initial population,

and f0 � � represents the intrinsic growth rate of the population.

1.2.4. The Reproduction Window: Nonoverlapping Generations. For most

species, there is a window of ages during which reproduction can take place. Fig-

ure 1.6 depicts this.

However, in many species reproduction is focused at essentially one age. We

write this using a delta function as described earlier, say m.a/ D m0ı.a � a0/. In

this case, all reproduction is focused on the single age a D a0 D a1 in Figure 1.6,

and the renewal equation becomes

B.t/ D B0.t/Cm0B.t � a0/:

Any member of the initial population having age greater than a0 will not participate

in further reproductions. Thus, we restrict attention to the case where t > a0. We

may look at the solutions stroboscopically: Let Bn D B.na0/. Then

Bn D m0Bn�1 D mn
0B0
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FIGURE 1.6. Lexis diagram showing the reproduction window, which

spans the ages Œa0; a1�. The offspring of a cohort beginning at time t �a

will be eligible for reproducing during the time interval Œt � aC a0; t �
aC a1�.

for n D 2; 3; : : : ; and B1 D m0B0.a0/.

In this extreme case, there are no overlapping generations in the sense of multi-

ple cohorts reproducing at the same time, since all reproduction occurs at only one

age. However, if we replace the delta function in this investigation by a narrowly

based pulse, say

ı.a/ � 1

h
1.a0;a0Ch/.a/

for some small number h,10 then we see that several age groups (namely those

with ages between a0 and a0 C h) may reproduce. This leads to spreading out

of the cohorts, which complicates keeping track of the population sizes, but the

Renewal Theory does this nicely by identifying the stable growth rate and stable

age distribution.

1.2.5. Nonchronological Aging. Many organisms age at rates depending upon

the availability of nutrients or progress through some metabolic process, environ-

mental conditions, etc. When conditions are not favorable, they may enter a state

of stasis until things improve. For example, a particular bacterium typically goes

through several phases on its way to cell division: G1, where material is accumu-

lated for synthesis of DNA; S , where synthesis occurs; G2, where further materials

are accumulated in preparation for division; and a brief mitotic interval of cell divi-

sion. Happy cells might perform all of these feats within 20 minutes, but if suitable

nutrients are scant or the environment is unfavorable, the process may need more

time. Therefore, chronological time is not suitable for describing aging of such

organisms. Rather we introduce a new variable a that describes the phase of the

cell in its division cycle. Say 0 � a � 1, and this unit interval is divided into

subintervals G1, S , G2, and M , corresponding to the gaps, synthesis, and mitosis

as described above.

10The function 1.a0;a0Ch/.a/ D 1 for a0 < a < a0 C h, and is 0 otherwise.
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Suppose that individuals of (nonchronological) age a at time t have numbers

P.a; t/; and that they age at a rate �.a; t/, which we suppose is a smooth function

of .a; t/. The resulting population wave equation was derived in (1.14).

This problem is, as for (1.15), supplemented with initial and boundary condi-

tions:

(1.21) P.a; 0/ D P0.a/; P.0; t/ D
Z 1

0

f .a; t/P.a; t/da

where f .a; t/ describes the fertility of those of age a at time t .

The problem (1.14), (1.21) may be reduced to a single integral equation for the

birth rate B.t/ D P.0; t/, but this will not be a convolution integral, so Laplace

transform methods may not be useful for analyzing it. As a result there may be no

analytical methods available for studying this integral equation for B.t/.

Example: Nonchronological Aging by Bacteria. An example of nonchrono-

logical aging is given by the growth of bacteria where we interpret age as being a

phase of the cell cycle. The life cycle of a bacterium comprises

M : Mitosis (cell division and consequent appearance of two daughters),

G1: Gap 1, where the cell accumulates resources in preparation for synthesis,

S : Synthesis, where the cell replicates all of its DNA, organelles, etc.

G2: Gap 2, where the cell consolidates its holdings and accumulates materials

needed for mitosis.

Apparently, cells do not start synthesis until they have enough materials to com-

plete it; that is, they do not stop synthesis of DNA once they have started it. There-

fore, if a culture is starved of a vital nutrient, all cells that are in a gap phase will

cease aging, but those in the synthesis phase will continue aging, eventually to

accumulate at the start of the second gap phase. This mechanism is useful in syn-

chronizing cell cultures [5]. In general, the characteristic curves will not be straight

lines, but their progress reflects the levels of nutrition, environmental conditions,

etc., as indicated in Figure 1.7.

1.2.6. Accounting for Other Time Delays. Time delays occur in almost all

systems. We saw in the work on population waves and renewal that time delays

can be accommodated in some quite sophisticated ways (e.g., as characteristics in a

wave equation or as kernels in a convolution integral equation). Another collection

of models starts with a differential equation but one that involves earlier values

of the state variables, rather than only the present values. We consider Malthus’s

model with a time delay and solve it in two interesting cases.

Example: Malthus’s Equation with Time Delays: Laplace Transform So-
lution. Malthus’s model with a time delay may simulate the expected delay be-

tween conception and delivery of a live birth: In short, the population is assumed

to change depending on what size it was 	 time units before:

(1.22)
dx

dt
.t/ D gx.t � 	/
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FIGURE 1.7. Lexis diagram for a bacterial population showing a non-

linear cohort characteristic that reflects a brief period of starvation oc-

curring just before t � a C ˛0. The synthesis window spans the ages

Œa0; a1�. The offspring of a cohort beginning at time t � a will be eligi-

ble for synthesis during the time interval Œt � aC ˛0; t � aC ˛1�, where

˛1 and ˛2 are some functions of .a; t/ that are determined in the method

of characteristics.

.

where g is a constant representing the intrinsic growth rate, and 	 is the time delay

in reproduction. This problem may be solved using Laplace transforms, sinceZ 1

0

e�st dx

dt
.t/dt D g

Z 1

0

e�stx.t � 	/dt

leads to the result that

zx.s/ D
z
.s/

s C g exp .�s	/
where z
.s/ D

Z 0

��

e�stx.t/dt;

which is assumed to be known. That is, we suppose that the population size is

known on an interval of length 	 , which we take to be Œ�	; 0� for convenience of

notation. The formula for zx can be inverted using the method of residues as in

Section 1.1.2. Now the equation for the characteristic values of s is

s C g exp.�s	/ D 0;

which is a transcendental equation to be solved for s. If we write s D ˛C {ˇ, then

(1.23) ˛ C g exp.˛	/ cos.ˇ	/ D 0; ˇ � g exp.˛	/ sin.ˇ	/ D 0;

which must be solved simultaneously for ˛; ˇ [3].

Example: Malthus’s Equation with a Time Delay: Periodic Solutions.
There is an interesting special case of (1.22) that highlights an important feature of

differential-difference equations: Consider again

(1.24)
dx

dt
.t/ D gx.t � 	/:
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The function x.t/ D cos t solves equation (1.22) when 	 D �=2 and g D 1 since

d cos t

dt
D � sin t D cos

�
t � �

2

�
:

This shows that time delays may drastically complicate a problem by introducing

unexpected oscillations, and while this may be determined by solving the equa-

tions in (1.23) for ˛ and ˇ, these equations are not easy to solve. This example

illustrates one complexity that time delays can create in a system, and it points out

a largely unexplored aspect of Malthus’s model. In particular, the general solution

of equation (1.24) will have the form

x.t/ D
1X

j D1

xj esj t ;

where the numbers fsj g are the characteristic roots and the coefficients xj are deter-

mined using the method of residues. This example shows that the dominant terms

(i.e., the rightmost values of sj ) might be purely imaginary, so x.t/ is asymptoti-

cally periodic.

1.3. Discrete-Event Models

There are theories for discrete-event problems parallel to those developed in

the preceding sections for continuous-time models. Discrete-event iterations arise

in most applications in mathematics and science, and these have a general form

that relates the state variables of the model at the next time step, say P.nC 1/ in

terms of the state variables at the present time step, P.n/:

(1.25) EP .n/ D F. EP .n � 1//

where the “time steps,” the vector of state variables EP , and the system F have var-

ious interpretations. Three particular cases of interest in population mathematics

are (1) linear models used in demographics, (2) the iteration of various nonlinear

renewal processes in ecological systems, and (3) Markov chains, which are fun-

damental models in the theory and application of probability. We introduce here

some of the basic methodologies for studying systems of these three types (1.25).

1.3.1. Discrete Renewal Equation. Time steps are selected in some way that

is consistent with the biology of the system being studied, and the sequence

fBng;
which describes the population’s birth rate at those time steps, is to be determined

given the sequence of maternity factors fmkg. Using the same thinking as for the

continuous-time case in (1.7), we consider the discrete renewal equation

(1.26) Bn D 
n C
nX

kD0

mkBn�k

for n D 0; 1; 2; : : : . The maternity factor mk measures the probability of survival

to the kth age epoch multiplied by the fertility of those who reach that epoch.
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Typically, the sequence fmkg will be finite, so mk D 0 for k 	 K, for some

number K. For example, in human populations, the epochs might be chosen to be

of length 5 years, and mk D 0 for k 	 11, reflecting that fertility is effectively (for

the population) 0 beyond age 55. We will see later how this renewal equation is

related to the general form in (1.25).

1.3.1.1. The z-transform. We define the discrete Laplace transform of the se-

quence fBng by the formula

(1.27) yB.z/ D
1X

nD0

Bnz�n:

This is called the z-transform of the sequence fBng [37], and it plays a role in

analysis similar to that played by the Laplace transform for the renewal equation.

We suppose that there is a number R such that the series

1X
nD0

jRnBnj and

1X
nD0

jRnmnj

converge. Note that if C is a contour that encloses 0, then Cauchy’s formula shows

that
1

2�{

Z
C

zn�1 dz D ın

where ın D 1 if n D 0, ın D 0 if n ¤ 0. (This is kind of a nineteenth-century

version of the Dirac delta function.) Therefore,

1

2�{

Z
C

zn�1 yB.z/dz D Bn

for n D 0; 1; 2; : : : , so we may recover the original sequence if we know its z-

transform. The next step is to determine zB.z/ using the renewal equation (1.26).

A calculation similar to that for the continuous-time renewal equation shows

that

yB.z/ D ym.z/ yB.z/C y
.z/

where

y
.z/ D
1X

nD0


nz�n; ym.z/ D
1X

nD0

mnz�n;

are the z-transforms of f
ng and fmng, respectively. As a result,

yB.z/ D
y
.z/

1 � ym.z/
and so Bn D 1

2�{

Z
C

zn�1
y
.z/

1 � ym.z/
dz:

In this way, we have found a formula for the sequence in terms of the data 
 and

the maternity factors fmkg. The poles of the numerator (y
.z/) and the roots of the
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denominator determine the nature of the residues, and the solution may be written

in terms of the residues as

Bn D
KX

kD1

Akzn
k ;

where the characteristic roots are fz1; z2; : : : ; zKg,11 which are the solutions of the

characteristic equation

ym.z/ D 1:

1.3.1.2. Example: Fibonacci’s Model. As an example, we consider the Fibon-

naci sequence where B0 D 1; B1 D 1 and for n D 2; 3; : : : ,

Bn D Bn�1 C Bn�2:

Substituting in Bn D zn gives

z2 � z � 1 D 0;

so there are two characteristic roots,

z1 D 1Cp5

2
; z2 D 1 �p5

2
:

It follows that

(1.28) Bn D A1

�
1Cp5

2

�n

C A2

�
1 �p5

2

�n

;

where A1 and A2 are free constants that can be used to meet initial conditions. In

fact, in this case the initial conditions are B0 D A1 C A2 D 1 and

B1 D A1z1 C A2z2 D 1;

so

A1 D z2 � 1

z2 � z1
; A2 D z1 � 1

z1 � z2
:

This calculation is justified next.

Consider the renewal equation

BnC2 D aBnC1 C bBn

where a and b are fixed numbers. The z-transform for this model is calculated in

the following steps:

z2z�nC2BnC2 D azz�n�1BnC1 C bznBn;

z2
1X

nD0

z�nC2BnC2 D az

1X
nD0

z�n�1BnC1 C b

1X
nD0

znBn;

z2
1X

kD2

z�kBk D az

1X
kD1

z�kBnC1 C b

1X
nD0

znBn;

11In most cases in population theory, ym.z/ is a finite polynomial in z, and so we indicate a finite

set of roots here.
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z2

� 1X
kD0

z�kBk � B0 � z�1B1

�
D az

� 1X
kD0

z�kBnC1 � B0

�
C b

1X
nD0

znBn;

z2. yB.z/ � B0 � z�1B1/ D az. yB.z/ � B0/C b yB.z/;

.z2 � az � b/ yB.z/ D z2B1 � .az C z2/B0:

Therefore,

Bn D A1zn
1 C A2zn

2

where z1; z2 are the two roots of the equation z2 � az � b D 0. The constants A1

and A2 can be determined from the initial data

B0 D A1 C A2; B1 D A1z1 C A2z2:

1.3.2. Demographics: Connecting Theory to Discrete-Event Census Num-
bers. The connection between the discrete renewal equation (1.26) and the general

system (1.25) that models the population distribution among ages is accomplished

by deriving a discrete-event version of the population wave equation. Consider the

population described above where there are K age classes. Denote the numbers in

these age classes at various times by the column vectors

EPn D col.P1;n; P2;n; : : : ; PK;n/

for n D 0; 1; 2; : : : ; where

Pk;n D number of people in the kth age group at time n.

This is the discrete-event analogy to the population density function P.a; t/ in

population wave equation (1.15). Let f .a/ denote the number of births expected

per unit time per population member of age a. Suppose that f .a/ D 0 for a >

A. We divide the ages from 0 to A into K equal intervals, to be consistent with

the epochs chosen for the renewal equation, say Œ0; a1/; Œa1; a2/; : : : ; ŒaK�1; aK/

where aj D jA=K � jh. For example, if the census interval is 5 years, we may

take A D 11 and aj D 5j for j D 1; 2; : : : ; 11.

Let �j denote the probability of surviving from age interval Œaj �1; aj / to

Œaj ; aj C1/. Then the birth rate is described by the discrete-event model

B0;n D B0;0 C
KX

kD1

ˇkPk;n

where

ˇk D 1

h

Z .kC1/h

kh

f .a/da
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is the average fertility over a census interval. The age distribution vectors EPn D
.P1;n; P2;n; : : : ; PK;n/T for n D 1; 2; 3; : : : ;12 describe the dynamics of the popu-

lation’s age structure as time progresses.

1.3.2.1. Leslie Matrix. Each of the older cohorts changes only through death,

PnC1 D �nPn�1, but the first cohort (that is, the number of newborns) is related

to the others through the birth rates. Setting P0 D B0, we may write

(1.29)

0
BBB@

P0;n

P1;n
:::

PK;n

1
CCCA D

0
BBBBB@

ˇ1 ˇ2 ˇ3 
 
 
 ˇK

�1 0 0 
 
 
 0

0 �2 0 
 
 
 0
:::

:::
: : :

: : :
:::

0 0 0 �K�1 0

1
CCCCCA

0
BBB@

P0;n�1

P1;n�1
:::

PK;n�1

1
CCCA :

Using obvious vector notation, we write

(1.30) EPn D L EPn�1

where the matrix

(1.31) L D

0
BBBBB@

ˇ1 ˇ2 ˇ3 
 
 
 ˇK

�1 0 0 
 
 
 0

0 �2 0 
 
 
 0
:::

:::
: : :

: : :
:::

0 0 0 �K�1 0

1
CCCCCA

is called Leslie’s matrix [31]. Equation (1.30) is the discrete-event analogue of the

population wave equation (1.15), and this model is of the form in equation (1.25).

By applying successive back-substitutions, we get that

EPn D Ln EP0:

Incidentally, the first component of EPn is Bn, the birth rate, and it is easily seen that

the full model reduces to a renewal equation for fBng; since the other components

of EPn can be eliminated using Gaussian elimination.

The eigenvalues of the matrix L are determined by solving the characteristic

equation

(1.32) 0 D det

0
BBBBB@

ˇ1 � � ˇ2 ˇ3 
 
 
 ˇK

�1 �� 0 
 
 
 0

0 �2 �� 
 
 
 0
:::

:::
: : :

: : :
:::

0 0 0 �K�1 ��

1
CCCCCA

for �. The matrix L is similar to an upper block triangular matrix (its Jordan

canonical form [45]) whose diagonal elements are the characteristic roots or the

eigenvalues of L. Let ƒj D �1�2 
 
 
�j . Then the characteristic equation becomes

.�1/KˇKƒK�1 C �ˇK�1ƒK�2 C 
 
 
 C �K D 0;

12If V is a matrix, then V T denotes the transpose of V . If V is a row vector with N columns,

then V T is a column vector having N rows.
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and the coefficients in this polynomial are exactly the maternity factors described

in the discrete renewal equation. There is one dominant real characteristic root,

and all the rest fall within or on a circle in the complex plane whose radius is the

dominant root [18].

1.3.2.2. Spectral Decomposition. If the matrix L is diagonalizable, then it has

a simple spectral decomposition, say

L D
KX

iD1

�i…i

where f…ig is a collection of K .K �K/-matrices that satisfy the projector condi-

tions

…i…i D …i and …i…j D 0K for i ¤ j

where 0K is the .K �K/-zero matrix. Then

Lk D
KX

iD1

�k
i …i :

The importance of this decomposition is that complicated multiplications of .K �
K/-matrices can be reduced to much simpler multiplications of K numbers. If the

initial population distribution is

EP � D

0
BBB@

P0

P1
:::

PK

1
CCCA ;

then the population distribution after n time steps is

LnP D �n
1…1P � CO.k�2=�1kn/ or ��n

1 LnP ! …1P �;

which vector is the called the stable age distribution of the population. A similar

result follows if L is not diagonalizable, but the argument for this is beyond the

level of this book [6].

The following MATLAB program gives an interesting illustration of the fate of

a single founder cohort when there are eight age classes and a reproduction window

of three age groups:

(1.33) L D

0
BBBBBBBBBB@

0 0 0 1 1 1 0 0

0:9 0 0 0 0 0 0 0

0 0:8 0 0 0 0 0 0

0 0 0:7 0 0 0 0 0

0 0 0 0:6 0 0 0 0

0 0 0 0 0:5 0 0 0

0 0 0 0 0 0:4 0 0

0 0 0 0 0 0 0:3 0

1
CCCCCCCCCCA

:

MATLAB calculates the eigenvalues of this matrix to be

0:0; 0:0; 0:9907; 0:1772˙ {0:8522;�0:7774;�0:2838˙ {0:4226:
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So the intrinsic growth rate is 1:12. Note that the next largest eigenvalue has a sig-

nificant imaginary part, so we expect damped oscillations to appear in the emerging

age structure.

(1.34)

TIME !
1:0000 0 0 0:7200 0:5040 0:3024 0:5184 0:7258 0:6895 0:6781

0 0:9000 0 0 0:6480 0:4536 0:2722 0:4666 0:6532 0:6205
A 0 0 0:7200 0 0 0:5184 0:3629 0:2177 0:3732 0:5225
G 0 0 0 0:5040 0 0 0:3629 0:2540 0:1524 0:2613
E 0 0 0 0 0:3024 0 0 0:2177 0:1524 0:0914

0 0 0 0 0 0:1512 0 0 0:1089 0:0762# 0 0 0 0 0 0 0:0605 0 0 0:0435
0 0 0 0 0 0 0 0:0181 0 0

The first column in (1.34) gives the initial age distribution: All are newborn. As

time increases to the right, the initial cohort diminishes through death, and in the

last class accounted for here, it is 0.018. The birth rate, given in the first row, is

increasing, but note the oscillation in it. Eventually all age classes are occupied; in

this sense, the generations overlap. The program in 7.1.3 illustrates Leslie’s matrix.

1.3.2.3. Example: The Leslie-Fibonnaci Model. These developments may be

illustrated using Fibonacci’s model (1.6): Leslie’s matrix for this model is

L D
�

1 1

1 0

�
:

The eigenvalues are

�1 D 1Cp5

2
and �2 D 1 �p5

2
;

and this matrix can be written in the form of its spectral decomposition

L D �1…1 C �2…2

where the projection matrices …1 and …2 may be constructed using the left and

right eigenvectors of L. These are determined by solving the equations

L

�
a

b

�
D �1;2

�
a

b

�
for a; b. Solutions are �

�1

1

�
and

�
�2

1

�
;

respectively. Similarly, the left eigenvectors are, respectively,

.�1; 1/; .�2; 1/:

We define the projection matrices by the formulas

…1 D 1

�2
1 C 1

�
�1

1

�
.�1; 1/; …2 D 1

�2
2 C 1

�
�2

1

�
.�2; 1/:

These matrices satisfy the projection conditions

…1…1 D …1; …2…2 D …2; …1…2 D …2…1 D 0;

and

L D �1…1 C �2…2:



26 1. POPULATION DYNAMICS

Note that

Ln D �n
1…1 C �n

2…2 D �n
1

�
…1 C

�
�2

�1

�n

…2

�
! �n

1…1

as n ! 1, since j�2=�1j < 1. This is interpreted as saying that if the initial

population distribution is

P � D
�

1

1

�
;

then the population approaches a stable age distribution:

��n
1 Ln

�
1

1

�
! …1P � /

�
�1

1

�
as n!1.

The stable age distribution refers to the relative sizes of the cohorts; in this case

the steady ratio of the first cohort to the second is �1, even as the population grows

geometrically.

This analysis identifies two important parameters used by demographers: First,

there is the eigenvalue �1, which describes an intrinsic growth rate (the largest am-

plification of possible components), and second, the ratio �2=�1, which describes

the rate at which a population will converge to its stable age distribution.
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1.3.3. Summary of Population Models.

Name Continuous Discrete Event

Malthus dP=dt D rP PnC1 D .1 C rh/Pn

Logistic dP=dt D rP.1 � P=K/ PnC1 D rPn

1CPn=K

Wave @P=@t C @P=@a D ��P EPnC1 D L EPn

P.0; t/ D B.t/; P.a; 0/ D P0.a/ L D

0
BBBB@

ˇ0 : : : ˇM

�1 : : : : : :

:
:
:

: : :
:
:
:

0 : : : 0

1
CCCCA

Nonchrono- @P=@t C .@=@a/.�.a; t/P / D ��.a; t/P EPnC1 D Ln
EPn

logical Aging

P.0; t/ D B.t/; P.a; 0/ D P0.a/ L D

0
BBBB@

ˇ0;n : : : ˇM;n

�1;n : : : : : :

:
:
:

: : :
:
:
:

0 : : : 0

1
CCCCA

Renewal B.t/ D B0.t/ C R t
0 m.a/B.t � a/da Bn D �n CPM

j D1 mj Bn�j

Nonlinear B.t/ D B0.t/ C R t
0 m.a/F . zP .t//B.t � a/da PnC1 D rPnf .Pn/

Renewal zP .t/ D R1

0 P.a; t/da


