
CHAPTER 1

Quantum fields, noncommutative spaces, and
motives

1. Introduction

The main goal of Chapter one is to unveil the mathematical conceptual
meaning of some of the sophisticated computations performed by physicists
in the domain of particle physics. It is divided into two parts dealing, re-
spectively, with

(1) Renormalization
(2) The Standard Model

We try to keep close contact with the way the computations are actually
performed by physicists and to bridge the gap between, on the one hand,
the lessons physicists learned from their constant dialogue with experimental
results and, on the other hand, with the elaborate mathematical concepts
involved in allowing one to understand the meaning of these computations
(if any). The bare data we start with are, respectively,

• Computations of cross sections and scattering amplitudes from the
perturbative expansion of the Feynman integral using renormalized
values of Feynman graphs in the dimensional regularization and
minimal subtraction scheme.
• The detailed expression of the full Standard Model Lagrangian with

neutrino mixing, the see-saw mechanism and coupling to gravity.

We start the chapter with a presentation of quantum field theory (QFT)
that ought to be understandable to mathematicians. In particular we recall
in §2.1 the Lagrangian and Hamiltonian formalisms of classical mechan-
ics and explain in §2.2 how the Lagrangian formulation of quantum field
theory leads to Feynman’s path integral. The path integral prescription is
ambiguous (even ignoring all the divergence problems) and the removal of
the ambiguity by Feynman’s iε trick can only be properly understood after
an excursion into the Hamiltonian formulation and canonical quantization.
We do this in §2.3 where we base the discussion on the three main physical
properties of a quantum field theory, which are

• Causality
• Positivity of energy
• Unitarity
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We discuss the simplest example of QFT in §2.4: it is the free bosonic field
on the space-time

X = R× S1

with the Lorentz metric. This gives a good occasion to describe this ba-
sic example of algebraic quantum field theory, and to explain what are the
vacuum states and the temperature states which fulfill the KMSβ condition
relative to the Heisenberg time evolution. Even though algebraic quantum
field theory is an interesting formalism involving deep mathematical struc-
tures such as von Neumann algebras it falls short of what is essential to our
purpose: concrete physics computations. It is, however, essential in clarify-
ing the conceptual meaning of the boundary conditions on Green’s functions
by clearly separating the kinematical relations from the construction of the
vacuum states. We turn to the Green’s functions in §2.5 and give their
formal perturbative expansion in terms of free fields as the Gell-Mann–Low
formula. We then show in §2.6 how Wick rotation allows one to encompass
Feynman’s iε prescription for how to go around the pole of the propagator
in the analytic continuation to imaginary time. We give all the details on
that point since it removes the first ambiguity in the perturbative compu-
tation of the functional integral and shows from the start the merit of the
Euclidean formulation.

The Feynman graphs are dealt with in §3. We start with a detailed ac-
count of a concrete example in §3.1 and show how the various pairings com-
ing from the integration by parts under a Gaussian are labeled by graphs
and yield integrals. The simplest graphs, such as self-energy graphs, give
rise to integrals which diverge when an ultraviolet cutoff is removed so that
one is confronted with the problem of renormalization. The physics origin
of the problem was already understood by Green in 1830 and we explain the
computation of the self-energy in hydrodynamics in §3.2 as a first example
of mass renormalization. We then use the analogy between hydrodynamics
and electromagnetism to explain how the crucial distinction between the
bare parameters and the observed ones makes it possible to eliminate the
divergence of the simplest self-energy graph by adding counterterms to the
Lagrangian. We give a precise mathematical definition of Feynman graphs
and of the rules which associate a formal integral to a graph in §3.3. We then
describe the standard procedures that allow one to simplify the combina-
torics of the Feynman graphs. First, by taking the logarithm of the partition
function with a source term one reduces to connected graphs (§3.4). Then
after applying the Legendre transform one obtains the effective action. Both
the action’s role as the basic unknown of QFT and its expansion in terms
of one-particle irreducible (1PI) graphs is explained in §3.5. With this tool
at hand we come to a precise definition of the physical parameters, such as
the mass, and observables, such as the scattering matrix, in terms of the
effective action in §3.6. Finally we describe the physical ideas of mass, field
strength and coupling constant renormalization in §3.7.
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In §4 we recall the basic dimensional regularization and minimal sub-
traction procedures (DimReg+MS). We begin with the very simple example
of the self-energy graph for the scalar φ3 theory. We show explicitly, in this
example, how to implement the dimensional regularization of the divergent
integral using Schwinger parameters and the formal rules for Gaussian inte-
gration in a complexified dimension D− z. We then discuss the existence of
an analytic continuation of the Feynman integrals to a meromorphic func-
tion on the complex plane. We prove in Theorem 1.9 that the dimensionally
regularized unrenormalized values U z(Γ(p1, . . . , pN )) have the property that
their Taylor coefficients at p = 0 admit a meromorphic continuation to the
whole complex plane z ∈ C. In §5.1 we show a simple example of a subdiver-
gence for a 1PI (one-particle irreducible) graph of the massless φ3 theory in
dimension 6. This example shows the need, in addition to the regularization
scheme (here DimReg+MS), for a renormalization procedure that accounts
for the combinatorics of nested subdivergences.

In §5, we introduce the Bogoliubov–Parasiuk–Hepp–Zimmermann renor-
malization (BPHZ) procedure. This takes care of eliminating the divergences
step by step in the perturbative expansion, by repeatedly adjusting the bare
parameters in the Lagrangian by suitable counterterms that cancel the di-
vergences. The BPHZ procedure also takes care of the problem of non-local
counterterms associated to subdivergences. We show this in detail in an
explicit example in §5.1. We also explain the role of the external structure
of Feynman graphs. The counting of the degree of divergence is described
in §5.2. The BPHZ preparation of Feynman graphs and the extraction of
the renormalized value and the inductive definition of the counterterms are
discussed in §5.3.

In §6.1 we give some mathematical background on commutative Hopf
algebras and affine group schemes, while in § 6.2 we introduce the Connes–
Kreimer Hopf algebra of Feynman graphs, first only in its discrete combina-
torial version. Then in §6.3 we refine the construction, by taking also into
account the external structure. Theorem 1.39 gives the recursive formula of
Connes–Kreimer for the Birkhoff factorization in a graded connected Hopf
algebra, which gives a clear conceptual interpretation to the BPHZ proce-
dure, when applied to the Hopf algebra of Feynman graphs.

In §6.5 we recall another result of the Connes–Kreimer theory, relating
the affine group scheme of the Hopf algebra of Feynman graphs, called the
group of diffeographisms of the physical theory, to formal diffeomorphisms
of the coupling constants of the theory. We explain in §6.6 the dependence
of the U z(Γ(p1, . . . , pN )) on a mass parameter µ and how to recover in
the Connes–Kreimer theory the notion of renormalization group lifted to
the level of the group of diffeographisms, with the β-function given by an
element in the corresponding Lie algebra.
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This singles out the data of perturbative renormalization as describing
a certain class of loops in the affine group scheme of diffeographisms, sat-
isfying some conditions on the dependence on the mass parameter µ, with
the renormalization procedure consisting of their Birkhoff factorization.

We give in §7 a reinterpretation of these data in terms of a Riemann–
Hilbert correspondence. We begin in §7.1 with the expression of the coun-
terterms as a “time-ordered exponential” (iterated integral). We then intro-
duce in §7.2 the notion of flat equisingular connection, which reformulates
geometrically the conditions satisfied by the class of loops corresponding to
the data of perturbative renormalization. The corresponding equivariant
principal bundles are described in §7.3.

In §7.4 we recall some general facts about Tannakian categories, the
Tannakian formalism, and representations of affine group schemes. In §7.5
we show how this formalism is variously used in the context of differential
Galois theory to classify categories of differential systems with prescribed
singularities through the Riemann–Hilbert correspondence, a broad gener-
alization of the original Riemann–Hilbert problem on the reconstruction of
differential equations from their monodromy representations.

In §7.6 we apply this general strategy to the case of renormalization.
We introduce a category of flat equisingular vector bundles, and we ob-
tain in Theorem 1.100 an identification with the category RepU∗ of finite-
dimensional linear representations of the affine group scheme U∗ = U � Gm

with Hopf algebra HU := U(F(1, 2, 3, · · · )•)∨ where F(1, 2, 3, · · · )• is the
free graded Lie algebra with one generator e−n in each degree n > 0.

In §8 we give a brief introduction to the theory of motives, which plays
a role in many different ways throughout the book. In particular we men-
tion the fact that the affine group scheme U∗ also has an incarnation as a
motivic Galois group for a category of mixed Tate motives. Of the general
aspects of the theory of motives, we recall briefly the general interpreta-
tion as a universal cohomology theory, the construction of the category of
pure motives, the role of algebraic cycles and equivalence relations, the re-
lation to zeta functions (which plays an important role in Chapter 2), the
Weil conjectures and the Grothendieck standard conjectures, the role of the
Tannakian formalism and motivic Galois groups, the special case of Artin
motives (which plays a role in Chapter 4), mixed motives and, in particular,
the mixed Tate motives that seem to be deeply related to quantum field
theory and their relation to mixed Hodge structures.

This completes the first part of Chapter 1. In the second part of the
chapter we deal with the Standard Model of elementary particle physics
and an approach to a simple mathematical understanding of its structure via
noncommutative geometry. The second part of Chapter 1 follows closely our
joint work with Chamseddine [52], which is based on the model introduced
by Connes in [73], as well as on the previous work of Chamseddine and
Connes on the spectral action [45], [46], [47].
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Since we do not assume that the reader has much familiarity with particle
physics, we begin §9 by giving a brief overview of the Standard Model. We
introduce the various parameters, the particles and interactions, symmetries
in §§9.1, 9.2, 9.3 and we reproduce in full in §9.4 the very complicated
expression of the Lagrangian. We discuss in §9.5 other aspects, such as the
ghost terms and gauge fixing, that become relevant at the quantum rather
than the semi-classical level. In § 9.6 we distinguish between the minimal
Standard Model, which has only left-handed massless neutrinos, and the
extension that is required in order to account for the experimental evidence
of neutrino mixing. We describe in §9.6.2 the corresponding modifications
of the Lagrangian. In §§9.7 and 9.8 we describe the Lagrangian that gives
the Standard Model minimally coupled to gravity, where the gravity part
can be considered as an effective field theory by including higher-derivative
terms.

The problem of realizing the symmetries of particle interactions as diffeo-
morphisms (pure gravity) on a suitable space suggests the idea that noncom-
mutative geometry, where inner symmetries are naturally present, should
provide the correct framework. We discuss this in §9.9.

In §10 we then recall the main notions of (metric) noncommutative ge-
ometry developed by Connes, based on the structure of spectral triple that
generalizes Riemannian geometry to the noncommutative setting. We intro-
duce spectral geometry in §10.1, we recall the definition and basic properties
of spectral triples in §10.2, including the real part defined in §10.3. We recall
some well known facts on Hochschild and cyclic cohomology in §10.4. The
local index formula of Connes–Moscovici is recalled briefly in §10.5. The
Yang–Mills and Chern–Simons actions are described in terms of Hochschild
cohomology in §10.6 and §10.7 following work of Chamseddine–Connes.

The important notion of inner fluctuations of the metric associated to
self-Morita equivalences of a noncommutative space is discussed in §10.8.

In §11 we introduce the spectral action principle of Chamseddine–Connes.
This plays a crucial role in recovering the Standard Model Lagrangian from
noncommutative geometry and is one of the main tools in metric noncommu-
tative geometry. A careful discussion of the terms arising in the asymptotic
expansion of the spectral action functional is given in §§11.1, 11.2, 11.3 using
Seeley–DeWitt coefficients and Gilkey’s theorem.

In §11.4 we recall a result of [46] that illustrates how to recover the
Einstein–Yang–Mills action from the spectral action on the very simple non-
commutative space given by the product of an ordinary 4-manifold by a
noncommutative space described by the algebra MN (C) of N ×N matrices.

We then analyze the terms that appear in the asymptotic expansion of
the spectral action in §11.5 and their behavior under inner fluctuations of
the metric. We also recall briefly in §11.6 the modification of the spectral
action by a dilaton field introduced by Chamseddine and Connes in [47].
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In §12 we begin the discussion of the noncommutative geometry of the
Standard Model, following [52]. We introduce in §13 a finite noncommuta-
tive geometry F , derived from the basic input of the model, which is the
finite-dimensional associative algebra C⊕H⊕H⊕M3(C), with H the real
division algebra of quaternions. We explain how to construct canonically
an odd spin representation HF of this algebra and, upon imposing a very
natural condition on possible Dirac operators for this geometry, we iden-
tify in §13.1 a maximal subalgebra compatible with the existence of Dirac
operators with the required properties. The subalgebra is of the form

AF = C⊕H⊕M3(C) ⊂ C⊕H⊕H⊕M3(C).

In §13.2 we identify the bimodule HF with the fermions of the Standard
Model (after fixing the number of generations N = 3) and we show in §13.3
that this identification is dictated by the fact that it reproduces the correct
values of the hypercharges.

In §§13.4 and 13.5 we give a complete classification for the possible Dirac
operators for this finite geometry and we describe their moduli space, which
gives a geometric interpretation for the Yukawa parameters of the Standard
Model. The intersection pairing of the finite geometry is analyzed in §13.6,
using the fact that the metric and KO-dimensions are not the same, the
first being zero and the second being equal to 6 modulo 8.

We then consider in §14 the product M×F of an ordinary compact spin
4-manifold with the finite noncommutative geometry introduced previously,
described as a cup product of spectral triples. We identify the real part of
the product geometry in §14.1.

The bosons of the Standard Model, including the Higgs field, are ob-
tained as inner fluctuations of the metric on the product geometry in §15,
with the discrete part giving the Higgs analyzed in §15.2 and the gauge
bosons in §15.4.

The main computation that shows how to recover the Standard Model
Lagrangian, including mixing and Majorana mass terms for neutrinos, min-
imally coupled to gravity, is carried out in §16 by breaking down the La-
grangian in several steps and relating the resulting terms to the terms in
the asymptotic expansion of the spectral action functional

Tr(f(D/Λ)) +
1
2
〈Jψ,Dψ〉,

with the additional fermionic term 〈Jψ,Dψ〉. In particular, we explain in
§§16.2 and 16.3 how the fermionic term gives rise to a Pfaffian which takes
care of the “fermion doubling problem” of [210] by taking the square root of
a determinant. Among the physical consequences of deriving the Lagrangian
from the spectral action, and making the “big desert” hypothesis, we find
in § 17.2 the merging of the coupling constants at unification, in the form
of the relation g2 = g3 =

√
5/3 g1 typical of the grand unified theories. We

also find in §§17.4 and 17.6 a simple quadratic relation between the masses
of quarks and leptons and the W -mass at unification, compatible with the
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known physics at ordinary energies. In §17.5 and §17.10 we show that this
model also provides a see-saw mechanism that accounts for the observed
smallness of neutrino masses, and a prediction of a heavy Higgs mass at
around 168 GeV. The gravitational terms are discussed in §17.11 and the
geometric interpretation of the free parameters of the Standard Model is
summarized in §17.12.

In §18 we outline a possible functional integral formulation in the context
of spectral geometry. We briefly explain a more conceptual path to the alge-
bra AF and its representation given in [49], [50] based on the classification
of irreducible finite geometries of KO-dimension 6 modulo 8. This quickly
leads to the algebra M2(H) ⊕M4(C) with a non-trivial grading on M2(H)
and to its natural representation, playing the role of the above odd-spin
representation. The same mechanism, coming from the order one condition,
then reduces to the subalgebra

AF = C⊕H⊕M3(C) ⊂M2(H)⊕M4(C).

We also show that the use of the larger algebra restores Poincaré duality.
In the remaining part of Chapter 1, in §19 we return to the dimensional

regularization procedure described in the first part of the chapter in the
context of the Connes–Kreimer theory. Here we give the construction, us-
ing spectral triples, of a noncommutative space Xz whose dimension (in the
sense of the dimension spectrum of a spectral triple) consists of a complex
number z, and we reinterpret geometrically the DimReg procedure, as far
as one-loop fermionic graphs are concerned, as taking the cup product of
the spectral triple associated to an ordinary manifold of integer dimension
D with this noncommutative space. In Chapter 2 we return to discuss this
construction and we give an arithmetic model of a noncommutative space
Xz of dimension z. We show in §19.1 and following that the construction of
Xz is compatible with the Breitenlohner–Maison prescription for treating γ5

in the context of DimReg. We continue with the discussion of anomalies, by
introducing chiral gauge transformations in §19.3, and discussing the finite-
ness of the anomalous graphs in §19.4. We treat explicitly the simplest cases
of anomalous graphs in §19.5 and we relate anomalous graphs in dimension
2 and the local index cocycle in §19.6.

2. Basics of perturbative QFT

Quantum field theory is the most accurate source of predictions about
the world of elementary particles. At the theoretical level, it is full of
subtleties and ingenious procedures that extract finite and experimentally
testable values from formal series of divergent integrals. The development of
this theory, which achieved the unification of two fundamental revolutions of
early twentieth century physics, special relativity and quantum mechanics,
traces its origins to two crucial developments that took place in the late
1920s. The quantization of the electromagnetic field by Born, Heisenberg,



CHAPTER 2

The Riemann zeta function and noncommutative
geometry

1. Introduction

This chapter describes, following the results of [71], a spectral realization
of the zeros of the Riemann zeta function and an interpretation of Weil’s
explicit formulae of number theory as a trace formula. The chapter also
includes an application of the same techniques to the Archimedean local
factors of L-functions of varieties defined over number fields, following [74].

We begin the chapter by recalling some basic facts about the Riemann
zeta function. In §2 we recall the fundamental relation between primes and
zeros of the Riemann zeta function expressed by Riemann in terms of an
explicit formula for the prime counting function. We also recall Riemann’s
estimate for the counting of the nontrivial zeros of the zeta function.

In §3 we describe a classical Hamiltonian system (the “scaling Hamil-
tonian”) and a corresponding quantum mechanical system that recover Rie-
mann’s estimate of the counting of zeros of zeta as a counting of modes
of the physical system. More precisely, in §3.1 we show a striking similar-
ity between the behavior of the oscillatory part in Riemann’s formula for
the counting function and the corresponding oscillatory part in the semi-
classical formula for the number of eigenvalues of the Hamiltonian obtained
by quantizing a classical Hamiltonian system. The two formulae are easily
matched up to a sign, which suggests the important point of interpreting
the spectrum of our scaling system as an “absorption” rather than an “emis-
sion” spectrum. This distinction will play a crucial role both in the results
described in this chapter as well as in the formulation given in Chapter 4,
where the spectral realization and the trace formula we discuss will live nat-
urally on a space that is a cokernel (or more precisely, as will become evident
in Chapter 4) a motive in an abelian category of noncommutative spaces.
We proceed in §3.2 to introduce a classical Hamiltonian system associated
to the group of scaling transformations of the real line. We show that the
symplectic volume with infrared and ultraviolet cutoff gives the average part
of the Riemann counting function. In §3.3 we describe the quantization of
this classical system. A delicate point in obtaining a counting of the modes
(the energy levels) of the resulting quantum system lies in the implementa-
tion of both an ultraviolet and an infrared cutoff, for the reason that one
cannot impose a cutoff on both a function and its Fourier transform, or

341
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to say it more precisely, the two projectors associated to the two types of
cutoff do not commute, hence one cannot implement them simultaneously
by intersecting their ranges. The problem can be solved using a technique
that was developed in electrical engineering and laser technology to deal
precisely with similar sorts of mathematical problems. This is based on the
existence of a differential operator commuting with both cutoff projections,
whose eigenfunctions, the prolate spheroidal wave functions, can be used to
approximate both cutoffs by restricting to a subspace spanned by a number
of them, depending on the energy range allowed by the cutoff. We then
consider the spectral projections of the scaling action, so that the problem
of the counting of quantum states becomes the computation of the trace of
the product of these spectral projections NE with the projection QΛ on the
span of the spheroidal wave functions implementing the cutoff. The trace
can be computed (as a special case of the more general trace formula proved
in §7.2 of this same chapter). The resulting trace Tr(QΛNE) is expressed in
a distributional form in terms of a principal value.

The definition and properties of such principal values are described in
detail in the following section, §4, following [71]. We begin by giving the
formal computation of the distributional trace of operators of the form

ϑa(h) =
∫

K∗
h(λ)ϑa(λ) d∗λ

with h a test function and ϑa the scaling action of Gm(K) on L2 functions
on Ga(K) by

(ϑa(λ) ξ)(q) = ξ(λ−1q),

which covers the case of the operators we used in §3.3 to describe the spec-
tral projections of the scaling action. We give in §4.1 a quick introduction
to modulated groups and the corresponding Haar measures, while in §4.2 we
use these notions to give the general form of principal values as distribu-
tions extending from Gm(K) to Ga(K) the integration with respect to the
normalized Haar measure. In particular we give a description in terms of a
variant of the “minimal subtraction” method of regularization described in
Chapter 1 (see Definition 1.10).

In §5 we come to the actual counting of the modes of the quantum
scaling Hamiltonian. We show in Theorem 2.18 that the trace Tr(QΛNE)
gives the right expression for the counting that matches Riemann’s formula
N(E) ∼ E

2π log E
2π −

E
2π . The proof of this theorem is given in §5.2 using the

noncommutative geometry method known as quantized calculus, which we
briefly review in §5.1.

We then come in §6 to the mathematical implementation of the “ab-
sorption spectrum” idea. We introduce the map E considered in [71], which
acts as

E(f)(λ) = λ1/2
∑
n∈Z

f(nλ)
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for λ ∈ R∗
+. We show in §6.1 that, after approximating spheroidal wave

functions by Hermite–Weber functions, the Fourier transform Ê(f) is the
product of an entire function by the Riemann ξ function.

In §7 we make an important extension of the quantum mechanical system
described by the Hamiltonian associated to scaling transformations on the
real line to an adelic version where one considers all the places of Q and not
only the Archimedean place, thus replacing R by the adèles AQ = AQ,f ×
R and R∗ acting by scaling by GL1(AQ) acting by multiplication. Thus,
the Hilbert space of the quantum statistical mechanical system becomes
L2(AQ/Q∗) with the action of the idèle class group CQ = A∗

Q/Q
∗. The

quotient space XQ = AQ/Q∗ is called the adèle class space and, as we
see in more detail in Chapter 3 and Chapter 4, it should be regarded as
a noncommutative space. While in this chapter we mostly treat XQ as
an ordinary space, we explain in §7.1 the reason why it is more natural to
regard it as a noncommutative space, due to the ergodic nature of the action
of CQ. We explain this in the case of the restriction to a set S of finitely
many places (semi-local case XQ,S = AQ,S/Q∗

S). Illustrative examples of two
or three places are discussed explicitly in §§7.1.1 and 7.1.2. We explain in
§7.2 how to define on rapidly decaying functions on AQ,S an inner product
that descends to the coinvariants of the action of Q∗

S and we use it to define
the Hilbert space L2(XQ,S) with the corresponding action of CQ,S . We also
extend the proof of the trace formula given via quantized calculus from the
case of the single Archimedean place to the case of finitely many places,
obtaining in this way the semi-local trace formula of [71]. A main feature
of the trace formula is its additivity: even though the adèle class space is
essentially a product over the set ΣK of places of the global field K the trace
computation delivers a sum over the set of places S ⊂ ΣK.

Throughout this chapter, we only deal with the semi-local version of
the trace formula in the Hilbert space context, as in [71]. In Chapter 4 we
return to discuss, at length, the trace formula and the spectral realization,
but in a different setting like that of [74], where we give a cohomological
interpretation of the trace formula. In that setting we will have all the zeros
appearing (not just those on the critical line), while the Riemann Hypothesis
will become a question equivalent to a positivity statement that resembles
more closely the positivity argument in Weil’s proof for function fields.

The terms that appear in the semi-local trace formula are compared in §8
with Weil’s distributional formulation of Riemann’s explicit formula relating
primes and zeros of the zeta function. We begin by recalling in §§8.1 and
8.2 the definition of L-functions with Grössencharakter for a global field K
(the Riemann zeta function being a special case) and the distribution DK on
CK and the Weil principal values that enter in the explicit formula. In §8.3
we recall the properties of Fourier transform on CK. In §8.4 we show the
explicit computation of the principal values comparing the Weil principal
values with those considered earlier in the semi-local trace formula of §7.2.
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In particular, we discuss separately in §§8.4.1, 8.4.2, and 8.4.3 the case of a
non-Archimedean place and the cases of a real and a complex Archimedean
place. Finally, in §8.5, we give a reformulation of the Weil explicit formula
in the form

ĥ(0) + ĥ(1)−
∑

χ∈ĈK,1

∑
Zχ̃

ĥ(χ̃, ρ) =
∑

v

∫ ′

K∗
v

h(u−1)
|1− u| d

∗u,

where the principal values match the corresponding terms that appear in
the semi-local trace formula of §7.2.

We then discuss the spectral realization of [71] of the zeros of the Rie-
mann zeta function and of L-functions with Grössencharakter. We consider
the cokernel of the map E, extended to this adelic setting, as an isometry
E : L2

δ(XK)0 → L2
δ(CK) of the form

E(f) (g) = |g|1/2
∑
q∈K∗

f(qg)

for g ∈ CK, where the domain L2
δ(XK)0 is the subspace defined by the con-

ditions f(0) = f̂(0) = 0 in the Hilbert space of square-integrable functions
on XQ with a weight δ controlling the decay condition. The cokernel H of E

carries an induced representation ϑm(g), g ∈ CK and can be decomposed as
a sum

⊕
χHχ along characters. The infinitesimal generator of the induced

scaling action of R∗
+ on Hχ has as spectrum the set of zeros on the critical

line of the corresponding L-function with Grössencharakter. The trace is
then given by

Trϑm(h) =
∑

L(χ̃, 12+ρ)=0

ρ∈i R/N⊥

ĥ(χ̃, ρ),

for ϑm(h) =
∫
ϑm(γ)h(γ) d∗γ with h ∈ S(CK). The proof of [71] of the

theorem on the spectral realization (Theorem 2.47) is given then in §9.3,
after discussing in §9.1 a way to express L-functions as normalization fac-
tors of certain homogeneous distributions on AK and, in §9.2, the use of
approximate units fn in the Sobolev space L2

δ(CK).
In §10 we consider instead L-functions of varieties defined over num-

ber fields as in [74]. We concentrate on the Archimedean local factors of
the completed L-function. These are suitable products of gamma functions
with shifts and exponents that depend upon the Hodge numbers of the
complex algebraic variety determined by the embedding K ↪→ C defining
an Archimedean place. By analogy with the Riemann zeta function and
L-functions with Grössencharakter discussed in the previous sections, we
consider the counting function of zeros for L-functions of varieties. Conjec-
turally, the L-functions L(Hm(X), s) satisfy a functional equation and have
zeros located on the critical line #(s) = (1 +m)/2. The average part of the
counting function N(E) = 〈N(E)〉 + Nosc(E) should then be expressed in
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terms of the Archimedean factors

〈N(E)〉 =
1
π

∑
v|∞
� logLv

(
Hm(X),

1 + m

2
+ iE

)
.

We show that this expression can be formulated in terms of a Lefschetz trace
formula, much as in the case of the Riemann zeta function. After recalling
in §10.1 the definition of the Archimedean local L-factors and the counting
function in §10.2, we proceed by expressing their logarithmic derivatives in
distributional form in terms of principal values in §10.3. We show in §§10.4
and 10.5 that this produces, respectively in the case of a complex or a real
place, a trace formula for the logarithmic derivative of the corresponding
local factor. In §§10.6 and 10.7 we formulate some more general questions
such as the problem of a trace formula involving several places and the
related spectral realization, and the problem of finding a global space (the
analog in this higher-dimensional setting of the adèle class space) on which
the geometric side of the expected trace formula lives. We conclude the
chapter with §10.8, where we draw an analogy between the real mixed Hodge
structures involved in the definition of the Archimedean local L-factors and
their motivic Galois group and the category of flat equisingular connections
used in Chapter 1 in the context of perturbative renormalization, and their
differential Galois group U∗.

2. Counting primes and the zeta function

We begin by recalling some very well known facts about the Riemann
zeta function. We do not prove these classical statements here, but the
interested reader can find plenty of material on this subject, for instance
by looking at the very pleasant book by Edwards [126] in which Riemann’s
original paper, which we essentially follow below, is reproduced.

Riemann’s seminal paper “On the number of primes less than a given
magnitude” (in [255], cf. also [126]) established a remarkable relation be-
tween the distribution of prime numbers and the zeros of the zeta function
given by the Euler product

(2.1) ζ(s) =
∑
n≥1

n−s =
∏
p

(1− p−s)−1, #(s) > 1,

where p ranges over the prime numbers.
The function defined by (2.1) has analytic continuation to the complex

plane and is regular everywhere except for a simple pole at s = 1, where

lim
s→1

ζ(s)− 1
s− 1

= γ,

with γ the Euler constant. The analytic continuation is obtained in [255]
using the Γ function

Γ(s)n−s =
∫ ∞

0
e−nxxs−1 dx,



CHAPTER 3

Quantum statistical mechanics and Galois
symmetries

1. Overview: three systems

We have seen in the previous chapter how the adèles AQ and the non-
commutative adèle class space AQ/Q∗ provide a natural geometric setting
for a spectral realization of the zeros of the Riemann zeta function and an
interpretation as a (semi-local) Lefschetz trace formula of the Weil explicit
formula. In this chapter we discuss more in detail the geometry of the adèle
class space, in terms of a simple geometric notion: the commensurability
relation on Q-lattices.

This formulation leads us to consider more general types of noncommu-
tative adelic quotients and their relation to Galois theory. We follow [30],
[86], [88], [90], [91]. All of the cases discussed in this Chapter are quan-
tum statistical mechanical systems, with nontrivial phase transition phe-
nomena, and with thermodynamical equilibrium states that, at sufficiently
low-temperature, recover the points of a classical algebro-geometric moduli
space.

The first system we analyze is the Bost–Connes (BC) system [30], which
is closely related to the adèle class space and is described geometrically in
terms of 1-dimensional Q-lattices. As illustrated in the table below, its
partition function is the Riemann zeta function, the extremal equilibrium
states (KMS states) at sufficiently low-temperature are parameterized by
the points of a very simple classical moduli space, the zero-dimensional
Shimura variety Sh(GL1, {±1}). The symmetries of the system are given
by the group GL1(Ẑ). The zero-temperature KMS states evaluated on a
natural arithmetic subalgebra of the algebra of observables of the system
take values that are algebraic numbers and generate the maximal abelian
extension Qcycl of Q. The class field theory isomorphism intertwines the
action of the symmetries and the Galois action on the values of states, thus
providing a quantum statistical mechanical reinterpretation of the explicit
class field theory of Q.

The second system we present in this chapter is a generalization of the
BC system, where instead of considering 1-dimensional Q-lattices, one works
with 2-dimensional Q-lattices and their commensurability classes. The cor-
responding quantum statistical mechanical system was introduced and stud-
ied in [86] (cf. also [88] for a brief summary of the main results of [86]).
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Passing from 1-dimensional to 2-dimensional Q-lattices corresponds, at the
level of the corresponding classical algebro-geometric objects, to passing
from the Shimura variety of GL1 to that of GL2. However, at the quantum
statistical mechanical level and in terms of the noncommutative spaces, the
GL2-system exhibits many new properties that were not present in the case
of the BC system. One such property is the fact that the symmetries of the
system now involve not only automorphisms, but also endomorphisms. Sym-
metries given by endomorphisms are of crucial importance in order to relate
again the quantum statistical mechanical system and its low-temperature
KMS states to a rich Galois theory. In this case, this will be the Galois
theory of the modular field, which we recall in this chapter. The partition
function of the GL2 system is again related to the Riemann zeta function
ζ(s), this time in the form of a product Z(β) = ζ(β)ζ(β− 1). The extremal
low-temperature KMS states are parameterized by the points of the classi-
cal Shimura variety Sh(GL2,H±). There is an arithmetic algebra, which is
here no longer a subalgebra but an algebra of unbounded multipliers of the
algebra of observables, which naturally involves modular functions. For a
generic choice of an extremal zero-temperature KMS state, the evaluation
on arithmetic elements (multipliers) of the algebra intertwines symmetries
of the system, given by the adelic group Q∗\GL2(AQ,f ), and the Galois ac-
tion of the Galois group of the modular field, realized (via the choice of the
state) as an embedded subfield of C.

In both the GL1- and the GL2-system, the arithmetic algebra plays a
fundamental role. The arithmetic algebras of these two systems can be seen
from the point of view of Weil’s analogy between trigonometric and elliptic
functions developed in [298]. The generators of the arithmetic algebra of
the BC system can be built out of functions of 1-dimensional lattices and
the arithmetic algebra of the GL2-system contains similar elements based
on Eisenstein series and is defined by abstracting the basic properties of
these elements. It naturally involves modular functions and Hecke corre-
spondences.

Finally, we discuss another quantum statistical mechanical system, in-
troduced in our joint work with N. Ramachandran [90], [91]. This system
exhibits properties in between the BC and the GL2 system. This is closely
related to the adèle class space AK/K∗ for K an imaginary quadratic exten-
sion of Q. As the original BC system provides a reformulation of the explicit
class field theory of Q, this system will serve the same purpose with respect
to the explicit class field theory of K. As is well known, the latter involves in
a fundamental way the arithmetic of elliptic curves with complex multiplica-
tion. This appears, in our quantum statistical mechanical setting, through
the relation to the GL2-system. Namely, we will see that the system for com-
plex multiplication, based on commensurability of 1-dimensional K-lattices,
appears as a subsystem of the GL2-system, by identifying 1-dimensional K-
lattices with a special class of 2-dimensional Q-lattices through the choice
of a basis {1, τ} for K as a vector space over Q. The partition function of
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this system is the Dedekind zeta function of K. The arithmetic subalgebra
is then inherited from the GL2-system and the values of zero-temperature
KMS states and the Galois action are exactly those of class field theory. In
this system, as in the GL2 case, the symmetries are not only given by auto-
morphisms. The presence of symmetries that are given by endomorphisms
corresponds to the fact that the field K may have non-trivial class number.

We also discuss, towards the end of this chapter, some further generaliza-
tions of these systems to the case of Shimura varieties [159] and to function
fields [172], [104], and the relation of the GL2-system to the modular Hecke
algebras of Connes and Moscovici [93], [94], [95].

The comparative properties of the three systems are illustrated in the
table below and will be explained in detail in the rest of this chapter.

System GL1 GL2 K = Q(
√
−d)

Partition function ζ(β) ζ(β)ζ(β − 1) ζK(β)

Symmetries A∗
Q,f/Q

∗ GL2(AQ,f )/Q∗ A∗
K,f/K

∗

Symmetry group Compact Locally compact Compact

Automorphisms Ẑ∗ GL2(Ẑ) Ô∗/O∗

Endomorphisms GL+
2 (Q) Cl(O)

Galois group Gal(Qab/Q) Aut(F ) Gal(Kab/K)

Extremal KMS∞ Sh(GL1,±1) Sh(GL2,H±) A∗
K,f/K

∗

More precisely, in §2 we give a brief introduction to quantum statistical
mechanics. We recall the notion of KMS states and its origin motivated by
the quantum mechanical analog of the Gibbs measure. We review in §2.1 the
general notions of observables, time evolution and Hamiltonian of a quan-
tum statistical mechanical system. We also recall the notion of unbounded
multipliers on a C∗-algebra, which will be useful in §§5, 6, 7. We introduce
states in §2.2 and the KMS condition, including the case of zero temperature
where we discuss the different notions of ground states and KMS∞ states.
We show that extremal KMS states at nonzero temperature form a Cho-
quet simplex. We discuss the extension of states to the multiplier algebra.
In §2.3 we discuss symmetries of quantum statistical mechanical systems,
induced symmetries on states, both given by automorphisms and by endo-
morphisms, and the phenomenon of spontaneous symmetry breaking. The
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induced action of symmetries on zero-temperature KMS states is described
in §2.4. The pushforward of KMS states is described in §2.5.

In §3 we introduce the geometric notion of Q-lattices and the relation of
commensurability. These are the fundamental notions used in the rest of the
chapter to construct the relevant quantum statistical mechanical systems.

We begin in §4 to discuss the geometry of the space of 1-dimensional
Q-lattices modulo commensurability. We introduce the groupoid G1 of the
equivalence relation and the one that describes commensurability on Q-
lattices up to scaling by R∗

+. We introduce the corresponding C∗-algebras
and recall the explicit presentation of the BC algebra A1 = C∗(G1/R∗

+).
We describe in §4.1 the time evolution induced by the ratio of covolumes of
commensurable lattices. In §4.2 we recall the description of the BC system
in terms of Hecke algebras originally given in [30]. In §4.3 we show that Ẑ∗

acts as symmetries of the BC system. In §4.4 we introduce the arithmetic
subalgebra A1,Q of A1, by describing the generators in terms of functions
of lattices, their interpretation in terms of trigonometric functions and the
relation via Cayley transform to the exponential generators of the BC alge-
bra. We derive explicit division relations between the generators. In §4.5
we give a quick reminder of the Kronecker–Weber theorem and the explicit
class field theory of Q. We then formulate the problem of the quantum sta-
tistical mechanical approach to explicit class field theory in §4.6, where we
also recall the main result of [30] on the classification of KMS states for the
BC system and its relation to the Galois theory of the cyclotomic field Qcycl.
We discuss in §4.7 the reason why it is not an unreasonable expectation that
the approach via algebras and states may prove useful in the explicit class
field theory problem. We show in particular how strong is the intertwining
property of KMS states between symmetries and Galois action on values of
states, by showing how the Galois automorphisms are generally badly be-
haved from the topological standpoint. We give in §4.8 a reinterpretation
of the geometry of the BC system in terms of the Shimura variety of GL1.
We discuss briefly in §4.9 the relation between the algebra of the BC system
and the algebra of the “dual system” describing commensurability classes of
Q-lattices not up to scaling. This relation will be fully developed in Chapter
4.

We move on to discuss the case of 2-dimensional Q-lattices starting
in §5. We describe the reformulation in terms of Tate modules of ellip-
tic curves in §5.1. In §5.2 we introduce the relevant groupoids. Unlike in
the 1-dimensional case, here one finds that dividing by the scaling action
of C∗ does not preserve the groupoid structure, but one can still define a
corresponding convolution algebra A2. The time evolution induced by the
ratio of covolumes is introduced in §5.3, where we also introduce the regular
representation of A2, the associated von Neumann algebra, and the linear
functional that gives the KMS2 state. We discuss the symmetries of the
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system in §5.4, where we show that the group GL2(AQ,f ) acts by symme-
try, with GL2(Ẑ) acting by automorphisms and GL+

2 (Q) by endomorphisms.
These combine to give an induced action of Q∗\GL2(AQ,f ) on KMS states.
We give the explicit form of the action by endomorphisms and of the induced
action on KMS states.

In §6 we recall many known facts about the field of modular functions
which we need to use in discussing the arithmetic properties of the GL2-
system. We recall explicitly the cases of level one and then more generally
level N in §§6.1, 6.2, in particular the Weierstrass ℘-function, the j-function,
the fact that the field FN (C) is a finite Galois extension of C(j), the explicit
generators given by the Fricke functions, Eisenstein series, θ-functions, the
role of torsion points of elliptic curves and the extensions FN (j) over Q(j).
General facts about modular functions and modular forms are discussed in
§6.3 and some explicit computations for the cases N = 2 and N = 4 are
given in §6.4. Starting with §6.5 we relate the modular field to the geome-
try of 2-dimensional Q-lattices. We show that an invertible Q-lattice with
transcendental j-invariant determines an embedding of the modular field in
C and that all embeddings arise in this way and the same embeddings occur
for Q-lattices in the same orbit of the right GL2(AQ,f ) action. We also dis-
cuss the relation between GL2(AQ,f ) and the automorphisms of the modular
field, and the cyclotomic action on the coefficients of the q-expansion.

Section 7 deals with the arithmetic properties of the GL2-system. We
begin in §7.1 by describing some explicit elements of what will be the arith-
metic algebra of the GL2-system. These elements are obtained from Eisen-
stein series and Hecke correspondences. We then abstract the general prop-
erties that we want to require and use them to define the arithmetic algebra
A2,Q in §7.2. We show that the resulting algebra is a subalgebra of the
unbounded multipliers of the C∗-algebra A2 and is globally invariant under
the symmetries of the system described in §5.4. In §7.3 we describe explicit
division relations satisfied by the special elements of the arithmetic subal-
gebra introduced in §7.1, which generalize the division relations for elliptic
functions. A consequence of these relations is the fact that the subalge-
bra of A2,Q generated by these elements is finite-dimensional and reduced
over Q(j); hence it defines an endomotive in the sense discussed in Chapter
4. We begin the classification of KMS states for the GL2-system in §7.4,
where we give a characterization of KMS states as measures on the space
of 2-dimensional Q-lattices up to scaling. We show that at low-temperature
β > 2 these measures are supported on the commensurability classes of the
invertible Q-lattices. This gives the classification for low-temperature. We
compute the partition function of the system and give an explicit formula
for the extremal low-temperature KMS states. In §7.5 we describe explic-
itly the action of symmetries on low-temperature KMS states and in §7.6
we show that the zero-temperature KMS states associated to invertible Q-
lattices with transcendental j-invariant intertwine the action of symmetries
of the system and the action of the automorphism group of the modular
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field on the values of states on arithmetic elements. The classification of
KMS states then continues in §7.7, by first showing that there are no KMS
states in the range β < 1 and then by the result of Laca–Larsen–Neshveyev
on the uniqueness of the KMS states in the intermediate range 1 < β < 2
and the existence of KMS states at β = 1. As in the case of the BC system,
we give in §7.8 a reinterpretation of the geometry of this system in terms
of the Shimura variety of GL2 and we discuss in §7.9 the relation to the
noncommutative boundary of modular curves. The compatibility between
the BC system and the GL2-system is described in §7.10.

The final part of the chapter starts in §8 and is dedicated to our joint
work with Ramachandran on the quantum statistical mechanics of 1-dimen-
sional K-lattices, for K an imaginary quadratic field. The main geometric
objects, 1-dimensional K-lattices, and the commensurability relation are in-
troduced in §8.1. The relation to 2-dimensional Q-lattices is explained in
§8.2. In §8.3 these notions are rewritten is a suitable adelic form, which
provides an explicit description of the space of commensurability classes of
1-dimensional K-lattices up to scaling as an adelic quotient. In §8.4 we
introduce the corresponding groupoid and C∗-algebra and the time evolu-
tion induced by restriction from the GL2-system. Describing 1-dimensional
K-lattices in terms of ideals one finds in §8.5 that the partition function
is the Dedekind zeta function. The arithmetic subalgebra is obtained in
§8.6 by restriction from the GL2-system and the symmetries are described
explicitly in §8.7 and give the correct group A∗

K,f/K
∗ acting on KMS states.

The classification of KMS states of the system is obtained in §8.8, where
it is shown that the zero-temperature states have the intertwining prop-
erty between the symmetries and the Galois action of the Galois group of
the maximal abelian extension of K. The low-temperature extremal KMS
states, for β > 1, are parameterized by invertible 1-dimensional K-lattices.
For high temperature β ≤ 1 there is a unique KMS state. This is shown
in §8.9. Sections 8.9 and 8.10 compare the system for K with other known
systems and quickly describe generalizations of these systems to arbitrary
Shimura varieties constructed by Ha and Paugam [159].

2. Quantum statistical mechanics

Consider a classical system with Hamiltonian H(q, p) and phase space a
symplectic manifold X with local coordinates (q, p) in which the symplectic
form ω has the standard Darboux form. In classical statistical mechanics a
state for such a Hamiltonian system consists of a probability measure µ on
the phase space X, which assigns to each observable f an expectation value,
in the form of an average

(3.1)
∫

X
f dµ.

In particular, the Hamiltonian H(q, p) and the symplectic structure on the
phase space X determine a state, called the Gibbs canonical ensemble. It is



CHAPTER 4

Endomotives, thermodynamics, and the Weil
explicit formula

The spectral realization of the zeros of L-functions described in Chapter
2 made little explicit use of the formalism of noncommutative geometry,
except for the use of the quantized calculus in proving the semi-local trace
formula.

One of our goals in this chapter is to clarify the conceptual meaning of
the spectral realization and in particular of the map E of Chapter 2 §6 in
terms of noncommutative geometry and cyclic cohomology. This chapter is
based on our joint work with Consani [74], [75].

There are three essential ingredients in the conceptual understanding of
the spectral realization:

(1) Geometry
(2) Thermodynamics
(3) Cohomology and motives

In the first step we extend the notion of zero-dimensional motive, i.e. of
Artin motive, to the noncommutative set-up. The main examples of a non-
commutative Artin motive we are interested in arise from endomorphisms
of algebraic varieties. This is in fact the origin of the terminology “en-
domotive” we use for these zero-dimensional noncommutative spaces. The
reason for thinking of this class of noncommutative spaces as motives lies
in the fact that we define morphisms as correspondences, generalizing the
correspondences by algebraic cycles used in the theory of motives.

We work over an algebraic number field K and the absolute Galois group,
i.e. the Galois group G of K̄/K, will act on the various objects we construct
(cf. §2.3). Given an abelian semigroup S of endomorphisms of an algebraic
variety Y and a point y0 ∈ Y fixed under S, the projective limit X of
the preimages of y0 under elements of S admits a natural action of S and
this gives rise to an endomotive (X,S). Such datum is best encoded as an
algebraic groupoid G = X � S and the associated convolution algebra AK.

We first recall in §1 the basic notions of morphisms for noncommutative
spaces provided by Kasparov’s KK-theory in the context of C∗-algebras
(§1.1) and by the abelian category of cyclic modules in the general algebraic
context (§§1.2, 1.3). We describe the relation of the cyclic category to cyclic
(co)homology in §1.4.

577
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We then present in §2 the construction of a category of endomotives
that extends the notion of morphism given by geometric correspondences
from the case of Artin motives to the noncommutative endomotives. We
construct this category first at the purely algebraic level, i.e. dealing with
zero-dimensional pro-varieties over K, in §2.1. We then give a construc-
tion at the analytic level in §2.2, working with totally disconnected locally
compact spaces. We show in §2.4 that under a “uniform” condition on the
projective system that determines an endomotive, this comes endowed with a
probability measure, which induces a state on the corresponding C∗-algebra.

We then show in Theorem 4.34 how the functor P that replaces a variety
over K by its set of K̄ points gives a natural relation between the categories
of algebraic and analytic endomotives, cf. §2.5. Moreover, the Galois group
G acts by natural transformations of P .

In §2.6 we describe the construction of the endomotive associated to
an abelian semigroup S of endomorphisms of an algebraic variety Y . We
then show in §2.7 that the simplest example, i.e. the semi-group of endo-
morphisms of the multiplicative group Gm for K = Q, gives an endomotive
that coincides at the analytic level with the Bost-Connes system analyzed
in Chapter 3.

We discuss in §3 the problem of extending correspondences from endo-
motives to noncommutative spaces in higher dimension, in a way that is
compatible with the definition of correspondences in the algebro-geometric
context in terms of K-theory. In §3.1 we recall the setting of geometric
correspondences in KK-theory. In §3.2 we compare this with the cycle map
defined using algebraic K-theory and we comment in §3.2.1 on the rela-
tion between algebraic and topological K-theory and cyclic and Hochschild
(co)homology. We also comment on the relation between motives and non-
commutative spaces in the context of noncommutative tori and abelian va-
rieties in §3.2.2.

As a conclusion of this first step of the construction, we obtain from the
data of a uniform endomotive a noncommutative geometric datum given by
a pair (A, ϕ) of an involutive algebra and a state, together with an action
by automorphisms of the Galois group G.

The second step then involves thermodynamics, which we develop in §4.
As will become apparent in this chapter, a basic new feature of noncom-
mutative spaces plays a dominant role in our interpretation: these spaces
have thermodynamical properties and in particular they can be analyzed
at different temperatures by classifying the KMSβ states for the modular
automorphism group σϕ

t , as we already did in in Chapter 3 for three basic
examples discussed there.

What we saw in Chapter 3 is that, by lowering the temperature, a given
noncommutative space tends to become more and more commutative or
classical, so that in good situations the extremal KMSβ states play the role
of classical points of the space. The key feature of extremal KMSβ states
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that can play the role of points is that the corresponding factor (obtained
from the state by the GNS construction) is Morita equivalent to a point, i.e.
it is of type I.

After recalling in §4.1 Tomita’s theory of the modular automorphism
group σϕ

t , we analyze the type I extremal KMSβ states in §4.2 and we show
in particular (cf. Lemma 4.56) that such states persist at lower temperatures.
Thus, cooling down the system by lowering the temperature has the effect
of adding more and more classical points of the noncommutative space.

The space Ω of classical points comes naturally equipped with a principal
R∗

+-bundle Ω̃. In Theorem 4.85 we obtain a conceptual understanding of the
map E of Chapter 2 §6 as the natural morphism π of restriction from the
dual system defined in §4.3 to the R∗

+-bundle Ω̃ over the space of classical
points, cf. §§4.5, 4.6, 4.7. We first deal with general systems in §4.8. We
then specialize to the BC system in §4.9.

We also explain in §4.4 why passing to the dual system is the analogue
in characteristic zero of the unramified extension K⊗Fq F̄q for a global field
of positive characteristic. This gives a first indication for the interpretation
of the scaling action on the dual system as a characteristic zero analog of
the action of Frobenius that we go on to develop in the subsequent sections.

The third step, in fact, provides a replacement in characteristic zero for
the action of Frobenius on étale cohomology, given in terms of the scaling
action on the cyclic homology of the cokernel of the above restriction map
π. This is described in §§4.8, 4.9, 4.10. The latter subsection relates the
scaling action on the cyclic homology of the cokernel of the restriction map
of the Bost–Connes endomotive to the spectral realization of zeros of the
Riemann zeta function.

It is for this analysis of the scaling action and the correct definition of
the cokernel of the restriction map that one needs to work in an abelian
category of motivic nature, so that one can make sense of the cokernel
of a morphism of algebras. This abelian category is the category of Λ-
modules, the central tool of cyclic cohomology, which was introduced in §1.2.
Since traces Tr define cyclic morphisms Tr� one can compose the restriction
morphism π with the trace on trace class operators and obtain, using the
results of §4.5, a cyclic morphism (Tr ◦ π)� whose range is contained in the
cyclic module of the commutative algebra C(Ω̃). The cyclic homology of
the cokernel produces a representation of the product G×R∗

+ of the Galois
group by the multiplicative group R∗

+. The main result is then to apply
this general framework to a specific object in the category of endomotives,
which corresponds to the Bost–Connes system, and obtain a cohomological
version of the Weil explicit formula as a trace formula.

These results are then extended to an arbitrary global field K in §5. In
§5.1 we describe in this generality the adèle class space of a global field and
its algebra of coordinates as a noncommutative space. In §5.2 we describe the
corresponding cyclic module in the abelian category of Λ-modules and in §5.3
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we give the general form of the restriction map corresponding to the inclusion
of the idèle class space as “classical points” of the noncommutative space
of adèle classes, as a cyclic morphism. We describe this more explicitly in
the case of K = Q in §5.4. In §5.5 we return to the general case of global
fields and we show how the cokernel of the restriction map can be thought
of as a motivic H1 with an induced action of the idèle class group CK.
We show that this gives the spectral realization of the zeros of L-functions
with Grössencharakter. We show then in §5.6 that the action on this H1

of functions in the “strong Schwartz space” of CK that are in the range
of the restriction map vanishes identically. Finally, in §5.7 we give the
formulation of the Weil explicit formula as a Lefschetz trace formula for
the action on the H1 of §5.5 of elements in the “strong Schwartz space” of
CK. We then show in §5.8 that, in terms of this Lefschetz trace formula,
the Riemann Hypothesis becomes a statement equivalent to positivity of the
induced trace pairing.

We then begin with §6 and §7 a comparative analysis of the Weil proof of
the Riemann Hypothesis for function fields and the noncommutative geom-
etry of the adèle class space, as in [75]. The aim is to develop a sufficiently
rich dictionary that will eventually provide good noncommutative geome-
try analogs for all the main algebro-geometric notions involved in the Weil
proof, such as algebraic curves, divisors, linear equivalence, Riemann–Roch
theorem, and Weil positivity.

We begin in §6 by recalling the essential steps in the Weil proof of the
Riemann Hypothesis for function fields.

We continue the chapter by drawing some compelling analogies between
the Weil proof of the Riemann Hypothesis for function fields and the setting
of noncommutative geometry.

In §7 we begin to build the corresponding noncommutative geometry
notion, that will be summarized in the dictionary in §7.7. We begin by
recalling in §7.1 the computation of the distributional trace of a flow on a
smooth manifold. We then describe in §7.2 the periodic orbits of the action
of CK on the adèle class space. This gives a natural definition of the scaling
correspondence that parallels the role of the Frobenius correspondence in the
Weil proof (cf. §7.3). We then show in §7.4 that the step in the Weil proof
of adjusting the degree of a correspondence by trivial correspondences is
achieved by correspondences coming from the range of the restriction map
as in §5.6. A subtle failure of Fubini’s theorem is what makes it possible to
use these correspondences to adjust the degree in our case, as shown in §7.4.
We then show in §7.5 that, in the case of function fields, one can recover the
algebraic points of the curve inside the adèle class space as classical points
of the periodic orbits of the dual system. This leads us to refine in §7.5.1
the notion described in §4.4 of passing to the dual system as an analog in
characteristic zero of the unramified extension K⊗Fq F̄q. In fact, we now
show that there is a natural way to associate to a noncommutative space X
not only its set of “classical points”, but in a more subtle manner the set
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of all its classical points that can be defined over an unramified extension.
This is obtained through the following basic steps:

X
Dual System−→ X̂

Periodic Orbits−→ ∪ X̂v
Classical Points−→ ∪Ξv = Ξ.

We also describe in §7.5.2, in the case of K = Q, the quantum statistical
mechanical systems associated to the different valuations and how these
classical points of the periodic orbits appear as low temperature KMS states
for these systems. We describe the cyclic covering of the set of classical
points of the periodic orbits in §7.5.3 and in §7.5.4 we obtain a global Morita
equivalence that gives the valuation systems globally from the groupoid of
the adèle class space (in fact a groupoid that differs from it only in the part
that belongs to CK which disappears upon “taking the complement” via the
reduction map). We describe then in §7.5.5 an arithmetic subalgebra for
the locus of classical points of the periodic orbits in terms of operators that
behave like the Frobenius and local monodromy of the Weil–Deligne group
at arithmetic infinity.

We then use in §7.6 the geometry of vortex equations and moduli spaces
to justify thinking of the step in the Weil proof that makes a correspondence
effective by modifying it via linear equations using the Riemann–Roch the-
orem in terms of achieving transversality (surjectivity) for a morphism of
C∗-modules via a compact perturbation. We then assemble our tentative
dictionary between the Weil proof and noncommutative geometry in §7.7.

We conclude this last chapter of the book by drawing in §8 a broad anal-
ogy between our approach to the Riemann zeta function and L-functions via
the noncommutative geometry of Q-lattices and its thermodynamical prop-
erties and the question of a good setup for quantum gravity in physics.

Our starting point is a comparison in §8.1 between the role of spon-
taneous symmetry breaking in the origin of masses from the electroweak
phase transition in physics and the phase transitions that occur in our gen-
eral framework of interaction between quantum statistical mechanics and
number theory described in Chapter 3. We propose in §8.2 and §8.4 the
existence of a noncommutative algebra of coordinates on a space of “spectral
correspondences” between product geometries of the type used in Chapter
1 in modelling particle physics, and a corresponding time evolution giv-
ing rise to KMS states that yield, at low temperature, the usual notion of
geometry. This possible approach shows that gravity described by classi-
cal (pseudo)Riemannian geometry may be a low temperature phenomenon
while geometry may disappear entirely in the high temperature regime, just
as in the case of 2-dimensional Q-lattices there are no KMS states above
a certain temperature. This last section is more speculative in nature and
we hope it will open the way to some future developments of the material
collected in this book.
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