Introduction

A prototype for the type of convexity theorem that we will be discussing
in this monograph is a theorem about Hermitian matrices which was proved
by Horn [36] in the mid 1950’s: let HY be the set of n x n matrices whose
eigenvalues are the numbers, A1, Ao,... Ay with Ay > Ao > --- > A, and
for each A € HY, let a11, a22,...,a,, be the diagonal entries of A. The
assignment,

Ar— (a11,a22, - .., ann),

defines a mapping ®: HY — R" and Horn’s theorem asserts that the image
of this mapping is a convex polytope. More explicitly it asserts that the
image of ® is the convex hull of the vectors

Ao = ()‘0'(1)7 A(7'(2)7 B Ao‘(n))a

where o ranges over the set of permutations of {1,2,...,n}.

In the early 1970’s Kostant showed that this result was a special case
of a more general result having to do with coadjoint orbits of Lie groups.
Specifically, let G be a compact connected Lie group, 7' the Cartan subgroup
of G and g and t their Lie algebras. The adjoint action of G' on g dualizes
to give an action of G on g* and the coadjoint orbits are by definition the
orbits of this action. Let 7m: g* — t* be the transpose of the inclusion map,
t — g. If O C g" is a coadjoint orbit, then by restricting m to O one gets a
map,

(L.1) P: 0 — t,

and Kostant’s theorem asserts that the image of ® is a convex polytope. In
fact, if OT is the set of T-fixed points on O, ® maps OT bijectively onto an
orbit of the Weyl group N(T')/T, and the image of ® is the convex hull of
the points on this orbit.

This result has a formulation which involves ideas from symplectic ge-
ometry. Namely by a theorem of Kirillov and Kostant, the coadjoint orbits,
O, of G are symplectic manifolds, and the action of G on O preserves the
symplectic form. Moreover, if G is compact and connected, these O’s are the
only symplectic G-manifolds on which G acts transitively. In addition, the
action of G on O is Hamiltonian: for £ € g the action of G on O associates
with £ a vector field £p on O and this vector field is a Hamiltonian vector
field. In fact, if wp is the symplectic form on O, the interior product of
£o with wo is di*l¢ where i: O — g* is the inclusion map and ¢ the linear
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functional on g* coming from the pairing on £ € g with elements of g*. In
other words, in the language of Section 1.1 below, the action of G on O is
a Hamiltonian action with moment map, i: O — g*. The restriction of this
action to the torus 7' is also a Hamiltonian action and its moment mapping
is the mapping (I.1), so what Kostant’s theorem asserts is that the image of
this moment mapping is a convex polytope, and, more explicitly,

®(0) = conv ®(0T).

(Here conv A denotes the convex hull of a subset A of a real vector space.)
In the early 1980’s it was shown by Atiyah [4] and Guillemin—Sternberg [28]
that, in this symplectic version of Kostant’s theorem, one can drop the as-
sumption that O is a transitive symplectic G-space, and, in fact, get rid of
the role of G entirely. Their result asserts that if M is a compact symplectic
manifold, 7" an n-torus and 7' X M — M a Hamiltonian action of T on M,
and if ®: M — t* is the moment map associated with this action, then

(i) ®(M7) is a finite subset of t* and

(ii) ®(M) = conv®(MT).
In particular the image ®(M) is a convex polytope. We will henceforth refer
to this result as the abelian convexity theorem (and we will sketch a proof
of it in Section 1.1).

Three years after this theorem was proved, Frances Kirwan proved a
much deeper non-abelian convexity theorem. Let G be a compact connected
Lie group which is not necessarily abelian. If G acts in a Hamiltonian fashion
on a compact symplectic manifold then, as above, one has a moment map

(I.2) d: M — g*,

but in general its image is not convex. However, a much more subtle con-
vexity result is true: let g*/G be the orbit space for the coadjoint action
of G on g*. If W := N(T)/T is the Weyl group of G, the action of W on
t gives by duality an action of W on t*, and the orbit spaces, g*/G and
t* /W, are isomorphic. Let us fix a (closed) Weyl chamber, t’ , in t*. This is
a fundamental domain for the action of W on t*, so one has identifications
g*/G = t*/W =t} and hence from (I.2) a map

(1.3) O Mt

The Kirwan convexity theorem asserts that the image of this map is a convex
polytope.

This theorem, which was proved by Kirwan [41] in 1984, is the main topic
of this monograph. We will sketch below several proofs of it: in particular, in
Chapter 2 we will describe some of the ingredients that came into Kirwan’s
original proof, and in Section 1.3 we will outline a short and relatively simple
proof which dates from the mid 90’s and is due to Lerman, Meinrenken,
Tolman and Woodward.

Our main concern in this monograph will be with constructive versions
of Kirwan’s theorem. One of the defects of this theorem is that, unlike
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the abelian convexity theorem, it does not come with an explicit descrip-
tion of the image of ® in t. However, in a number of conctrete examples
such explicit descriptions have been found. For example, suppose M is a
Hamiltonian G-manifold and X an orbit of G in M. Then from the equi-
variant Darboux theorem, one gets a canonical model MZ  for the action of
G in a G-invariant neighborhood of X, and for this canonical model there
is a constructive version of the convexity theorem which we will describe in
Chapter 2. Moreover, by coupling this with a Morse theory result which
Kirwan uses in her proof we will obtain in Chapter 2 a “locally” constructive
convexity theorem. This theorem is due to Sjamaar [60].

Chapter 3 is devoted to two special cases of the convexity theorem, both
involving (like the theorem of Horn which we described above) isospectral
sets of Hermitian matrices. The first of these is the Kirwan theorem for the
action of U(n — 1) on a generic coadjoint orbit of U(n). In its constructive
form it asserts that the projection of H™ onto H"~! which assigns to each
Hermitian n x n matrix its (n — 1) x (n — 1) minor, maps HY onto the set

Ur
I

where the union is over all n — 1-tuples p such that the pu;’s intertwine the
Ai’s,ie. Ay > g > N fore =1, 2,...,n— 1. We will also discuss some
tie-ins of this result with Gelfand—Cetlin theory and with a topic dear to the
hearts of nineteenth century geometers: the theory of confocal quadrics.

The second example of Kirwan’s theorem we will discuss in Chapter 3
concerns the diagonal action of U(n) on the product of two coadjoint orbits
of U(n). The Hermitian matrix version of this theorem asserts that if ;4 and
v are n-tuples of real numbers, the set of \’s satisfying

(14) HE CHE+HE

is a convex polytope. The “constructive” form of this result turns out to be
much harder to prove (and also much harder to formulate) than the result for
(n—1)x (n—1) minors: it is, in fact, only in the last decade that a completely
satisfactory description of this moment polytope was obtained, largely due
to the efforts of Klyachko [42]. A set of necessary conditions for A to satisfy
(I.4) can be obtained by mini-max and Morse theoretical arguments (these
we will describe in Section 3.5) and Klyachko’s great achievement was to
show that these conditions are sufficient as well as necessary.!

The “constructive” Kirwan problem for products of coadjoint orbits of
U(n) can be reformulated as follows: if O is a coadjoint orbit of U(n) x U(n)
and U(n) — U(n) x U(n) is the diagonal imbedding, what is the moment
polytope associated with the action of U(n) on O? This formulation admits
of the following generalization: if G and H are compact Lie groups, i: H — G

11t was pointed out by Woodward that some of these conditions are redundant. Re-
finements of Klyachko’s results, eliminating these redundancies, have been obtained by
Belkale [8], Knutson—Tao [43], and Knutson—Tao—Woodward [44].
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an embedding of H in G, and O a coadjoint orbit of G, what is the moment
polytope associated with the action of H on O7 Berenstein and Sjamaar
answered this question in [9]. In the last section of Chapter 3 we will describe
a set of inequalities which, they showed, characterize this polytope; and we
will also prove the easy part of their result: the necessity of these inequalities.

In Chapter 4 we will discuss yet another version of the Kirwan theorem.
Let M be a compact Kéahler manifold and T x M — M a Hamiltonian
action of T on M with moment map ®. If this action preserves the complex
structure, then the action of the n-torus 7' = (S*)"” on M can be extended
to a holomorphic (but non-Hamiltonian) action of the complex torus 7€ =
(C*)™, where C* is the multiplicative group of complex numbers. Atiyah
proved in [4] a “local” form of the abelian convexity theorem for this 7°C-
action: if TCp is the orbit of TC through p € M, the moment image of the
closure of TCp is a convex polytope. Moreover, this polytope is the convex
hull of the moment image of the set

TCpn M7,

A non-abelian generalization of this fact, due to Brion [16], concerns K&h-
lerian actions of a compact connected Lie group, GG, on a compact Kéhler
manifold, M. As above such an action extends to a holomorphic action of
the complex Lie group, G, and Brion’s result asserts that if ®, is the com-
posite moment mapping (I.3), the image with respect to ® of the GC-orbit
through an arbitrary point of M is convex. A somewhat related result con-
cerns the Borel subgroup B of GC associated to the opposite chamber —t7.
We will prove that the image with respect to ®(Bp) of the B-orbit through
a point p of M intersects the open chamber Intt} in a convex set and that
this intersection is contained in the intersection

(L5) Int ¢} N () ©(Tp).
beB

Moreover, if M is a projective variety, ®(Bp) N Int ¢} is equal to the inter-
section (L.5) and, in particular, is a convex polytope. In future work we will
show that the set (1.5) is a lower semicontinuous function of p, and from this
local convexity theorem get a “constructive” version of Kirwan’s theorem for
Kahler manifolds which is rather different in spirit from those we previously
described.

In the pages above we have surveyed the contents of Chapters 2—4. It
remains to say a few words about the material in Chapters 1 and 5. In the
last two decades the convexity theorem has been generalized in a number
of predictable ways and, in a few instances, in some completely unantic-
ipated ways. There are now, for instance, convexity theorems for Hamil-
tonian actions of compact Lie groups on non-compact symplectic manifolds,
for Hamiltonian actions of non-compact Lie groups, for Poisson actions of
Lie groups on Poisson manifolds, and for quasi-Hamiltonian actions of Lie
groups. For non-compact groups these results are quite complicated, and
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for this reason it is rather surprising that some of the simplest and most
elegant generalizations of the convexity theorm have to do with the action
of infinite-dimensional groups, e.g. loop groups and groups of gauge trans-
formations, on infinite-dimensional symplectic manifolds. We will attempt
to give a brief account of these results, without getting too bogged down in
details, in Chapter 1.

In Chapter 5 we will discuss some applications of the convexity theorem.
One particularly beautiful application is the Delzant theorem [23]: let M
be a compact Hamiltonian T-manifold. If T acts faithfully on M then the
inequality,

(I.6) dimM > 2dimT,

holds, and if this inequality is an equality the T-action is called a “com-
pletely integrable” or “toric” action. What Delzant proved is that for such
actions M is determined, up to a T-equivariant symplectomorphism, by its
moment polytope. One of the most intriguing outstanding questions about
Hamiltonian actions of Lie groups has to do with the non-abelian analogue
of this result. If G is a compact Lie group and M a connected G-manifold,
there exists a dense open subset, U, of M with the property that, for all
p and ¢ in U, the stabilizer groups, G\, and G, are conjugate in G, i.e. all
points in U have the same orbit type. The group, G, (which is unique up
to conjugacy) is called the principal isotropy group of the action; and if this
group is discrete, there is an analogue of the inequality (I.6), namely

dim M > dim G + rank G.

If this inequality is an equality the action of G is called multiplicity-free; and
for such actions Delzant conjectured that M is determined up to isomorphism
by its moment polytope and its principal isotropy group. This conjecture is
still unsettled, but some partial results, which we will report on in Section 5.1,
indicate that it is very likely to be true.

The other application of the convexity theorem which we will discuss
in Chapter 5 has to do with Kahlerizability. Up until a few years ago the
following seemed to be a highly plausible conjecture: let M be a compact
Hamiltonian T-manifold for which the fixed point set, M7, is finite. Then
M admits a T-invariant complex structure which is compatible with its sym-
plectic structure. What made this conjecture seem plausible is a theorem of
Biatynicki-Birula [10, 11|, which asserts that a nonsingular complex pro-
jective variety equipped with a torus action with finitely many fixed points
admits a decomposition into affine spaces. In particular, such a variety is
birationally equivalent to projective space. In view of this it seemed unlikely
that dropping the K&hler assumption could complicate this birational classi-
fication. In 1995 Sue Tolman found a counterexample which demolished this
conjecture; and as we will describe in Section 5.2, the key ingredient in the



6 INTRODUCTION

proof of the non-Kahlerizability of her example is a corollary of Atiyah’s con-
vexity theorem for TC-orbits, which imposes some constraints on the shape
of the moment polytope when the action is a Kahler action.

One aspect of moment geometry which we have not discussed in this
monograph, and whose absence we regret, is Duistermaat—Heckman theory.
From this theory one sees that the moment polytope has a lot of additional
structure which we have neglected to mention: in particular it decomposes
into a disjoint union of open convex subpolytopes, called action chambers,
and associated with each of these action chambers is a polynomial: the
Duistermaat—Heckman polynomial. Fortunately there are many good expo-
sitions of this subject available. In particular, we recommend the account of
Duistermaat-Heckman theory by Michéle Audin in [7] and, for an infinite-
dimensional version, Atiyah’s article [5].



