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such colorings on A, we obtain

p(EA) =
2
2d

=
1

2d−1
.

Thus with |F| ≤ 2d−1 (where the events are not disjoint),

p
( ⋃

A∈F
EA

)
<

∑
A∈F

p(EA) = m
1

2d−1
≤ 1 .

Now
⋃

A∈F EA is the event that some set in F is of a single color, and we
conclude from p(

⋃
A∈F EA) < 1 that there must exist a two-coloring of S

without single-colored sets, which is just what we wanted to show.
An upper bound for m(d) of order of magnitude d22d is known, where

this time random sets and a fixed coloring are used. As for exact values,
only the first two are known: m(2) = 3 and m(3) = 7.

Exercises for Chapter 1

1.1 Suppose that Dean B of County College determines that every student must
enroll in exactly four courses in the history of mathematics from among the seven
that are offered. The professors of the various courses specify the maximum en-
rollments in their courses as 51, 30, 30, 20, 25, 12, 18. What can one conclude from
this?

1.2 Suppose we are given n disjoint sets Si. Let the first have a1 elements, the
second a2, and so on. Show that the number of sets that contain at most one element
from each Si is equal to (a1+1)(a2+1) · · · (an+1). Apply this result to the following
number-theoretic problem: Let n = pa1

1 pa2
2 · · · be the prime decomposition of n.

Then n has exactly t(n) =
∏

(ai + 1) divisors. Conclude that n is a square if and
only if t(n) is odd.

� 1.3 Let N = {1, 2, . . . , 100} and let A be a subset of N with |A| = 55. Show that
A contains two numbers a and b such that a − b = 9. Does this hold as well for
|A| = 54?

1.4 Number the twelve edges of a cube with the numbers 1 through 12 in such a
way that the sum of the three edges meeting at each vertex is the same for each
vertex.

� 1.5 In the parliament of country X there are 151 seats and three political parties.
How many ways (i, j, k) are there of dividing up the seats such that no party has
an absolute majority?

1.6 How many different words can be made from permutations of the letters in
ABRACADABRA?

1.7 Show that 1! + 2! + · · ·+ n! for n > 3 is never a square.

1.8 Show that for the binomial coefficients
(
n
k

)
the following holds:(

n

0

)
<

(
n

1

)
< · · · <

(
n

�n/2�

)
=

(
n

�n/2�

)
> · · · >

(
n

n

)
,
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where for even n the two middle coefficients coincide.

� 1.9 Prove an analogous result for the Stirling numbers of the second kind. For each
n ≥ 1 there exists M(n) such that Sn,0 < Sn,1 < · · · < Sn,M(n) > Sn,M(n)+1 >
· · · > Sn,n or Sn,0 < Sn,1 < · · · < Sn,M(n)−1 = Sn,M(n) > · · · > Sn,n, where
M(n) = M(n − 1) or M(n) = M(n − 1) + 1. The same result holds also for sn,k.
Hint: Use the recurrence relation for Sn,k and finish the proof by induction.

� 1.10 Show that every natural number n possesses a unique representation n =∑
k≥0 akk! with 0 ≤ ak ≤ k.

1.11 Derive the following recurrence relation for partition numbers Pn,k: Pn,1 =
Pn,n = 1 and Pn,k = Pn−k,1 + Pn−k,2 + · · ·+ Pn−k,k.

1.12 The Bell number B̃n is the number of all set partitions of an n-set; that is,
B̃n =

∑n
k=0 Sn,k with B̃0 = 1. Show that

B̃n+1 =
n∑

k=0

(
n

k

)
B̃k .

� 1.13 Let fn,k be the number of k-subsets of {1, . . . , n} that contain no pairs of
adjacent numbers. Show that

(a) fn,k =
(

n− k + 1
k

)
(b)

∑
k

fn,k = Fn+2 ,

where Fn is the nth Fibonacci number (that is, F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

(n ≥ 2)).

1.14 Show that the sum of the binomial coefficients in Pascal’s triangle along a
diagonal from upper right to lower left is always the Fibonacci number Fn+k+1.
Example: Starting with n = 4, k = 3 gives 4 + 10 + 6 + 1 = 21 = F8.

1.15 Prove that
(
n
r

)(
r
k

)
=

(
n
k

)(
n−k
r−k

)
and conclude that

∑m
k=0

(
n
k

)(
n−k
m−k

)
= 2m

(
n
m

)
.

� 1.16 An ordinary deck of 52 playing cards is well shuffled. What is the probability
that both the top and bottom cards are queens (on the assumption that all 52!
permutations are equally probable)?

1.17 In a lottery, six numbers from the set {1, 2, . . . , 49} are selected. What is the
probability that the chosen set of numbers contains two adjacent integers?

1.18 Suppose the random variable X can assume only the values 0 and 1. Show
that V X = EX · E(1−X).

� 1.19 Prove that in every set of n + 1 integers from the collection {1, 2, . . . , 2n}
there is always a pair of integers that are relatively prime, and always a pair in
which one of the pair is a divisor of the other. Does the result hold for n integers?

1.20 Construct a sequence of n2 distinct numbers that contains neither a mono-
tonically increasing subsequence nor a monotonically decreasing sequence of length
n + 1.

� 1.21 The Euler ϕ-function is defined by

ϕ(n) = |{k : 1 ≤ k ≤ n, k relatively prime to n}|.
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Prove that ∑
d|n

ϕ(d) = n .

1.22 Each square of a 4 × 7 checkerboard is colored either white or black. Show
that there is always a rectangle whose four corner squares have the same color.
Does the result hold for a 4× 6 checkerboard?

� 1.23 Let N = {1, 2, 3, . . . , 3n}. Matilda removes n elements of N . Show that she
can now remove a further n numbers in such a way that the remaining n appear in
the order odd, even, odd, even, . . . .

1.24 Matilda selects n points on the circumference of a circle and colors each
point red or blue. Show that there are at most

⌊
3n−4

2

⌋
chords connecting points of

different colors that do not intersect in the interior of the circle.

� 1.25 Consider an n× n checkerboard with rows and columns numbered from 1 to
n. A set T of n squares will be called a transversal if none of its squares are in the
same row or column. In other words, T = {(1, π1), . . . , (n, πn)}, where (π1, . . . , πn)
is a permutation of {1, . . . , n}. Now let n ≥ 4 be an even number and place a
number in each of the n2 squares in such a way that every number appears exactly
twice. Show that there is always a transversal containing n distinct numbers. Hint:
The checkerboard contains r pairs of squares (in different rows and columns) that
contain the same number. Construct the (n!) × r incidence matrix (mij) with
mij = 1 if the ith transversal contains the jth pair. Now count in two different
ways.

1.26 We would like to consider how we might effectively list all n! permutations
of {1, . . . , n}. The most usual method is the lexicographic ordering. We say that
π = (π1, . . . , πn) is lexicographically smaller than σ = (σ1, . . . , σn) if for the smallest
i with πi 
= σi, we have πi < σi. For example, for n = 3 we obtain the ordering
123, 132, 213, 231, 312, 321. Show that the following algorithm finds the successor
permutation σ to the permutation π = (π1, . . . , πn):

1. Search for the largest index r with πr < πr+1. If no such r exists, then π =
(n, . . . , 2, 1) is the last permutation.

2. Search for the index s > r with πs > πr > πs+1.
3. σ = (π1, . . . πr−1, πs, πn, . . . , πs+1, πr, πs−1, . . . , πr+1) is the successor permuta-

tion.

1.27 Analogously to the previous exercise, we would like to list all 2n subsets of an
n-set. As usual, we represent the subsets by (0, 1)-words of length n. The following
list is called a Gray code. Suppose G(n) = {G1, . . . , G2n} is the list for n. Then
G(n + 1) = {0G1, 0G2, . . . , 0G2n , 1G2n , 1G2n−1, . . . , 1G1}. Prove the following: (a)
Every pair of neighboring (0, 1)-words in G(n) differ in exactly one place. (b) Let
G(n, k) be the subsequence of G(n) with exactly k 1’s. Show that consecutive words
in G(n, k) differ in exactly two places.

1.28 There are 4n participants in a bridge tournament playing at n tables. Each
player requires one other player as partner, and every pair of partners requires
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another pair of partners as their opponents. In how many ways can the selection
of partners and opponents occur?

� 1.29 In how many ways can the numbers 1, . . . , n be arranged in a row so that aside
from the first element, each number k has k − 1 or k + 1 as one of its predecessors
(not necessarily the immediate one)? Examples: 3 2 4 5 1 6 and 4 3 5 2 1 6.

1.30 In how many ways can the numbers 1, . . . , n be arranged in a circle so that
adjacent numbers always differ by 1 or 2?

1.31 For a permutation a1a2 . . . an of {1, . . . , n}, an inversion is a pair ai, aj with
i < j but ai > aj . Example: 1 4 3 5 2 has the inversions 4, 3; 4, 2; 3, 2; 5, 2. Let In,k

be the number of n permutations with exactly k inversions. Prove the following:

a. In,0 = 1.
b. In,k = In,(n

2)−k (k = 0, . . . ,
(
n
2

)
).

c. In,k = In−1,k + In,k−1 for k < n. Is this true as well for k = n?

d.
∑(n

2)
k=0(−1)kIn,k = 0, n ≥ 2.

� 1.32 Let a1, a2, . . . , an be a permutation of {1, . . . , n}. We let bj denote the num-
ber of elements to the left of j that are greater than j (and thus form an inversion
with j). The sequence b1, . . . , bn is called the inversion table of a1, . . . , an. Show
that 0 ≤ bj ≤ n − j (j = 1, . . . , n), and prove that conversely, every sequence
b1, . . . , bn with 0 ≤ bj ≤ n− j (∀j) is the inversion table for exactly one permuta-
tion.

1.33 We return to the lexicographic ordering of permutations introduced in Exer-
cise 26. We assign the number 0 to the smallest permutation (1, 2, . . . , n). We assign
1 to the next permutation, and so on, giving the last permutation (n, n− 1, . . . , 1)
the number n! − 1. The problem is to determine the number �n(π) assigned to a
given permutation π = (π1, . . . , πn). Show that �1(1) = 0, �n(π) = (π1 − 1)(n −
1)! + �n−1(π′), where π′ = (π′

1, . . . , π
′
n−1) is derived from π by deleting π1 and

reducing all πj > π1 by 1. Example: �4(2314) = 3!+ �3(213) = 3!+2!+ �2(12) = 8.

1.34 The converse of the previous exercise. Let �, 0 ≤ � ≤ n! − 1 be given.
Determine the permutation π for which �n(π) = �. Hint: From Exercise 10, we can
represent � in the form � = an−1(n−1)!+an−2(n−2)!+ · · ·+a11! with 0 ≤ ak ≤ k.

1.35 Prove the following recurrence formulas for the Stirling numbers:

(a) sn+1,k+1 =
∑

i

(
i
k

)
sn,i, (b) Sn+1,k+1 =

∑
i

(
n
i

)
Si,k.

� 1.36 The Euler numbers An,k count the permutations π of {1, . . . , n} with pre-
cisely k increases, that is, k places i for which πi < πi+1. For example, for n = 3,
we have A3,0 = 1, A3,1 = 4, A3,2 = 1. Prove the recurrence

An,k = (n− k)An−1,k−1 + (k + 1)An−1,k

(n > 0) with A0,0 = 1, A0,k = 0 (k > 0).

1.37 Many identities for binomial coefficients can be obtained by counting paths
in lattices. Consider an m × n lattice such as the one shown in the figure for
m = 5, n = 3. (Note that m and n are the numbers of edges.)
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m

n

A

B

Show that the number of different paths from A to B that always move upward or
to the right is equal to

(
m+n

n

)
. For example, for m = 2, n = 2 we have the

(
4
2

)
= 6

paths

1.38 Two examples of the lattice method. (a) Classify the lattice paths according
to a path’s first meeting the right vertical, and derive equation (1.9) (see the figure
on the left). (b) Prove the Vandermonde identity (1.13) by classifying the lattice
paths according to their point of intersection with the diagonal shown in the right-
hand figure.

m

n
k k

� 1.39 In how many ways can a king move from the lower left corner of a chess
board to the upper right corner if it always moves up, to the right, or diagonally up
and to the right? Hint: Let r equal the number of diagonal moves and sum over r.

1.40 Show that rk(r − 1
2 )k = (2r)2k

22k and conclude the validity of the formula(− 1
2

n

)
= (−1

4 )n
(
2n
n

)
.

� 1.41 The following problem goes back to J. L. F. Bertrand (1822–1900). Two
candidates A and B receive a and b votes in an election, with a > b. In how many
ways can the ballots be arranged so that in counting, one vote after the other,
A always has more votes than B. For example, for a = 4, b = 2, we have the
following possibilities: AAAABB, AAABAB, AAABBA, AABAAB, AABABA.
Show that the answer is a−b

a+b

(
a+b

a

)
. Hint: Draw a sequence as points (x, y), where

y is the number of votes for A minus the number of votes for B when x votes have
been counted. The desired sequences are then the paths from (0, 0) to (a+ b, a− b)
that after (0, 0) never again touch the x-axis.

1.42 Show that (1+
√

3)2n+1+(1−
√

3)2n+1 represents a natural number for every
n ≥ 0. Hint: Use the binomial theorem. Since 0 <

∣∣1−√3
∣∣ < 1, it must be that

−(1 −
√

3)2n+1 is the fractional part of (1 +
√

3)2n+1. Conclude that the integer
part of (1 +

√
3)2n+1 always contains 2n+1 as a factor.

� 1.43 Let an = 1

(n
0)

+ 1

(n
1)

+ · · ·+ 1

(n
n)

. Show that an = n+1
2n an−1 + 1 and determine

limn→∞ an (if the limit exists). Hint: Show that an > 2 + 2
n and an+1 < an for

n ≥ 4.



38 1. Fundamentals

1.44 It is clear that n points on a line divide the line into n + 1 parts.

a. Let Ln denote the maximum number of pieces into which the plane can be
divided by n lines. Determine a recurrence for Ln and calculate Ln.

b. Let Mn denote the maximum number of three-dimensional pieces into which
3-space R3 can be divided by n planes. Determine a recurrence for Mn and
calculate Mn.

c. Generalize to Rn.

� 1.45 Pascal’s triangle (shifted somewhat) yields an astonishing primality test. We
number the rows as usual with 0, 1, 2, . . . , n, . . . , and likewise the columns. In the
nth row we write the n+1 binomial coefficients

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
, but shifted into the

columns with numbers 2n through 3n inclusive. Finally, we draw a circle around
any of these n + 1 numbers that are multiples of n. The first rows and columns
look like this:

n k 0 1 2 3 4 5 6 7 8 9 10 11 12

10

1 1 1

2 1 2 1

3 1331

4 1 4 6 4 1

� �
�

� �
� �

�
�

Show that a number k is prime if and only if all the elements in the kth column
are circled. Hint: For k even the problem is easy, and for k odd, first prove that
the element in the nth row and kth column is

(
n

k−2n

)
.

� 1.46 Two dice have the same probability distribution. Show that the probability
of throwing the two dice and obtaining the same number on each is always at least
1
6 .

1.47 The following important inequalities estimate the distance from X to the
expectation EX. Prove Markov’s inequality: Let X be a random variable that
takes on only nonnegative values. Then p(X ≥ α) ≤ EX

α for α ≥ 0. Conclude from
this Chebyshev’s inequality: p(|X −EX| ≥ α) ≤ V X

α2 for a random variable X and
α ≥ 0.

1.48 Estimate, with the help of the previous exercise, the probability that a per-
mutation has k + 1 fixed points (all permutations of equal probability).

� 1.49 A group of n hunters shoot simultaneously at r rabbits, with every shot
hitting a rabbit. Every hunter hits each rabbit with equal probability, and if a
rabbit is hit, it is killed. What is the expectation for the number of surviving
rabbits? Show with the help of Markov’s inequality that for n ≥ r(log r + 5), the
probability that no rabbit survives is greater than 0.99.

1.50 A random number generator chooses one of the numbers 1, 2, . . . 9, all with
equal probability. Determine the probability that after n selections (n > 1), the
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product of these numbers is divisible by 10. Hint: Consider the random variables
Xk, the number of times k is chosen, 1 ≤ k ≤ 9.

� 1.51 A deck of playing cards with n cards contains three aces. The deck is shuffled,
with all permutations equally probable. The cards are then dealt out one after the
other until two aces have appeared. Show that the expectation for the number of
dealt cards is n+1

2 .

1.52 Let (p1, . . . , p6) and (q1, . . . , q6) be the probability distributions for two dice.
Show that pi, qj can never be chosen such that the different possible sums 2, 3, . . . , 12
of the throws are equally probable (that is, equal to 1

11 ).

� 1.53 Let x be a real number. Then among the numbers x, 2x, 3x, . . . , (n − 1)x
there is at least one that differs from an integer by at most 1

n .

1.54 Prove the following general theorem of Ramsey: Let k and �1, . . . , �r be given.
Then there is a least number R(k; �1, . . . , �r) such that the following holds: If N
is an n-set with n ≥ R(k; �1, . . . , �r) and if the k-subsets of N are colored in some
way with the colors 1, . . . , r, then there is a color i such that in some �i-subset of
N , all k-subsets are colored with i. Hint: Induction.

� 1.55 Show that if the Ramsey numbers R(k− 1, �) and R(k, �− 1) are both even,
then R(k, �) < R(k − 1, �) + R(k, �− 1). Calculate R(3, 4).

1.56 For the two-coloring problem of families of sets discussed in Section 1.6, prove
that m(2) = 3, m(3) = 7.

� 1.57 Prove that R(k, k) ≥ 2k/2. Hint: R(2, 2) = 2, R(3, 3) = 6. So assume that
k ≥ 4. Let n < 2k/2. Altogether, there are 2(n

2) patterns of acquaintance. Let A
denote the event, |A| = k, that all the persons are mutually acquainted. Now use
the probabilistic method of Section 1.6.

1.58 In country Z, every pair of cities is linked by exactly one of the three modes of
transportation bus, train, air, where all three possibilities occur. No city is served
by all three forms of transportation, and no three cities are linked by the same
mode of transport. Determine the maximum number of cities in country Z. Hint:
Consider the possible modes of transport from a fixed city.

� 1.59 Suppose that n different numbers (n is very large) are written on n scraps of
paper and then the scraps are mixed together in a hat. We now pull one scrap of
paper after another out of the hat. Our task is to determine the largest number.
When the scrap on which we believe the largest number to be written has been
drawn, we are to announce, “That is the largest number.” It is not allowed to
name a number that was previously drawn. Since we know nothing about the size
of the numbers or their arrangement, the task seems hopeless. Nevertheless, there
is an algorithm that names the correct number with probability greater than 1

3 .
Hint: Let s numbers be drawn, and then choose the first number to be drawn that
is larger than all the previous numbers drawn.

1.60 Let a1, a2, a3, . . . be an infinite sequence of natural numbers. Then there
exists either an infinite strictly monotonically increasing subsequence ai1 < ai2 <
ai3 < · · · (where i1 < i2 < i3 < · · · ) or a strictly monotonically decreasing subse-
quence or an infinite constant subsequence aj1 = aj2 = aj3 = · · · .



Chapter 7

Trees

7.1. What Is a Tree?

The theory of trees originated in the study of hydrocarbons and isomers.1
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isobutane

Toward the end of the nineteenth century, Cayley posed the question of
determining the number of possible isomers of a given compound. This led
to the theory of graph enumeration (see Chapter 4 and the suggestions for
further reading at the end of Part 1). Trees are the fundamental building
blocks for the construction of graphs. However, they are of interest not only
in graph theory, for they also provide the optimal data structure for many
discrete problems, in particular for searching and sorting problems, to which
we shall return in Chapter 9.

Definition 7.1. A graph is called a tree if it is connected and contains no
circuits. A graph all of whose components are trees is called a forest.

1Two chemical compounds with the identical composition but different arrangements of their
atoms are called isomers.

137
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The trees with five or fewer vertices are depicted below:
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Let G = (V, E) be a connected graph. A subgraph T that is a tree of
order n = |V | (i.e., contains all the vertices of G) is called a spanning tree.
Clearly, every connected graph G contains at least one spanning tree. Either
G is already a tree, or else G possesses a circuit C. If we remove an edge e
from C, then G1 := (V, E �{e}) is again connected. Either G1 is a spanning
tree or else G1 possesses a circuit C1. We remove an edge e1 from C1, and
so on. After a finite number of steps we obtain a spanning tree.

Theorem 7.2. The following are equivalent:
a. G = (V, E) is a tree.
b. Every pair of vertices in G are joined by exactly one path.
c. G is connected, and |E| = |V | − 1.

Proof. a ⇒ b: If u and v were joined by two paths, these paths would yield
a circuit.

b ⇒ a: If C is a circuit, then two vertices of C are connected by more
than one path.

a ⇒ c: A tree contains one or more vertices of degree 1. Namely, let
P = u, u1, u2, . . . , v be a longest path in G. Then all neighbors of u are in
P , that is, d(u) = 1 (and also d(v) = 1), since G has no circuits. We now
remove u and the incident edge uu1, thereby obtaining a tree G1 = (V1, E1)
on n − 1 vertices with |V1| − |E1| = |V | − |E|. After n − 2 steps we obtain
a tree Gn−2 on two vertices. That is, Gn−2 = K2, and we have |V | − |E| =
|Vn−2| − |En−2| = 1.

c ⇒ a: Let T be a spanning tree of G. From what we have just estab-
lished,

1 = |V (G)| − |E(G)| ≤ |V (T )| − |E(T )| = 1 ,

and so E(G) = E(T ), that is, G = T . �

If a graph G = (V, E) consists of t components, application of Theo-
rem 7.2 to the individual components yields the result that every spanning
forest possesses |V | − t edges. There are some additional characterizations
of trees. For example, G is a tree if and only if G is connected and every
edge is a cut edge (proof?). Additionally, from Theorem 6.1 we immediately
obtain the following corollary:
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Corollary 7.3. If T is a tree of order n ≥ 2, and (d1, d2, . . . , dn) is the
degree sequence, then

n∑
i=1

di = 2n− 2 .

How many spanning trees does a graph G possess? In general, this is a
difficult problem. For complete graphs, however, we can easily provide an
answer. Let Kn denote the complete graph on {1, 2, . . . , n}. Let t(n) denote
the number of spanning trees. Let us examine the situation for small values
of n:

n = 2 • • t(2) = 1
1 2

n = 3 • •
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For t(5) one may calculate t(5) = 125. Observe that the trees are not all
distinct (in the sense of isomorphism). The following formula, suggested by
the first few values, is one of the most astounding results in combinatorics.

Theorem 7.4. The number of spanning trees in the complete graph Kn is
given by t(n) = nn−2.

Proof. The expression nn−2 suggests that we use the rule of equality. Let
V = {1, . . . , n} be the set of vertices. We begin by constructing a bijection
from the set of all trees to the set of all sequences (a1, . . . , an−2) with 1 ≤
ai ≤ n, the number of which, as we know, is nn−2. The mapping T →
(a1, a2, . . . , an−2) is constructed as follows:
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(1) From among all vertices of degree 1, find the one with minimal number
v. The number of v’s neighbor is a1.

(2) Delete v and the incident edge. This yields a tree on n− 1 vertices. Go
to step (1) and execute the instructions (n − 2) times. This yields the
sequence a1, a2, . . . , an−2.

Example 7.5.

•

• •

•

•

•

•

•

•

6

3
1

2

4

7

5

8

9

(1, 8, 3, 1, 4, 4, 8) .−→

We must now show that conversely, for every sequence (a1, a2, . . . , an−2)
there exists precisely one tree T . What does the sequence tell us about the
associated tree? Let di be the degree of the vertex i. Suppose the number i
appears fi times in the sequence. Since every time i is added to the sequence
a neighboring vertex of i is deleted, we have fi ≤ di − 1 for all i. Note that
fi ≤ di − 1, since i continues to reside in the part of the tree that remains.
Therefore, its degree is at least 1. From Corollary 7.3 we conclude that

n− 2 =
n∑

i=1

fi ≤
n∑

i=1

(di − 1) = 2n− 2− n = n− 2 .

Thus fi = di − 1 for all i. In particular, the numbers that never appear in
the sequence are precisely those of the vertices of degree 1.

We thus obtain the inverse mapping:
(1) Find the minimal b1 that does not appear in the sequence (a1, . . . , an−2);

this yields the edge b1a1.
(2) Find the minimal b2 
= b1 that does not appear in the sequence (a2, . . . ,

an−2), and so on.
Observe that the last edge arises automatically from the above condition on
the degree.

Example 7.6.

(a) 2 2 7 5 3 9 1 1
(b) 4 6 2 7 5 3 8 9

−→
• •

•

8 9 3 5 7

101 4 2 6
����

•

•

•

•

•

• •

�
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7.2. Breadth-First and Depth-First Search

How does one find a spanning tree, or more generally a spanning forest, in a
graph G given by its adjacency matrix (or equivalently, by its neighborhood
lists)? How can one tell whether G is connected?

Example 7.7. Let G be given by the following neighborhood lists:

a b c d e f g h
b a b a b g c a
d c d b f g
h d g c h

e

Is G connected? The following algorithm, breadth-first search (BFS),
constructs a spanning tree (if one exists). The algorithm searches all the
vertices neighboring a given vertex before proceeding, that is, the search
goes first through the breadth of all neighboring vertices, whence the name
of the algorithm.

Algorithm 7.8 (Breadth-first search).

(1) Select a start vertex and give it the number 1. Vertex 1 is now the
current vertex.

(2) Suppose the current vertex is number i and that numbers 1, . . . , r have
been assigned to vertices. If r = n, stop: The spanning tree is complete.
Otherwise, give the neighbors of i the numbers r + 1, r + 2, . . . and add
the edges i(r + 1), i(r + 2), . . . to the spanning tree. If the number i + 1
has not been assigned, stop: The graph G is not connected (and so there
is no spanning tree). Otherwise, make vertex i + 1 the current vertex
and repeat step (2).

In our example, we obtain the following:

1

2

5 6

3 4

7

8

a

b

c e

d h

g

f

And indeed G is connected.
We would now like to prove the correctness of our algorithm. We will

prove that if G is connected, then Algorithm 7.8 indeed creates a spanning
tree and asserts that the graph is connected. A similar proof shows that if
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G is not connected, the algorithm halts with the assertion that the graph is
not connected.

Suppose, then, that G is connected. Since a numbered vertex is a neigh-
bor of at most one vertex with a smaller number, the algorithm never creates
a circuit, and since edges are always added to the graph that has been cre-
ated thus far, the resulting graph T is a tree.

Suppose v /∈ V (T ), with u the start vertex of the algorithm. Since G is
connected, there is a path u = v0, v1, . . . , v, and therefore an index i with
vi ∈ V (T ), vi+1 /∈ V (T ). At some point in the algorithm, vi was the current
vertex. By step (2), all not-yet-numbered neighbors of vi are added to T ,
and therefore vi+1 is after all in V (T ), a contradiction.

In a certain sense, the dual of breadth-first search is depth-first search,
DFS. We move downward through the graph, edge by edge, until we can go
no further. Then we take one step back and start again downward along
another path. Here is the algorithm for depth-first search:

Algorithm 7.9 (Depth-first search).

(1) Choose a start vertex and assign it the number 1. This is now the
current vertex, and vertex 1 is the predecessor vertex.

(2) Suppose the current vertex has number i, and the numbers 1, . . . , r have
been assigned. If r = n, stop: The graph is connected and the spanning
tree is complete. Otherwise, choose a not-yet-numbered neighbor of i,
give it the number r + 1, and add the edge i(r + 1) to the graph under
construction. The current vertex is now r + 1, and i is the predecessor
vertex. If there is no unnumbered neighbor of i, go to the predecessor
vertex of i if i > 1. This is now the current vertex. Repeat step (2). If
i = 1 and there is no unnumbered neighbor, then G is not connected:
stop.

In our example we obtain
a

b

c

d

e

f

g

h

1

2

3

4 5

6 7

8

The proof of correctness of Algorithm 7.9 is similar to that of the previous
algorithm.
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We would like to know how long it takes our algorithms, say Algorithm
7.8, to run. Step (2) searches all unnumbered neighbors of the current vertex
and therefore requires O(

∑
u∈V d(u)) = O(|E|) steps. Since the algorithm

also clearly requires Ω(|E|) operations, we have the running time Θ(|E|).
The analysis of depth-first search is analogous.

7.3. Minimal Spanning Trees

Suppose we have created a communication network with a number of switches
(these will be the vertices) and connections between the switches (the edges).
To establish a connection between switches u and v costs w(uv) units. We
would like to arrange the switches in such a way that each switch can com-
municate with every other switch at minimal cost. A similar problem is
the construction of a network of roads connecting a number of points with
minimal cost of travel between points.

We model this problem with a weighted graph. Let there be given
a weighted graph G = (V, E) together with a weight function w : E −→
R. We would like to find a spanning tree T with minimal weight w(T ) =∑

k∈E(T ) w(k).

Example 7.10.
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3 4
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A naive approach is the following: Choose an edge of minimal weight. If
one has already determined j edges, one chooses the next edge as that of
minimal weight that does not lead to the creation of a circuit. After n − 1
steps a tree has been constructed.

For our graph, we obtain, for example,
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w(T ) = 20
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Is this tree optimal? In fact, our algorithm always produces an optimal
tree, as we shall see shortly. Since our method always chooses the best edge
available, we say that we have a greedy algorithm.

The structural elements of our algorithmic problem are the forests con-
tained in G. Before we prove the optimality of the greedy algorithm, we
would like to analyze the set-theoretic properties of forests and thereby de-
velop the basic ideas of the algorithm.

Definition 7.11. Let S be a finite set and U ⊆ B(S) a family of subsets of S.
The pairM = (S,U) is called a matroid and U the family of independent
sets of M if the following hold:
1. ∅ ∈ U ,
2. A ∈ U , B ⊆ A ⇒ B ∈ U ,
3. A, B ∈ U , |B| = |A|+ 1 ⇒ ∃ v ∈ B \A with A ∪ {v} ∈ U .

A maximal independent set is called a basis of the matroid. From axiom
3 above, it follows that every basis of M has the same number of elements
as any other basis (clear?). This number is called the rank r(M) of the
matroid. More precisely, axiom 3 ensures that every independent set can be
extended to a basis by the inclusion of additional elements.

The term “matroid” suggests that we are dealing with a generalization
of matrices. Consider n vectors a1, a2, . . . , an in a vector space of dimension
m over a field, for example, the real numbers R. We may write the vectors
aj as columns (a1j, . . . , amj)T and thereby obtain an m× n matrix. In this
case, S is the set {a1, . . . , an} and A ⊆ S is independent if the vectors in A
form a linearly independent set, where we declare that the empty set ∅ is
linearly independent. Axiom 2 is clear, and axiom 3 is the Steinitz exchange
theorem from linear algebra. The rank in this case is of course the dimension
of the subspace spanned by the aj ’s.

And now back to graphs. We consider all subgraphs H = (V, A) on the
complete set of vertices V and may therefore identify H = (V, A) with the
edge set A ⊆ E. The family of these subgraphs thus corresponds precisely
to the family B(E) of all subsets of E. Now letW ⊆ B(E) denote the family
of edge sets of all forests of G.

Theorem 7.12. If G = (V, E) is a graph, then M = (E,W) is a matroid.

Proof. Axioms 1 and 2 clearly are satisfied. Let W = (V, A) and W ′ =
(V, B) be two forests with |B| = |A| + 1. Moreover, let T1, . . . , Tm be
the components of W = (V, A) with vertex sets V1, . . . , Vm and edge sets
A1, . . . , Am. From Theorem 7.2 we have |Ai| = |Vi| − 1, i = 1, . . . , m, V =
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V1 + · · ·+ Vm, A = A1 + · · ·+ Am:

�� �	
V1

�� �	�
Vs

�� �	�
Vt

�� �	
Vm


 �k

Since every forest on Vi has at most |Vi| − 1 edges, on account of |B| > |A|
there must be an edge k ∈ B that connects two distinct sets Vs and Vt. But
then W ′′ = (V, A ∪ {k}) is a forest, and axiom 3 is satisfied. �

We see that the bases of M = (E,W) are the spanning forests, and the
rank of the matroid is |V | − t, where t is the number of components of G.

We now know that the forests form a matroid. But we would like to solve
our minimal tree problem. The following theorem states that the greedy
algorithm yields an optimal basis in every weighted matroid M = (S,U).
Furthermore, this holds as well for forests, or in the case of connected graphs,
for trees. The meaning of this theorem is now clear: Whenever we can prove
a matroid structure in an optimization problem with weight function, the
greedy algorithm works! And further, in Exercise 7.30 we shall see that in
general, the greedy algorithm yields the optimum for every weight function
precisely in the case of matroids.

Theorem 7.13. Let M = (S,U) be a matroid with weight function w :
S −→ R. The following algorithm produces a basis of minimal weight:
(1) Let A0 = ∅ ∈ U .
(2) If Ai = {a1, . . . , ai} ⊆ S, then let Xi = {x ∈ S \ Ai : Ai ∪ {x} ∈ U}. If

Xi = ∅, then Ai is the desired basis. Otherwise, choose some ai+1 ∈ Xi

of minimal weight and set Ai+1 = Ai ∪ {ai+1}. Repeat step (2).

Proof. Let A = {a1, . . . , ar} be the obtained set. That A is a basis follows
at once from axiom 3. Because of the greedy construction, we see with
the help of axiom 2 that w(a1) ≤ w(a2) ≤ · · · ≤ w(ar) must hold. For
w(a1) ≤ w(a2) this is clear because of step (1). Let 2 ≤ i ≤ r − 1. Since
{a1, . . . , ar} ∈ U , it follows that {a1, . . . , ai−1} ∈ U holds as well. Therefore,
ai, ai+1 ∈ Xi−1, and because of step (2), we have w(ai) ≤ w(ai+1). Suppose
B = {b1, . . . , br} were a basis with w(B) < w(A), where we assume w(b1) ≤
· · · ≤ w(br). There would then be a smallest index i with w(bi) < w(ai), and
on account of step (1), we would have i ≥ 2. We consider the independent
sets Ai−1 = {a1, . . . , ai−1}, Bi = {b1, . . . , bi}. By axiom 3, there would then
exist bj ∈ Bi �Ai−1 with Ai−1∪{bj} ∈ U . Since now w(bj) ≤ w(bi) < w(ai),
in the ith step, the greedy algorithm would have chosen bj instead of ai,
which is a contradiction. �

The specialization of the greedy algorithm to matroids on graphs was
discovered by Kruskal and is therefore called Kruskal’s algorithm for the



146 7. Trees

MST (minimal spanning tree) problem. How many computational steps does
Kruskal’s algorithm require? First we must order the edges ki by weight:
w(k1) ≤ w(k2) ≤ · · · ≤ w(kq) , q = |E|. In other words, we must sort the q
weights w(ki). We shall study how to do this effectively in Chapter 9, where
we shall prove that O(q lg q) comparisons are necessary. Step (2) constructs
the tree iteratively. After i steps we have a forest with n − i components
V1, V2, . . . , Vn−i. Suppose kh was the most recently added edge. On account
of w(k1) ≤ · · · ≤ w(kh) ≤ w(kh+1), we take the next edge kh+1 = uv and
test whether it is admissible, that is, whether a circuit is created by its
addition. We have

kh+1 is admissible ⇐⇒ u, v are in different Vj ’s.

We determine in which sets Vu, Vv the vertices u, v are located. If Vu 
= Vv,
we add kh+1 and merge Vu ∪ Vv ∪ {uv} into one component. If Vu = Vv, we
test the next edge. We must therefore execute at most n comparisons for
each of u and v, and the total number of operations in step (2) is O(nq) =
O(q2). Therefore, altogether our algorithm needs O(q lg q) + O(q2) = O(q2)
operations, and the reader may determine that with a suitable data structure
we need only O(q lg q) operations for step (2), and so altogether we require
O(|E| lg |E|).

If we exchange “minimal” with “maximal” and ≤ with ≥, then the
greedy algorithm gives a basis with maximal weight, or for graphs, a tree of
maximal weight.

7.4. The Shortest Path in a Graph

Here is another optimization problem on weighted graphs. Suppose we have
a street plan in front of us and find ourselves at location u. We would like
to get from u to v in the shortest possible time. The roads k (the edges of
the graph) have weight w(k) ≥ 0, which gives the minimal time required to
traverse the edge k (on foot, by car, tram, etc.).

Modeled as a graph, this means that we are given a connected graph
G = (V, E) and a weight function w : E → R+ = {x ∈ R : x ≥ 0}. Let u ∈
V . For a path P = P (u, v) from u to v, we denote by �(P ) =

∑
k∈E(P ) w(k)

the (weighted) length of P . We are seeking a shortest u, v-path for which
�(P ) is minimal. The distance d(u, v) is defined as the length of a shortest
path. In the special case w(k) = 1 for all k ∈ E, it follows that �(P ) is
precisely the previously defined length (the number of edges), and d(u, v)
the previously defined distance.

Let u be fixed. The following famous algorithm of Dijkstra constructs a
spanning tree whose unique path from u to v is always the shortest, for all
v ∈ V :
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(1) Let u0 = u, V0 = {u0}, E0 = ∅, �(u0) = 0.
(2) Suppose Vi = {u0, u1, . . . , ui}, Ei = {k1, . . . , ki}. If i = n − 1, we are

done. Otherwise, consider for all edges k = vw, v ∈ Vi, w ∈ V \ Vi,
the expression f(k) = �(v) + w(k) and choose k with f(k) = min f(k).
Let k = v w. Then set ui+1 = w, ki+1 = k, Vi+1 = Vi ∪ {ui+1},
Ei+1 = Ei ∪ {ki+1}, �(ui+1) = f(k). Repeat step (2).

Example 7.14.

u 3

1 1 3 1

4

23

22 2

0

1 1

3

5

3

4

3

The circled numbers are the �(v).

Theorem 7.15. Let G = (V, E) be a connected graph with weight function
w : E −→ R+, u ∈ V . Dijkstra’s algorithm gives a spanning tree T with the
property that the unique path from u to v is always a minimal u, v-path in
G with d(u, v) = �(v) for all v.

Proof. The algorithm certainly constructs a spanning tree. In the first step
an edge of minimal weight u = u0 to a neighbor is chosen; thus k1 = u0u1

is a minimal u0, u1-path with �(u1) = w(k1) = d(u0, u1). Suppose the
partial tree Ti = (Vi, Ei) has the desired properties, and step (2) constructs
k = v w. We must show that �(w) = f(k) = �(v) + w(k) is equal to the
(weighted) distance d(u0, w). For the u0, w-path P0 just constructed, we
have �(P0) = d(u0, v) + w(k) = �(v) + w(k) = �(w). Let P be a shortest
u0, w-path and v the last vertex of Vi in P , with w ∈ V � Vi as successor,
k = vw. Then the partial paths P (u0, v), P (w, w) are also shortest paths,
and we obtain

d(u0, w) = �(P (u0, v)) + w(k) + �(P (w, w))

= (�(v) + w(k)) + �(P (w, w))

= f(k) + �(P (w, w))

≥ f(k) = �(w) = �(P0) .

Therefore, P0 is a shortest path. �

We see that our algorithm always constructs a shortest prolongation of
the partial tree. We are therefore again dealing with a greedy algorithm.
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Several variants of the shortest-path problem come at once to mind.
Suppose we would like to determine a shortest path between only two given
vertices u and v. We can use Dijkstra’s algorithm with u as source, and
this gives a shortest path from u to v. No algorithm is known that is
asymptotically faster than Dijkstra’s algorithm. Or perhaps we would like
to find shortest paths for all pairs of vertices u, v. We can solve this problem
by applying our algorithm to every vertex u as source, but there are generally
faster algorithms available. See the cited literature at the end of this part,
after Chapter 10.

Finally, we remark that it should be clear how the procedure may be
modified for directed graphs. In this case, we seek shortest directed paths
from u to all other vertices.

Exercises for Chapter 7

7.1 Prove the following characterization of trees: Let G be a graph on n vertices
and q edges. Then G is a tree if and only if the following conditions are satisfied:
(a) G has no circuits and q = n − 1. (b) G has no circuits and if any pair of
nonneighboring vertices are joined by an edge, then the resulting graph has precisely
one circuit. (c) G is connected (G 
= Kn if n ≥ 3), and if any two nonneighboring
vertices are joined by an edge, the resulting graph has exactly one circuit.

� 7.2 Show that a connected graph with an even number of vertices always has
a spanning subgraph in which all vertices have odd degree. Does this hold for
disconnected graphs?

7.3 Let G be a connected graph. For u ∈ V we set r(u) = max(d(u, v) : v 
= u).
The parameter r(G) = min (r(u) : u ∈ V ) is called the radius of G, and Z(G) =
{u ∈ V : r(u) = r(G)} is the center of G. Show that the center of a tree consists
of either one vertex or two neighboring vertices.

7.4 Let d1 ≥ · · · ≥ dn > 0 be a sequence of natural numbers. Show that
(d1, . . . , dn) is the degree sequence of a tree if and only if

∑n
i=1 di = 2n− 2.

� 7.5 Determine among all trees with n vertices those for which the sum
∑

u 
=v∈V

d(u, v) is minimal and those for which it is maximal.

7.6 Carry out the correctness proof of depth-first search.

7.7 Generalize BFS or DFS by constructing an algorithm that determines the
connected components of a graph.

7.8 Verify precisely that all bases of a matroid have the same size.

� 7.9 Suppose a connected graph G has a different weight on each edge. Show that
G possesses a unique minimal spanning tree.
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7.10 Consider the following graph G with cost function. Determine using Dijk-
stra’s algorithm the shortest paths from u to all other vertices:

u

16

9

3

12

12

35
4

4 17
12

9
19

2 5

3

� 7.11 Show that a tree has at least as many vertices of degree 1 as the maximal
degree. When does equality hold?

� 7.12 This exercise gives a recursive proof of the formula t(n) = nn−2 for the
number of spanning trees in Kn. Number the vertices 1, 2, . . . , n. Let C(n, k)
be the number of spanning trees in which the vertex n has degree k. Prove the
recurrence C(n, k) = k(n−1)

n−1−kC(n, k + 1) and thereby conclude the desired formula.

� 7.13 Let B be the incidence matrix of a graph G. In every column we change
arbitrarily one of the two 1’s into −1 (this corresponds to an orientation of G) and
call the new matrix C. Let M = CCT . Prove that the number of spanning trees
of G is given by t(G) = detMii, where Mii results from deleting the ith row and
ith column from M (and this holds for every i). Hint: Let P be an r × s matrix
and Q an s × r matrix, r ≤ s. Then a theorem from linear algebra states that
det(PQ) is equal to the sum of the products of determinants of the corresponding
r × r submatrices.

7.14 Again verify, now using the previous exercise, t(Kn) = nn−2.

7.15 Calculate t(Km,n). Answer: mn−1nm−1.

7.16 Consider the complete graph Kn on {1, . . . , n} and let d1, . . . , dn be a se-
quence of natural numbers each greater than or equal to 1 with

∑n
i=1 di = 2n− 2.

Show that the number of spanning trees in which the vertex i has degree di is
equal to (n−2)!

(d1−1)!···(dn−1)! , and derive from this an additional proof of the formula
t(Kn) = nn−2.

� 7.17 Let G = Kn � {k} be the complete graph with an edge removed. Without
using Exercise 7.13, calculate the number of spanning trees in G.

� 7.18 The lattice graph G(2, n) consists of two paths of n vertices (let them be
numbered 1 to n) whose vertices with the same number are joined by an edge. For
example, G(2, 2) ∼= C4. Determine the number of spanning trees of G(2, n) using
generating functions.

7.19 Show that every automorphism of a tree leaves at least one vertex or one
edge fixed. Hint: Exercise 7.3.

7.20 For n employees, each of whom drives his or her own car to work, there are
n parking places available in the company parking lot. Each driver has a spot that
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he or she prefers, and in fact, driver i prefers g(i), 1 ≤ g(i) ≤ n. The drivers arrive
at the parking lot one after the other: first 1, followed by 2, and so on. The ith
driver parks in space g(i) if it is free. Otherwise, he or she takes the next number
k > g(i) that is available if the space is empty. Otherwise, the driver goes home
and never returns to work. Here is an example with n = 4:

1 2 3 4
g 3 2 2 1 , then 1→ 3, 2→ 2, 3→ 4, 4→ 1,

but
1 2 3 4

g 2 3 3 2
, 1→ 2, 2→ 3, 3 → 4, 4→ quits

Let p(n) be the number of functions g that allow each employee to obtain a parking
space. Determine p(n). Hint: p(2) = 3, p(3) = 16, p(4) = 125.

� 7.21 Let G = (V, E) be a connected graph and let w : E → R+ be a cost function.
Show that the following algorithm constructs a minimal spanning tree: (1) Select
an edge uv of minimal weight and set S = {u, v}, T = V � S. (2) If T = ∅,
stop. Otherwise, choose from among the edges between S and T an edge k = u v
of minimal weight, u ∈ S, v ∈ T , and set S ← S ∪ {v}, T ← T � {v}. Repeat step
(2).

7.22 Estimate the running time of the algorithm in the previous exercise in terms
of the number of vertices n.

7.23 Consider Kn on {1, . . . , n} with the cost function w(ij) = i+j. (a) Construct
an MST tree T . (b) What is w(T )? (c) Is T uniquely determined?

� 7.24 Let M = (S,U) be a matroid, and B the family of bases. Show that B
satisfies the following conditions: (a) A 
= B ∈ B ⇒ A � B, B � A. (b) Let
A 
= B ∈ B. Then for each x ∈ A there exists y ∈ B with (A � {x}) ∪ {y} ∈ B.
Show conversely that a family of sets B that satisfies conditions (a) and (b) is the
family of bases of a matroid.

7.25 Let M = (S,U) be a matroid and B the family of bases. Show that the
family B∗ = {S �B : B ∈ B} defines a matroid M∗. The matroid M∗ is called the
dual of the matroid M. What is the rank of M∗?

7.26 Let M = (V,W) be the usual matroid induced by the graph G = (V, E).
Give a graph-theoretic description of the dual matroid M∗. That is, what sets of
edges are independent in M∗?

� 7.27 As in the previous exercise, let M = (V,W) be given. A set of edges A ⊆ V
is said to be minimally dependent if A /∈ W but A′ ∈ W for every proper subset A′

of A. Describe the minimally dependent sets in the graph and also the minimally
dependent sets in M∗. Hint: The minimally dependent sets in M∗ are minimal
cut sets A; that is, G = (V, E �A) has one component more than G and is minimal
with respect to this property.

7.28 Show that circuits and minimal cut sets always have an even number of edges
in common.
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7.29 Let B be the incidence matrix of G = (V, E), interpreted as a matrix over
the field {0, 1}. Show that A ⊆ E is independent in the matroid (E,W) if and only
if the associated set of columns is linearly independent.

� 7.30 Let (S,U) be a collection of sets satisfying axioms 1 and 2 of a matroid. Show
that (S,U) is a matroid (thus satisfies axiom 3 as well) if and only if the greedy
algorithm yields the optimum for every weight function w : S → R.

7.31 Develop a Dijkstra algorithm for directed graphs.

7.32 Determine the shortest path from 1 to all i in the following directed graph,
given by a weight matrix. A missing entry means that the corresponding edge is
not present in the graph:

1 2 3 4 5 6 7

1 4 10 3
2 1 3 2 11
3 9 8 3 2 1
4 4 5 8 6 3
5 1 1 2 3 1
6 1 1 3 2
7 2 4 3 2

� 7.33 Dijkstra’s algorithm functions only for nonnegative edge weights w(u, v) ∈
R+. Suppose that there also exist negative weights on a graph. If directed cir-
cuits with negative total weight exist, then no shortest distance can exist (why?).
Suppose, then, that we have a directed graph �G = (V, E) with source u ∈ V , and
a weight function w : E → R without negative circuits, where we assume that
all vertices x 
= u from u can be reached by a directed path. Show that the fol-
lowing algorithm of Bellman–Ford creates a tree with shortest directed path from
u: (1) Number E = {k1, . . . , kq}; set �(u) = 0, �(x) = ∞ for x 
= u, B = ∅.
(2) Run through the edges of E. Let ki = (x, y). If �(x) + w(x, y) < �(y), set
�(y) ← �(x) + w(x, y) and B ← (B ∪ {ki}) � {k}, where k is the previous edge in
B with end vertex y. Repeat (|V | − 1) times. Then �G = (V, B) is a “shortest”
tree. Hint: Let u, v1, . . . , vk = v be a shortest path in �G. Show by induction that
�(vi) = d(u, vi) after the ith iteration.

7.34 Determine shortest paths from 1 in the following graph, given by its length
matrix:

1 2 3 4 5

1 6 5
2 7 3 −2
3 −4 8
4 −1
5 2 7

� 7.35 Think about how the algorithm of Bellman–Ford should be extended to re-
turn the output “no solution” in the case of negative circuits.
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7.36 A minimax or bottleneck tree is a spanning tree in which the maximum of the
edge weights is as small as possible. Show that every MST tree is also a minimax
tree.
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