
Preface

The unifying theme, which the reader will encounter in different guises
throughout the book, is the interplay between noncommutative geometry
and number theory, the latter especially in its manifestation through the
theory of motives. For us, this interwoven texture of noncommutative spaces
and motives will become a tool in the exploration of two spaces, whose role
is central to many developments of modern mathematics and physics:

• Space-time
• The set of prime numbers

One may be tempted to think that, looking from the vantage point of
those who sit atop the vast edifice of our accumulated knowledge of such
topics as space and numbers, we ought to know a great deal about these
two spaces. However, there are two fundamental problems whose difficulty
is a clear reminder of our limited knowledge, and whose solution would
require a more sophisticated understanding than the one currently within
our immediate grasp:

• The construction of a theory of quantum gravity (QG)
• The Riemann hypothesis (RH)

The purpose of this book is to explain the relevance of noncommutative
geometry (NCG) in dealing with these two problems. Quite surprisingly,
in so doing we shall discover that there are deep analogies between these
two problems which, if properly exploited, are likely to enhance our grasp
of both of them.

Although the book is perhaps more aimed at mathematicians than at
physicists, or perhaps precisely for that reason, we choose to begin our
account in Chapter 1 squarely on the physics side. The chapter is dedicated
to discussing two main topics:

• Renormalization
• The Standard Model of high energy physics

We try to introduce the material as much as possible in a self-contained
way, taking into consideration the fact that a significant number of mathe-
maticians do not necessarily have quantum field theory and particle physics
as part of their cultural background. Thus, the first half of the chapter is
dedicated to giving a detailed account of perturbative quantum field theory,
presented in a manner that, we hope, is palatable to the mathematician’s
taste. In particular, we discuss basic tools, such as the effective action and
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the perturbative expansion in Feynman graphs, as well as the regulariza-
tion procedures used to evaluate the corresponding Feynman integrals. In
particular, we concentrate on the procedure known as “dimensional regu-
larization”, both because of its being the one most commonly used in the
actual calculations of particle physics, and because of the fact that it admits
a very nice and conceptually simple interpretation in terms of noncommuta-
tive geometry, as we will come to see towards the end of the chapter. In this
first half of Chapter 1 we give a new perspective on perturbative quantum
field theory, which gives a clear mathematical interpretation to the renor-
malization procedure used by physicists to extract finite values from the
divergent expressions obtained from the evaluations of the integrals associ-
ated to Feynman diagrams. This viewpoint is based on the Connes–Kreimer
theory and then on more recent results by the authors.

Throughout this discussion, we always assume that we work with the
procedure known in physics as “dimensional regularization and minimal sub-
straction”. The basic result of the Connes–Kreimer theory is then to show
that the renormalization procedure corresponds exactly to the Birkhoff fac-
torization of a loop γ(z) ∈ G associated to the unrenormalized theory eval-
uated in complex dimension D− z, where D is the dimension of space-time
and z �= 0 is the complex parameter used in dimensional regularization.
The group G is defined through its Hopf algebra of coordinates, which is the
Hopf algebra of Feynman graphs of the theory. The Birkhoff factorization
of the loop gives a canonical way of removing the singularity at z = 0 and
obtaining the required finite result for the physical observables. This gives
renormalization a clear and well defined conceptual meaning.

The Birkhoff factorization of loops is a central tool in the construction
of solutions to the “Riemann-Hilbert problem”, which consists of finding a
differential equation with prescribed monodromy. With time, out of this
original problem a whole area of mathematics developed, under the name of
“Riemann–Hilbert correspondence”. Broadly speaking, this denotes a way
of encoding objects of differential geometric nature, such as differential sys-
tems with specified types of singularities, in terms of group representations.
In its most general form, the Riemann–Hilbert correspondence is formu-
lated as an equivalence of categories between the two sides. It relies on the
“Tannakian formalism” to reconstruct the group from its category of rep-
resentations. We give a general overview of all these notions, including the
formalism of Tannakian categories and its application to differential systems
and differential Galois theory.

The main new result of the first part of Chapter 1 is the explicit identi-
fication of the Riemann–Hilbert correspondence secretly present in pertur-
bative renormalization.

At the geometric level, the relevant category is that of equisingular flat
vector bundles. These are vector bundles over a base space B which is a
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principal Gm(C) = C∗-bundle

Gm(C)→ B
π−→ ∆

over an infinitesimal disk ∆. From the physical point of view, the complex
number z �= 0 in the base space ∆ is the parameter of dimensional reg-
ularization, while the parameter in the fiber is of the form �µz, where �
is the Planck constant and µ is a unit of mass. These vector bundles are
endowed with a flat connection in the complement of the fiber over 0 ∈ ∆.
The fiberwise action of Gm(C) = C∗ is given by � ∂

∂� . The equisingularity
of the flat connection is a mathematical translation of the independence (in
the minimal subtraction scheme) of the counterterms on the unit of mass
µ. It means that the singularity of the connection, restricted to a section
z ∈ ∆ �→ σ(z) ∈ B of the bundle B, only depends upon the value σ(0) of
the section.

We show that the category of equisingular flat vector bundles is a Tan-
nakian category and we identify explicitly the corresponding group (more
precisely, affine group scheme) that encodes, through its category of finite
dimensional linear representations, the Riemann-Hilbert correspondence un-
derlying perturbative renormalization. This is a very specific proalgebraic
group of the form U∗ = U � Gm, whose unipotent part U is associated to
the free graded Lie algebra

F(1, 2, 3, · · · )•
with one generator in each degree. We show that this group acts as a uni-
versal symmetry group of all renormalizable theories and has the properties
of the “Cosmic Galois group” conjectured by Cartier. In many ways this
group should be considered as the proper mathematical incarnation of the
renormalization group whose role, as a group encoding the ambiguity inher-
ent to the renormalization process in quantum field theory, is similar to that
of the Galois group in number theory.

We conclude the first part of Chapter 1 with a very brief introduction
to the theory of motives initiated by Grothendieck. We draw some parallels
between the Tannakian formalism used in differential Galois theory and in
particular in our formulation of perturbative renormalization and the same
formalism in the context of motivic Galois groups. In particular we signal the
fact that the group U∗ also appears (albeit via a non-canonical identification)
as a motivic Galois group in the theory of mixed Tate motives. This “motivic
nature” of the renormalization group remains to be fully understood.

While the discussion in the first part of Chapter 1 applies to arbitrary
renormalizable theories, the second part of this chapter is concerned with
the theory which, as of the writing of this book, represents the best of our
current knowledge of particle physics: the Standard Model. This part is
based on joint work of the authors with Ali Chamseddine.

Our main purpose in the second part of Chapter 1 is to show that the
intricate Lagrangian of the Standard Model minimally coupled to gravity,
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where we incorporate the terms that account for recent findings in neutrino
physics, can be completely derived from very simple mathematical data. The
procedure involves a modification of the usual notion of space-time geometry
using the formalism of noncommutative geometry.

Again we do not assume that the reader has any familiarity with par-
ticle physics, so we begin this second part of Chapter 1 by reviewing the
fundamental facts about the physics of the standard model and its coupling
with gravity, in a formulation which is as close as possible to that of the
physics literature. A main point that it is important to stress here is the
fact that the standard model, in all its complexity, was built over the years
as a result of a continuing dialogue between theory and experiment. The
result is striking in its depth and complexity: even just the typesetting of
the Lagrangian is in itself a time-consuming task.

After this introductory part, we proceed to give a brief description of
the main tools of noncommutative geometry that will be relevant to our
approach. They include cyclic and Hochschild cohomologies and the basic
paradigm of spectral triples (A,H, D). An important new feature of such
geometries, which is absent in the commutative case, is the existence of inner
fluctuations of the metric. At the level of symmetries, these correspond to
the subgroup of inner automorphisms, a normal subgroup of the group of
automorphisms which is non-trivial precisely in the noncommutative case.

We then begin the discussion of our model. This can be thought of as a
form of unification, based on the symplectic unitary group in Hilbert space,
rather than on finite dimensional Lie groups. The internal symmetries are
unified with the gravitational ones. They all arise as automorphisms of
the noncommutative algebra of coordinates on a product of an ordinary
Riemannian spin manifold M by a finite noncommutative space F . One
striking feature that emerges from the computations is the fact that, while
the metric dimension of F is zero, its K-theoretic dimension (in real K-
theory) is equal to 6 modulo 8.

A long detailed computation then shows how the Lagrangian of the
Standard Model minimally coupled with gravity is obtained naturally (in
Euclidean form) from spectral invariants of the inner fluctuations of the
product metric on M × F .

This model provides specific values of some of the parameters of the
Standard Model at unification scale, and one obtains physical predictions
by running them down to ordinary scales through the renormalization group,
using the Wilsonian approach. In particular, we find that the arbitrary pa-
rameters of the Standard Model, as well as those of gravity, acquire a clear
geometric meaning in this model, in terms of moduli spaces of Dirac op-
erators on the noncommutative geometry and of the asymptotic expansion
of the corresponding spectral action functional. Among the physical predic-
tions are relations between some of the parameters of the Standard Model,
such as the merging of the coupling constants and a relation between the
fermion and boson masses at unification.



PREFACE xvii

Finally, in the last section of Chapter 1, we come to another applica-
tion of noncommutative geometry to quantum field theory, which brings us
back to the initial discussion of perturbative renormalization and dimen-
sional regularization. We construct natural noncommutative spaces Xz of
dimension a complex number z, where the dimension here is meant in the
sense of the dimension spectrum of spectral triples. In this way, we find a
concrete geometric meaning for the dimensional regularization procedure.

We show that the algebraic rules due to ’t Hooft–Veltman and Breiten-
lohner–Maison on how to handle chiral anomalies using the dimensional
regularization procedure are obtained, as far as one loop fermionic graphs
are concerned, using the inner fluctuations of the metric in the product by
the spaces Xz. This fits with the similar procedure used to produce the
Standard Model Lagrangian from a product of an ordinary geometry by
the finite geometry F and establishes a relation between chiral anomalies,
computed using dimensional regularization, and the local index formula in
NCG.

Towards the end of Chapter 1, one is also offered a first glance at the
problem posed by a functional integral formulation of quantum gravity. We
return only at the very end of the book to the problem of constructing a
meaningful theory of quantum gravity, building on the experience we gain
along the way through the analysis of quantum statistical mechanical sys-
tems arising from number theory, in relation to the statistics of primes and
the Riemann zeta function. These topics form the second part of the book,
to which we now turn.

The theme of Chapter 2 is the Riemann zeta function and its zeros. Our
main purpose in this part of the book is to describe a spectral realization
of the zeros as an absorption spectrum and to give an interpretation as a
trace formula of the Riemann–Weil explicit formula relating the statistics of
primes to the zeros of zeta. The role of noncommutative geometry in this
chapter is twofold.

In the first place, the space on which the trace formula takes place is
a noncommutative space. It is obtained as the quotient of the adèles AQ

by the action of non-zero rational numbers by multiplication. Even though
the resulting space X = AQ/Q∗ is well defined set-theoretically, it should be
thought of as a noncommutative space, because the ergodicity of the action
of Q∗ on AQ prevents one from constructing measurable functions on the
quotient X, as we show in Chapter 3. In particular, the construction of
function spaces on X is done by homological methods using coinvariants.
This will only acquire a full conceptual meaning in Chapter 4, using cyclic
cohomology and the natural noncommutative algebra of coordinates on X.

The space X can be approximated by simpler spaces XS obtained by
restriction to finite sets S of places of Q. We use this simplified setup
to obtain the relation with the Riemann–Weil explicit formula. The main
point is that, even though the space XS is in essence a product of terms
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corresponding to the various places, the trace of the action of the group
of idèle classes becomes a sum of such contributions. It is in the proof of
this key additivity property that we use another tool of noncommutative
geometry: the quantized calculus.

In the simplest instance, the interpretation of the Riemann–Weil explicit
formula as a trace formula gives an interpretation as symplectic volume in
phase space for the main term of the Riemann counting function for the
asymptotic expansion of the number of non-trivial zeros of zeta of imaginary
part less than E. We show that a full quantum mechanical computation then
gives the complete formula.

We end Chapter 2 by showing how this general picture and methods
extend to the zeta functions of arithmetic varieties, leading to a Lefschetz
formula for the local L-factors associated by Serre to the Archimedean places
of a number field. The Serre formula describes the Archimedean factors as
products of shifted Gamma functions with the shifts and the exponents de-
pending on Hodge numbers. We derive this formula directly from a Lefschetz
trace formula for the action of the Weil group on a bundle with base the
complex line or the quaternions (for a real place) and with fiber the Hodge
realization of the variety.

The origin of the relation described above between the Riemann zeta
function and noncommutative geometry can be traced to the work of Bost–
Connes. This consists of the construction, using Hecke algebras, of a quan-
tum statistical mechanical system whose partition function is the Riemann
zeta function and which exhibits a surprising relation with the class field
theory of the field Q. Namely, the system admits as a natural symmetry
group the group of idèle classes of Q modulo the connected component of
the identity. This symmetry of the system is spontaneously broken at the
critical temperature given by the pole of the partition function. Below this
temperature, the various phases of the system are parameterized by embed-
dings Qcycl → C of the cyclotomic extension Qcycl of Q. These different
phases are described in terms of extremal KMSβ states, where β = 1

T is the
inverse temperature. Moreover, another important aspect of this construc-
tion is the existence of a natural algebra of “rational observables” of this
quantum statistical mechanical system. This allows one to define in a con-
ceptual manner an action of the Galois group Gal(Qcycl/Q) on the phases
of the system at zero temperature, merely by acting on the values of the
states on the rational observables, values which turn out to provide a set of
generators for Qcycl, the maximal abelian extension of Q.

Our main purpose in Chapter 3 is to present extensions of this relation
between number theory and quantum statistical mechanics to more involved
examples than the case of rational numbers. In particular we focus on
two cases. The first corresponds to replacing the role of the group GL1 in
the Bost–Connes (BC) system with GL2. This yields an interesting non-
abelian case, which is related to the Galois theory of the field of modular
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functions. The second is a closely related case of abelian class field theory,
where the field Q is replaced by an imaginary quadratic extension. The
results concerning these two quantum statistical mechanical systems are
based, respectively, on work of the authors and on a collaboration of the
authors with Niranjan Ramachandran.

We approach these topics by first providing a reinterpretation of the BC
system in terms of geometric objects. These are the Q-lattices, i.e. pairs
(Λ, φ) of a lattice Λ ⊂ Rn (a cocompact free abelian subgroup of Rn of rank
n) together with a homomorphism of abelian groups

φ : Qn/Zn −→ QΛ/Λ.

Two Q-lattices are commensurable if and only if

QΛ1 = QΛ2 and φ1 = φ2 mod Λ1 + Λ2.

Let Ln denote the set of commensurability classes of n-dimensional Q-
lattices. Even in the simplest one-dimensional case (n = 1) the space Ln is
a noncommutative space. In fact in the one-dimensional case it is closely
related to the adèle class space X = AQ/Q∗ discussed in Chapter 2.

We first construct a canonical isomorphism of the algebra of the BC
system with the algebra of noncommutative coordinates on the quotient of
L1 by the scaling action of R∗

+. Following Weil’s analogy between trigono-
metric and elliptic functions, we then show that the trigonometric analogue
of the Eisenstein series generate, together with the commensurability with
division points, the arithmetic subalgebra of “rational observables” of the
BC system. This opens the way to the higher dimensional case and much of
Chapter 3 is devoted to the extension of these results to the two-dimensional
case.

The system for the GL2 case is more involved, both at the quantum
statistical level, where there are two phase transitions and no equilibrium
state above a certain temperature, and at the number theoretic level, where
the cyclotomic field Qcycl is replaced by the modular field.

We end Chapter 3 with the description of our joint results with Ra-
machandran on the extension of the BC system to imaginary quadratic
fields. This is based on replacing the notion of Q-lattices with an anal-
ogous notion of 1-dimensional K-lattices, with K the imaginary quadratic
extension of Q. The relation between commensurability of 1-dimensional
K-lattices and of the underlying 2-dimensional Q-lattices gives the relation
between the quantum statistical mechanical system for imaginary quadratic
fields and the GL2-system. This yields the relation between the quantum
statistical mechanics of K-lattices and the explicit class field theory of imag-
inary quadratic fields.

Underlying our presentation of the main topics of Chapter 3 there is
a unifying theme. Namely, the three different cases of quantum statistical
mechanical systems that we present in detail all fit into a similar general
picture, where an ordinary moduli space is recovered as the set of classical
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points (zero temperature states) of a noncommutative space with a natural
time evolution. In the setting of Chapter 3 the classical spaces are Shimura
varieties, which can be thought of as moduli spaces of motives. This general
picture will provide a motivating analogy for our discussion of the quantum
gravity problem at the end of the book.

The spectral realization of zeros of zeta and L-functions described in
Chapter 2 is based on the action of the idèle class group on the noncom-
mutative space X of adèles classes. Nevertheless, the construction, as we
describe it in Chapter 2, makes little use of the formalism of noncommuta-
tive geometry and no direct use of the crossed product algebra A describing
the quotient of adèles by the multiplicative group Q∗.

In Chapter 4, the last chapter of the book, we return to this theme. Our
main purpose is to show that the spectral realization described in Chapter
2 acquires cohomological meaning, provided that one reinterprets the con-
struction in terms of the crossed product algebra A and cyclic cohomology.
This chapter is based on our joint work with Caterina Consani.

We begin the chapter by explaining how to reinterpret the entire con-
struction of Chapter 2 in “motivic” terms using

• An extension of the notion of Artin motives to suitable projective
limits, which we call endomotives.
• The category of cyclic modules as a linearization of the category of

noncommutative algebras and correspondences.
• An analogue of the action of the Frobenius on �-adic cohomology,

based on a thermodynamical procedure, which we call distillation.

The construction of an appropriate “motivic cohomology” with a “Frobe-
nius” action of R∗

+ for endomotives is obtained through a very general pro-
cedure. It consists of three basic steps, starting from the data of a non-
commutative algebra A and a state ϕ. One considers the time evolution
σt ∈ AutA, for t ∈ R, naturally associated to the state ϕ.

The first step is what we refer to as cooling. One considers the space Eβ
of extremal KMSβ states, for β greater than critical. Assuming these states
are of type I, one obtains a morphism

π : A�σ R→ S(Eβ × R∗
+)⊗ L1,

where A is a dense subalgebra of a C∗-algebra Ā, and where L1 denotes the
ideal of trace class operators. In fact, one considers this morphism restricted
to the kernel of the canonical trace τ on Ā�σ R.

The second step is distillation, by which we mean the following. One
constructs a cyclic module D(A, ϕ) which consists of the cokernel of the
cyclic morphism given by the composition of π with the trace Tr : L1 → C.

The third step is then the dual action. Namely, one looks at the spectrum
of the canonical action of R∗

+ on the cyclic homology

HC0(D(A, ϕ)).



PREFACE xxi

This procedure is quite general and it applies to a large class of data
(A, ϕ), producing spectral realizations of zeros of L-functions. It gives a rep-
resentation of the multiplicative group R∗

+ which combines with the natural
representation of the Galois group G when applied to the noncommutative
space (analytic endomotive) associated to an (algebraic) endomotive.

In the particular case of the endomotive associated to the BC system,
the resulting representation of G × R∗

+ gives the spectral realization of the
zeros of the Riemann zeta function and of the Artin L-functions for abelian
characters of G. One sees in this example that this construction plays a role
analogous to the action of the Weil group on the �-adic cohomology. It gives
a functor from the category of endomotives to the category of representations
of the group G×R∗

+. Here we think of the action of R∗
+ as a “Frobenius in

characteristic zero”, hence of G× R∗
+ as the corresponding Weil group.

We also show that the “dualization” step, i.e. the transition from A to
A�σR, is a very good analog in the case of number fields of what happens for
a function field K in passing to the extension K ⊗Fq F̄q. In fact, in the case
of positive characteristic, the unramified extensions K ⊗Fq Fqn , combined
with the notion of places, yield the points C(F̄q) over F̄q of the underlying
curve. This has a good parallel in the theory of factors and this analogy
plays an important role in developing a setting in noncommutative geometry
that parallels the algebro-geometric framework that Weil used in his proof
of RH for function fields.

We end the number theoretic part of the book by a dictionary between
Weil’s proof and the framework of noncommutative geometry, leaving open
the problem of completing the translation and understanding the noncom-
mutative geometry of the “arithmetic site”.

We end the book by coming back to the construction of a theory of quan-
tum gravity. Our approach here starts by developing an analogy between
the electroweak phase transition in the Standard Model and the phase tran-
sitions in the quantum statistical mechanical systems described in Chapter
3. Through this analogy a consistent picture emerges which makes it possi-
ble to define a natural candidate for the algebra of observables of quantum
gravity and to conjecture an extension of the electroweak phase transition
to the full gravitational sector, in which the geometry of space-time emerges
through a symmetry breaking mechanism and a cooling process. As a wit-
ness to the unity of the book, it is the construction of the correct category
of correspondences which, as in Grothendieck’s theory of motives, remains
the main challenge for further progress on both QG and RH.
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