
CHAPTER 1

Fourier Series

1.1. Introduction
Fourier was interested in solving the heat equation on [0,∞) × R

𝑢𝑡 = 𝑢𝑥𝑥
with initial condition 𝑢(0, 𝑥) = 𝑢0(𝑥), a periodic function of period 1. We look for
special solutions of the form 𝑢(𝑡, 𝑥) = 𝑓(𝑥)𝑔(𝑡). In order to satisfy the equation, we
need

𝑓𝑔𝑡 = 𝑓𝑥𝑥𝑔 or 𝑔𝑡
g = 𝑓𝑥𝑥

𝑓 .

The left-hand side is a function of 𝑡 while the right hand side is a function of 𝑥.
Therefore, they both must be equal to a constant 𝜆. 𝑔𝑡 = 𝜆𝑔 yields 𝑔(𝑡) = 𝑒𝜆𝑡, and
𝑓𝑥𝑥 = 𝜆𝑓 yields 𝑓(𝑥) = 𝐴 sin 𝑐𝑥+𝐵 cos 𝑐𝑥. The equation is satisfied if 𝜆 = −𝑐2. For the
function to be periodic of period 1, we need 𝑐 to be an integer multiple of 2𝜋. We have
a class of solutions

𝑢(𝑡, 𝑥) = 𝑒−4𝑛2𝜋2𝑡[𝐴 cos(2𝜋𝑛𝑥) + 𝐵 sin(2𝜋𝑛𝑥)],
or if we allow complex solutions,

𝑢(𝑡, 𝑥) = 𝐴𝑒−4𝑛2𝜋2𝑡𝑒2𝜋𝑖𝑛𝑥

for every 𝑛 ∈ Z. Since the equation is linear,
∞
∑

𝑛=−∞
𝑎𝑛𝑒−4𝑛

2𝜋2𝑡𝑒2𝜋𝑖𝑛𝑥

are solutions with

𝑢(0, 𝑥) = 𝑢0(𝑥) =
∞
∑

𝑛=−∞
𝑎𝑛𝑒2𝜋𝑖𝑛𝑥.

If any periodic function 𝑢0(𝑥) can be represented as a sum of periodic exponentials
with the same period, then the heat equation can be solved.

It is more convenient to consider periodic functions of period 2𝜋. They are sin 𝑛𝑥
and cos 𝑛𝑥. We will consider complex-valued periodic functions on R with period 2𝜋.
We will denote by T the interval [−𝜋, 𝜋] with endpoints identified. Addition in T is
modulo 2𝜋. Functions on T need to match at ±𝜋, along with the required number of
derivatives in order to be smooth. In particular, integration by parts of smooth func-
tions on T produces no boundary terms.We can view periodic functions as functions
defined on the circumference of the unit circle in the complex plane which has no
boundary. Since boundary points havemeasure 0, integration onT is no different from
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2 1. FOURIER SERIES

integration on [−𝜋, 𝜋]. We will also view T as group, which viewed on [−𝜋, 𝜋], is ad-
dition modulo 2𝜋.

The Fourier coefficients of a periodic function 𝑓 ∈ 𝐿1[−𝜋, 𝜋] are defined by

(1.1) 𝑎𝑛 =
1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑥)𝑒−𝑖𝑛𝑥 𝑑𝑥

If a function 𝑓 has the representation as a Fourier series, then
(1.2) 𝑓(𝑥) = ∑

−∞<𝑛<∞
𝑎𝑛𝑒𝑖𝑛𝑥

with∑−∞<𝑛<∞ |𝑎𝑛| < ∞. Since

1
2𝜋 ∫

𝜋

−𝜋
𝑒𝑖𝑚𝑥𝑒−𝑖𝑛𝑥𝑑𝑥 = 𝛿𝑛,𝑚,

i.e., equals 1 if 𝑛 = 𝑚 and 0 otherwise, we see that the coefficients 𝑎𝑛 can be recovered
from 𝑓 by formula (1.1). If we assume that 𝑓 ∈ 𝐿1[−𝜋, 𝜋], then clearly 𝑎𝑛 is well-
defined by formula (1.1) and

|𝑎𝑛| ≤
1
2𝜋 ∫

𝜋

−𝜋
|𝑓(𝑥)|𝑑𝑥.

It is not clear that the series on the right hand side of equation (1.2) converges, and
even if it does, it is not immediately clear why the sum of the series is actually equal to
the function 𝑓(𝑥). It is relatively easy to find conditions on 𝑓(⋅) so that the series (1.2)
is convergent. If 𝑓(𝑥) is assumed to be 𝑘 times continuously differentiable as a periodic
function on [−𝜋, 𝜋], integrating by parts 𝑘 times, we obtain for 𝑛 ≠ 0,

(1.3) |𝑎𝑛| =
1
|𝑛|𝑘

|
|
|
1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑘)(𝑥)𝑒−𝑖𝑛𝑥 𝑑𝑥

|
|
| ≤

1
|𝑛|𝑘 sup𝑥

|𝑓{𝑘}(𝑥)|

From the estimate (1.3), it is easily seen that the series is convergent if 𝑓 is twice con-
tinuously differentiable.

An important but elementary fact is the Riemann-Lebesgue lemma.

Theorem 1.1. For every 𝑓 ∈ 𝐿1[−𝜋, 𝜋] with 𝑎𝑛 = 1
2𝜋 ∫

𝜋
−𝜋 𝑒−𝑖𝑛𝑥𝑓(𝑥)𝑑𝑥,

(1.4) lim
𝑛→±∞

|𝑎𝑛| = 0.

Proof. Let 𝑓 ∈ 𝐿1[−𝜋, 𝜋] and 𝜖 > 0 be given. Since smooth functions are dense
in 𝐿1[−𝜋, 𝜋], given any 𝜖 > 0, we can approximate 𝑓 by a function 𝑔𝜖 such that

1
2𝜋 ∫

𝜋

−𝜋
|𝑓(𝑥) − 𝑔𝜖(𝑥)|𝑑𝑥 ≤ 𝜖

and 𝑔𝜖 is continuously differentiable on T. Then

|𝑎𝑛| ≤
|
|
|
1
2𝜋 ∫

𝜋

−𝜋
𝑔𝜖𝑒−𝑖𝑛𝑥 𝑑𝑥

|
|
| +

1
2𝜋 ∫

𝜋

−𝜋
|𝑓(𝑥) − 𝑔𝜖(𝑥)|𝑑𝑥

≤ 1
|𝑛|

1
2𝜋 ∫

𝜋

−𝜋
|𝑔′𝜖(𝑥)|𝑑𝑥 +

1
2𝜋 ∫

𝜋

−𝜋
|𝑓(𝑥) − 𝑔𝜖(𝑥)|𝑑𝑥

≤ 1
|𝑛| sup𝑥

|𝑔′𝜖(𝑥)| + 𝜖.
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Therefore lim sup𝑛→±∞ |𝑎𝑛| ≤ 𝜖. Since 𝜖 > 0 is arbitrary, lim sup𝑛→±∞ |𝑎𝑛| = 0. □

Remark 1.2. The functions sin 𝑛𝑥 and cos 𝑛𝑥 are highly oscillatory around 0, and
when integrated, ∫𝑏

𝑎 sin 𝑛𝑥 𝑑𝑥 and ∫
𝑏
𝑎 cos 𝑛𝑥 𝑑𝑥 tend to 0 as 𝑛 → ∞. Any function 𝑓 is

well approximated in 𝐿1[−𝜋, 𝜋] by functions that are piecewise constant.

1.2. Convergence of Fourier series
Let us define the partial sums

(1.5) (𝑠𝑁𝑓)(𝑥) = 𝑠𝑁(𝑓, 𝑥) = ∑
|𝑛|≤𝑁

𝑎𝑛𝑒𝑖𝑛𝑥

and the Fejér sum

(1.6) (𝑆𝑁𝑓)(𝑥) = 𝑆𝑁(𝑓, 𝑥) =
1

𝑁 + 1 ∑
0≤𝑛≤𝑁

𝑠𝑛(𝑓, 𝑥).

We can calculate

(𝑠𝑛𝑓)(𝑥) =
1
2𝜋 ∑

|𝑗|≤𝑛
𝑒𝑖𝑗𝑥∫

T
𝑒−𝑖𝑗𝑦𝑓(𝑦)𝑑𝑦

= 1
2𝜋 ∫

T
𝑓(𝑦)[ ∑

|𝑗|≤𝑛
𝑒𝑖𝑗(𝑥−𝑦)]𝑑𝑦

= 1
2𝜋 ∫

T
𝑓(𝑦)𝑒

−𝑖𝑛(𝑥−𝑦)(𝑒𝑖(2𝑛+1)(𝑥−𝑦) − 1)
𝑒𝑖(𝑥−𝑦) − 1 𝑑𝑦

= ∫
T
𝑓(𝑦)𝑘𝑛(𝑥 − 𝑦)𝑑𝑦

= (𝑓 ∗ 𝑘𝑛)(𝑥),(1.7)

where

(1.8) 𝑘𝑛(𝑧) =
1
2𝜋

𝑒−𝑖𝑛𝑧(𝑒𝑖(2𝑛+1)𝑧 − 1)
𝑒𝑖𝑧 − 1 = 1

2𝜋
sin(𝑛 + 1

2 )𝑧
sin 𝑧

2
𝑆

and the convolution 𝑓 ∗ 𝑔 of two functions 𝑓, 𝑔 in 𝐿1[T] is defined as

(1.9) (𝑓 ∗ 𝑔)(𝑥) = ∫
T
𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦 = ∫

T
𝑓(𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦.

A similar calculation reveals

(1.10) (𝑆𝑁𝑓)(𝑥) = ∫
T
𝑓(𝑦)𝐾𝑁(𝑥 − 𝑦)𝑑𝑦 = (𝑓 ∗ 𝐾𝑁)(𝑥),

where

𝐾𝑁(𝑥) =
1
2𝜋

1
(𝑁 + 1)

1
sin 𝑥

2
∑

0≤𝑛≤𝑁
[sin(𝑛 + 1

2)𝑥]

= 1
2𝜋

1
(𝑁 + 1)[

sin (𝑁+1)𝑥
2

sin 𝑥
2

]
2
.(1.11)
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Since
𝑘𝑛(𝑥) = ∑

|𝑗|≤𝑛
𝑎𝑗𝑒𝑖𝑗𝑥,

𝐾𝑁(𝑥) =
1

𝑁 + 1
𝑁
∑
0
𝑘𝑛(𝑥)

= ∑
|𝑛|≤𝑁

(1 − |𝑛|
𝑁 + 1)𝑎𝑛𝑒

𝑖 𝑛𝑥.

Notice that for every 𝑁,

(1.12) ∫
T
𝑘𝑁(𝑥)𝑑𝑥 = ∫

T
𝐾𝑁(𝑥)𝑑𝑥 = 1.

The following observations are now easy to make.
(1) Nonnegativity:

𝐾𝑁(𝑥) ≥ 0.
(2) For any 𝛿 > 0,

lim
𝑁→∞

sup
|𝑥|≥𝛿

𝐾𝑁(𝑥) = 0.

(3) Therefore,
lim
𝑁→∞

∫
|𝑥|≥𝛿

𝐾𝑁(𝑥)𝑑𝑥 = 0.

It is now a simple exercise to prove the following.

Theorem 1.3. For any 𝑓 that is bounded and continuous on T,
lim
𝑁→∞

sup
𝑥∈T

|𝑆𝑁(𝑓, 𝑥) − 𝑓(𝑥)| = 0.

Proof. Let 𝛿 > 0 be given. Then

|𝑆𝑁(𝑓, 𝑥) − 𝑓(𝑥)| = |||∫[𝑓(𝑥 − 𝑧) − 𝑓(𝑥)]𝐾𝑁(𝑧)𝑑𝑧
|||

≤ ∫
|𝑧|≤𝛿

|𝑓(𝑥 − 𝑧) − 𝑓(𝑥)|𝐾𝑁(𝑧)𝑑𝑧 +∫
|𝑧|≥𝛿

|𝑓(𝑥 − 𝑧) − 𝑓(𝑥)|𝐾𝑁(𝑧)𝑑𝑧

≤ sup
𝑥

sup
|𝑧|≤𝛿

|𝑓(𝑥 − 𝑧) − 𝑓(𝑥)| + 2 sup
𝑥
|𝑓(𝑥)|∫

|𝑧|≥𝛿
𝐾𝑁(𝑧)𝑑𝑧.

If we let 𝑁 → ∞ and then 𝛿 → 0
lim sup
𝑁→∞

sup
𝑥
|𝑆𝑁(𝑓, 𝑥) − 𝑓(𝑥)| ≤ sup

𝑥
sup
|𝑧|≤𝛿

|𝑓(𝑥 − 𝑧) − 𝑓(𝑥)| → 0

as 𝛿 → 0. □

We next explore the convergence properties of the Fejér sum in 𝐿𝑝[−𝜋, 𝜋].
Theorem 1.4. For 1 ≤ 𝑝 < ∞ and 𝑓 ∈ 𝐿𝑝[−𝜋, 𝜋],

‖𝑆𝑁(𝑓, ⋅)‖𝑝 ≤ ‖𝑓‖𝑝.
Therefore,

lim
𝑁→∞

‖𝑆𝑁𝑓 − 𝑓‖𝑝 = 0
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Proof. By Hölder’s inequality, since ∫𝐾𝑁(𝑧)𝑑𝑧 = 1, for any 𝑥,

|𝑆𝑁(𝑓, 𝑥)|𝑝 ≤ ∫
T
|𝑓(𝑧)|𝑝𝐾𝑁(𝑥 − 𝑧)𝑑𝑧.

Integrating with respect to 𝑥, we obtain the first part of the theorem. For any 𝑓 ∈ 𝐿𝑝
and 𝜖 > 0, we can find 𝑔 such that 𝑔 is continuous and ‖𝑓 − 𝑔‖𝑝 ≤ 𝜖.

‖𝑆𝑁𝑓 − 𝑓‖𝑝 ≤ ‖𝑆𝑁𝑓 − 𝑆𝑁𝑔‖𝑝 + ‖𝑆𝑁𝑔 − 𝑔‖𝑝 + ‖𝑔 − 𝑓‖𝑝 ≤ ‖𝑆𝑁𝑔 − 𝑔‖𝑝 + 2𝜖
‖𝑆𝑁𝑔 − 𝑔‖𝑝 ≤ sup𝑥 |𝑆𝑁(𝑔, 𝑥) − 𝑔(𝑥)| → 0 as 𝑁 → ∞ and 𝜖 > 0 is arbitrary. □

The behavior of 𝑠𝑁(𝑓, 𝑥) is more complicated. It is easy enough to observe that for
𝑓 ∈ 𝐶2(T),

lim
𝑁→∞

sup
𝑥
|𝑠𝑁(𝑓, 𝑥) − 𝑓(𝑥)| = 0.

The series converges uniformly, so 𝑠𝑁(𝑓, ⋅) has a uniform limit 𝑔. The Cesàro average
𝑆𝑁(𝑓, ⋅) has the same limit, which has just been shown to be 𝑓. Therefore 𝑓 = 𝑔. The
following theorem is again fairly easy.

Theorem 1.5. If 𝑓 ∈ 𝐿1 satisfies |𝑓(𝑦)−𝑓(𝑥)| ≤ 𝑐|𝑦−𝑥|𝛼 at some 𝑥 for some 𝛼 > 0
and 𝑐 < ∞, then at that 𝑥,

lim
𝑁→∞

𝑠𝑁(𝑓, 𝑥) = 𝑓(𝑥).

Proof. We can assume without loss of generality that 𝑥 = 0 and let 𝑓(0) = 𝑎. We
need to show that

lim
𝑁→∞

1
2𝜋 ∫

T
𝑓(𝑦)

sin(𝑁 + 1
2 )𝑦

sin 𝑦
2

𝑑𝑦 = 𝑎,

or

(1.13) lim
𝑁→∞

1
2𝜋 ∫

T

[𝑓(𝑦) − 𝑎]
sin 𝑦

2
[sin(𝑁 + 1

2)𝑦]𝑑𝑦 = 0.

Because the function 𝑔(𝑦) = 𝑓(𝑦)−𝑎
sin 𝑦

2
with singularity only at 0 is dominated by

𝑐|𝑦|𝛼−1 for some 𝛼 > 0, it is integrable. (1.13) is a consequence of the Riemann-
Lebesgue lemma, i.e., Theorem 1.1. □

Let us now assume that 𝑓 is a function of bounded variation on T which has left
and right limits 𝑎𝑙 and 𝑎𝑟 at 0. It is easy to check that

|||
1

sin(𝑦2 )
− 1

𝑦
2

||| ≤ 𝐶|𝑦|.

It follows from the Riemann-Lebesgue lemma that

lim
𝜆→∞

1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑦) sin 𝜆𝑦[ 1

sin(𝑦2 )
− 1
(𝑦2 )

]𝑑𝑦 = 0.

By a change of variables, one can reduce the calculation of

lim
𝑁→∞

1
2𝜋 ∫

T
𝑓(𝑦)

sin(𝑁 + 1
2 )𝑦

sin 𝑦
2

𝑑𝑦
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to calculating

lim
𝜆→∞

1
𝜋 ∫

𝜆𝜋

−𝜆𝜋
𝑓(𝑦𝜆)

sin 𝑦
𝑦 𝑑𝑦.

If we write

𝐺(𝑦) = ∫
∞

𝑦

sin 𝑥
𝑥 𝑑𝑥,

then 𝐺(∞) = 0 and 𝐺(0) = 𝜋
2 .

We have that

𝑎𝑟(𝜆) =
1
𝜋 ∫

𝜆𝜋

0
𝑓(𝑦𝜆)

sin 𝑦
𝑦 𝑑𝑦 = − 1

𝜋 ∫
𝜆𝜋

0
𝑓(𝑦𝜆)𝑑𝐺(𝑦)

= 1
2𝑎𝑟 +

1
𝜋 ∫

𝜆𝜋

0+
𝐺(𝑦)𝑑𝑓(𝑦𝜆) =

1
2𝑎𝑟 +

1
𝜋 ∫

𝜋

0+
𝐺(𝜆𝑦)𝑑𝑓(𝑦)

→ 1
2𝑎𝑟

by the bounded convergence theorem. Similarly,

𝑏𝑟(𝜆) =
1
𝜋 ∫

0

−𝜆𝜋
𝑓(𝑦𝜆)

sin 𝑦
𝑦 𝑑𝑦 → 1

2𝑏𝑟.

This establishes the following.

Theorem 1.6. If 𝑓 is a function of bounded variation on T, then for every 𝑥 ∈ T,

lim
𝑁→∞

𝑠𝑁(𝑓, 𝑥) =
𝑓(𝑥 + 0) + 𝑓(𝑥 − 0)

2 .

Remark 1.7. On the other hand, the behavior of 𝑠𝑁(𝑓, 𝑥) for 𝑓 in 𝐶(T), the space
of continuous functions on T or in 𝐿𝑝[−𝜋, 𝜋] for 1 ≤ 𝑝 < ∞, is more complex.

For example, one can ask if 𝑠𝑁(𝑓, 𝑥) → 𝑓(𝑥) in 𝐿𝑝. Or how about convergence for
almost all 𝑥? Let us define the linear operator

(1.14) (𝑇𝑁𝑓)(𝑥) = ∫
𝜋

−𝜋
𝑓(𝑥 − 𝑦)

sin(𝑁 + 1
2 )𝑦

sin 𝑦
2

𝑑𝑦

on smooth functions 𝑓. It is more convenient to think of 𝑓 as a periodic function of
period 2𝜋 defined onR. If 𝑠𝑁(𝑓, 𝑥)were to converge uniformly to 𝑓 for every bounded
continuous function, it would follow by the uniform boundedness principle that

sup
𝑥
|(𝑇𝑁𝑓)(𝑥)| ≤ 𝐶 sup

𝑥
|𝑓(𝑥)|

with a constant independent of 𝑓 as well as 𝑁. Let us show that this is not possible.
The best possible bound 𝐶𝑁 for 𝑇𝑁 is seen to be

𝐶𝑁 = 1
2𝜋 ∫

𝜋

−𝜋

| sin(𝑁 + 1
2 )𝑦|

| sin 𝑦
2 |

𝑑𝑦,

and because
|
|
|
1

sin 𝑦
2
− 2
𝑦
|
|
|
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is integrable on [−𝜋, 𝜋], 𝐶𝑁 differs from

1
2𝜋 ∫

𝜋

−𝜋

|2 sin(𝑁 + 1
2 )𝑦|

|𝑦| 𝑑𝑦 = 1
𝜋 ∫

(𝑁+ 1
2 )𝜋

−(𝑁+ 1
2 )𝜋

| sin 𝑦|
|𝑦| 𝑑𝑦

by a uniformly bounded amount. The divergence of 1
2𝜋 ∫

∞
−∞

| sin𝑦|
|𝑦| 𝑑𝑦 implies that𝐶𝑁 →

∞ as 𝑁 → ∞. By duality, this means that 𝑇𝑁 is not uniformly bounded as an operator
from 𝐿1[−𝜋, 𝜋] into itself either. Again because of the uniform boundedness principle,
one cannot expect 𝑠𝑁(𝑓, ⋅) to tend to 𝑓(⋅) in 𝐿1[−𝜋, 𝜋] for every 𝑓 ∈ 𝐿1[−𝜋, 𝜋].

1.3. Special case p = 2
When 𝑝 = 2, we have a Hilbert space 𝐿2(T) with the inner product

⟨𝑓, 𝑔⟩ = 1
2𝜋 ∫

T
𝑓 𝑔 𝑑𝑥

and
‖𝑓‖22 =

1
2𝜋 ∫

T
|𝑓(𝑥)|2 𝑑𝑥.

We have taken the normalized Lebesgue measure 𝑑𝜇 = 𝑑𝑥
2𝜋 so that 𝜇(T) = 1. The

functions {𝑒𝑛(⋅) = 𝑒𝑖𝑛𝑥 ∶ 𝑛 ∈ Z} form a complete orthonormal basis, and the Fourier
series is the expansion

𝑓(𝑥) =
∞
∑

𝑛=−∞
𝑎𝑛𝑒𝑖𝑛𝑥,

which converges in 𝐿2(T) with 𝑎𝑛 given by

𝑎𝑛 = ⟨𝑒𝑛, 𝑓⟩ =
1
2𝜋 ∫

T
𝑒−𝑖𝑛𝑥𝑓(𝑥)𝑑𝑥.

The Plancherel-Parseval identities state that
∞
∑

𝑛=−∞
|𝑎𝑛|2 =

1
2𝜋 ∫

T
|𝑓(𝑥)|2 𝑑𝑥

and
∞
∑

𝑛=−∞
𝑎𝑛𝑏𝑛 =

1
2𝜋 ∫

T
𝑓(𝑥)𝑔(𝑥)𝑑𝑥.

1.4. Higher dimensions
If we have periodic functions 𝑓(x) = 𝑓(𝑥1, . . . , 𝑥𝑑) of 𝑑 variables with period 2𝜋 in

every variable, then the Fourier transforms are defined on Z𝑑. If n = (𝑛1, . . . , 𝑛𝑑), then

𝑎n =
1

(2𝜋)𝑑 ∫T𝑑
𝑒𝑖⟨n, x⟩𝑑x.

While most of the one-dimensional results carry over to 𝑑 dimensions, one needs to be
careful about the partial sums. Results that depend on the explicit form of the kernels
𝑘𝑁 and 𝐾𝑁 have to be reexamined. While partial sums over sets of the form⋂𝑖{|𝑛𝑖| ≤
𝑁} or even⋂𝑖{|𝑛𝑖| ≤ 𝑁 𝑖} can be handled, it is hard to analyze partial sums over sets
of the form {n ∶ ∑𝑖 𝑛2𝑖 ≤ 𝑁}. Decomposition of functions in 𝐿2(T𝑑) into {𝑒𝑖<n,x>} with
n ∈ Z𝑑 goes through without difficulty.
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1.5. Maximal inequality
We start with a useful covering lemma known as the Vitali covering lemma.

Lemma 1.8. Let 𝐾 ⊂ 𝑆 be a compact subset of R and {𝐼𝛼} be a collection of open
intervals covering 𝐾. Then there is a finite subcollection {𝐼𝑗} such that

(1) {𝐼𝑗} are disjoint.
(2) The intervals {3𝐼𝑗} that have the samemidpoints as {𝐼𝑗} but three times the length

cover 𝐾.

Proof. We first choose a finite subcover. From the finite subcover, we pick the
largest interval. In case of a tie, pick any of the competing ones. Then at every stage
of the remaining intervals from our finite subcollection, we pick the largest one that is
disjoint from the ones already picked. We stop when we cannot pick any more. The
collection that we end up with is clearly disjoint and finite. Let 𝑥 ∈ 𝐾. This is covered
by one of the intervals 𝐽 from our finite subcollection covering 𝐾. If 𝐽 was picked, there
is nothing to prove. If 𝐽 was not picked, it must intersect some 𝐼𝑗 that was picked.
Otherwise 𝐽 would be disjoint from all the 𝐼𝑗 that were picked and would have been
picked as well. Let us look at the first such interval and call it 𝐼. 𝐽 is disjoint from
all the previously picked ones and 𝐽 was passed over when we picked 𝐼. Therefore in
addition to intersecting 𝐼, 𝐽 is not longer than 𝐼. Therefore 3𝐼 ⊃ 𝐽 ∋ 𝑥. □

The lemma is used in proving maximal inequalities. For instance, for the Hardy-
Littlewood maximal function, we have the following result.

Theorem 1.9. Let 𝑓 ∈ 𝐿1(T). Define

(1.15) 𝑀𝑓(𝑥) = sup
0<𝑟≤𝜋

1
2𝑟 ∫|𝑦−𝑥|<𝑟

|𝑓(𝑦)|𝑑𝑦.

Then

(1.16) 𝜇[𝑥 ∶ 𝑀𝑓(𝑥) > ℓ] ≤ 3∫ |𝑓(𝑦)|𝑑𝑦
ℓ .

Proof. Let us denote by 𝐸ℓ the set
𝐸ℓ = {𝑥 ∶ 𝑀𝑓(𝑥) > ℓ},

and let 𝐾 ⊂ 𝐸ℓ be an arbitrary compact set. For each 𝑥 ∈ 𝐾, there is an interval 𝐼𝑥 such
that

∫
𝐼𝑥
|𝑓(𝑦)|𝑑𝑦 ≥ ℓ𝜇(𝐼𝑥).

Clearly {𝐼𝑥} is a covering of 𝐾. By lemma, we get a finite disjoint subcollection {𝐼𝑗} such
that {3𝐼𝑗} covers 𝐾. Adding them up, we get

∫
T
|𝑓(𝑦)|𝑑𝑦 ≥ ∑

𝑗
∫
𝐼𝑗
|𝑓(𝑦)|𝑑𝑦 ≥ ℓ∑

𝑗
𝜇(𝐼𝑗) =

ℓ
3 ∑𝑗

𝜇(3𝐼𝑗) ≥
ℓ
3𝜇(𝐾).

Since 𝐾 ⊂ 𝐸ℓ is arbitrary, we are done. □

There is no problem in replacing {𝑥 ∶ |𝑀𝑓(𝑥)| > ℓ} by {𝑥 ∶ |𝑀𝑓(𝑥)| ≥ ℓ}. Replace ℓ
by ℓ−𝜖 and let 𝜖 → 0. This theorem can be used to prove the Lebesgue differentiability
theorem.
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Theorem 1.10. For any 𝑓 ∈ 𝐿1(T),

(1.17) lim
ℎ→0

1
2ℎ ∫|𝑥−𝑦|≤ℎ

|𝑓(𝑦) − 𝑓(𝑥)|𝑑𝑦 = 0 for a.e. 𝑥.

Proof. It is sufficient to prove that for any 𝛿 > 0,

𝜇[𝑥 ∶ lim sup
ℎ→0

1
2ℎ ∫|𝑥−𝑦|≤ℎ

|𝑓(𝑦) − 𝑓(𝑥)|𝑑𝑦 ≥ 𝛿] = 0.

Given 𝜖 > 0, we can write 𝑓 = 𝑓1 + 𝑔 with 𝑓1 continuous and ‖𝑔‖1 ≤ 𝜖, and

𝜇[𝑥 ∶ lim sup
ℎ→0

1
2ℎ ∫|𝑥−𝑦|≤ℎ

|𝑓(𝑦) − 𝑓(𝑥)|𝑑𝑦 ≥ 𝛿]

= 𝜇[𝑥 ∶ lim sup
ℎ→0

1
2ℎ ∫|𝑥−𝑦|≤ℎ

|𝑔(𝑦) − 𝑔(𝑥)|𝑑𝑦 ≥ 𝛿]

≤ 𝜇[𝑥 ∶ sup
ℎ>0

1
2ℎ ∫|𝑥−𝑦|≤ℎ

|𝑔(𝑦) − 𝑔(𝑥)|𝑑𝑦 ≥ 𝛿]

≤ 3‖𝑔‖1
𝛿 ≤ 3𝜖

𝛿 .

Since 𝜖 > 0 is arbitrary, we are done. □

An easy consequence is the following corollary.

Corollary 1.11. If 𝑓 ∈ 𝐿1[−𝜋, 𝜋], then limℎ→0
1
2ℎ ∫

𝑥+ℎ
𝑥−ℎ 𝑓(𝑦)𝑑𝑦 = 𝑓(𝑥) for a.e 𝑥.

In other words, themaximal inequality is useful to prove almost sure convergence.
Typically, almost sure convergence will be obvious for a dense set, and the maximal
inequality will be used to interchange limits in the approximation.

Another summability method similar to the Fejér sum is the Poisson sum: For
0 ≤ 𝜌 < 1

𝑆(𝜌, 𝑥) = ∑
𝑛∈Z

𝑎𝑛𝜌|𝑛|𝑒𝑖𝑛𝑥,

and the kernel corresponding to it is the Poisson kernel

(1.18) 𝑃(𝜌, 𝑥) = 1
2𝜋 ∑

𝑛
𝜌|𝑛|𝑒𝑖𝑛𝑥 = 1

2𝜋
1 − 𝜌2

(1 − 2𝜌 cos 𝑥 + 𝜌2)

so that

(𝑃𝜌𝑓)(𝑥) = ∫
T
𝑓(𝑦)𝑃(𝜌, 𝑥 − 𝑦)𝑑𝑦.

It is left as an exercise to prove that for for 1 ≤ 𝑝 < ∞, every 𝑓 ∈ 𝐿𝑝 𝑃𝜌𝑓 → 𝑓 in
𝐿𝑝 as 𝜌 → 1. We will prove a maximal inequality for the Poisson sum so that, as a
consequence, we will get the almost sure convergence of 𝑃𝜌𝑓 to 𝑓 for every 𝑓 in 𝐿1.

Theorem 1.12. For every 𝑓 in 𝐿1,

(1.19) 𝜇[𝑥 ∶ sup
0≤𝜌<1

|(𝑃𝜌𝑓)(𝑥)| ≥ ℓ] ≤ 𝐶‖𝑓‖1
ℓ .
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The proof consists of estimating the Poisson maximal function in terms of the
Hardy-Littlewoodmaximal function𝑀𝑓(𝑥) defined in (1.15). We begin with some sim-
ple estimates for the Poisson kernel 𝑃(𝜌, 𝑥):

𝑃(𝜌, 𝑥) = 1
2𝜋

1 − 𝜌2
(1 − 𝜌)2 + 2𝜌(1 − cos 𝑥) ≤

1
2𝜋

1 − 𝜌2
(1 − 𝜌)2

= 1
2𝜋

1 + 𝜌
1 − 𝜌 ≤ 1

𝜋
1

1 − 𝜌.

The problem therefore is only as 𝜌 → 1.

Lemma 1.13. For any symmetric function 𝜙(𝑥),

∫
𝜋

−𝜋
𝑓(𝑥)𝜙(𝑥)𝑑𝑥 ≤ 2𝑀𝑓(0)∫

𝜋

0
|𝑥𝜙′(𝑥)|𝑑𝑥 + 2𝜋|𝜙(𝜋)||𝑀𝑓(0)|,

where𝑀𝑓 is the Hardy-Littlewood maximal function.

Proof.

|||∫
𝜋

−𝜋
𝑓(𝑥)𝜙(𝑥)𝑑𝑥|||

=
|
|
|∫

𝜋

0
[𝑓(𝑥) + 𝑓(−𝑥)]𝜙(𝑥)𝑑𝑥

|
|
|

=
|
|
|∫

𝜋

0
𝜙(𝑥)[ 𝑑𝑑𝑥 ∫

𝑥

−𝑥
𝑓(𝑦)𝑑𝑦]𝑑𝑥

|
|
|

≤
|
|
|∫

𝜋

0
𝜙′(𝑥)[∫

𝑥

−𝑥
𝑓(𝑦)𝑑𝑦]𝑑𝑧

|
|
| +

|
|
|𝜙(𝜋)∫

𝜋

−𝜋
𝑓(𝑥)𝑑𝑥

|
|
|

≤ ∫
𝜋

0
2|𝑥𝜙′(𝑥)| 12𝑥[∫

𝑥

−𝑥
|𝑓(𝑦)|𝑑𝑦]𝑑𝑥 + |𝜙(𝜋)|∫

𝜋

−𝜋
|𝑓(𝑥)|𝑑𝑥

≤ 2𝑀𝑓(0)∫
𝜋

0
|𝑥𝜙′(𝑥)|𝑑𝑥 + 2𝜋|𝜙(𝜋)||𝑀𝑓(0)|

□

To estimate the maximal function for the Poisson kernel in terms of the Hardy-
Littlewood maximal function𝑀𝑓(𝑥), we check that, with 𝜙(𝑥) = 𝑃(𝜌, 𝑥),

|||𝑥
𝑑
𝑑𝑥𝑃(𝜌, 𝑥)

||| =
1
2𝜋

1 − 𝜌2
(1 − 2𝜌 cos 𝑥 + 𝜌2)2 2𝜌|𝑥 sin 𝑥|

≤ 1
𝜋

(1 − 𝜌)𝑥2
(1 − 𝜌)4 + (1 − cos 𝑥)2

≤ 𝐶 (1 − 𝜌)𝑥2
(1 − 𝜌)4 + 𝑥4
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and

∫
𝜋

0

|||𝑥
𝑑
𝑑𝑥𝑃(𝜌, 𝑥)

||| 𝑑𝑥 ≤ 𝐶∫
𝜋

0

(1 − 𝜌)𝑥2
(1 − 𝜌)4 + 𝑥4 𝑑𝑥

= ∫
𝜋

1−𝜌

0

𝑥2
1 + 𝑥4 𝑑𝑥

≤ ∫
∞

0

𝑥2
1 + 𝑥4 𝑑𝑥 ≤ 𝐶1

uniformly in 𝜌. Moreover,

𝑃(𝜌, 𝜋) = 1
2𝜋

1 − 𝜌2
(1 − 𝜌)2 + 2𝜌(1 − cos 𝜋) =

1
2𝜋

1 − 𝜌2
(1 + 𝜌)2 ≤ 𝐶.

There is nothing special about T. We can carry out the argument on R𝑑 or T𝑑.

Theorem 1.14. If 𝑓 ∈ 𝐿1(R𝑑) and

𝑀𝑓(𝑥) = sup
𝑟>0

∫𝐷(𝑥,𝑟) |𝑓(𝑦)|𝑑𝑦
|𝐷(𝑥, 𝑟)| .

then

𝜇[𝑥 ∶ 𝑀𝑓(𝑥) > ℓ] ≤ 3𝑑‖𝑓‖1
ℓ .

Here,𝐷(𝑥, 𝑟) is the sphere with center 𝑥 and radius 𝑟. It could also be the cube centered at
𝑥. All that matters is that if 𝐷(𝑥, 𝑟) ∩ 𝐷(𝑦, 𝑠) ≠ ∅ and 𝑠 ≤ 𝑟, then 𝐷(𝑥, 3𝑟) ⊃ 𝐷(𝑦, 𝑠) and
|𝐷(𝑥, 3𝑟)| = 3𝑑𝐷(𝑥, 𝑟).

Proof is left as an exercise.

1.6. Exercises
(1) For 1 ≤ 𝑝 < ∞, if 𝑓 ∈ 𝐿𝑝, prove the convergence of 𝑃𝜌𝑓 → 𝑓 in 𝐿𝑝 as 𝜌 → 1.
(2) Instead of the Fejér sum, if we use

(𝑊 𝑁𝑓)(𝑥) = ∑𝑎𝑛𝑤(𝑁, 𝑛)𝑒 𝑖 𝑛𝑥

with 𝑤(𝑁, 𝑛) → 1 as 𝑁 → ∞, what simple additional conditions will ensure
the convergence of𝑊 𝑁𝑓 to 𝑓? In 𝐿1[T] or 𝐿2[T].

(3) What about 𝑤(𝑁, 𝑛) = 𝑒−
|𝑛|
𝑁 or 𝑤(𝑁, 𝑛) = 𝑒−

𝑛2
𝑁 ?

(4) For a function 𝑓 ∈ 𝐿1[T], the harmonic extension to the interior of the circle
is given by

𝑈(𝑓, 𝑟, 𝜃) = 1
2𝜋 ∫ 𝑓(𝛼)

(1 − 2𝑟 cos(𝜃 − 𝛼) + 𝑟2)𝑑𝛼.

Show that for 𝑓 ∈ 𝐿1[T],
lim
𝑟→1

𝑈(𝑓, 𝑟, 𝜃) = 𝑓(𝜃)

for almost all 𝜃 ∈ T.
(5) Construct explicitly a continuous function 𝑓 onT such that the Fourier series

of 𝑓 does not converge uniformly.
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(6) The function 𝑦
2 is not well-defined on T. If 𝑥 = 𝑦

2 so is 𝑥 + 𝜋. Why do the
formulas in (1.8) and (1.11) make sense?

(7) Provide a proof for Theorem 1.14.


