CHAPTER 1

Fourier Series

1.1. Introduction
Fourier was interested in solving the heat equation on [0, 0) X R
Up = Uyy

with initial condition u(0,x) = uy(x), a periodic function of period 1. We look for
special solutions of the form u(t,x) = f(x)g(t). In order to satisfy the equation, we

need
f8 = fixg or % = %

The left-hand side is a function of ¢ while the right hand side is a function of x.
Therefore, they both must be equal to a constant . g, = Ag yields g(t) = e, and
fex = Af yields f(x) = Asincx + B cos cx. The equation is satisfied if 1 = —c?. For the
function to be periodic of period 1, we need c to be an integer multiple of 2zz. We have
a class of solutions

u(t,x) = e“”‘z”zt[A cos(2znx) + Bsin(2znx)],
or if we allow complex solutions,
u(t, x) = Ae—4n>mt p2minx

for every n € Z. Since the equation is linear,

[e]
) :
Z aye 4n’m’t g2minx

n=-—oo

are solutions with

o0
u(0,x) =up(x) = Y, a,e?™nx,
n=—oo
If any periodic function u(x) can be represented as a sum of periodic exponentials
with the same period, then the heat equation can be solved.

It is more convenient to consider periodic functions of period 27z. They are sin nx
and cos nx. We will consider complex-valued periodic functions on R with period 27.
We will denote by T the interval [—7, 7] with endpoints identified. Addition in T is
modulo 27z. Functions on T need to match at =7, along with the required number of
derivatives in order to be smooth. In particular, integration by parts of smooth func-
tions on T produces no boundary terms.We can view periodic functions as functions
defined on the circumference of the unit circle in the complex plane which has no
boundary. Since boundary points have measure 0, integration on T is no different from
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2 1. FOURIER SERIES

integration on [—7, 7]. We will also view T as group, which viewed on [—7, 7], is ad-
dition modulo 27.
The Fourier coefficients of a periodic function f € L,[—, 7] are defined by

T
1 .
1.1 ap = =— X)e "  dx
(1) =5 | e
If a function f has the representation as a Fourier series, then

(1.2) f= D auem™

—oo<n<oo

with ), |an| < oo. Since

co<n<oo
T

eimxe—inxdx — 5n,m’
T
i.e., equals 1 if n = m and 0 otherwise, we see that the coefficients a,, can be recovered
from f by formula (L.1)). If we assume that f € L;[—,x], then clearly a, is well-
defined by formula ([[.1]) and

1
2 )

< 55 [ i

It is not clear that the series on the right hand side of equation ([[.2) converges, and
even if it does, it is not immediately clear why the sum of the series is actually equal to
the function f(x). It is relatively easy to find conditions on f(-) so that the series ([.2)
is convergent. If f(x) is assumed to be k times continuously differentiable as a periodic
function on [—7, 7], integrating by parts k times, we obtain for n # 0,

1 T
— FR(x)e~nx dx
2 _/_ -

From the estimate ([[.3), it is easily seen that the series is convergent if f is twice con-
tinuously differentiable.

1
1.3 a,| = —-
(1.3) lanl =

1
< — sup| ()
e °%

An important but elementary fact is the Riemann-Lebesgue lemma.

T

THEOREM 1.1. Forevery f € L,[—n, | with a,, = % SO e f(x)dx,

(1.4) lim |a,| =0.

n—z+oo

PROOF. Let f € L,[—7, 7] and € > 0 be given. Since smooth functions are dense

in L;[—7, 7], given any € > 0, we can approximate f by a function g, such that
T
1
2 | - gldx<e

and g, is continuously differentiable on T. Then

1 " ‘
la |§)—/ g.e” "™ dx
n o . €
<L L / gl + / " 0 - gl
= Inl2m ) ¢ 2m ) . €

1 ,
< —sup|ge(x)| +e.
In|

/9
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1.2. CONVERGENCE OF FOURIER SERIES 3

Therefore limsup,,_,, _|a,| < €. Since € > 0 is arbitrary, limsup,_ . _ |a,| = 0. O

REMARK 1.2. The functions sin nx and cos nx are highly oscillatory around 0, and

when integrated, fab sin nx dx and fab cosnx dx tend to 0 as n — oo. Any function f is
well approximated in L;[—7, 7] by functions that are piecewise constant.

1.2. Convergence of Fourier series

Let us define the partial sums

(1.5) GNN) = sy(f,x) = D) anel™

[n|<N
and the Fejér sum
1
N+1 Z sn(f5 X).

0<n<N

(1.6) (SNX) = Sn(fx) =

‘We can calculate

(uN0) =5 3 & [ e pio)y

ljsn  JT

1 g
= 5 [ 1013 ey

lilsn

1 e—in(x—y)(ei(2n+1)(x—y) _ 1)

=/ﬂwmw—ww
T
(1.7) = (f * k,)(x),
where
e—inZ(ei(2n+1)z 1) 1 sin(n + %)Z

1
1. k = — _ =
( 8) n(Z) 2 ez —1 21 sing

and the convolution f * g of two functions f, g in L,[T] is defined as

(19) (f )00 = f FO)gx = y)dy = f FGx = Y)g)dy.
T T
A similar calculation reveals
(110) (SnS)x) = / FOMKnx = )y = (f * K)(),
T
where
1 1 1 . 1
K =2 DT 22, 2
.  (N+D)x _2
1 1 sin —122%
(1.11) ZE(N‘FU[ sin 2 ] ’
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4 1. FOURIER SERIES

Since
ky(x) = Z ajelx,
ljlsn
L X
Kn() = 1= D kn()
N+14% n
|n|
— Z ¢! Ya,etnx
N N+17"
Notice that for every N,
(1.12) ka(x)dx = /KN(x)dx =1
T T

The following observations are now easy to make.
(1) Nonnegativity:
Kn(x) > 0.
(2) Foranyd > 0,
lim sup Ky(x) =

N-ow |x|>8
(3) Therefore,
lim Ky(x)dx =0
N-oo |x|25

It is now a simple exercise to prove the following.

THEOREM 1.3. For any f that is bounded and continuous on T,
lim sup [Sy(f,x) — f(x)] = 0.
N—o yeT

PROOF. Letd > 0 be given. Then

S (0 = 100 = | f [f(x - 2) = fO)]Kn(2)dz

< f |f(x = 2) = f(0)|Kn(2)dz + / |fCx = 2) = f(0IKn(2)dz
|z|<8

|z|>8

<sup sup |[f(x — z) — f(x)| +2 sup |f (o)l Kn(2)dz.

x |z|<é |z|=8

Ifwelet N - oo and thend — 0
lim sup sup [Sn(f,x) = f(x)] <sup sup |f(x —z) — f(x)] = 0

N-oo x |z|<é
asd — 0.
We next explore the convergence properties of the Fejér sum in Ly[—7, 7].
THEOREM 1.4. For1 < p < coand f € L,|[-7, 7],
ISN (s lp < 1S lp-

Therefore,
lim ISy f = fll, = 0



1.2. CONVERGENCE OF FOURIER SERIES 5
PROOF. By Holder’s inequality, since /'Ky (z)dz = 1, for any x,
S0P < [ 1F@PK e 2)dz
T

Integrating with respect to x, we obtain the first part of the theorem. For any f € L,
and € > 0, we can find g such that g is continuous and ||f — g||, < €.

ISnS = fllp < 1SN — Sngllp +11Svg — 8llp + 118 = fllp < ISng — gllp + 2¢
ISng — &llp < sup, [Sn(g,x) —g(x)] = 0as N — oo and € > 0 is arbitrary. O

The behavior of sy (f, x) is more complicated. It is easy enough to observe that for
fecym,
lim sup [sy(f,x) — f(x)] = 0.
N-oo

The series converges uniformly, so sy (f, -) has a uniform limit g. The Cesaro average
Sn(f,-) has the same limit, which has just been shown to be f. Therefore f = g. The

following theorem is again fairly easy.

THEOREM 1.5. If f € L, satisfies | f(y) — f(x)| < c|y — x|* at some x for somea > 0
and ¢ < oo, then at that x,

Jm sy (f,x) = f(x).
PROOF. We can assume without loss of generality that x = 0 and let f(0) = a. We

need to show that .
1 sin(N + E)y
lim — — = "dy=a,
Neveo 270 ‘/T‘f(y) sin 2 y=a

2

or
: S —al, . 1 _
f(y) a

Because the function g(y) = with singularity only at 0 is dominated by

cly|*~1 for some a > 0, it is integrable. (L13) is a consequence of the Riemann-
Lebesgue lemma, i.e., Theorem [L.1]. O

Let us now assume that f is a function of bounded variation on T which has left
and right limits a; and a, at 0. It is easy to check that
1 1

2
2

< Clyl.

sin(%)

It follows from the Riemann-Lebesgue lemma that

hm—f o] s = s lor=
2

By a change of variables, one can reduce the calculation of

hm _/‘ ()s1n(N+ )y dy

2



6 1. FOURIER SERIES

to calculating

1 i y\siny
Jmz | G

® sinx
G(y) = f < dx,
y

If we write

then G(o0) = 0 and G(0) = =

We have that
An
ar(l)=%f e )slny 711/ (a6
0 0
An T
1 1 1 1
“lo+t fo GO = e+ 7 fo GGnaso)
1
- Ear

by the bounded convergence theorem. Similarly,

0
1 y.\siny 1
b,(1) == = )—=dy — =b,.
ey ,rf_Mf(l)y y = 3br
This establishes the following.

THEOREM 1.6. If f is a function of bounded variation on T, then for every x € T,

Jim sy (f, ) = f(x+0)J2rf(x—0)_

REMARK 1.7. On the other hand, the behavior of sy (f, x) for f in C(T), the space
of continuous functions on T or in Lp[—n', 7] for 1 < p < oo, is more complex.

For example, one can ask if sy (f, x) — f(x) in L,. Or how about convergence for
almost all x? Let us define the linear operator

4 sin(N + 3)y
(1.14) (Inp)) = | fx=y)———F—d
s sin 5
on smooth functions f. It is more convenient to think of f as a periodic function of
period 27 defined on R. If sy (f, x) were to converge uniformly to f for every bounded
continuous function, it would follow by the uniform boundedness principle that

sup (T f)(X)| < Csup | f(x)]

with a constant independent of f as well as N. Let us show that this is not possible.
The best possible bound Cy for Ty is seen to be

7 |sin(N + %)yl
N = 5= ST —
27 ) Isind|

5

and because

1 2‘
sy
Sll’lz y
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is integrable on [—7, 7], Cy differs from

1

1 (7 |2sin(N+§)y|dy_ 1 f(’“f)” |sin y|

2 J_, 4 T —~(N+ Dy [yl
o |siny|

by a uniformly bounded amount. The divergence of % S ol dyimplies that Cy —

o0 as N — oo. By duality, this means that Ty is not uniformly bounded as an operator
from L,[—7, 7] into itself either. Again because of the uniform boundedness principle,
one cannot expect Sy (f,-) to tend to f(-) in L;[—m, 7] for every f € L,[-7, 7].

1.3. Special case p = 2
When p = 2, we have a Hilbert space L,(T) with the inner product

(9= 55 [ Feds
T
and

118 = 55 [ LGP dx
T

We have taken the normalized Lebesgue measure du = [21—; so that u(T) = 1. The
functions {e,,(-) = ¢"* : n € Z} form a complete orthonormal basis, and the Fourier
series is the expansion

f(x)z z aneinx’

which converges in L,(T) with a,, given by

G = {en ) = o= f eI £ (x)dx.
T

The Plancherel-Parseval identities state that

3l = 5 [ lrcopa
and
3 b= - fT Fg(dx.

1.4. Higher dimensions

If we have periodic functions f(x) = f(x,...,x4) of d variables with period 27 in
every variable, then the Fourier transforms are defined on 74, Ifn = (ny,...,ng), then

1 )
a, = elmx) gy
" 2m)d /Td

While most of the one-dimensional results carry over to d dimensions, one needs to be
careful about the partial sums. Results that depend on the explicit form of the kernels
ky and Ky have to be reexamined. While partial sums over sets of the form () Al <
N} oreven ) iAln;| < N;} can be handled, it is hard to analyze partial sums over sets
of the form {n : )}, n} < N}. Decomposition of functions in L,(T¢) into {¢'<®*>} with
n € Z¢ goes through without difficulty.
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1.5. Maximal inequality
We start with a useful covering lemma known as the Vitali covering lemma.

LEMMA 1.8. Let K C S be a compact subset of R and {I,} be a collection of open
intervals covering K. Then there is a finite subcollection {I;} such that
(1) {I;} are disjoint.
(2) Theintervals{31;} that have the same midpoints as {I;} but three times the length
cover K.

PROOF. We first choose a finite subcover. From the finite subcover, we pick the
largest interval. In case of a tie, pick any of the competing ones. Then at every stage
of the remaining intervals from our finite subcollection, we pick the largest one that is
disjoint from the ones already picked. We stop when we cannot pick any more. The
collection that we end up with is clearly disjoint and finite. Let x € K. This is covered
by one of the intervals J from our finite subcollection covering K. If J was picked, there
is nothing to prove. If J was not picked, it must intersect some I; that was picked.
Otherwise J would be disjoint from all the I; that were picked and would have been
picked as well. Let us look at the first such interval and call it I. J is disjoint from
all the previously picked ones and J was passed over when we picked I. Therefore in
addition to intersecting I, J is not longer than I. Therefore 31 > J 5 x. ]

The lemma is used in proving maximal inequalities. For instance, for the Hardy-
Littlewood maximal function, we have the following result.

THEOREM 1.9. Let f € L(T). Define

(1.15) M;(x)= sup - f FO)ldy.
<r<m ly—x|<r

Then

(1.16) ulx : Mp(x) > €] < 3f|f§y)|dy.

PROOF. Let us denote by E, the set
E, = {x : Mg(x) > ¢},

and let K C E, be an arbitrary compact set. For each x € K, there is an interval I, such
that

f SOy = euty).
Ix

Clearly {I,} is a covering of K. By lemma, we get a finite disjoint subcollection {I;} such
that {3];} covers K. Adding them up, we get

[y [ 170Ny > ¢ Yty = § Vet > §uo
T Jj VI J Jj

Since K C E, is arbitrary, we are done. O

There is no problem in replacing {x : |[My(x)| > ¢} by {x : [M;(x)| > ¢}. Replace ¢
by ¢ —eand lete — 0. This theorem can be used to prove the Lebesgue differentiability
theorem.
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THEOREM 1.10. Forany f € L,(T),
(1.17) lim ih f 1F0) = fX)ldy =0 forae. x.
h—0 2 |X—y|ﬁh
PROOF. It is sufficient to prove that for any § > 0,
1
pl s timsup o [ 1) = fG0ldy > 6] =
h—0 |x—y|<h

Given € > 0, we can write f = f; + g with f; continuous and ||g||; < €, and

ulx - limsup o f ) = fCOldy = ]
h—0 |x—yl<h

—lx s timsup 2z [ Jg0) - gColdy > ]
h—0 |x—=y|<h

1
< uf[x @ sup ﬂf lg(y) — g(x)|dy > 3]
h>0 |x—y|<h
3|1gllx

)

Since € > 0 is arbitrary, we are done. O

IA

| &

An easy consequence is the following corollary.

+h

COROLLARY 1.11. If f € Ly[—7, 7], then limy,_¢ 3 fxx n S)dy = f(x) fora.e x.

In other words, the maximal inequality is useful to prove almost sure convergence.
Typically, almost sure convergence will be obvious for a dense set, and the maximal
inequality will be used to interchange limits in the approximation.

Another summability method similar to the Fejér sum is the Poisson sum: For
0<p<1

S(p.x) = Y. appMei,

nez

and the kernel corresponding to it is the Poisson kernel

(1.18) P x)_LZ Inlginx — L 1-p?
’ P _27Tnp “ 2w (1 —2pcosx + p2?)

so that

B = / FG)P(orx — y)dy.
T

It is left as an exercise to prove that for for 1 < p < oo, every f € L, B,f — fin
L, as p — 1. We will prove a maximal inequality for the Poisson sum so that, as a
consequence, we will get the almost sure convergence of B, f to f for every f in L,.

THEOREM 1.12. Forevery f in L,,

(1.19) ulx : sup (B > ] <

0<p<1
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The proof consists of estimating the Poisson maximal function in terms of the
Hardy-Littlewood maximal function M (x) defined in ([L.I3). We begin with some sim-
ple estimates for the Poisson kernel P(p, x):

1 1—p? <1 1—p?

27 (1-p)2+20(1 —cosx) — 51(1—,0)2
_1l+4p _1 1

P(p,x) =

T 2rl—p - ml—p°
The problem therefore is only as p — 1.

LEMMA 1.13. For any symmetric function ¢(x),

f FOO$(dx < 2M,(0) / ' (O)dx + 272(()| M O),
. 0

where My is the Hardy-Littlewood maximal function.

PROOF.
| :f(x)qb(x)dx‘

- 1500+ FRI

- fo ﬂqb(x)[% / Zf(y)dy]dx

| "o / Foay]az + oo [ Z foodx

-[rzlxcﬁ'(x)lﬁ[f_z If(y)ldy]dx+|¢(7f)|]: £ (0)ldx

IA

IA

< 2M,(0) / Ix' (0)ldx + 27| $()| M (0))
0
[

To estimate the maximal function for the Poisson kernel in terms of the Hardy-
Littlewood maximal function My(x), we check that, with ¢(x) = P(p, x),

d 1 1-p? .
’xap(‘o’ x)’ T 2w (1 —2pcosx + p2)? 2plxsinx]
<1 (1—p)x?
“7(1—-p)*+(1—cosx)?
_ 2
<cC (1 —p)x

(1—p)*+x*
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and
T

(1= p)x?

T
d
x—P(p, x)‘ dx<C —_—
/0 ‘ dx b, (1—p)*+ x4

T

T 2
= dx
o 1+ x4

< dx<C
_‘/0‘ L+x4 =1

1-p? 1 1-p° <C
271' (1—p)2+2p(1—cos7r) 21 (L+pp2 =

uniformly in p. Moreover,

P(p,7) =

There is nothing special about T. We can carry out the argument on R¢ or T¢.
THEOREM 1.14. If f € L;(R%) and

Jogen FOldy
My () = sup = —

then

plx @ Mp(x) > €] < %.

Here, D(x,r) is the sphere with center x and radius r. It could also be the cube centered at
x. All that matters is that if D(x,r) N D(y,s) # @ and s < r, then D(x, 3r) D D(y, s) and
ID(x, 3r)| = 3¢D(x, ).

Proof is left as an exercise.

1.6. Exercises

(1) For1 < p < oo, if f € L, prove the convergence of B, f — finL,asp — 1.
(2) Instead of the Fejér sum, if we use

(W NHI(X) = Y agw(N, el ™
with w(N,n) — 1as N — oo, what simple additional conditions will ensure
the convergence of W i f to f? In L;[T] or LZ[T]

(3) What about w(N,n) = e'% or w(N,n) = e'W?
(4) For a function f € L;[T], the harmonic extension to the interior of the circle
is given by

! f(a)
U(f,V,e)—Ef(l_zrcos(e—a)+r2)

Show that for f € L;[T],
lin} U(f,r,0) = f(6)
r—

for almost all 6 € T.
(5) Construct explicitly a continuous function f on T such that the Fourier series
of f does not converge uniformly.
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(6) The function % is not well-defined on T. If x =
formulas in ([[.§) and (.11]) make sense?
(7) Provide a proof for Theorem [[.14.

b4
2

so is x + 7. Why do the



