Contents

Introduction				
Chapter	r 1. The Convexity Theorem for Hamiltonian G-Spaces	7		
1.1.	Introduction	7		
1.2.	How are abelian and non-abelian convexity related?	9		
1.3.	Variants and generalizations of the convexity theorem	10		
1.4.	Loop groups	13		
1.5.	Kostant's theorem for loop groups	17		
1.6.	The symplectomorphism group of the annulus	19		
Chapter	r 2. A Constructive Proof of the Non-abelian Convexity			
	Theorem	21		
2.1.	Introduction	21		
2.2.	An outline of the proof of the Kirwan convexity theorem	21		
2.3.	The equivariant Darboux theorem	23		
2.4.	The cross-section theorem	25		
2.5.	The Frobenius reciprocity theorem	25		
2.6.	Convexity	26		
2.7.	Rigidity of the moment cone	28		
Chapter	3. Some Elementary Examples of the Convexity Theorem	31		
3.1.	Introduction	31		
3.2.	The eigenvalues of the principal minors of a Hermitian matrix	32		
3.3.	Confocal quadrics	33		
3.4.	Gelfand-Cetlin	37		
3.5.	The eigenvalues of the sum of two Hermitian matrices	38		
3.6.	Morse theory on a Hamiltonian G -manifold	41		
3.7.	Klyachko's theorem	48		
3.8.	Restriction to a subgroup	49		
Chapter	r 4. Kähler Potentials and Convexity	55		
4.1.	Introduction	55		
4.2.	Stability	57		
4.3.	Kähler metrics on coadjoint orbits	61		
4.4.	Convexity theorems for B -orbits	64		
4.5.	The convexity theorem for linear actions	67		
4.6.	The convexity theorem for compact Kähler manifolds	69		

iv		CONTENTS

Chapter	5. Applications of the Convexity Theorem	71
5.1.	The Delzant conjecture	71
5.2.	Kählerizability	74
Bibliogra	aphy	79