
Chapter 2

Wild and Flat
Embeddings

To truly appreciate results about flatness, one must be keenly aware of the
existence of wildness. In this chapter we set forth a wealth of examples
of wild embeddings, beginning with two classics discovered by Antoine and
Alexander in the 1920s. Then we describe a technique involving decomposi-
tion spaces by which wild arcs in Sn are transmuted into wild arcs in Sn+1.
Toward the end of the chapter we introduce additional examples of wildly
embedded 1-, 2- and 3-cells in S3; some of them were discovered in the 1940s
by R. H. Fox and E. Artin while others were discovered in the 1960s by R.
H. Bing and his followers. The net effect is to make available examples of
wild embeddings in all possible dimensions and codimensions.

Partly for contrast, we also present several results about flat embed-
dings. All are derived by elementary methods, independent of the engulfing
techniques to be developed in subsequent chapters. The results include the
Generalized Schönflies Theorem of M. Brown confirming the flatness of any
codimension-one sphere in Sn that is locally flat, a version of work by J. C.
Cantrell assuring the flatness of a codimension-one sphere in Rn, n > 3, that
is locally flat everywhere except possibly one point and a result of V. Klee
attesting to the flatness of an arc in Rn that lies in a hyperplane.

2.1. Antoine’s necklace and Alexander’s horned sphere

Here we reproduce two fundamental, historically important examples of wild
embeddings in R3. The first is a wild embedding of the Cantor set and the
second is a wild embedding of S2. For each of them the invariant used
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42 2. Wild and Flat Embeddings

to detect wildness is the fundamental group of the complement. Related
high-dimensional examples are constructed by suspension.

Example 2.1.1. There exists a wild Cantor set in R3.

A Cantor set in a manifold is an embedded copy of the familiar middle-
thirds Cantor set. Cantor sets are characterized as the compact, totally
disconnected metric spaces that are perfect, meaning that they have no
isolated points. The example we construct is known as Antoine’s necklace.

Remark. It is a mild but common and traditional misnomer to speak of a
Cantor set as being “wild”; strictly speaking, a Cantor set cannot be wild
because it is not an embedded polyhedron. There is a standard copy of
the Cantor set in [0, 1] ⊂ R1 ⊂ Rn, so what we really mean when we call
a Cantor set in Rn wild is that it is not flat. In the same spirit, when we
speak of “tame” Cantor sets in Rn, what we really mean is that they are
flat.

A solid torus is a ∂-manifold homeomorphic to S1×B2. Let T be a solid
torus standardly positioned in R3, and let T1, T2, T3, and T4 be solid tori
embedded in IntT as shown in Figure 2.1. (Note that (R3, T ) and (R3, Ti)
are pairwise homeomorphic.) Set A0 = T and A1 = ∪4

i=1Ti. In each Ti let
Ti1, Ti2, Ti3, Ti4 be solid tori embedded there exactly as the Ti are placed in
T . Replicate infinitely often, so that at the k-th step we have a ∂-manifold
Ak, the union of 4k (pairwise disjoint) solid tori, where each component
τ of Ak contains exactly 4 components of Ak+1, and where there exists a
homeomorphism of the triples (R3, τ, τ ∩ Ak+1) and (R3, T, A1). Arrange
these pieces so that each component τ of Ak has diameter at most εk, where
εk → 0 as k → ∞. (It is permissible to let the number of components of Ak

be larger than 4k in order to achieve small size.)

Set A = ∩kAk. Then A is a compact, totally disconnected metric space
with no isolated points. Hence, A is homeomorphic to the standard middle-
thirds Cantor set C in [0, 1] ⊂ R1 ⊂ R3. (If one wants to secure a home-
omorphism between A and C directly, without appeal to the topological
characterization of the Cantor set, one easily can show, based on the con-
struction, that A ∼= Π∞

i=1Xi, where Xi = {1, 2, 3, 4} is endowed with the
discrete topology, and exploit the related, more familiar C ∼= Π∞

i=1Si, where
each Si is a two-point set with the discrete topology.)

Proposition 2.1.2. π1(R3 �A) �= {1}.

Since π1(R3 � C) ∼= {1}, this proposition will confirm that A is wild.
The argument will be based on the following pair of technical facts.

Lemma 2.1.3. The inclusion-induced φ# : π1(∂Ti) → π1(R3 � IntA1) is
one-to-one.
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Figure 2.1. The first two stages in the construction of Antoine’s necklace

Lemma 2.1.4. The inclusion-induced φ′
# : π1(∂T ) → π1(T � IntA1) is

one-to-one.

Assuming Lemmas 2.1.3 and 2.1.4 for the moment, we complete the
proof of Proposition 2.1.2. Thicken R3 � IntA0 to an open set W0 that
admits a strong deformation retraction to R3 � IntA0. Similarly, for k ≥ 1
thicken Ak−1 � IntAk to an open set Wk that admits a strong deformation
retraction to Ak−1 � IntAk. Impose control on these thickenings to ensure
that Wk−1 ∩ Wk is naturally homeomorphic to ∂Ak × (−1, 1). Add the

components of Wk to ∪k−1
i=0Wi one at a time and apply Lemma 2.1.3 and

2.1.4 in conjunction with Theorem 0.11.5 to establish that π1(∪k−1
i=0Wi) →

π1(∪k
i=0Wi) is 1-1. It follows that Z ∼= π1(W0) → π1(R3 � A = ∪∞

i=0Wi) is
1-1. Thus, π1(R3 �A) �= {1}.

We now turn our attention to Lemmas 2.1.3 and 2.1.4. Their proofs are
based on the following claims.

Claim 2.1.5. Let J and C denote linked circles in R3, as shown in Fig-
ure 2.2. Then J is a retract of R3 � C.

C

J

Figure 2.2. Two linked circles
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Proof. Build a (round) 3-cell B containing J ∪C, and split it with a 2-cell
into two hemispherical balls BL and BR such that BR ⊃ J and BL intersects
C in a standard spanning arc. Find retractions:

(1) of R3 � C to B � C,

(2) of BL�C to ∂BL�C and, by extension, of B�C to (BR∪∂BL)�C,

(3) of the latter to BR � C, and

(4) of BR � C to J . �

A similar argument yields:

Claim 2.1.6. Let C and C ′ denote circles in R3 and E a planar disk in R3,
as shown in Figure 2.3. Then E � (C ∪ C ′) is a retract of R3 � (C ∪ C ′).

C
C

E

Figure 2.3. Three linked circles

Proof of Lemma 2.1.3. The proof of Lemma 2.1.3 is a relatively straight-
forward application of Claim 2.1.5 and is left as an exercise. �

Call a simple closed curve C a center line of a solid torus T if there
exists a homeomorphism of S1 ×B2 onto T carrying S1 × {0} onto C.

Proof of Lemma 2.1.4. Let C1 and C3 denote center lines of T1 and T3,
respectively. Find disks E2 and E4 in IntT as shown in Figure 2.4, where
Ej ∩ ∂A1 = ∂Ej ⊂ ∂Tj. Since C1 ∪E2 ∪C3 ∪E4 contains a center line of T ,
there exists a retraction

ρ : T � (C1 ∪E2 ∪ C3 ∪E4) → ∂T.

Thicken each Ej (j = 2, 4) to a 3-cell Bj such that, among other things,
Bj meets ∂Tj in an annulus and meets each of C1 and C3 in a standard arc
spanning Bj . Then Ej splits Bj into two 3-cells and the closure of ∂Bj �Tj

consists of two parallel copies, E+
j and E−

j , of Ej .

Suppose f : I2 → T � A1 with f(∂I2) ⊂ ∂T . Find a 2-dimensional PL
∂-manifold M in Int I2 such that

f−1(E2 ∪E4) ⊂ IntM ⊂ M ⊂ f−1(B2 ∪B4).
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Figure 2.4. Four linked circles

Identify the component P of I2�IntM containing ∂I2, then name the simple
closed curves Ji of P ∩M as well as the 2-cells Di ⊂ Int I2 bounded by Ji
(i = 1, . . . , k).

Fix i. There exists a j (either 2 or 4) such that f(Ji) ⊂ Bj � Ej , so
f(Ji) may be homotoped to lie entirely in either E+

j or E−
j . This homotopy

takes place inside of Bj � Ej , so it may be extended to all of I2 and we
may assume that f(Ji) is contained in either E+

j or E−
j ; to be specific let

us say f(Ji) ⊂ E+
j . The map f |Di shows that f |Ji is nullhomotopic in

R3 � (T1 ∪ T3), and Claim 2.1.6 implies that f can be redefined on Di so
that its image lies in E+

j � (C1 ∪ C3).

If this process is carried out for each i, then f will be replaced by a map
F : I2 → T � (C1 ∪E2 ∪C3 ∪E4) with F |∂I2 = f |∂I2. Now ρF reveals that
f |∂I2 is nullhomotopic in ∂T . �

This completes the construction of Antoine’s necklace. As mentioned
earlier, some variation is allowed in the number of solid tori used at each
stage of the construction: each solid torus at one stage may be replaced
by more than four solid tori at the next stage, and it is even permissible
for the number of solid tori to vary from one stage to another and from
one link to another. For this reason Antoine’s necklace can be regarded
as one specific member of a whole class of Antoine Cantor sets. There are
two conditions that must be satisfied by the construction of the objects in
this class. First, each component τ of the k-th stage ∂-manifold Ak must
be an unknotted solid torus and all the next-stage solid tori in τ must be
simply linked in a chain that winds exactly once around τ . This will ensure
that π1(R3 � A) �= {1}. The second condition is that each solid torus at
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one stage must be replaced by enough solid tori at the next stage so that
the diameters of the components of Ak approach 0 as k → ∞. This second
condition ensures that ∩∞

k=1Ak is totally disconnected and therefore a Cantor
set. Figure 2.5 shows three consecutive stages in a typical construction.

Figure 2.5. An Antoine Cantor set

Different Antoine Cantor sets may be inequivalently embedded. In fact,
varying the number of links in the Antoine construction results in an un-
countable number of different equivalence classes of embeddings of the Can-
tor set in R3 (Sher, 1968).

We now turn our attention to the construction of wild spheres.

Example 2.1.7. There exist wild 2-spheres in R3.

We will describe two different examples. The first is based on Antoine’s
necklace. Start with a round 3-cell F0 in R3 that is disjoint from A. Add a
tube F1 that connects the first 3-cell to the solid torus T . The tube is solid,
so F0 ∪ F1 is another 3-cell. Add thin tubes in T to connect F1 ∩ T to the
four components of A1; then do the same at later stages, adding 4k tubes
at stage k + 1. There should be four disjoint tubes in each component of
Ak as indicated in Figure 2.6. Define the Antoine 3-cell to be F , the union
of all the tubes together with Antoine’s necklace A, and define the Antoine
sphere to be ∂F .

It is not difficult to construct a homeomorphism from a 3-cell to F . We
will not explicitly describe that construction, although we will give some
indication of how a similar homeomorphism is constructed when we describe
Alexander’s horned sphere, below. The Antoine sphere bounds a topological
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Figure 2.6. The Antoine sphere

3-cell on the inside, but the exterior is not simply connected. In order to see
that the exterior is not simply connected, observe that F can be constructed
so that it does not intersect the loop J ⊂ R3�F shown in Figure 2.6. Since
J is homotopically essential in the complement of Antoine’s necklace, it is
homotopically essential in R3 � ∂F as well.

Note that we have not only constructed a wild 2-sphere, but have also
constructed a wild 3-cell F . Any arc in F that contains Antoine’s necklace
must be wild since the loop J represents a nontrivial loop in the complement.
Similarly any 2-cell in F that contains A must be wild. Hence we have the
following.

Example 2.1.8. There exist wild cells of dimension 1, 2, and 3 in R3.

We now construct a second wild 2-sphere in R3, the famous Alexander
horned sphere. The construction relies on a certain pillbox replacement
procedure.

Definition. A pillbox is a cylindrical 3-cell C with top disk τ and bottom
disk β containing simply linked solid tori T1 and T2, with T1 ∩ ∂C = τ and
T2 ∩ ∂C = β. (See Figure 2.7.)

Lemma 2.1.9. Let C be a pillbox, let X be a closed subset of R3 such that
X∩C = τ∪β, and let J be a 1-sphere in R3�(X∪C) as shown in Figure 2.8.
If π1(J) → π1(R3 � (X ∪ C)) is one-to-one, then π1(R3 � (X ∪ C)) →
π1(R3 � (X ∪ T1 ∪ T2)) is also one-to-one.

Proof. Use Claim 2.1.5 and the technique of proof of Lemma 2.1.4 to show
that if J is null-homotopic in R3 � (X ∪ T1 ∪ T2), then J is null-homotopic
in R3 � (X ∪ C). �
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Figure 2.7. A pillbox
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Figure 2.8. Lemma 2.1.9

To begin the construction of the horned sphere, let S1 be an unknotted
solid torus in R3. We will refer to this solid torus as the first stage in the
construction. It is obvious that π1(R3�S1) �= {1}; in fact, the loop J shown
in Figure 2.9 represents a nontrivial element of π1(R3�S1). Inside S1 identify
a pillbox C1 as indicated in Figure 2.9. Let D1 denote the complementary
3-cell in S1. Then S1 = C1 ∪D1 and C1 ∩D1 = τ1 ∪ β1, the top and bottom
of the pillbox.
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Figure 2.9. The first stage in the construction

Let T11 and T12 be the two distinguished solid tori in the pillbox C1.
Define the second stage of the construction by S2 = (S1 �C1)∪ (T11 ∪ T12).
It follows from Lemma 2.1.9 that the loop J represents a nontrivial element
of π1(R3 � S2).

S

new
pillboxes

2

Figure 2.10. The second stage in the construction

Inside T11 and T12 identify two new pillboxes C11 and C12 as indicated
in Figure 2.10. Inside each of those two pillboxes we can identify two distin-
guished solid tori. Define the third stage S3 to be the solid object obtained
from S2 by removing the two new pillboxes and replacing them with the
four solid tori just described. This construction is continued inductively,
with arrangements to ensure that the diameters of pillboxes at stage k ≥ 2
is bounded by 2−k. The process results in a nested sequence of compact
3-dimensional solids S1 ⊃ S2 ⊃ S3 ⊃ . . . . Define the Alexander 3-cell to
be the compact set B = ∩∞

i=1Si and define the Alexander horned sphere to
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be the boundary of B. Figure 2.11 shows a drawing of Alexander’s horned
sphere. Color Plates 2–4 display photographs of physical models of the first
few stages in the construction.

Figure 2.11. The Alexander horned sphere

In order to complete the proof that the horned sphere has the stated
properties, we must show two things: first, B is a topological 3-cell and
second, π1(R3�B) �= {1}. If the loop J shown in Figure 2.9 were inessential
in R3 �B, then compactness of the track of the shrinking homotopy would
provide an n such that J is inessential in R3 � Sn. But induction and
Lemma 2.1.9 show that J is essential in R3 � Sn for every n. Hence J is
essential in R3 �B.

To see that B is a 3-cell, it helps to think of it as a union rather than an
intersection. At the nth stage of the construction we have 2n−1 pillboxes,
each of which contains two distinguished solid tori. Each of these 2n solid
tori is then divided into a pillbox and a complementary 3-cell (the 3-cell
D1 at the first stage). Let Dn denote the union of the 2n−1 complementary
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3-cells at the nth stage. Inductively define B1 = D1 and Bn = Bn−1 ∪Dn.
Observe that

B = ∪∞
n=1Bn.

It is relatively simple to use the Bn to construct a homeomorphism from
a 3-cell to B. The construction is indicated in Figure 2.12, which shows the
domain of the homeomorphism. Map the large region at the bottom to D1,
map the union of the next two regions to D2, map the union of the next
four regions to D3, etc. Note that B�∪∞

n=1Bn is a Cantor set. We will call
this Cantor set the Alexander Cantor set. This completes the construction
of the Alexander horned sphere.

Figure 2.12. Construction of a homeomorphism from a 3-cell to B

Remark. It is interesting to compare the wildness of the two embeddings
of S2 that were constructed in this section. The Antoine sphere and the
Alexander horned sphere are alike in that each has one complementary do-
main whose closure is a 3-cell while the other complementary domain fails
to be simply connected. The two embeddings are also alike in that each of
them is locally flat except at the points of a Cantor set. There is, however,
a significant qualitative difference in the wildness exhibited by the two em-
beddings. In each case the Cantor set of wild points can be considered either
as a subset of the 2-sphere itself or as a subset of R3. Antoine’s necklace is
flat when considered as a subset of the Antoine sphere, but it is wild when
considered as a subset of R3. By contrast, the Alexander Cantor set is twice
flat in the sense that it is flat both as a subset of the Alexander 2-sphere
and as a subset of R3 (Exercise 2.1.3).

It is clear from the definition that local flatness is an open condition,
so the set of points at which an embedding is wild is always a closed set.
We will refer to this set as the wild set of the embedding and a point in
this set is called a wild point of the embedding. The wild set of each of the
spheres constructed in this section is a Cantor set. Later in the chapter we



52 2. Wild and Flat Embeddings

will construct wild embeddings of the 2-sphere in R3 whose wild sets are as
small as a single point or as large as the entire sphere.

High-dimensional examples are constructed by suspension.

Example 2.1.10. There exist wild cells and spheres in Sn for all n ≥ 3.

Proof. For n > 3, iteration of the suspension operator applied to the
examples constructed earlier in the section produces examples of nonflat
codimension-two and codimension-one spheres in Sn, as well as nonflat cells
in codimensions 0, 1, and 2. By Lemma 1.4.1, cells whose complements
have nontrivial fundamental groups suspend to cells with the same prop-
erty and the same codimension. As a result, the existence of wild cells and
spheres in all dimensions n ≥ 3 follows immediately from the 3-dimensional
examples. �

The wild cells constructed in Example 2.1.10 have dimensions n, n− 1,
and n−2 and are locally flat except at the points of the iterated suspension
of a Cantor set. Later in the chapter we will use other methods to construct
everywhere wild cells in Rn of all codimensions.

Historical Notes. Antoine’s necklace and the Alexander horned sphere are
named for their inventors, L. Antoine and J. W. Alexander, respectively.
The discovery of these two examples dates back to the 1920s; see (Antoine,
1921) and (Alexander, 1924b). Alexander pointed out (1924c) that An-
toine’s construction of a wild Cantor set could also be used to construct a
wild 2-sphere, as detailed in this section.

Exercises

2.1.1. Prove Lemma 2.1.3.

2.1.2. Let H be a compact, 2-dimensional ∂-manifold in R2. Show that
for each map f : H → T �A1 with f(∂H) ⊂ ∂T there exists a map
F : H → ∂T with F |∂H = f |∂H. [Hints: Show that every loop
in ∂T is null-homotopic in R3 � (Ti ∪ Ti+1 ∪ Ti+2); then show that
there exists a map f ′ : H → T � A1 such that f ′|∂H = f |∂H and
f ′(H) ∩ (E2 ∪ E4) = ∅.]

2.1.3. The Alexander Cantor set A is tame in R3. [Hint: Alter the em-
bedding of A so linear projection to the axis perpendicular to the
plane of the page in Figure 2.11 restricts to an embedding on A.]

2.1.4. Let C be a Cantor set in a connected n-manifold M . Construct an
arc α satisfying C ⊂ α ⊂ M .

2.1.5. Let C be a Cantor set in a connected n-manifold M , n > 2. Con-
struct an n-cell B satisfying C ⊂ ∂B ⊂ B ⊂ M , with C flat as a
subset of ∂B.
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2.1.6. Construct a 2-sphere in R3 such that neither complementary do-
main is simply connected.

2.1.7. Every compact, totally disconnected subset C of an n-manifold M
has a neighborhood U ⊃ C that can be embedded in Rn.

2.2. Function spaces

Several subsets of the function space C(X,Y )—the space of all continuous
functions of X to Y—will prove useful. For this discussion, one should
assume that Y admits a complete and bounded1 metric d and that C(X,Y )
is endowed with the complete metric ρ defined by

ρ(f, g) = lub{d(f(x), g(x)) | x ∈ X}.
We will be interested in the following subsets of C(X,Y ):

Surj(X,Y ) = the set of all mappings of X onto Y (the surjections);

Emb(X,Y ) = the set of all embeddings of X in Y ; and

Homeo(X,Y ) = the set of all homeomorphisms of X onto Y .

In case X and Y both are simplicial complexes, we will use CPL(X,Y ),
EmbPL(X,Y ), HomeoPL(X,Y ) and SurjPL(X,Y ) to denote the collection
of all PL mappings of the specified type. For the Main Problem to be
non-vacuous, in this notation we must have that Emb(X,Y ) is nonempty.
Correspondingly, to solve the Taming Problem, we must determine which
elements of Emb(X,Y ) are equivalent to elements of EmbPL(X,Y ), whereas
to answer the PL Unknotting Problem, we must decide which elements of
EmbPL(X,Y ) are equivalent.

Lemma 2.2.1. Let (X, dX) be a compact metric space, (Y, dY ) a complete
metric space, and C(X,Y ) the space of all continuous functions of X to Y
with metric ρ, as above. Then Surj(X,Y ) is a closed subset of C(X,Y ).
Moreover, Emb(X,Y ) and Homeo(X,Y ) are Gδ-subsets of C(X,Y ).

Proof. Showing that the complement of Surj(X,Y ) is open in C(X,Y ) is
straightforward (even when X is non-metrizable). In order to confirm that
Emb(X,Y ) is a Gδ-subset, consider the set of (1/k)-mappings

Ak = {f ∈ C(X,Y ) | diam f−1f(x) < 1/k for each x ∈ X}.
One can prove that Ak is open in the function space C(X,Y ) by producing,
for any f ∈ Ak, a corresponding η = η(f) > 0 such that dY (f(x1), f(x2)) > η
whenever x1, x2 ∈ X satisfy dX(x1, x2) ≥ 1/k. Each g ∈ C(X,Y ) with
ρ(g, f) < η/2 belongs to Ak, since then dY (g(x1), g(x2)) > 0 whenever

1Recall that if d′ is an arbitrary complete metric on Y , then the rule d(y, y′) =
min{1, d′(y, y′)} defines a complete and bounded metric on Y that is equivalent to the original in
the sense that they induce the same topology.
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dX(x1, x2) ≥ 1/k. It follows that ∩∞
k=1Ak = Emb(X,Y ) is a Gδ-set in

C(X,Y ). The Gδ-property also holds for Homeo(X,Y ) because

Homeo(X,Y ) = Surj(X,Y ) ∩ Emb(X,Y ). �

The point of Lemma 2.2.1, of course, is that these subsets all admit
complete metrics and, therefore, have the Baire property.

One should observe that ordinarily Homeo(X,Y ) fails to be closed in
C(X,Y ). Consequently, an arbitrary Cauchy sequence {hk} in Homeo(X,Y )
need not converge to a homeomorphism, although it will always converge in
C(X,Y ) to a surjection. Later we will want to know conditions under which
a Cauchy sequence of homeomorphisms does converge to a homeomorphism,
and, conveniently, one can recover appropriate conditions from the proof of
Lemma 2.2.1. Here is an all-important philosophical perspective that should
be extracted: when constructing a sequence of homeomorphisms hk : X → Y
recursively, if for each k one can impose control limiting ρ(hk+1, hk) that is
specified after h1, . . . , hk−1 and hk have all been determined, then one can
construct the entire sequence {hi} so that it converges to a homeomorphism.
The principle is embodied in the next Proposition.

Proposition 2.2.2. Let (X, dX) be a compact metric space and (Y, dY ) a
complete metric space. Suppose {hk | k = 1, 2, . . .} is a sequence of embed-
dings of X in Y and {εk | k = 0, 1, 2, . . .} is a sequence of positive numbers
such that for k > 0

(a) εk < εk−1/2;

(b) dY (hk(x1), hk(x2)) ≥ 4εk for all x1, x2 ∈ X with dX(x1, x2) ≥ 1/k,
and

(c) ρ(hk+1, hk) < εk.

Then {hk} converges in C(X,Y ) to an embedding h∞ : X → Y . Moreover,
if each hk is a homeomorphism, then so is h∞.

Proof. Exercise 2.2.1. �
Remark. Conditions (a) and (c) assure that {hk} forms a Cauchy sequence
in C(X,Y ). When (b) is added to the mix, the Conditions mimic similar
ones appearing in the proof of Lemma 2.2.1 that force all successive hk+i to
belong to the open subset Ak of C(X,Y ).

Theorem 2.2.3. If X is a compact metric space of dimension at most k,
then Emb(X,R2k+1) is a dense Gδ-subset of C(X,R2k+1).

Proof. The fact that Emb(X,R2k+1) is a Gδ-set follows from Lemma 2.2.1.
See (Munkres, 1975, Theorem 7.9.6) for a proof of density. The full theorem
may also be found on page 56 of (Hurewicz and Wallman, 1948). �
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Theorem 2.2.4. If K is a finite k-complex and M is a PL m-manifold,
2k < m, then EmbPL(K,M) is dense in C(K,M).

Proof. Munkres’s argument, which establishes density of EmbPL(K,Rm)
in C(K,Rm), can be applied in one chart at a time to give the result—see
(Rourke and Sanderson, 1972, Theorem 5.4). �

Remark. Theorem 2.2.3 is sharp. For k = 1 there are famous examples,
reproduced in Munkres, of finite 1-complexes that do not embed in R2. In
Chapter 5 we will prove the more general result that the k-skeleton of a
(2k + 2)-simplex cannot be embedded in R2k.

Exercise

2.2.1. Prove Proposition 2.2.2.

2.3. Shrinkable decompositions and the Bing shrinking
criterion

Many wild embeddings arise from decompositions: a tame embedding into
a manifold is followed by a quotient of the ambient manifold. It becomes
important then to have tools available for detecting when the quotient space
is a manifold. In this section we develop tools for that purpose.

We begin with a quick review of some basic definitions. A decomposition
G of a space X is simply a partition of X (ordinarily into closed sets). The
decomposition space (= quotient space) is the space X/G whose points are
the elements of G. There is a natural quotient map π : X → X/G and X/G
is assigned the quotient topology. (A subset U of X/G is defined to be open
if π−1(U) is open in X.) An open set V ⊂ X is said to be G-saturated if it
is the union of elements of G; thus, U ⊂ X/G is open if and only if it is the
image of a G-saturated open subset of X.

During the 1950s R. H. Bing introduced and exploited several forms
of a remarkable condition now called the Bing shrinkability criterion or
Bing shrinking criterion. It prompted a major change in decomposition
theory, shifting the focus from the decomposition space back to the source.
The need for a fresh point of view arose from the study of decomposition
maps q : S3 → Q because, even when it appeared certain that Q had to
be homeomorphic to S3, one then had no effective characterization of S3

to exploit for establishing the topological equivalence. The shrinkability
criterion aimed at realizing Q as the homeomorphic image of the known
source space, a realization achieved as the end result of manipulations in
the source on the decomposition elements.
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In its most general form, the criterion is expressed as follows: a partition
G of a space X is shrinkable if and only if the following condition is satisfied.

Shrinkability criterion. For each G-saturated open cover U of X and
each arbitrary open cover V of X there is a homeomorphism h of X onto
itself satisfying

(a) for each x ∈ X there exists U ∈ U such that x, h(x) ∈ U , and

(b) for each g ∈ G there exists V ∈ V such that h(g) ⊂ V .

In other words, the homeomorphism h must shrink elements of G to small
size, where “small” is determined by V, under an action that is limited by U .

Experience suggests that the decomposition space associated with a
shrinkable decomposition is often homeomorphic to the source space S. To
guarantee that this is true, additional restrictions, like local compactness or
complete metrizability, must be imposed on S. This section explores some
relatively coarse aspects of those restrictions. A good starting point is the
compact metric case.

Definition. Let ρ denote a complete metric on C(X,Y ), whereX and Y are
compact metric spaces. A surjection f : X → Y is a near-homeomorphism
if for each ε > 0 there exists h ∈ Homeo(X,Y ) such that ρ(h, f) < ε.

Lemma 2.3.1. Let X and Y be compact metric spaces. If f ∈ Surj(X,Y )
and h ∈ Homeo(X,X), then ρ(f, fh) = ρ(f, fh−1)

Proof. ρ(f, fh−1) = ρ(fhh−1, fh−1) = ρ(fh, f). �

Theorem 2.3.2 (Shrinkability criterion in the compact metric case). Let
X,Y be compact metric spaces and ρ a metric on C(X,Y ). Then f ∈
Surj(X,Y ) is a near-homeomorphism if and only if for each ε > 0 there
exists h ∈ Homeo(X,X) satisfying:

(a) ρ(f, fh) < ε, and

(b) diamh(f−1(y)) < ε for each y ∈ Y .

Proof. The forward implication is the easier. Fix a near-homeomorphism f
and ε > 0. By hypothesis there exists F ∈ Homeo(X,Y ) with ρ(F, f) < ε/2.
Uniform continuity of F−1 provides δ > 0 such that the image under F−1

of each δ-subset of Y has diameter less than ε. Again, there exists F ∗ ∈
Homeo(X,Y ) with ρ(F ∗, f) < min{ε/2, δ/2}. For each y ∈ Y , F ∗(f−1(y))
lies in the (δ/2)-neighborhood of y, implying that diamF ∗(f−1(y)) < δ.
Define h ∈ Homeo(X,X) as F−1F ∗. The choice of δ guarantees that h
satisfies condition (b). To see that h satisfies condition (a) as well, note
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that

ρ(f, fh) ≤ ρ(f, F ∗) + ρ(F ∗, fF−1F ∗)

< ε/2 + ρ(F (F−1F ∗), f(F−1F ∗))

= ε/2 + ρ(F, f)

< ε/2 + ε/2 = ε.

To prove the reverse implication, fix f ∈ Surj(X,Y ) satisfying shrinkabil-
ity conditions (a) and (b) and let A denote the closure in C(X,Y ) of the sub-
set consisting of all maps fh−1, where h ∈ Homeo(X,X). For n = 1, 2, . . .
define

An = {ϕ ∈ A | diamϕ−1(y) < 1/n for each y ∈ Y }.

The claim is that each An is open and dense in A. Openness follows ex-
actly as in the proof of Lemma 2.2.1. To prove denseness, we start with
ϕ ∈ A and η > 0 and produce ϕ∗ ∈ An such that ρ(ϕ, ϕ∗) < η. To do
so, first obtain fh−1, h ∈ Homeo(X,X), such that ρ(ϕ, fh−1) < η/2 and
then apply uniform continuity of h and the shrinkability criterion to obtain
another H ∈ Homeo(X,X) for which ρ(f, fH) < η/2 and diamHf−1(y)
is so small that diamhHf−1(y) < 1/n. Clearly the map ϕ∗ = fH−1h−1

satisfies diam(ϕ∗)−1(y) < 1/n for each y ∈ Y . Moreover,

ρ(ϕ, ϕ∗) = ρ(ϕ, fH−1h−1)

≤ ρ(ϕ, fh−1) + ρ(fh−1, fH−1h−1)

≤ ρ(ϕ, fh−1) + ρ(f, fH−1)

= ρ(ϕ, fh−1) + ρ(f, fH) (by Lemma 2.3.1)

< η/2 + η/2 = η.

To conclude the argument, observe that A itself is complete, being a
closed subset of the complete metric space Surj(X,Y ). By the Baire Cate-
gory Theorem, ∩nAn is dense in A, and ∩nAn ⊂ Homeo(X,Y ), as before.
Thus, f ∈ A can be approximated by homeomorphisms F ∈ ∩nAn. �

Theorem 2.3.3. Let X be a compact metric space and f ∈ Surj(X,Y ).
Then f is a near-homeomorphism if and only if, for each ε > 0, there exists
µ ∈ Surj(X,X) such that {f−1(y) | y ∈ Y } = {µ−1(x) | x ∈ X} and
ρ(f, fµ) < ε.

Proof. First assume µ ∈ Surj(X,X) satisfies {f−1(y) | y ∈ Y } = {µ−1(x) |
x ∈ X} and ρ(f, fµ) < ε < 1. Then F = fµ−1 defines a homeomorphism of
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X onto Y . Moreover, for each x ∈ X there exists x∗ ∈ µ−1(x) and

ρ(f(x), F (x)) = ρ(f(x), fµ−1(x))

= ρ(f(x), f(x∗))

= ρ(fµ(x∗), f(x∗))

≤ ρ(fµ, f) < ε.

Thus, ρ(f, F ) < ε and f is a near-homeomorphism.

Conversely, assume f is a near-homeomorphism. Given ε, 0 < ε < 1,
identify F ∈ Homeo(X,Y ) satisfying ρ(f, F ) < ε, and define µ as µ = F−1f .
Clearly then {f−1(y) | y ∈ Y } = {µ−1(x) | x ∈ X}, and

ρ(f, fµ) = ρ(f, fF−1f) = ρ(FF−1f, fF−1f) = ρ(F, f) < ε,

as required. �

Technical needs make it advantageous to impose further controls on the
shrinking process. To that end, given f ∈ Surj(X,Y ) let Nf denote the
nondegeneracy set of f , defined by

Nf =
{
x ∈ X | f−1f(x) �= {x}

}
.

Furthermore, given a closed subset C of X missing Nf , say that the induced
partition Gf = {f−1(y) | y ∈ Y } of X is shrinkable fixing C if shrinking
homeomorphisms h : X → X fulfilling the shrinkability criterion can be ob-
tained that keep each point of C fixed, and say that Gf is strongly shrinkable
if, for every closed set C ⊂ X with C ∩Nf = ∅, Gf is shrinkable fixing C.

By restricting the action on C, one can readily adapt the proof given
for Theorem 2.3.2 to establish the following, which lends itself to quick
application of shrinkability in the locally compact metric case.

Theorem 2.3.4. Suppose X is a compact metric space, f ∈ Surj(X,Y ),
and C is a closed subset of X with C∩Nf = ∅. Then f can be approximated
by homeomorphisms agreeing with f on C if and only if Gf is shrinkable
fixing C.

A mapping f : X → Y is proper if, for each compact subset C of Y ,
f−1(C) is compact. Several key results concerning near-homeomorphisms
between compact metric spaces have analogs pertaining to proper mappings
between locally compact metric spaces.

Theorem 2.3.5. Suppose (X, dX) and (Y, dY ) are locally compact metric
spaces. Then a proper, surjective mapping f : X → Y can be approximated
(in the space of maps X → Y endowed with the compact-open topology) by
homeomorphisms if for each compact subset C of Y and each ε > 0 there
exists a homeomorphism h : X → X satisfying
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(a) dY (f(x), fh(x)) < ε for each x ∈ f−1(C) ∪ h−1f−1(C), and

(b) diamhf−1(c) < ε for each c ∈ C.

Proof. Let X∗ and Y ∗ denote the one-point compactifications of X and Y ,
respectively, and f∗ : X∗ → Y ∗ the obvious extension of f . Properness of
f is equivalent to continuity of f∗. Since X and Y are locally compact and
second countable, X∗ and Y ∗ are compact metric spaces. The point is that
f can be approximated (in the compact-open topology) by homeomorphisms
if f∗ can be approximated in C(X∗, Y ∗) by homeomorphisms preserving the
points at infinity, which reduces Theorem 2.3.5 to Theorem 2.3.4. �

Historical Notes. The shrinking criterion is a profound insight of R. H.
Bing. It appeared implicitly in (Bing, 1952) and developed over time into a
general method; see (Bing, 1957a), for example, or (van Mill, 1989, §6.1).

Exercises

2.3.1. Every proper continuous mapping f : X → Y between metric
spaces is a closed mapping.

2.3.2. Let X,Y be locally compact metric (or even Hausdorff) spaces and
X∗ = X ∪ {∞}, Y ∗ = Y ∪ {∞′} their one-point compactifications.
Then f ∈ C(X,Y ) is proper if and only if the obvious extension
f∗ : X∗ → Y ∗ (where f∗(∞) = ∞′) is continuous.

2.3.3. Let C denote the Cantor set. Show that each f ∈ Surj(C,C) is a
near-homeomorphism. [Hint: any subset X ⊂ C that is both open
and closed in C is homeomorphic to C.]

2.4. Cellular sets and the Generalized Schönflies Theorem

Next we identify a crucial property possessed by the point preimages of a
near-homeomorphism of manifolds. The first application, later in the sec-
tion, will be the proof of a Generalized Schönflies Theorem. Historically this
argument was an early signal of the crucial relationship between topological
embeddings and decompositions of manifolds.

Definition. A subset X of Rn (or, more generally, of an n-manifold) is
said to be cellular if there exists a sequence {Bi} of n-cells in Rn such that
Bi+1 ⊂ IntBi and X = ∩Bi. Alternatively, a compact X ⊂ Rn is cellular if
each neighborhood U of X contains an n-cell B such that X ⊂ IntB ⊂ B ⊂
U . As yet another possibility, a compact X ⊂ Rn is cellular if and only if it
has arbitrarily small neighborhoods homeomorphic to Rn.

Cellular sets are compact and connected, but they need not be locally
connected. (Consider the sin(1/x)-continuum in R2, Figure 2.13.)
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Figure 2.13. The sin(1/x)-continuum

Definition. A map f : M → Y defined on an n-manifold M is said to be a
cellular map if f−1(y) is a nonempty cellular set in M for every y ∈ Y .

We use Cell(M,Y ) to denote the set of all cellular maps. Note that

Cell(M,Y ) ⊂ Surj(M,Y ) ⊂ C(M,Y ).

Cellular maps defined on manifolds and near-homeomorphisms are closely
linked; in fact, we will see that under various special conditions the two kinds
of maps are the same. The next theorem asserts that cellularity of point
preimages is a necessary condition for a map defined on an n-manifold to
be a near-homeomorphism. It is not, however, a sufficient condition in gen-
eral: the quotient map defining the famous dogbone space (Bing, 1957b) is
a counterexample, but that example is too specialized for treatment here.

Proposition 2.4.1. If f ∈ Surj(X,Mn) is a near-homeomorphism, Mn is
a compact n-manifold, and z ∈ Mn, then f−1(z) is cellular.

Proof. Let U be any neighborhood in X of f−1(z), find an n-cell B in Mn

satisfying z ∈ IntB ⊂ B ⊂ Mn � f(X � U), and choose ε > 0 smaller than
both d(x,Mn � B) and d(B,Mn � f(X � U)). By hypothesis there exists
F ∈ Homeo(X,Mn) with ρ(F, f) < ε/2. Then F−1(B) is an n-cell in X,
and a routine check indicates that f−1(z) ⊂ IntF−1(B) ⊂ F−1(B) ⊂ U , so
f−1(z) is cellular. �

Corollary 2.4.2. If f ∈ Surj(Mn, Y ) is a near-homeomorphism and y ∈ Y ,
then f−1(y) is cellular.

A closed subset X of a space M determines a decomposition whose
only nondegenerate element is X. We use M/X to denote the associated
decomposition space. In this special case cellularity is sufficient to imply
that the quotient map is a near-homeomorphism.
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Proposition 2.4.3. If X is a cellular subset of an n-manifold M and Q
is the quotient space M/X, then the quotient map q : M → Q is a near-
homeomorphism.

Proof. Given ε > 0, let U denote the (ε/2)-neighborhood of q(X) in Q. Ap-
ply cellularity ofX to obtain an n-cellB such thatX ⊂ IntB ⊂ B ⊂ q−1(U).
EquateB withBn, the standard n-cell; interior to B = Bn construct another
round n-cell B′ ⊃ X centered at the origin of B = Bn; radially compress
B′ very near the origin, keeping ∂B pointwise fixed, via a homeomorphism
h∗ : B → B such that diamh∗(X) < ε. By Theorem 2.3.2 or 2.3.5 the
extension of h∗ across M � B via the identity to h ∈ Homeo(M,M) shows
that q is a near-homeomorphism. �
Definition. An inverse set of a map f : X → Y is a nondegenerate point
preimage of f ; i.e., an inverse set is a set of the form f−1(y) that contains
more than one point.

Corollary 2.4.4. If U is an open subset of an n-manifold and f is a closed
map of U onto an n-cell B for which the only inverse set under f is a
cellular subset X of U , then U is an n-cell.

The topic of cellularity leads to one of the major themes of this book:
the intimate connections between decomposition theory and taming theory.
J. W. Cannon probably was the first to stress this theme explicitly, but
the connections themselves have been, or should have been, visible from the
outset, in the work dating back to the 1950s of R. H. Bing, E. E. Moise, and
M. Brown. Brown’s important Generalized Schönflies Theorem (1960), one
of the first and perhaps the most elegant flatness theorem, displays an aspect
of that connection through its dependence on decomposition methods. As
noted in §1.1, an (n− 1)-sphere Σ in Sn is flat if and only if it bounds two
n-cells. It is this observation that allows us to make the connection between
flatness of (n− 1)-spheres in Sn and certain decompositions of Sn.

Proposition 2.4.5. Let Q be an n-cell and let X be a compact subset of
IntQ. If f ∈ C(Q,Sn) has X as its only inverse set and f(IntQ) is open,
then X is cellular in Q.

Proof. Since f is one-to-one on ∂Q, f(∂Q) is an (n−1)-sphere. The inverse
set does not touch ∂Q, so the connected set f(IntQ) must be contained in
one of the two complementary domains of f(∂Q); in particular, f is not
onto. Choose a point z ∈ Sn � f(Q). Then Sn � {z} ∼= Rn, so Sn � {z} has
a radial structure centered at the point f(X).

Let U denote an open subset of IntQ containing X. Then f(U) =
f(IntQ) � f(Q � U) is an open subset of Sn. Use the radial structure
of Sn � {z} to construct a homeomorphism θ : Sn → Sn, fixed on some
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neighborhood V of f(X) and a neighborhood of z, such that θ(f(Q)) ⊂
f(U). Define F : Q → U as the identity on f−1(V ) and as f−1θf on
Q�X. Note that F is well defined, continuous, and one-to-one. Thus F is
an embedding and F (Q) is an n-cell in U that contains X in its interior. �

Proposition 2.4.6. If ψ ∈ Surj(Sn, Sn) has exactly two inverse sets, then
each of them is cellular.

Proof. Let A and B denote the inverse sets of ψ. We will show that B is cel-
lular. Let Q be an n-cell in Sn containing A∪B in its interior. Then ψ(IntQ)
is open and contains an open set U for which ψ(A) ∈ U but ψ(B) /∈ U . Use
the structure of Sn as the union of two n-cells to find θ ∈ Homeo(Sn, Sn)
such that θ(ψ(Q)) ⊂ U and θ fixes some neighborhood V of ψ(A). Define
f ∈ C(Q,Sn) as the identity on ψ−1(V ) and as ψ−1θψ on Q � A. Then
f(IntQ) is open and B is the only inverse set of f . By Proposition 2.4.5, B
is cellular. �

A similar proof establishes the following generalization.

Proposition 2.4.7. If ψ ∈ Surj(Sn, Sn) has only a finite number of inverse
sets, then f ∈ Cell(Sn, Sn).

The next theorem is the main theorem of the section.

Theorem 2.4.8 (Generalized Schönflies). If h is an embedding of Sn−1 ×
[−1, 1] in Sn, then h(Sn−1 × {0}) is flat. In particular, the closure of each
component of Sn � h(Sn−1 × {0}) is an n-cell.

Proof. Let A denote the closure of the component of Sn�h(Sn−1×{1}) that
does not contain Σ = h(Sn−1 ×{0}) and B the closure of the component of
Sn�h(Sn−1×{−1}) that does not contain Σ (see Figure 2.14). Furthermore,
let DA (respectively DB) denote the closure of that component of Sn � Σ
containing A (respectively B).

Let q : Sn−1 × [−1, 1] → Q denote the quotient mapping to the quotient
space obtained from Sn−1 × [−1, 1] by identifying the spheres Sn−1 × {±1}
to (separate) points. As Q is the suspension of Sn−1, there exists λ ∈
Homeo(Q,Sn) sending the image of Sn−1×{0} to the standard Sn−1 ⊂ Sn.
Extend the map λqh−1 from h(Sn−1×[−1, 1]) onto Sn to f ∈ Surj(Sn, Sn) by
defining f(A) = λqh−1(h(Sn−1 × {1})) and f(B) = λqh−1(h(Sn−1 × {1})).
Each of A and B is cellular (Proposition 2.4.6) and, therefore, DA and DB

are n-cells by Corollary 2.4.4. �

An (n − 1)-manifold Σ contained in an n-manifold M is said to be
bicollared if there exists an embedding h : Σ × [−1, 1] → M such that



Plate 1.  Tame sphere, Inner Mongolian black granite, 16" diameter, 
by Helaman Ferguson

Ph
ot

og
ra

ph
 b

y 
C

la
ir

e 
Fe

rg
us

on



Plate 2.  Alexander horned wild sphere, bronze, by Helaman Ferguson
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Plate 3.  Alexander horned wild sphere, patina bronze, 9" diameter,
by Helaman Ferguson
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Plate 4.  Incised torus wild sphere, polished bronze, 9" diameter, 
by Helaman Ferguson
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A

B
h(S    × {+1})n-1

h(S    × {–1})n-1

Σ

Figure 2.14. Proof of the Generalized Schönflies Theorem

h(Σ× {0}) = Σ. The Generalized Schönflies Theorem can be simply para-
phrased using this terminology: every bicollared (n − 1)-sphere in Sn is
flat.

It should be clear from the examples described earlier in the chapter that
the bicollar hypothesis is necessary in the Generalized Schönflies Theorem.
The complement of any (n − 1)-sphere embedded in Sn will always have
exactly two connected components, but the closure of these complementary
domains need not be n-cells. In each of the wild examples constructed ear-
lier, one of their complementary domains was not simply connected. Later
in the chapter we will see that the closure of a complementary domain may
fail to be an n-cell even if the complementary domain itself is homeomorphic
to the interior of an n-cell.

Application of the techniques used in the proof of the Generalized Schön-
flies Theorem leads to a simple manifold structure theorem.

Proposition 2.4.9. Any compact n-manifold that can be expressed as the
union of two open n-cells is homeomorphic to Sn.

Proof. SupposeM can be expressed as the union of open sets U and V , each
homeomorphic to Rn. Name a homeomorphism f : V → Rn, and regard
the target Rn as Sn � {p}. Then f extends to F ∈ Surj(M,Sn) by setting
F (M � V ) = {p}, and F has X = M � V as its only inverse set. Since X
is contained in the interior of some n-cell Q ⊂ U , Proposition 2.4.5 implies
thatX is cellular. Finally, by Proposition 2.4.3, F is a near-homeomorphism,
implying that M is an n-sphere. �
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To complete the coverage of the Generalized Schönflies Theorem we show
that every locally flat codimension-one sphere is bicollared. It is convenient
to work with one-sided collars.

Definition. A subset C of a space X is said to be collared in X provided
there exists an embedding λ of C × [0, 1) onto an open subset of X such
that λ(c, 0) = c for all c ∈ C, and it is said to be locally collared if it can be
covered by a collection of open sets (relative to C), each of which is collared
in X. The image of λ is called a collar on C.

Theorem 2.4.10 (Collaring). The boundary ∂M of a ∂-manifold M is
collared in M .

Proof. Form a new ∂-manifold M ′ from M ∪ (∂M × [−1, 0]) by identifying
each p ∈ ∂M with 〈p, 0〉 ∈ ∂M × [−1, 0]. It has the advantage that ∂M ′,
which corresponds to ∂M × {−1}, is clearly collared in M ′.

We treat only compact ∂M . Cover ∂M by finitely many open subsets
{Wi}, each collared in M , and let Vi denote a collar on Wi in M . Inductively
build collars on ∪k

i=1Wi; the general case quickly reduces to the case k = 2.
Find Ci ⊂ Wi, closed in W1 ∪W2, such that C1 ∪ C2 = W1 ∪W2. Name a
continuous γ1 : W1 ∪W2 → [−1, 0] with γ1(C1) = −1 and γ1(W2 �W1) = 0.
After parametrizing V1 ∪ (W1 × [−1, 0]) as W1 × [−1, 1) in the natural way,
define an embedding ψ1 : M → M ′ by declaring ψ1 | M � V1 = incl, next
specifying (for w ∈ W1)

〈w, 0〉 → 〈w, γ1(w)〉 and 〈w, t〉 → 〈w, t〉 for t ∈ [1/2, 1),

and then extending linearly to prescribe correspondences between the var-
ious intervals {w} × [0, 1/2] and {w} × [γ1(w), 1/2]. A similar construc-
tion with the constant function γ2 : W1 ∪W2 → {−1} gives an embedding
ψ2 : imageψ1 → M ′ for which the composite ψ2 ·ψ1 sends M homeomorphi-
cally onto M ∪ (W1 ∪W2)× [−1, 0]. The inverse of ψ2 · ψ1 exposes a collar
on W1 ∪W2. �

A related argument shows that a closed subset C of a metric space X is
collared in X if and only if C is locally collared in X.

Corollary 2.4.11. An (n− 1)-sphere Σ in Sn is bicollared, and hence flat,
if and only if the closure of each component of Sn � Σ is a ∂-manifold.

Corollary 2.4.12. Every compact ∂-manifold in Sn bounded by an (n−1)-
sphere is an n-cell.

The following corollary of Theorems 2.4.8 and 2.4.10 is often called the
Generalized Schönflies Theorem.

Corollary 2.4.13. Every locally flat (n− 1)-sphere in Sn is flat.
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Corollary 2.4.14. The boundary of every G-orientable ∂-manifold M is
G-orientable.

Proof. Now we know M contains a copy of ∂M×R. Corollary 0.3.6 assures
that the latter isG-orientable, and Corollary 0.3.8 does the same for ∂M . �

Corollary 2.4.15. Let M be a ∂-manifold and φt : ∂M → ∂M an isotopy
such that φ0 = Id∂M . Then, for each neighborhood U of ∂M , φt extends to
an ambient isotopy Φt of M supported in U such that Φ0 = IdM .

Proof. Produce a collar λ : ∂M×[0, 1] → M on ∂M with image in U , where
λ0 = incl∂M . Then define Φ1 : M → M as the identity on M�λ(∂M×[0, 1])
and as λ(φ1−t(x), t) for λ(x, t) ∈ λ(∂M × [0, 1]). Specification of an isotopy
Φt extending φt and running from Φ0 = IdM to Φ1 is left to the reader. �

Historical Notes. The generalized Schönflies theorem was first proved by
M. Brown (1960), who developed the elegant method of shrinking cellular
sets used in the proof. Earlier B. Mazur (1959) had proved the theorem with
an additional technical hypothesis, and eventually M. Morse (1960) showed
how to remove that condition to provide an alternative proof of the theorem.

Cellularity, as an important concept, not the term itself, appeared in the
1920s with the analysis by R. L. Moore (1925) of cellular decompositions of
2-manifolds.

Collaring Theorem 2.4.10 is also due to Brown (1960). The argument
here is taken from R. Connelly (1971), who conceived the simplification of
appending an abstract collar.

Exercises

2.4.1. The three definitions of cellular set given at the beginning of the
section are equivalent.

2.4.2. A compact set X in Sn is cellular if and only if Sn �X ∼= Rn.

2.4.3. Every arc α ⊂ Rn that is locally polyhedral modulo one point is
cellular.

2.4.4. (A one-sided Schönflies theorem.) Let Σ ⊂ Sn be an embedded
(n− 1)-sphere and let U be one of its complementary domains. If
U is a ∂-manifold, then U is an n-cell.

2.4.5. Let Σ1 and Σ2 be two disjoint (n− 1)-spheres in Sn, let U1 be the
complementary domain of Σ1 that contains Σ2, and let U2 be the
complementary domain of Σ2 that contains Σ1. Define A = U1∩U2.
Prove that A� Σi

∼= Sn−1 × [0, 1).2

2In a later chapter we will make use of the annulus theorem, which asserts that A ∼= Sn−1 ×
[0, 1].
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2.5. The Klee trick

A simple, elegant application of the Tietze Extension Theorem leads to an
unknotting result for embeddings into hyperplanes.

Theorem 2.5.1. Suppose λ : C → Rn and λ′ : C → Rm are embeddings
of a compact metric space C. Then the associated embeddings e, e′ : C →
Rn × Rm, where e(c) = 〈λ(c), 0〉 and e′(c) = 〈0, λ′(c)〉, are each equivalent
to the diagonal embedding d = λ× λ′ : C → Rn × Rm.

Proof. It suffices to show that e is equivalent to d. Since Rm has the
universal extension property (Munkres, 1975, page 216), the map λ′λ−1 :
λ(C) → Rm can be extended to a map ψ : Rn → Rm. Define Ψ : Rn×Rm →
Rn × Rm as Ψ(〈x, y〉) = 〈x, y + ψ(x)〉. Clearly Ψ is continuous; indeed, it
is a homeomorphism, for the map 〈x, y〉 → 〈x, y − ψ(x)〉 acts as its inverse.
Furthermore,

Ψe(c) = Ψ(〈λ(c), 0〉) = 〈λ(c), ψ(λ(c))〉 = 〈λ(c), λ′(c)〉 = d(c),

as required. �

Corollary 2.5.2. Any two embeddings λ, λ′ of a compact metric space into
Rn are equivalent when considered as embeddings to their images in Rn ×
{0} ⊂ Rn × Rn = R2n.

Corollary 2.5.3. Every arc in Rn = Rn × {0} ⊂ Rn+1 is flat in Rn+1.

Another corollary could be listed—that every k-cell in Rn = Rn×{0} ⊂
Rn+k is flat in Rn+k—but for k > 1 this is far from best possible. In later
chapters we shall learn that all k-cells in Rn = Rn × {0} ⊂ Rn+1 are flat in
Rn+1.

Historical Notes. Theorem 2.5.1 is due to V. Klee (1955).

Exercises

2.5.1. Show that for every arc A ⊂ Rn, A× [−1, 1] is a cellular subset of
Rn × R1.

2.5.2. Suppose X × R1 is a manifold. Show that each arc of the form
{x} × [−1, 1] is cellular in X × R1.

2.5.3. Let X be a compact subset of Rn and let f : X → Rm be con-
tinuous. Show that X × {0} and the graph of f are equivalently
embedded in Rn × Rm.

2.5.4. Any arc α ⊂ Rn, n > 3, that is a countable union of points and
segments is flat. [Hint: Find a line L such that any line parallel to
L intersects α in at most one point.]
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2.6. The product of R1 with an arc decomposition

Next we turn to the construction of everywhere wild embeddings in all di-
mensions and all codimensions. The examples of wild embeddings con-
structed in §1.4 all have relatively low codimension, and a new technique is
required to produce examples in codimensions greater than two. The idea
is this: start with an arc in Sn, suspend it to produce a 2-cell in Sn+1, and
then shrink out the arcs in the levels of the suspension to produce a new arc
in Sn+1. The necessary shrinking theorem is proved in this section and the
examples will be constructed in the following section.

Let A be an arc in Rn and q : Rn → Rn/A the quotient map. Urysohn’s
Metrization Theorem assures that Rn/A is a locally compact metric space.

Theorem 2.6.1. If A is an arc in Rn, then (Rn/A)× R1 ≈ Rn+1.

Note that (Rn/A) × R1 is the same as (Rn × R1)/{A × {t} | t ∈ R}.
We intend to prove that the decomposition of Rn × R1 into points and the
arcs A × {t}, t ∈ R1, is shrinkable. To that end, name a homeomorphism
α : [0, 1] → A, and fix ε > 0. Partition [0, 1] by points {ti} with 0 = t0 < t1 <
· · · < tm+1 = 1 such that diamα([ti−1, ti+3]) < ε for i ∈ {1, 2, . . . ,m − 2}.
Expand each α([ti−1, ti]) slightly to an open subset Ui of Rn, where

Ui ∩ Uj �= ∅ if and only if |i− j| ≤ 1, and

diam(Ui ∪ Ui+1 ∪ Ui+2 ∪ Ui+3) < ε (i = 1, 2, . . . ,m− 2).

These Ui’s will supply motion controls on h ∈ Homeo(Rn+1,Rn+1) for the
Rn factor; to maintain control in the R1 direction, we identify some intervals
and related sets: for i ∈ {1, 2, . . . ,m − 1} let Ji = [i, 2m − i] and then let
Li = Ji � Int Ji+1 (i < m− 1).

According to Corollary 2.5.3, each level arc A × {t} is flat, so any one
of them can be shrunk to small size. To support our aim of shrinking all
level arcs simultaneously, Lemma 2.6.2 shows how to combine a vertical
compression with the pinching of one level arc to achieve shrinking of the
product of Ji+1 and a subarc of A. This basic move is applied finitely often
in Lemma 2.6.3 to achieve a partial shrinking of certain blocks, and these
block moves, carefully arranged, achieve the desired shrinking of the entire
family of arcs.

Lemma 2.6.2. Let Vi be a neighborhood of α([0, ti]) in Rn. Then there
exists hi ∈ Homeo(Rn+1,Rn+1) satisfying:

(1) hi | Rn+1 � (Vi × Ji) = Id,

(2) hi | α([ti, 1])× R1 = Id, and

(3) hi(α([0, ti])× Ji+1) ⊂ Ui+1 × Ji.
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Proof. By Corollary 2.5.3, A × {i + 1} is flat. One can shrink the subarc
α([0, ti])×{i+1} near the point α(ti)×{i+1} via µ ∈ Homeo(Rn+1,Rn+1)
such that

µ | Rn+1 � (Vi × Ji) = Id,

µ | α([ti, 1])× R1 = Id, and

µ(α([0, ti])× {i+ 1}) ⊂ Ui+1 × Ji.

It follows that µ−1(Ui+1 × Int Ji) ⊃ (α([0, ti])×{i+1})∪ (α(ti)× Ji+1),
so certainly there exists δ > 0 such that

µ−1(Ui+1 × Int Ji) ⊃ α([ti − δ, ti])× Ji+1).

Now one can produce υ ∈ Homeo(Rn+1,Rn+1), which compresses points of
α([0, ti])×Ji+1 into µ−1(Ui+1× Int Ji) and changes only the R1 coordinates,
subject to the restrictions

υ | Rn+1 � (Vi × Ji) = Id,

υ | α([ti, 1])× R1 = Id, and

υ(α([0, ti])× Ji+1) ⊂ µ−1(Ui+1 × IntJi).

To produce υ more explicitly, name d ∈ (0, 1) for which

µ−1(Ui+1 × IntJi) ⊃ α([0, ti])× [i+ 1, i+ 1 + d];

use Urysohn’s Lemma to define a map s : Rn → [i + 1 + d, 2m − i − 1]
sending (Rn � Vi) ∪ α([ti, 1]) to {2m− i − 1} while sending α([0, ti � δ]) to
{i + 1 + d}. Finally, define υ ∈ Homeo(Rn+1,Rn+1) as the identity above
Rn×{2m− i} and below Rn×{i+1}, with υ(〈p, 2m− i−1〉) = 〈p, s(p)〉 for
each p ∈ Rn, and with υ acting as the obvious linear homeomorphism on all
vertical intervals {p} × Ji+1 and {p} × [2m− i− 1, 2m− i]. The effect of υ
is illustrated in Figure 2.15. Note that υ is the identity in a neighborhood
of the shaded region.

Now simply define hi as µυ. Then

hi(α([0, ti])× Ji+1) = µυ(α([0, ti])× Ji+1) ⊂ µµ−1(Ui+1 × Ji) = Ui+1 × Ji,

as desired. The other requirements of Lemma 2.6.2 are easily confirmed. �

Lemma 2.6.3. There exists λ ∈ Homeo(Rn+1,Rn+1) satisfying:

(1) λ | Rn+1 � ∪m−2
i=1 (Ui × Ji) = Id,

(2) λ(α([0, ti+1])× Li) ⊂ (Ui ∪ Ui+1)× Ji−1 for i ∈ {1, 2, . . . ,m− 2},
(3) λ(α([0, tm])× Jm−1) ⊂ (Um−1 ∪ Um)× Jm−2 ⊂ (Um−1 ∪ Um)× J1.

Proof. Here λ will arise as a composition h1h2 · · ·hm−2 of homeomorphisms
from Lemma 2.6.2. To get started, obtain h1 from 2.6.2 for the neighborhood
V1 = U1 of α([0, t1]).
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Figure 2.15. The homeomorphism υ

Since h1 acts as the identity on α([t1, t2])×R1 and carries α([0, t1])×J2
into U2×J1, there exists a neighborhood V2 ⊂ U1∪U2 of α([0, t2]) such that
h1(V2 × J2) ⊂ U2 × J1. Apply Lemma 2.6.2 again with this neighborhood
V2 to obtain h2.

The iterative step repeats the pattern of the second step. After hi−1 has
been obtained, subject to the conditions

hi−1 | α([ti−1, 1])× Ji−1 = Id and

hi−1(α([0, ti−1])× Ji) ⊂ Ui × Ji−1,

determine a neighborhood Vi of α([0, ti]) in U1∪ · · ·∪Ui such that hi−1(Vi×
Ji) ⊂ Ui × Ji−1 and then apply Lemma 2.6.2 with this neighborhood Vi to
obtain hi.

The composition λ = h1h2 · · ·hm−2 is shown in Figure 2.16. In a neigh-
borhood of the shaded region, λ is the identity.

It should be obvious from the choices of Vi ⊂ U1∪· · ·∪Ui and conclusion
(1) of Lemma 2.6.2 that λ = h1h2 . . . hm−2 satisfies conclusion (1) above. In
analyzing conclusions (2) and (3), it is useful to keep in mind that U1∪· · ·∪Ui

and Ui+2 ∪ · · · ∪ Um+1 are disjoint. Due to the choices of Vi, conclusion (1)
of Lemma 2.6.2 then yields, for j ≥ i,

hi | (Uj+2 ∪ · · · ∪ Um+1)× R1 = Id and

hi | Rn × (R1 � Jj) = Id.
(*)

Since Li ⊂ R1 � Int Ji+1, the latter implies

(**) hj | Rn × Li = Id whenever i < j.
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To see why conclusion (3) holds, note that

λ(α([0, tm−2])× Jm−1) = h1h2 · · ·hm−2(α([0, tm−2])× Jm−1)

⊂ h1h2 · · ·hm−3(Um−1 × Jm−2)

⊂ Um−1 × Jm−2

by (3) of Lemma 2.6.2 and (*). In addition, by conclusion (2) of the Lemma,

λ(α([tm−2, tm])× Jm−1) = α([tm−2, tm])× Jm−1 ⊂ (Um−1 ∪ Um)× Jm−1,

and these two inclusions quickly combine to yield (3).

To verify conclusion (2), first observe that hi(α([0, ti]) × Ji) ⊂ hi(Vi ×
Ji) = Vi × Ji by conclusion (1) of Lemma 2.6.2. Then

λ(α([0, ti+1])× Li) = h1h2 · · ·hm−2(α([0, ti+1])× Li)

= h1h2 · · ·hi(α([0, ti+1])× Li) by (**)

⊂ h1h2 · · ·hi((α([0, ti])× Li) ∪ (α([ti, ti+1])× Ji))

⊂ h1h2 · · ·hi(α([0, ti])× Ji) ∪ (Ui+1 × Ji)

by (2) of Lemma 2.6.2

⊂ h1h2 · · ·hi−1(Vi × Ji) ∪ (Ui+1 × Ji) as above

⊂ h1h2 · · ·hi−2(Ui × Ji−1) ∪ (Ui+1 × Ji) by choice of Vi

= (Ui × Ji−1) ∪ (Ui+1 × Ji) by (*)

⊂ (Ui ∪ Ui+1)× Ji−1.

Why the conclusion also holds for i = 1 should be evident to anyone who
understands the preceding lines. �
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Proof of Theorem 2.6.1. Let q′ : Rn+1 = Rn × R1 → (Rn/A) × R1 be
the map q × Id. Our intention is to show that q′ is a near homeomorphism,
which will follow from Theorem 2.3.5 almost instantly, once we construct
h ∈ Homeo(Rn+1,Rn+1) satisfying

h | (Rn �N(A; ε))× R1 = Id,

h(Rn × t) ⊂ Rn × [t− ε, t+ ε], and

diamh(A× t) < 3ε for each t ∈ R1.

This will be accomplished by exploiting the structures named for Lem-
mas 2.6.2 and 2.6.3, carefully pieced together.

Formally, let k range over the integers and set

Dk = ∪m−2
i=1 Ui × [2mk + i, 2mk + 2m− i] and

D′
k = ∪m−2

i=1 Um+2−i × [2mk +m+ i, 2mk + 3m− i].

In addition, let D = ∪kDk and D′ = ∪kD
′
k; D and D′ are mirror im-

ages of each other, and act as supports for homeomorphisms obtained from
Lemma 2.6.3. A key feature is D ∩ D′ = ∅. For details in a particular
instance, consider 〈x, t〉 ∈ D0, where t ≤ m. Choose the least integer i such
that x ∈ Ui; then t ≥ i, by definition of D0. The only possible D′

k that
might contain 〈x, t〉 is D′

−1. If that were the case, note that x ∈ Um+2−j for
j = m+ 2− i, so x ∈ Um+2−j can hold only for j ∈ {m+ 2− i,m+ 1− i}.
In either situation, the definition of D′

−1 forces

t ≤ m− (m+ 1− i) = i− 1 < i,

a contradiction.

For k ∈ Z and i ∈ {1, 2, . . . ,m− 1}, define

J ′
i = ∪k[2mk + i, 2mk + 2m− i]

P ′
i = ∪k[2mk +m+ i, 2mk + 3m− i]

and for i < m− 1 let L′
i = J ′

i � IntJ ′
i+1 and Q′

i = P ′
i � IntP ′

i+1. According
to Lemma 2.6.3, there exist a homeomorphism λR for the J ′

i and L′
i and

another homeomorphism λL for the P ′
i and Q′

i, each involving translates of
the Lemma 2.6.3 homeomorphism λ to the appropriate levels, satisfying

(1) λR | Rn+1 �D = Id and λL | Rn+1 �D′ = Id;

(2) λR(α([0, ti+1])×L′
i) ⊂ (Ui∪Ui+1)×J ′

i and λL(α([tm−i, 1])×Q′
i) ⊂

(Um−i+1 ∪ Um−i+2)× P ′
i ;

(3) λR(α([0, tm]) × J ′
m−1) ⊂ (Um−1 ∪ Um) × J ′

1 and λL(α([t1, 1]) ×
P ′
m−1) ⊂ (U2 ∪ U3)× P ′

1.
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Now define h as λRλL. The resultant shrinking depends on this explicit
juxtaposition of left and right stacks. For example, if t ∈ IntL′

i then t ∈ Q′
j ,

where j = m− 1− i. Thus, by (2),

h(A× t) ⊂ λRλL(α([0, ti+1])× L′
i) ∪ λRλL(α([ti+1, 1])×Q′

j)

⊂ λR(α([0, ti+1])× L′
i) ∪ λR((Ui+3 ∪ Um−i+3)× P ′

i )

⊂ [(Ui ∪ Ui+1)× R1] ∪ [(Ui+2 ∪ Ui+3)× R1].

Of course, neither λR nor λL moves points vertically more than 2m, and
due to the disjointness of D and D′, this gives both

h(A× t) ⊂ (Ui ∪ Ui+1 ∪ Ui+2 ∪ Ui+3)× [t− 2m, t+ 2m] and

h(Rn × t) ⊂ Rn × [t− 2m, t+ 2m].
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Recall that initially the Ui’s were chosen so that the diameters of any
four consecutive ones were small. To complete this proof, rescale the R1-
coordinate with 2m < ε. �

Corollary 2.6.4. For each arc A in Sn, the suspension of the quotient space
Sn/A is homeomorphic to Sn+1.

Historical Notes. Theorem 2.6.1 is due to J. J. Andrews and M. L. Curtis
(1962). The dogbone space constructed by R. H. Bing (1959a) was the first
example of a non-manifold decomposition space X such that X × R1 is a
manifold.

2.7. Everywhere wild cells and spheres

Straightforward application of the product arc-shrinking theorem from §2.6
leads to embeddings that are wild at every point. An embedding of a man-
ifold or ∂-manifold that is not locally flat at any point is called everywhere
wild.

Example 2.7.1. For each n ≥ 3 and 0 < k < n, Sn contains an everywhere
wild k-cell.

Lemma 2.7.2. For each n ≥ 3, Sn contains a wild arc α for which Sn � α
fails to be simply connected.

Proof. Such an arc in S3 was described in Example 2.1.8. Given an arc A in
Sn−1, n > 3, with nonsimply connected complement, Corollary 2.6.4 allows
us to identify Sn with the suspension of Sn−1/A. Let α be the arc in Sn

that corresponds to the suspension of the special point in the quotient space
Sn−1/A. Then Sn � α is topologically equivalent to (Sn−1 � A) × (−1, 1),
which is not simply connected. �

The arcs α provided in the preceding lemma are everywhere wild, start-
ing in dimension four. In order to prove this, we need pinpoint information
about the way in which the complement fails to be simply connected: we
need to know that the complement of α contains loops that are very close
to α but essential in the complement, and the following condition—known
as the “cellularity criterion” because it implies cellularity for certain subsets
of manifolds, a result to be proved in the next chapter—paves the way. The
cellularity criterion is a global version of the 1-LCC condition.

Definition. A compact set X in an m-manifold M is said to satisfy the
cellularity criterion if for every open neighborhood U of X in M there exists
an open set V such that X ⊂ V ⊂ U and every map ∂I2 → V �X extends
to a map I2 → U �X.
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Lemma 2.7.3. The arc α in Lemma 2.7.2 fails to satisfy the cellularity
criterion.

Proof. Start with n = 3; let A be the wild arc in Example 2.1.8, which
contains a copy of Antoine’s necklace. The simple closed curve J shown
in Figure 2.6 is essential in the complement of A and there are related
curves just like J that link later stages of the construction. Hence every
neighborhood V of A contains a simple closed curve that is essential in
S3 �A.

We now show that if A is an arc in Sn−1 such that Sn−1 � A is non-
simply connected, then the arc α constructed from it (as in the proof of
Lemma 2.7.2) fails to satisfy the cellularity criterion. Suppose there ex-
ists a neighborhood of α such that every loop in V � α is null-homotopic
in Sn � α. A loop in Sn � α can be pushed up the product structure on
Sn � α ∼= (Sn−1 � A) × (−1, 1) into V and so the existence of V would
mean that Sn � α is simply connected. This contradicts the conclusion of
Lemma 2.7.2. �

The proof of the following lemma is left as an exercise.

Lemma 2.7.4. A compact set X ⊂ Sn satisfies the cellularity criterion in
Sn if and only if the arc corresponding to the suspension of X in Susp(Sn/X)
is 1-LCC at each interior point.

Proof of Example 2.7.1. Consider, first, the case k = 1 and n ≥ 4. By
Lemma 2.7.4, the arcs constructed in Lemmas 2.7.2 and 2.7.3 fail to be 1-
LCC at all interior points. Proposition 1.3.1 and Exercise 2.7.1 imply that
these arcs are everywhere wild.

Now assume that k > 1 and n − k > 2. By the previous paragraph,
there is an arc in Sn−k+1 that fails to be 1-LCC at each interior point. The
(k− 1)-fold suspension is a k-cell in Sn that is everywhere wild because, by
Lemma 1.4.1, it fails to be 1-LCC at each interior point.

Finally, consider the cases k = n − 2 and k = n − 1. Example 2.1.10
provides wild cells in those codimensions, but they are not everywhere wild,
since the basic examples of wild arcs and disks in R3 on which they are
based are not everywhere wild. To address this issue, in the next section we
will produce examples of everywhere wild arcs and disks in S3. Once those
examples are in place, multiple suspension to Sn yields everywhere wild cells
of dimensions n− 2 and n− 1. �

Historical Notes. The idea of exploiting the Andrews-Curtis Theorem
to produce everywhere wild embeddings is due to Brown (1967). Earlier,
W. A. Blankinship (1951) devised wild embeddings in all dimensions and
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codimensions, based on his construction of wild Cantor sets in Rn, n > 3;
his Cantor set construction will be set forth in §4.7.

Exercises

2.7.1. Let C ⊂ M be a k-cell topologically embedded in an n-manifold.
If C is nonlocally flat at every interior point, then C is nonlocally
flat at every boundary point as well.

2.7.2. Prove Lemma 2.7.4.

2.7.3. Every cellular subset of an n-manifold (n > 2) satisfies the cellu-
larity criterion.

2.7.4. If α ⊂ Sn is an arc that satisfies the cellularity criterion, then Sn�α
is contractible.

2.8. Miscellaneous examples of wild embeddings

This section offers more examples of wild embeddings in R3. These new
examples exhibit wildness that is qualitatively different from that of the
examples presented earlier in the chapter. The two original examples of
wildly embedded 2-spheres in R3, the Antoine sphere and the Alexander
horned sphere, share one property: each of them contains a Cantor set such
that the embedding is wild at every point of the Cantor set and is locally
flat at all other points. The examples in the section show that a variety of
wild sets are possible; the first examples to be presented are wild at just
one point while the later examples are wild at positive-dimensional sets.
In particular, among the later ones are some everywhere wild codimension-
one and -two cells in R3, which fill a gap in the proof of Example 2.7.1.
The section contains an outline of the proofs that the examples have the
properties indicated, but many details are left as exercises.

2.8.1. The Fox-Artin arc. The first example is an arc whose wildness
is minimal in the sense that the arc is locally flat at every point except
one and the complement of the arc is the same as that of a flat arc. The
construction begins with the basic building block shown in Figure 2.18. The
building block consists of three arcs A, B, and C embedded in a 3-cell as
indicted in the figure.

Put an infinite sequence of these building blocks together in such a way
that they converge to a point p. Include the point p and delete the first
copy of B to form the arc α pictured in Figure 2.19. This arc, known as the
Fox-Artin arc, is wild because it fails to be locally flat at the endpoint p.

The arc α is obviously locally flat and PL at every point other than p.
In order to see that α is not locally flat at p one must prove that α is not
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Figure 2.18. The basic Fox-Artin building block

p

Figure 2.19. The Fox-Artin arc

1-LCC at p. (A tame arc is 1-LCC at each of its endpoints.) The Fox-Artin
arc is not 1-LCC at p because for any small neighborhood U of p there exist
loops in U �α that cannot be shrunk to a point in a small subset of S3−α;
in fact, they cannot be shrunk to a point without going all the way over the
other end of α. A proof is sketched in the exercise below.

Notice that α is cellular (Exercise 2.4.3) and thus the complement of α
in S3 is an open 3-cell. In particular, S3 � α is simply connected, which
means that the wildness of the Fox-Artin arc is more subtle than that of
the wild arcs studied earlier, which were known to be wild because their
complements were not simply connected. One can obtain wild but cellular
embeddings in higher dimensions by suspending the Fox-Artin arc.

This example is unique to S3 in the sense that three is the only ambient
dimension in which an arc can fail to be locally flat at just a single point
(Exercise 2.5.4).

Exercise 2.8.1. This exercise contains an outline of the proof that α is not
1-LCC at p. The problem is to fill in the details in the argument. First we
need some notation. Choose a sequence D1, D2, D3, . . . of 3-cells such that
Di+1 ⊂ IntDi for each i, ∩∞

i=1Di = {p}, and Di intersects α as indicated in
Figure 2.20. Let A1, B1, and C1 be the arcs in D1 � IntD2 that correspond
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to A,B, and C, respectively, and let E1 be a flat disk in D1 � IntD2 such
that C1 ⊂ ∂E1 and ∂E1 � C1 ⊂ ∂D2 (Figure 2.20).

p
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Figure 2.20. A sequence of 3-cells and 2-cells

(a) Let q1, r1, and s1 be the three points at which α intersects ∂D1 and
view D1 as the cone on its boundary. Show that

D1 � (A1 ∪D2 ∪ E1 ∪B1) ∼= D1 � Cone({q1, r1, s1})
via a homeomorphism that is the identity on the boundary.

(b) Use an argument like that in the proof of Lemma 2.1.4 to prove that
the inclusion induced homomorphism π1(D1�(A1∪D2∪E1∪B1)) →
π1(D1 � (A1 ∪D2 ∪ C1 ∪B1)) is one-to-one.

(c) Combine the preceding results to show that π1(∂D1�{q1, r1, s1}) →
π1(D1 � (α ∪D2)) is one-to-one.

(d) Use an argument like that in the proof of Theorem 0.11.5 to show
that π1(∂D1 � {q1, r1, s1}) → π1(D1 � α) is one-to-one. Conclude,
in particular, that the loop J shown in Figure 2.20 is essential in
D1 � α.

(e) Observe that each Di contains a loop that is homotopic to J in
D1�α and use this observation to prove that the inclusion induced
homomorphism π1(Di � α) → π1(D1 � α) is nontrivial for every i.

(f) Prove that α is not 1-LCC at p.

2.8.2. Double Fox-Artin arcs. Variations on the Fox-Artin arc can have
interesting properties. Two that are worthy of mention are the “double
Fox-Artin arcs” shown in Figures 2.21 and 2.22.

The double Fox-Artin arc in Figure 2.21 is constructed from a doubly
infinite sequence of copies of the basic Fox-Artin building block. It is a wild
arc because it fails to be 1-LCC at both endpoints. Its complement is not
simply connected.
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Figure 2.21. A double Fox-Artin arc with nonsimply connected complement

Figure 2.22. A double Fox-Artin arc with simply connected complement

The double Fox-Artin arc shown in Figure 2.22 is the wedge of two copies
of α. The unusual feature of this second double Fox-Artin arc is that its
complement is simply connected but is not an open 3-cell. In other words,
the complement of this arc is simply connected but the arc is not cellular,
because it does not satisfy the cellularity criterion. Notice that the only
difference between the two arcs is that one of the two crossings in the center
of Figure 2.21 has been changed to produce Figure 2.22.

Exercise 2.8.2. Use the techniques of Exercise 2.8.1 to prove the following.

(a) The complement of the arc in Figure 2.21 is not simply connected.

(b) The complement of the arc in Figure 2.22 is simply connected.

(c) The arc in Figure 2.22 does not satisfy the cellularity criterion.

2.8.3. Fox-Artin spheres. The Fox-Artin arc can be used to construct
wild embeddings of spheres in S3. To do so, start with the round 1-sphere or
2-sphere and add a feeler that follows the Fox-Artin arc. This construction
is indicated in Figures 2.23 and 2.24. These embeddings are examples of
what are called weakly flat spheres. An embedding e : Sk → Sn is weakly
flat if Sn� e(Sk) ∼= Sn�Sk. Neither example is flat since each contains the
nonflat arc α. In particular, neither sphere is 1-LCC at the endpoint of the
feeler.
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Figure 2.23. The Fox-Artin 1-sphere

Figure 2.24. The Fox-Artin 2-sphere

Exercise 2.8.3.

(a) The Fox-Artin 1-sphere is not 1-alg at the exceptional point.

(b) The Fox-Artin 2-sphere is not 1-LCC at the exceptional point.

(c) The Fox-Artin 1-sphere is weakly flat.

(d) The Fox-Artin 2-sphere is weakly flat.

2.8.4. Mildly wild arcs. Not every arc that is formed by concatenating
an infinite converging sequence of polygonal blocks is wild. In fact, the arc
shown in Figure 2.25 is a tame arc.

Figure 2.25. A tame arc

Interestingly, if two such arcs are joined end-to-end, the resulting arc is
wild. An arc in S3 is said to be mildly wild if it is wild but can be written
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as the union of two flat arcs. Figure 2.26 shows an example of a mildly wild
arc.

Figure 2.26. A mildly wild arc

Exercise 2.8.4.

(a) Prove that the arc in Figure 2.25 is flat. [Hint: Find a nested
sequence B1 ⊃ B2 ⊃ . . . of 3-cells such that ∩∞

i=1Bi is the endpoint
of the arc and each Bi intersects the arc in a single point. For
each i there is an ambient homeomorphism that is the identity on
(S3 � IntBi) ∪ Bi+1 and that straightens out α ∩ (Bi � IntBi+1).
The flattening homeomorphism is a limit of a composition of such
homeomorphisms.]

(b) Prove that the arc in Figure 2.26 is not flat. [Hint: Use the Seifert-
van Kampen Theorem to prove that the arc is not 1-alg at the
wedge point.]

2.8.5. The Bing sling. The Bing sling is an example of an everywhere
wild 1-sphere Σ ⊂ R3. Moreover, any arc in Σ is an everywhere wild 1-cell.

The construction begins with the basic building block shown in Fig-
ure 2.27. The building block consists of three arcs embedded in a cylindrical
3-cell; it is nearly identical to the one used in the Fox-Artin construction,
but for historical accuracy we use this variation.

Figure 2.27. The basic building block for the Bing sling

The Bing sling arises as the intersection of a nested sequence of solid tori
T1 ⊃ T2 ⊃ · · · . The first solid torus T1 is formed from six copies of the basic
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building block fit together end-to-end in a cycle as shown in Figure 2.28.
The core of T1 is a circle J1. Inside T1 there is a distinguished simple closed
curve J2 formed by the union of the subarcs of the six blocks that constitute
T1. This simple closed curve is the center line of a second solid torus, T2,
which is composed of many copies of the basic building block placed end-
to-end along J2. Just a few of those blocks are indicated in Figure 2.28.
The subarcs of the blocks that make up T2 combine to form a simple closed
curve J3, which is the centerline of a third solid torus T3. The construction
is continued recursively and Σ is defined by

Σ = ∩∞
i=1Ti.

T
1

J
3

J
2

T
2

Figure 2.28. The Bing sling

At first glance it might appear that the intersection of the solid tori will
be a complicated continuum, but it is, in fact, a simple closed curve. To
verify this, observe that there is a homeomorphism hi from Ji to Ji+1, and
hi can be kept as close to the identity as we wish by inserting multiple copies
of the basic building block into the ith stage of the construction. Here hi
can be specified so as to send the portion of Ji in a block B from Ti into
Ji+1∩ (B∪B′), where B′ is one of the two blocks from Ti touching B. Thus
Proposition 2.2.2 shows that we can perform the construction in such a way
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that the composition of these homeomorphisms converges to an embedding
e : J1 → R3. It is not hard to see that e(J1) = Σ (Exercise 2.8.5(a)).

To prove that Σ is everywhere wild, we show that Σ fails to be 1-alg at
every point. Fix a point x ∈ Σ and a neighborhood U of x. Assume that U is
contained in the union of two of the building blocks in T1 so that homotopies
in U cannot go all the way around T1. For any smaller neighborhood V of x
there is an index i and one of the building blocks B0 that make up Ti such
that x ∈ B0 ⊂ V . Consider the loop K shown in Figure 2.29. It is clear
that K is null-homologous in B0 � Ji+1, as it bounds an orientable surface
there; thus, K represents a commutator in π1(V � Σ). If Σ were 1-alg at
x, we would be able to choose V small enough so that K is inessential in
U �Σ. In the next two paragraphs we will show that, to the contrary, K is
essential in U � Σ, so no such V exists and we can conclude that Σ is not
1-alg at x.

J
i+1

B
-2

B
-1

B
0

B
1

B
2

K

E

Figure 2.29. The loop K is linked around Ji+1

Suppose an embedding S1 → K extends to a map g : B2 → U �Σ. The
choice of U implies that g(B2) will miss at least one of the blocks in Ti, so we
can find a sequence of consecutive blocks B−n, . . . , Bn such that g(B2)∩Ti is
contained in the 3-cell A = B−n∪· · ·∪Bn and that g(B2) does not intersect
either end of A (see Figure 2.29). Put g in general position relative to ∂Ti.
Then g−1(∂Ti) will consist of a finite number of disjoint simple closed curves.
Consider one such simple closed curve C that is innermost in the sense that
no other curve is in its interior relative to B2. The interior of C (in B2)
is mapped by g either to R3 � Ji or to Ji � Σ. In either case, it follows
that g(C) does not link Ji homologically and thus is an inessential curve on
the annulus ∂A ∩ ∂Ti. Hence we can modify g so that it maps the interior
of C into ∂A ∩ ∂Ti and then push the image to one side to eliminate C
from g(B2) ∩ ∂Ti. This process can be continued inductively and results in
a new map g with the property that g(B2) ∩ ∂Ti = ∅, which means that
g(B2) ⊂ A� Σ.
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The previous paragraph shows that if K is inessential in U�Σ, thenK is
inessential in A�Σ. In this paragraph we show that K is essential in A�Σ,
which completes the proof that Σ is not 1-alg at x. An argument like that
in the construction of Antoine’s necklace (see Exercise 2.8.5(b)) establishes
that K is essential in A � Ji+1. Assume that S1 → K extends to a map
g : B2 → A � Σ. Put g in general position with respect to ∂Ti+1. Then
g−1(∂Ti+1) will consist of a finite number of simple closed curves. Since
the images of these curves do not go all the way around Ti+1, each of them
represents some multiple of the meridian of Ti+1. Let C be one of the curves.
If g(C) is inessential on ∂Ti+1, then g can be modified (as in the previous
paragraph) to eliminate that curve of intersection. Thus there must be at
least one of these curves C whose image is a nonzero multiple of the meridian
of Ti+1. But then g(C) homologically links Σ and so g(B2) ∩ Σ �= ∅.

Exercise 2.8.5.

(a) Prove that the Bing sling Σ is a simple closed curve by verifying that
the embedding e : J1 → R3 described above satisfies e(J1) = Σ.

(b) Prove that the loop K shown in Figure 2.29 is essential in A�Ji+1,
where A = B−n ∪ · · · ∪Bn. [Hint: First observe that K is essential
in B0 � Ji+1 by results established earlier in the chapter. Then
consider the inclusion of K into (B0∪B1)�Ji+1. Use an argument
like that in the proof of Lemma 2.1.4 to show that if K is inessential
in (B0 ∪ B1) � Ji+1 then K is inessential in (B0 ∪ B1) � (Ji+1 ∪
E), where E is the disk shown in Figure 2.29. Check that the
embedding of Ji+1 in (B0 ∪B1)�E is the same as the embedding
of Ji+1 in B0. Next add in B−1 and proceed inductively.]

(c) Let f : S1 → R3 � Σ be a map such that f(S1) homologically
links Σ and let F : B2 → R3 be an extension of f . Prove that
F−1(Σ) contains a Cantor set. Use this fact to give an alternative
proof that Σ is everywhere wild.

(d) Prove that Σ is homogeneously embedded; i.e., for every pair of
points x, y ∈ Σ there exists a homeomorphism h : R3 → R3 such
that h(Σ) = Σ and h(x) = y.

2.8.6. Bing’s hooked rug. Bing’s hooked rug is an example of an every-
where wild 2-sphere in R3. The wild sets of the Alexander and Antoine
spheres are Cantor sets while the wildness of the Fox-Artin sphere is con-
centrated at a single point. By contrast, the wildness of the hooked rug is
totally diffused: the embedding is wild at every point. Nevertheless, each
arc in the 2-sphere is tame. The complement of Bing’s hooked rug is not
simply connected. To the contrary, near any point of the 2-sphere one can
find a loop that is essential in the complement.
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Like the previous examples, the construction of Bing’s hooked rug is
described in two different ways. The hooked rug can be understood as the
boundary of the intersection of a nested sequence of compact ∂-manifolds;
this view is useful in proving that the example fails to be 1-LCC (and is
therefore wild). The example can also be realized as the limit of a sequence
of embeddings of the 2-sphere; this view is useful in proving that it is a
topologically embedded sphere.

The construction begins with a round 3-cell F0. Cover the surface of F0

with a sequence E1, E2, . . . , En of disks that have disjoint interiors and such
that Ei ∩ Ei+1 is an arc in the boundary of each. (Count cyclically so that
En∩E1 is also an edge of each.) Attach to each Ei a tube with a solid torus
at the end. The union of the tube and solid torus is called an eyebolt—see
Figure 2.30.

Ei

eyebolt
plug

Figure 2.30. A disk Ei with an eyebolt attached

Hook the eyebolt on Ei to the base of the eyebolt on Ei+1 and the
eyebolt on En to the base of that on E1 in a cyclic pattern as indicated in
Figure 2.31. The original ball F0 together with the union of all the eyebolts
forms a solid 3-dimensional object H1. Note that H1 consists of a 3-cell with
eyebolts attached, so H1 is a cube with handles.3 Shrink F0 slightly before
attaching the eyebolts so that H1 is contained in the interior of F0.

A plug for an eyebolt is a copy of B2× (0, 1) that cuts off the eyebolt as
shown in Figure 2.30. Remove a plug from each of the eyebolts in H1; the
resulting solid is a 3-cell F1. The 2-sphere ∂F1 is the first approximation
to Bing’s hooked rug. There is an obvious homeomorphism F0 → F1. The
distance any point is moved by this homeomorphism is at most twice the
maximum diameter of the disks E1, E2, . . . , En, so we can control the size
of this homeomorphism by controlling the number and size of the disks Ei.

3A cube with handles is the regular neighborhood in R3 of a 1-dimensional polyhedron.
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Figure 2.31. H1, the first stage in the hooked rug construction

The surface of F1 is covered by disks E′
1, E

′
2, . . . , E

′
n that have the same

boundaries as the original disks E1, E2, . . . , En. Cover each E′
i with a se-

quence of 15 (or more) disks and erect a new, smaller eyebolt on each of the
disks. Hook the eyebolts on E′

i together in a circular pattern as indicated in
Figure 2.32. Define H2 to be the union of F1 and all the second-stage eye-
bolts. Then H2 is another cube with handles. We again shrink F1 slightly
before attaching the second-stage eyebolts so that H2 ⊂ IntH1.

Figures 2.31 and 2.32 provide drawings of stage one and stage two, re-
spectively, of the hooked rug construction; Color Plates 5–6 display pho-
tographs of physical models of those same stages.

Remove plugs from each of the second-stage eyebolts to form a 3-cell F2.
Note that again there is a homeomorphism F1 → F2 and that the distance
any point is moved by this homeomorphism is at most twice the maximum
diameter of any of the disks used at the second stage. Thus we can make
the homeomorphism F1 → F2 close to the identity by simply subdividing
into more second stage disks and making the corresponding eyebolts small.

The construction is continued inductively to produce a nested sequence
H1 ⊃ H2 ⊃ H3 ⊃ . . . of cubes with handles and a sequence F0, F1, F2, . . .
of 3-cells. Define

H = ∩∞
i=1Hi

and define Bing’s hooked rug to be the boundary of H. We claim that H is
a topological 3-cell and that ∂H is an everywhere wild 2-sphere.
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Figure 2.32. The second stage in the hooked rug construction

To prove that H is a 3-cell, we observe that the construction can be done
in such a way that the homeomorphism Fi−1 → Fi is close to the identity.
While Proposition 2.2.2 does not quite apply, the same kind of proof as was
used for the Alexander horned sphere shows that the composition of these
homeomorphisms converges to an embedding h : F0 → R3. It is not difficult
to see that h maps F0 onto H (Exercise 2.8.6 (a)).

We prove that ∂H is everywhere wild by showing that H fails to be
1-LCC at each point of ∂H. Specifically, we prove that a loop in the com-
plement of H that circles the base of one of the eyebolts at stage i is essential
in the complement at each subsequent stage and therefore will be essential
in the complement of the intersection H. The small eyebolts at a later stage
are spread densely over the sphere, so there is such a loop near every point
on the limiting sphere. Thus H fails to be 1-LCC at any point of ∂H.

In order to prove the claims in the preceding paragraph we break down
the transition from Hi−1 to Hi into three steps. Start with Hi−1. Remove
a plug from each of the eyebolts in Hi−1 and replace it with a pillbox (see
definition on page 47). Call the new ∂-manifold H ′

i. Note that H ′
i is a 3-

cell with two solid handles attached for each eyebolt in Hi−1. Now shrink
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Hi-1 Hi

H

K

i Hi

′

′′

Figure 2.33. The three-step transition from Hi−1 to Hi

H ′
i slightly and add additional simple unlinked handles until there is one

handle for each eyebolt in Hi. These handles can be isotoped to resemble
the eyebolts that we want to add at this stage. More specifically, each
of them can be deformed to look like a tube with a bulb at the end and
with the base of one handle going straight through the bulb of the previous
handle. The ∂-manifold formed in this way is called H ′′

i and it is illustrated
in Figure 2.33. Finally, convert the handles to eyebolts by drilling a tunnel
through the bulb in each handle to create a hole for the next handle to pass
through. The resulting ∂-manifold is Hi.

Repeated application of the following lemma shows that π1(R3�H ′′
i ) →

π1(R3 �Hi) is one-to-one.

Lemma 2.8.1. Let C be a 3-cell in R3, let B1, B2, and B3 be three disjoint
disks on ∂C, let T be a solid torus in C such that T ∩ ∂C = B1, and let
S be a 3-cell in C such that S ∩ ∂C = B1 ∪ B2. Assume T and S are
linked as indicated in Figure 2.34. Let X be a closed subset of R3 such that
X ∩C = B1 ∪B2 ∪B3. If π1(∂C � (B1 ∪B2 ∪B3)) → π1(R3 � (X ∪ IntC))
is one-to-one, then π1(R3� (X ∪C)) → π1(R3� (X ∪S ∪T )) is one-to-one.
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Figure 2.34. Detail of H ′′
i → Hi

Proof. Exercise 2.8.6 (b). �

It is clear that a loop K that goes around one of the small handles of
H ′′

i is essential in R3 � H ′′
i (see Figure 2.33). By Lemma 2.8.1, K is also

essential in R3 �Hi. But then K is essential in R3 �H ′
i+1 by Lemma 2.1.9.

It is clear that any loop that is essential in R3 � H ′
i+1 is also essential in

R3�H ′′
i+1. Several applications of Lemma 2.8.1 show that K is also essential

in R3�Hi+1. Since this argument can be continued inductively, we see that
K is essential in R3�H. This completes the proof that H fails to be 1-LCC
at every point of ∂H.

As asserted earlier, every arc in ∂H is tame in R3. We will not prove
this, but in a later chapter we will develop tools that could be used to show
that every arc in ∂H is 1-alg. A complete proof that arcs in ∂H are tame
may be found in (Bing, 1961a).

Exercise 2.8.6.

(a) Prove that Bing’s hooked rug is a topological sphere by verifying
that there is an embedding h : F0 → R3 such that h(F0) = H.

(b) Prove Lemma 2.8.1.

2.8.7. The Alford sphere. Our final example is a 2-sphere in R3 whose
wild set is an arc. Its construction involves a retooling of the one just given
for Bing’s hooked rug. Instead of having the eyebolts wander all over the
sphere so as to be dense in the limit, we will erect eyebolts just along an arc
in the 2-sphere.
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Start with a round 3-cell. On its boundary identify a narrow rectangle
R with centerline L. Subdivide R into a large number of squares and then
attach an eyebolt to each of the squares. Two consecutive eyebolts should
be hooked together, but the last one should be left dangling as shown in
Figure 2.35.

R

L

xa

Figure 2.35. The first stage in the construction of the Alford sphere

Now remove a plug from each eyebolt. The resulting solid is a 3-cell
and there is a new segment L on its boundary that goes up and over each
cut eyebolt. Cover L with a sequence of much smaller squares and erect a
new sequence of smaller eyebolts, one in each of the small squares. Again
hook consecutive eyebolts together in a linear chain and leave the last one
dangling. More specifically, the second-stage eyebolts associated with the
ith disk from the first stage should be hooked together as indicated in Fig-
ure 2.36; the last second-stage eyebolt for the ith disk should be hooked to
the first second-stage eyebolt associated with the (i+1)st disk and the very
last second-stage eyebolt should be left dangling.

The process is continued inductively and the limit is a 3-cell. The bound-
ary of this 3-cell is the Alford 2-sphere SA. It is clear that SA is locally flat
at each point not on the limit arc. The limit arc γA is called the Alford arc,
and xA is used to denote the endpoint of γA near which the eyebolts are left
dangling. We prove that SA fails to be 1-LCC at each point of γA � xA, so
the wild set of SA is exactly γA. In fact, the proof shows that the Alford
arc itself fails to be 1-alg at points of γA�xA, so γA is a new example of an
everywhere wild arc.

In order to demonstrate that SA fails to be 1-LCC at points of γA � xA,
we identify a small loop near most points of γA that cannot be shrunk to a
point in a small set without hitting the Alford sphere. Specifically, let K be
a small loop in the complement of SA that circles the base of one of the ith
stage eyebolts as shown in Figure 2.37. Add a short arc α that connects the
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L

L

xA

Figure 2.36. The linking of the second stage eyebolts

end of the dangling ith-stage eyebolt to the end of L. By Lemma 2.8.1, K is
essential in the complement of the ith stage with α added. Any homotopy
that shrinks K to a point in the complement of the ith stage must therefore
intersect α and cannot be confined to a small neighborhood of a point on
γA � xA.

L

K

xA
α

Figure 2.37. The arc α

In fact, K cannot be shrunk to a point in a small subset of the comple-
ment of any subsequent stage either. In order to see this, let us say that the
construction is done in such a way that α touches the end of the dangling
eyebolt at each subsequent stage of the construction. Then the techniques
of the preceding section can be used to show that K is essential in the com-
plement of each stage with a subarc of α added. It follows that K cannot
be shrunk to a point in a small subset of the complement of SA.
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Exercise 2.8.7.

(a) Prove that the construction described above can be carried out in
such a way that the limit is an embedded 3-cell.

(b) Fill in the details of the proof that the Alford sphere is wild at
each point of the Alford arc. Prove that the Alford arc itself is an
everywhere wild embedding of [0, 1] in R3.

(c) Prove that the Alford arc is 1-LCC at one of its endpoints. [This
shows that an embedding can be 1-LCC at a wild point.]

(d) Prove that the Alford arc is cellular.

(e) Prove that the Alford construction can be modified to produce an
example of an embedding of S2 in R3 whose wild set is homeomor-
phic to any finite tree. Prove that this construction can be done in
such a way that the wild set is cellular.

(f) Prove that there are uncountably many inequivalent embeddings of
S2 in R3 by producing embeddings whose wild sets are 1-dimensional
compacta that are limits of trees.

Historical Notes. The Fox-Artin arc is one of many examples of wild
embeddings discovered by R. H. Fox and E. Artin (1948). The mildly wild
arc shown in Figure 2.26 was described by R. H. Fox and O. G. Harrold
(1962); they named such arcs Wilder arcs after R. L. Wilder, who was the
first to consider them. The Bing sling was described in (Bing, 1956). Bing’s
hooked rug appeared in (Bing, 1961a). D. Gillman (1964) revised the hooked
rug technology to produce an everywhere wild 2-sphere in R3 that bounds
a cellular 3-cell. W. R. Alford (1962) capitalized on the work of both Bing
and Gillman in developing the Alford sphere.

2.9. Embeddings that are piecewise linear modulo one point

We conclude the chapter with a flattening theorem for codimension-one
spheres in Sn. It assures that any (n − 1)-sphere in Sn, n ≥ 4, that is
piecewise linear modulo one point is flat. This contrasts with the situation
in ambient dimension three, where the Fox-Artin sphere is locally PL modulo
one point but still wild.

The promised result stands among many flattening theorems to be proved
in the text. We include it here in this preliminary chapter because its proof
stems from a marvelous argument, one that does not rely on the more elab-
orate techniques to be developed later, and because it serves as an early
indication of the fact that high-dimensional embedding phenomena differ
from those encountered in dimension three.
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To briefly describe the generalizations to be proved later, we need one
additional bit of terminology. Let Σ be an (n − 1)-sphere topologically
embedded in Sn. A subset K of Σ that is homeomorphic to either a cell
or a sphere is said to be twice flat provided it is flat when considered as a
subset of the sphere Σ and also flat when considered as a subset of Sn. In
Chapter 7 we will generalize Theorem 2.9.3 in two different ways, showing
that Σ is flat if it is locally flat modulo a twice flat Cantor set or if it is
locally flat modulo a twice flat cell of dimension not equal to n− 3.

We make no attempt to state the theorems in this section in their ulti-
mate generality since we plan to improve them later. Instead we state them
with hypotheses strong enough to minimize proof technicalities, in order to
more easily expose the pivotal ideas.

Definition. Let K be a finite simplicial complex with p ∈ |K|. A map
f : |K| → M into a piecewise linear manifoldM is said to be piecewise linear
modulo p if there exists a locally finite triangulation K ′ of the noncompact
polyhedron |K|�{p} such that each simplex of K ′ is contained in a simplex
of K and f is linear on each simplex of K ′.

We treat a special case first. The hypothesis n ≥ 4 is already needed in
this special case.

Proposition 2.9.1. Let Cn be an n-simplex. If e : Cn → Sn, n ≥ 4, is an
embedding that is piecewise linear modulo one vertex, then Sn� Int e(Cn) is
a topological n-cell.

Definition. Let (A,B) be a pair of closed subsets of the space X. Define
GA,B to be the decomposition of A × [0, 1] whose nondegenerate elements
are the arcs {x} × [0, 1] with x ∈ B. A collar of A pinched at B is an
embedding h : A × [0, 1]/GA,B → X such that h(x, 0) = x for every x ∈ A
and h(A × [0, 1]/G) is a neighborhood of A � B. In case the subset B is
clear from the context, we will simply refer to h as a pinched collar.

Lemma 2.9.2. Let (A,B) be a pair of closed subsets of the space X. If A
is locally collared in X at each point of A � B, then there is a collar of A
pinched at B.

Proof. Exercise 2.9.1. �

Proof of Proposition 2.9.1. Let Cn be an n-simplex and let e : Cn → Sn

be an embedding that is piecewise linear modulo the vertex v ∈ Cn. Let Dn

be a second n-simplex such that Cn ⊂ Dn and Cn ∩ ∂Dn = {v}. Let En be
a third n-simplex such that En ⊂ IntCn. Pick a vertex w of En and let α be
the straight line segment from w to v. We may assume that α ∩En = {w}.
(See Figure 2.38.)
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Figure 2.38. Shrink α to a point to map (Dn, En) to (Dn, Cn)

By Lemma 2.9.2, e can be extended to a topological embedding h :
Dn → Sn. Define

G = Sn � h(Cn) and F = Sn � h(En).

Generalized Schönflies Theorem 2.4.8 guarantees that F is a topological
n-cell. We will prove that G is also an n-cell by proving that G is homeo-
morphic to F .

Note that there is a map (Dn, En) → (Dn, Cn) that is the identity
on ∂Dn and whose only nondegenerate inverse set is α. This map of Dn

induces a map from F ∩h(Dn) to G∩h(Dn) that is the identity on h(∂Dn).
Extending via the identity produces a continuous map g : F → G whose
only nondegenerate inverse set is h(α).

Now h(α) is a locally flat arc by Exercise 2.5.4. Hence there is a con-
tinuous function f : F → F whose only nondegenerate inverse set is h(α).
It is easy to check that f ◦ g−1 is a well-defined homeomorphism from G
to F . �

Definition. Let Σ ⊂ Sn be a topologically embedded (n − 1)-sphere and
let p ∈ Σ. A bicollar of Σ pinched at p is an embedding

c : Sn−1 × [−1, 1]/{v} × [−1, 1] → Sn

such that c(Sn−1×{0}) = Σ and c(v, 0) = p. (Here v is a point in Sn−1 and
Sn−1 × [−1, 1]/{v} × [−1, 1] is the quotient space of Sn−1 × [−1, 1] formed
by shrinking {v} × [−1, 1] to a point.)

The following result is the main theorem in the section.

Theorem 2.9.3. If Σ ⊂ Sn, n ≥ 4, is an embedded (n − 1)-sphere and Σ
has a bicollar pinched at p ∈ Σ, where the bicollar is piecewise linear modulo
the preimage of p, then Σ is flat.

Proof. To simplify the notation, we denote Sn−1 × [−1, 1]/{v}× [−1, 1] by
Q and use v∗ to denote the point in Q corresponding to {v} × [−1, 1]. By
hypothesis, there exists an embedding c : Q → Sn such that c(v∗) = p
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and c is piecewise linear modulo v∗. Define H to be the closure of the
complementary domain of c(Sn−1×{−1}) that does not contain Σ and define
K to be the closure of the complementary domain of c(Sn−1×{1}) that does
not contain Σ. We will prove that c(Sn−1 × [−1, 0]/{v} × [−1, 0]) ∪H and
c(Sn−1 × [0, 1]/{v} × [0, 1]) ∪K are both n-cells.

Let Cn be an n-simplex in IntQ ∪ {v∗} such that v∗ is a vertex of Cn

and Cn ∩ (Sn−1 × {0}) is a flat disk; define Q′ = Q � IntCn. Figure 2.39
shows two views of the pinched bicollar with Q′ shaded in each. In the
first view, all of Q is shown with Sn−1 × {0} as its core. In the second
view, ∂Cn has been turned inside out so that only Q′ is visible. We can
choose Cn so that Q′ is PL homeomorphic to an n-simplex ∆ with the
interiors of two PL n-cells removed. Those two n-cells meet at v∗ and
are otherwise in the interior of ∆. Their boundaries are Sn−1 × {−1} and
Sn−1 × {1}. In addition, Sn−1 × {0} separates Q′ into two pinched collars,
Q− and Q+, so that Q− contains Sn−1×{−1} and Q+ contains Sn−1×{1}.
The left half of Figure 2.39 shows that we can choose Cn so that Q− is
naturally homeomorphic to Sn−1× [−1, 0]/{v}× [−1, 0] and Q+ is naturally
homeomorphic to Sn−1× [0, 1]/{v}× [0, 1]. Thus we can complete the proof
by showing that c(Q−) ∪H and c(Q+) ∪K are both n-cells.

v

S    × {1}n-1

S    × {1}n-1

S    × {0}n-1

S    × {0}n-1S    × {–1}n-1

S    × {–1}n-1*
v*

C

Q

Q
Q Q

n

C
n

∂

+ –

∆

Figure 2.39. Two different views of the bicollar

Proposition 2.9.1 implies that the closure of the complement of c(Cn) is
an n-cell. But Sn� Int c(Cn) = c(Q′)∪H ∪K, so c(Q′)∪H ∪K is an n-cell.
That is to say, sewing H and K to Q′ along Sn−1 × {−1} and Sn−1 × {1},
respectively, results in an n-cell; more specifically, if h and k are the maps
defined by h = c−1|FrH and k = c−1|FrK, then Q′ ∪h H ∪k K is an n-cell.
We will use an infinite construction to show that Q−∪hH and Q+∪k K are
also n-cells.
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Let B1, B2, B3, . . . be a sequence of n-cells such that, for each i, Bi∩Bi+1

is a flat (n − 1)-cell standardly embedded in both ∂Bi and ∂Bi+1, ∪∞
i=1Bi

is an n-cell, and there is a point q such that Bi ∩ Bj = {q} for |i − j| > 1.
Figure 2.40 shows one way to construct such a sequence by starting with
a round n-cell Bn and subdividing it via hyperplanes, any two of which
intersect B at a point q ∈ ∂Bn.

B
A

A

A

B

B
B

q

4
3

3
A4

2

2

1
1

Figure 2.40. A sequence of cells whose union is a cell

For each i, choose a flat n-cell Ai ⊂ Bi such that Ai ∩ ∂Bi = {q}. If
i is odd, define B′

i to be (Bi � IntAi) ∪h′ H; if i is even, define B′
i to be

(Bi � IntAi) ∪k′ K. The maps h′ and k′ are appropriate modifications of
h and k, respectively. As demonstrated above, B′

i ∪ B′
i+1 is an n-cell for

every odd integer i. Thus ∪∞
i=1B

′
i is an n-cell. On the other hand, there is a

homeomorphism of Q′ to itself that interchanges Sn−1×{−1} and Sn−1×{1}
and is the identity on the other component of ∂Q′. [This does not look right
in the 2-dimensional figure, but such a self homeomorphism exists as long
as n ≥ 3.] Therefore B′

i ∪ B′
i+1 is also an n-cell for i even and so ∪∞

i=2B
′
i is

an n-cell. It follows that B′
1 is an n-cell. A similar argument shows that B′

2

is an n-cell, so the proof is complete. �

Historical Notes. Theorem 2.9.3 is due to J. C. Cantrell. The statement
appeared in (Cantrell, 1963a) and the proof is contained in (Cantrell, 1963b)
and (Cantrell and Edwards, 1963). The technique of pairing off the infinite
sequence of cells in two different ways is often called the “Mazur swindle.”
Mazur (1959) (1961b) first used the technique to prove the special case of
the Generalized Schönflies Theorem in Exercise 2.9.5. Other applications
of the technique are described in (Mazur, 1964b) and (Mazur, 1966). The
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result in Exercise 2.9.4 was first proved by P. H. Doyle and J. G. Hocking
(1960).

Exercises

2.9.1. Prove Lemma 2.9.2. [Hint: The open subset A � B has an ordi-
nary collar by Theorem 2.4.10. Carefully trim this collar back to a
pinched collar.]

2.9.2. For each n ≥ 3 there exists a wild (n − 1)-sphere Σ ⊂ Sn whose
wild set is a twice flat (n− 3)-cell.

2.9.3. For each n ≥ 3 there exists a wild (n − 1)-sphere Σ ⊂ Sn whose
wild set is an (n− 2)-cell that is tame in Σ.

2.9.4. If Σ ⊂ S3 is a 2-sphere that is locally flat modulo a point p and
there is an arc A ⊂ Σ passing through p that is flat in S3, then Σ
is flat.

2.9.5. Use the technique of proof of Theorem 2.9.3 to give a new proof of
the following special case of the Generalized Schönflies Theorem:
If e : Sn−1 → Sn is a locally flat topological embedding such that
e|U is PL for some open subset U of Sn−1, then e is flat.



Chapter 7

Codimension-one
Embeddings

The optimal codimension-one results arise in the topological category and,
for the most part, involve embeddings of codimension-one manifolds, not
complexes, in manifolds. Among the positive aspects, which revolve more
around local flatness than around PL approximation or ε-tameness, there
are three prominent results. The first, developed in §7.3, is a local unknot-
tedness theorem for locally flat approximations to a given embedding: any
two sufficiently close, locally flat approximations to a given topological em-
bedding of a compact codimension-one manifold are ambient isotopic, with
suitable controls on the isotopy. The second, treated in §7.5 and §7.6, is the
characterization of locally flat embeddings of codimension-one manifolds in
terms of the 1-LCC condition. The third is the locally flat approximation
theorem for manifold embeddings, covered in §7.7.

In addition, §7.1 lays out some elementary separation criteria for codimen-
sion-one embedded manifolds. §7.4 presents (a statement of) Edwards’s
Cell-like Approximation Theorem, and makes preparations for later appli-
cation of that result. §7.8 touches lightly upon codimension-one analogs of
the Kirby-Siebenmann obstruction theory, the codimension-two version of
which appears in §6.8. §7.9 presents conditions under which an embedding
is 1-LCC. §7.10 treats sewings of crumpled cubes; it gives conditions un-
der which prescribed wildness on two sides of a codimension-one manifold
can be welded together in an n-manifold, and along the way it gives some
additional examples of wild codimension-one embeddings. §7.11 presents
an example of a wildly embedded codimension-one sphere with a manifold
mapping cylinder neighborhood, and it establishes that codimension-one

349
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embedded manifolds with such mapping cylinder neighborhoods are locally
flat if they satisfy an additional freeness condition.

As the chapter progresses, it brings to bear several major theorems whose
proofs are beyond the scope of this work. These include: local contractibility
of the group of homeomorphisms of a compact manifold in §7.4, the Cell-like
Approximation Theorem in §7.4, and the Annulus Theorem in §7.5.

7.1. Codimension-one separation properties

Codimension-one submanifolds locally separate their supermanifolds. Global
separation can depend on subtler issues. This section explores how (co)homo-
logical data affect global separation.

Proposition 7.1.1. If M is a connected n-manifold and S is a connected
(n− 1)-manifold embedded in M as a closed subset, then M � S has either
one or two components. If S separates M and M ′ is any connected man-
ifold neighborhood of S in M , then S also separates M ′. If, in addition,
H1(M ;Z2) ∼= 0, then M � S has two components.

Proof. The first statement follows from exactness of the sequence

H1(M,M � S;Z2) → H̃0(M � S;Z2) → H̃0(M ;Z2) ∼= 0

and the duality-based isomorphism H1(M,M �S;Z2) ∼= Hn−1
c (S;Z2) ∼= Z2.

If M ′ is a connected manifold neighborhood of S in M , then the first vertical
arrow in the diagram

Z2
∼= H1(M

′,M ′ � S;Z2) −−−−→ H̃0(M
′ � S;Z2) −−−−→ H̃0(M

′;Z2) ∼= 0

∼=
⏐⏐� ⏐⏐�

Z2
∼= H1(M,M � S;Z2) −−−−→ H̃0(M � S;Z2) −−−−→ H̃0(M ;Z2) ∼= 0

is an isomorphism by excision. When H̃0(M � S;Z2) ∼= Z2, commutativity

and exactness force H̃0(M
′ � S;Z2) ∼= Z2 as well. In case H1(M ;Z2) ∼= 0,

the extended sequence

0 ∼= H1(M ;Z2) → H1(M,M � S;Z2) → H̃0(M � S;Z2) → H̃0(M ;Z2) ∼= 0

allows us to conclude that M � S has exactly two components. �

Definitions. A connected (n − 1)-manifold S in an n-manifold M is two-
sided (in M) if S has a connected neighborhood NS such that NS � S is
disconnected; otherwise S is one-sided. Generally, a disconnected (n − 1)-
manifold in M is two-sided there if each of its components is.

Proposition 7.1.1 assures that all compact, codimension-one submani-
folds separate Sn and, hence, are two-sided.
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Corollary 7.1.2. Every (n− 1)-manifold S in an n-manifold M is locally
two-sided; that is, each s ∈ S has arbitrarily small connected neighborhoods
Ns such that Ns�S has two components. Hence, if S itself is two-sided and
U is one of the sides, then S is 0-LCC in U .

Proof. In any coordinate neighborhood W of s, take Ns ⊂ W as a con-
nected neighborhood of s such that Ns ∩ S equals the component of W ∩ S
containing s. �

Lemma 7.1.3. Let M denote an orientable n-manifold and let S be a con-
nected (n− 1)-manifold embedded in M as a closed subset. Then S is two-
sided if and only if it is orientable.

Proof. Consider a connected neighborhood NS of S, where NS � S is dis-
connected if and only if S is two-sided. Produce a smaller neighborhood N ′

of S that deformation retracts to S in NS . A look at the Mayer-Vietoris se-
quence for NS = (NS�S)∪N ′ reveals that H1(NS�S)⊕H1(N

′) → H1(NS)
is surjective. Note that the image of H1(N

′) in H1(NS) coincides with that
of H1(S).

When S is two-sided, incl∗ : H1(NS � S;Z) → H1(NS ;Z) is surjective:
each loop in S is homotopic in NS to an approximating loop in NS � S on
either side, by the preceding lemma; when S is one-sided, the square of any
loop in S is homotopic to one in NS � S. Thus, the cokernel of incl∗ is
a torsion group. Read off the (non)separation conclusions from the exact
sequence:

0 → Torsion → H1(NS , NS � S;Z) → H̃0(NS � S;Z) → 0

and the duality isomorphism Hn−1
c (S;Z) ∼= H1(NS , NS � S;Z). �

Corollary 7.1.4. Suppose M is a connected, orientable n-manifold and
N ⊂ M is a compact, connected, nonorientable (n − 1)-manifold. Then
M �N is connected.

Corollary 7.1.5. Let M be an n-manifold with H1(M ;Z2) ∼= 0. If the
(n− 1)-manifold S embeds in M as a closed subset, then S is orientable.

Lemma 7.1.6. Let M be a connected n-manifold and let S ⊂ M be a
connected (n−1)-manifold embedded in M as a closed subset. Then S sepa-
rates M if and only if the inclusion-induced homomorphism Hn−1

c (M ;Z2) →
Hn−1

c (S;Z2) is trivial.
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Proof. This follows from examination of:

Hn−1
c (M ;Z2) −−−−→ Hn−1

c (S;Z2) ∼= Z2⏐⏐�∼=
⏐⏐�∼=

H1(M ;Z2) −−−−→ H1(M,M � S;Z2) −−−−→ H̃0(M � S;Z2) → 0. �
Corollary 7.1.7. If M is an n-manifold and S is an (n − 1)-manifold
embedded in M as a closed subset, where H1(S;Z2) ∼= 0, then S is two-sided
in M .

Proof. Reduce to the case in which S is connected, and let U be a connected
neighborhood of S that strong deformation retracts to S in M . Inspection
of the diagram (Z2 coefficients throughout)

H1(U) −−−−→ H1(U,U � S)
∼=−−−−→ Hn−1

c (S)⏐⏐�0

⏐⏐�∼=
⏐⏐�Id∗S

H1(M) −−−−→ H1(M,M � S)
∼=−−−−→ Hn−1

c (S)

yields that H1(U) → H1(U,U � S) is trivial. By duality, Hn−1
c (U) →

Hn−1
c (S) is trivial, and 7.1.6 applies. �

Corollary 7.1.8. Given a compact two-sided (n− 1)-manifold S in the n-
manifold M , there exists ε > 0 such that for any embedding λ : S → M
within ε of inclS, λ(S) is 2-sided in M .

Proof. Identify a neighborhood US of S such that each component of S
separates the relevant component of US . When λ, inclS : S → US are
homotopic, Hn−1

c (US ;Z2) → Hn−1(λ(S);Z2) can be factored through the
trivial homomorphism Hn−1

c (US ;Z2) → Hn−1(S;Z2). �

Corollary 7.1.9. Given a compact two-sided (n− 1)-manifold S in the n-
manifold M and a neighborhood U of S, there exists ε > 0 such that for
any two disjoint embeddings λ0, λ1 : S → M within ε of inclS, U contains a
compact subset C with λ0(S) ∪ λ1(S) as its frontier.

Example 7.1.10. Let θ : S′ → S be a 2-1 covering map between compact,
connected (n−1)-manifolds. Then W = Map(θ) is a compact n-dimensional
∂-manifold containing S as a one-sided subset of IntW, and every embedding
λ : S → IntW homotopic to inclS satisfies λ(S) ∩ S �= ∅.

Proof. Consider any λ : S → W homotopic to inclS : S → W ; clearly
λ induces an isomorphism at the π1-level. By definition of the mapping
cylinder, ∂W ∼= S′ is a strong deformation retract of W � S. Accordingly,
if λ(S) were disjoint from S, λ# : π1(S) → π1(W ) would factor through
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π1(∂W = S′) → π1(W ) ∼= π1(S), an impossibility, as the latter homomor-
phism fails to be surjective. �

Proposition 7.1.11. Let M denote a connected n-manifold, S a connected
(n− 1)-manifold embedded in M as a closed and separating subset, and U a
component of M � S. Then for each s ∈ S and neighborhood N of s, there
exists a neighborhood N ′ ⊂ N of s such that

incl∗ : Hk(N
′ ∩ U ;Z) → Hk(N ∩ U : Z)

is trivial for all k > 0. Furthermore, if S is 1-LCC in U , then S is k-LCC
in U for all k ≥ 0.

Proof. Being an ANR, U is locally contractible. Hence, given a neigh-
borhood N of s ∈ S, one can find a smaller neighborhood N ′ such that
incl∗ : Hk(N

′ ∩ U) → Hk(N ∩ U) is trivial for all k > 0 (Z coefficients
throughout this argument). We will show that when N is chosen so its
intersection with S is contractible, then incl∗ : Hk(N ∩ U) → Hk(N ∩ U)
will be an isomorphism (k > 0), which will give that incl∗ : Hk(N

′ ∩ U) →
Hk(N ∩ U) is trivial. Inspection of the long exact sequence for (N,N � S)
and duality yields Hk(N,N � S) ∼= Hn−k

c (N ∩ S) ∼= 0 for k > 1, from
which it follows that incl∗ : Hk(N � S) → Hk(N) is an isomorphism when
k > 1. Diagram chasing assures the same holds true for k = 1, because

H1(N,N � S) ∼= Hn−1
c (N ∩ S) ∼= Z, so H1(N,N � S) → H̃0(N � S) is

an isomorphism. Let V denote the other component of M � S. Clearly
Hk(N � S) ∼= Hk(N ∩ U) ⊕Hk(N ∩ V ). A straightforward Mayer-Vietoris
argument gives that

Hk(N) ∼= Hk(N ∩ U)⊕Hk(N ∩ V ) (k > 0).

Naturality assures that incl∗ : Hk(N ∩U) → Hk(N ∩U) is an isomorphism.

Note that S is 0-LCC in U by Corollary 7.1.2. When it is also 1-LCC
there, application of the local Hurewicz Theorem 0.8.3 confirms that S is
k-LCC in U for all k ≥ 2. �

Exercise

7.1.1. SupposeM is a connected n-manifold and S ⊂ M is a closed (n−1)-
manifold such that M �S is connected. For each αS ∈ π1(S) there
exists α′ ∈ π1(M �S) such that (inclM�S)#(α

′) = 2 · (inclS)#(αS).

7.2. The 1-LCC characterization of local flatness for collared
embeddings

For a compactum in the trivial dimension range, being 1-LCC embedded im-
plies it admits an ε-push into its complement. An analog holds for two-sided
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1-LCC embeddings of manifolds in codimension one. This new 1-LCC push-
off result warrants close attention, as it presents a pivotal codimension-one
technique in relatively simple form. The same technique will reappear with
more intricate variations in subsequent sections. As a peripheral benefit,
the push-off result quickly leads to the 1-LCC characterization of local flat-
ness for codimension-one submanifolds collared on one side. The full 1-LCC
characterization of local flatness is treated in §7.6.

Proposition 7.2.1 (1-LCC push-off). Suppose M is a connected PL n-
manifold, n ≥ 5, and S is a compact, connected, two-sided (n− 1)-manifold
1-LCC embedded in M , where M�S has two components, U+ and U−. Then
for each ε > 0 there exists an ε-push ψ of (M,S) such that ψ(S) ⊂ U+.

Proof. Apply Generalized Controlled Engulfing Theorem 3.3.7 for the given
integer n and for r = n − 3 to obtain δ > 0 corresponding to ε/3. After
noting that both U+ and U− are neighborhood retracts, successively choose
open neighborhoods W+

n−2 ⊃ W+
n−3 ⊃ · · · ⊃ W+

1 ⊃ W+
0 of U+ for which

there exist strong deformation retractions of W+
i to U+ in W+

i+1, i < n− 2,
that move points less than δ and that never move any point of U− into U+.
Require, in addition, thatW+

n−2∩U− ⊂ B(S; ε). Choose open neighborhoods

W−
3 ⊃ W−

2 ⊃ W−
1 ⊃ W−

0 of U− with analogous properties, where W−
3 ∩

U+ ⊂ B(S; ε).

S

S

U

U

M

+

Figure 7.1. The two sides of S in M

Find a compact PL neighborhood P of S in W+
0 ∩ W−

0 . Let C+ =
Cl(U+�P ) and C− = Cl(U−�P ). Subdivide to obtain a triangulation T of
P with meshT < ε/3, and let K denote the (n−3)-skeleton of T . In T ′, the
first barycentric subdivision of T , let K ′ denote the simplicial complement
of (the subdivided) K ∪F , where F denotes the frontier of P . Note that by
the special restrictions on the strong deformation retractions of W+

i to U+
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spelled out in the preceding paragraph, every relative (n − 3)-complex in
(W+

i � C+, U+ � C+) admits a δ-deformation ranging through W+
i+1 � C+,

first to U+�C+, and then into U+�C+ by Lemma 3.3.3 (Proposition 7.1.11
assures that S is LCCn in U+).

Now by Theorem 3.3.7 there exists an (ε/3)-isotopy φ+ of M � C+

compactly supported in W+
n−2 � C+ such that φ+(U+ � C+) ⊃ K � C+;

extend via the identity on C+ to a new push, still denoted as φ+, such that
φ+(U+) ⊃ K. Use the same procedure to obtain an (ε/3)-isotopy φ− of
M supported in W−

3 � C− such that φ−(U−) ⊃ K ′. Stretch across the join
structure of T via a third (ε/3)-push θ of (M,S) supported in P ⊂ W+

0 ∩W−
0

such that

φ+(U+) ∪ θφ−(U−) = C+ ∪ P ∪ C− = M.

Apply φ−1
+ and note that

U+ ∪ φ−1
+ θφ−(U−) = φ−1

+ (M) = M.

As all three pushes are supported in W+
n−2 ∩W−

3 ⊂ B(S; ε), ψ = φ−1
+ θφ− is

an ε-push of (M,S). Most importantly, ψ(S) ⊂ U+, since obviously ψ(S) is
disjoint from ψ(U−). �

P

S

C

C

M

+

Figure 7.2. The PL neighborhood P of S.

Lemma 7.2.2 (Collar Sliding). Suppose S is a manifold and λ : S×[0, 1] →
S × [0, 1] is an embedding such that λ|S × 0 = inclS×0. Then there exists a
homeomorphism h : S×I → S×[0, 1]�λ(S×[0, 12)) such that h(s, 0) = λ(s, 12)
and h(s, 1) = 〈s, 1〉. Moreover, if each λ({s} × [0, 1]), s ∈ S, is within δ > 0
of s× [0, 1], then h(S × I) ⊂ B(s× I; 2δ) for all s.

Proof. Extend λ to an embedding of S× [−1, 1] in S× [−1, 1] via the Iden-
tity on S × [−1, 0]. Let φ denote the piecewise linear self-homeomorphism
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of [−1, 1] fixing the endpoints, sending 0 to 1
2 and acting linearly on the

complementary subintervals. The self-homeomorphism λ(IdS × φ)λ−1 de-
fined on λ(S× [−1, 1]) extends to a self-homeomorphism Φ of S× [−1, 1] via
the identity on the complement of λ(S × [−1, 1]), and Φ restricts to give a
homeomorphism h : S × I → S × [−1, 1] � λ(S × [−1, 12)). When δ bounds
the motion in the S direction under λ, then for any point 〈s, t〉 ∈ S × I
moved by h, 〈s, t〉 = λ(s′, t′) where dS(s, s

′) < δ, and

h(s, t) ∈ λ(s′ × I) ⊂ B(s′ × I; δ) ⊂ B(s× I; 2δ).

�

1
2

h(s   I)×

λ(S    )×
λ(S   1)×

S   -1×

S   0×

S   1× 〈s,1

〈s,0

〈

〈

Figure 7.3. A special S × I product structure

Remark. If S × I is a PL manifold and λ is a PL collar, then h is a PL
embedding.

Theorem 7.2.3. Suppose M is a PL n-manifold, n ≥ 5, and S is a compact
(n− 1)-manifold in M such that S is two-sided and 1-LCC embedded. If S
has a collar on one side, then S is bicollared.

Proof. Name a collar c : S × I → M on one side of S. Assume both S
and M to be connected and M a small enough neighborhood of S that
M � S has two components, with U denoting the one missing the image
of c. For i = 1, 2, . . . use Proposition 7.2.1 to obtain a (1/6i)-push ψi of
(M,S) such that ψi(S) ⊂ U and ψi fixes c(S× [ui, 1]), where {ui ∈ (0, 1]}∞i=1

is a sequence decreasing to 0 and diam c(s × [0, ui]) < 1/6i for all s ∈ S.
Do this so ψi+1c(S × I) ⊂ ψic(S × (0, 1]) for all i. Then choose ti ∈ (0, ui)
such that ψic(S × (ti, 1]) ⊃ ψi+1c(S × I), and declare ei : S → U to be the
embedding sending s ∈ S to ψic(s × ti). For notational simplicity, require
{ti}i≥1 to be a strictly decreasing sequence. According to Lemma 7.2.2, the
region Ri bounded by ei and ei+1 is a product S × [ti+1, ti], the arc fibers
of which have diameter less than 1/i, since (by the proof of the Lemma)
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these arc fibers live in some ψic(s × [ti, ui]) plus the union of intersecting
arcs ψi+1c(s

′ × [ti+1, ui]). Thus, S ∪ (∪iRi) is a collar on S in U . �

2

11

1

c(S   1)×

c(S   0)×

c(S   u )×
2c(S   u )×

S

R

R

U

e (S)

2e (S)

3e (S)

Figure 7.4. The collar on S in U

Historical Notes. Proposition 7.2.1 and a strengthened Theorem 7.2.3—
namely, a 1-LCC local flatness theorem for codimension-one manifolds that
can be approximated by locally flat embeddings—were developed in (See-
beck, 1970).

Exercises

7.2.1. Suppose M is a connected PL n-manifold, n ≥ 5, S is a compact,
connected (n−1)-manifold that separatesM , and U is a component
of M � S. Then for each ε > 0 there exists δ > 0 such that,
for any (n − 3)-complex pair (K,L) ⊂ (U ∪ B(S; δ), U) and any
neighborhood O of S, there is a compactly supported ε-push ψ of
(M,S) such that ψ(U∪O) ⊃ K and ψ|(U�O)∪L = Id|(U�O)∪L.

7.2.2. Let c0, c1 : ∂W×I → W be collars on the boundary of a ∂-manifold
W , with c0(∂W × I) ⊂ c1(∂W × I) and diam ci(w × I) < ε for all
w ∈ ∂W , i = 0, 1. Then there exists a homeomorphism

h : ∂W × I → c1(∂W × I)� c0(∂W × [0,
1

2
))

such that diamh(w × I) < 2ε for all w ∈ ∂W .

7.2.3. Let W be a ∂-manifold such that ∂W is compact and for every
compact subset C of W there is a collar c : ∂W × I → W such that
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C ⊂ c(∂W × I). Then W ∼= ∂W × [0,∞). Moreover, if W and the
collars are PL, then W is PL homeomorphic to ∂W × [0,∞).

7.3. Unknotting close 1-LCC embeddings of manifolds

Throughout §7.3, S will denote a PL (n − 1)-manifold topologically em-
bedded as a two-sided subset of the PL n-manifold M . The main result,
Theorem 7.3.1, assures that any two locally flat approximations to S in
M are ambient isotopic under a controlled push of (M,S). It is an exact
analog for manifolds of Codimension-three Unknotting Theorem 5.4.2; the
codimension-three result cannot be extended to a local unknotting theorem
for (n − 1)-complexes in M , however, since such an extension is known to
fail for codimension-two manifolds. En route to establishing 7.3.1, we will
show in Theorem 7.3.11 that any two disjoint locally flat approximations
cobound an embedded product S × I with short I-factor.

Theorem 7.3.1 (Local Unknotting for Embeddings of Manifolds). Let S
denote a compact PL (n − 1)-manifold topologically embedded in a PL n-
manifold Mn, n ≥ 5, as a two-sided subset. Given ε > 0 there exists δ > 0
such that, for any two locally flat embeddings λ0, λ1 of S in Mn within δ of
the inclusion, there exists an ε-push θt of (M

n, S) such that θ1λ0 = λ1.

The proof, which occupies the rest of this section, also depends heavily
upon the following result of Edwards and Kirby (1971).

Theorem 7.3.2 (Local Contractibility). Given a compact manifold S and
ε > 0, there exists δ > 0 such that if Λ : S × [−1, 1] → S × [−2, 2] is an em-
bedding within δ of the inclusion, then there is an isotopy Φt : S× [−1, 1] →
S× [−2, 2] such that Φ0 = Λ, Φ1|S×{0} = inclS×{0}, ρ(Φt, inclS×[−1,1]) < ε
and Φt|S × {±1} = Λ|S × {±1} for each t ∈ I.

As an immediate consequence of 7.3.2, one can define an ambient isotopy
Φ′
t on S × [−2, 2] as Φ′

t = ΦtΛ
−1 on Λ(S × [−1, 1]) and as the identity else-

where. Clearly Φ′
0 = Id, Φ′

1Λ0 = inclS×{0} and ρ(Φ′
t, Id) < 2ε. Application

of (Φ′
1)

−1 to S × I → S × [−2, 2] implies:

Corollary 7.3.3. Given a compact manifold S and ε > 0, there exists δ > 0
such that if Λ : S × [−1, 1] → S × [−2, 2] is an embedding within δ of the
inclusion, then there is an embedding λ : S × I → S × [−2, 2] such that
λ(s, 0) = 〈s,−2〉, λ(s, 1) = Λ0(s), and λ(s × I) is within ε of {s} × [−2, 0]
for each s ∈ S.

Corollary 7.3.4. Given a compact manifold S and ε > 0, there exists
δ > 0 such that if Λ : S × [−1, 1] → S × [−2, 2] is an embedding within δ
of the inclusion and Λ0(S) ∩ (S × [0, 2]) = ∅, then there is an embedding
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h : S × I → S × [−2, 2] such that h(s, 0) = Λ0(s), h(s, 1) = 〈s, 0〉, and
h(s× I) is within ε of 〈s, 0〉 for each s ∈ S.

Proof. This follows from Corollary 7.3.3 and Corollary 7.2.2, and from the
consequence of the latter that

h(s× I) ⊂ B(s× [−2, 2]; 2δ) ∩ (S × [−δ, 0]). �
Lemma 7.3.5. Let Y be a locally compact ANR, C ⊂ Y a compact ANR,
and W ⊂ Y a neighborhood of C. For each δ > 0 there exist η > 0 and a
neighborhood W ′ of C such that, given any embedding e : C → W ′ within η
of inclC , W

′ admits a strong deformation retraction µt : W
′ → W to e(C)

that moves points less than δ.

Proof. Determine a compact neighborhood W ′ ⊂ W of C that admits a
(δ/2)-retraction to C, and find η > 0 such that any embedding e : C → Y
within η of inclC is (δ/2)-homotopic to inclC in W ′. An application of
the Estimated Homotopy Extension Theorem (Corollary 0.6.5) secures a
δ-retraction Re : W ′ → e(C). Properties of ANRs allow prearrangements
yielding that Re, inclW ′ : W ′ → W are δ-homotopic. �

For the next several lemmas, assume that S and M are manifolds satis-
fying the hypotheses of Theorem 7.3.1.

Lemma 7.3.6. Given ε > 0, there exists η > 0 such that for every pair
λ0, λ1 : S → M of locally flat embeddings within η of inclS, there is an
ε-push ψ of (M,S) such that ψ(λ0(S)) ∩ λ1(S) = ∅.

Proof. Assume S to be connected and WS to be a connected neighborhood
of S such that WS�S has two components, U+ and U−. Just as in the proof
of Proposition 7.2.1, apply Generalized Controlled Engulfing Theorem 3.3.7
for the given integer n and r = n − 3 to obtain δ > 0 corresponding to ε/3
there. As before, choose open neighborhoods W+

n−2 ⊃ W+
n−3 ⊃ · · · ⊃ W+

1 ⊃
W+

0 of U+ such that not only do there exist strong deformation retractions

ofW+
i to U+ inW+

i+1 (i = 0, 1, . . . , n−3) moving points less than δ and never
moving any point of U− into U+, but also (by Lemma 7.3.5) that there exists
ηi > 0 such that for any embedding λ : S → W+

i within ηi of incl : S → W+
i

there is a strong deformation retraction of W+
i to λ(S) in W+

i+1 moving

points less than δ. Require, in addition, that W+
n−2 ∩ U− ⊂ B(S; ε) ⊂ WS .

Determine open neighborhoodsW−
3 ⊃ W−

2 ⊃ W−
1 ⊃ W−

0 of U− and positive
numbers η∗2 , η

∗
1 , η

∗
0 with analogous properties, where W−

3 ∩ U+ ⊂ B(S; ε).

Choose a compact PL neighborhood P of S in W+
0 ∩W−

0 , and impose
on P a small mesh triangulation T with specified (n − 3)-skeleton K and
simplicial complement K ′ of K ∪ F (F denoting the frontier of P ) in the
dual 2-skeleton, as in 7.2.1. Set η = min{ηi, η∗j , d(S,M � P )}. Let C+ =
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U
U

M

+0
1

1λ (S)

0λ (S)

Figure 7.5. The setup for obtaining disjoint approximations.

Cl(U+�P ) and C− = Cl(U−�P ), as before. Given locally flat embeddings
λ0, λ1 : S → M within η of inclS , let U

1
+ denote the component ofWS�λ1(S)

containing C+ and U0
− the component of WS�λ0(S) containing C−. (Use of

U1
+ and U0

− represents the most significant change from the proof of Theorem

7.2.1.) Observe that any relative (n−3)-complex in (W+
i �C+, U

1
+�C+) is

δ-homotopic in (W+
i+1 �C+, U

1
+ �C+) to a complex mapped into U1

+ �C+.

Similarly, any relative 2-complex in (W−
i �C+, U

0
− �C−) is δ-homotopic in

(W−
i+1�C−, U0

−�C−) to a complex mapped into U0
−. Hence, Theorem 3.3.7

promises an (e/3)-push φ+ of (M,S) compactly supported in W+
n−2 � C+

such that φ+(U
1
+) ⊃ K, and it promises a second (e/3)-push φ− of (M,S)

compactly supported inW−
3 �C− such that φ−(U0

−) ⊃ K ′. Then there is also
a third (ε/3)-push θ supported in P—the stretch across the join structure
of P—such that

φ+(U
1
+) ∪ θφ−(U

0
−) ⊃ C+ ∪ P ∪ C− = WS .

Letting ψ = φ−1
+ θφ−, one sees that ψ is an ε-push of (M,S) and ψ(λ0(S)) ⊂

U1
+, so ψ(λ0(S)) ∩ λ1(S) = ∅, as desired. �

Given two disjoint embeddings λ0, λ1 of a codimension-one manifold in
a manifold M , we use [λ0, λ1] to denote the unique compact region, if such
a region exists, having the union of these images as frontier; if λ0, λ1 are
disjoint close approximations to a two-sided codimension-one manifold S in
M , we use the same symbolism [λ0, λ1] to denote the compact region near
S their images cobound; the existence of such a compact region is assured
by Corollary 7.1.9.
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Lemma 7.3.7. Given ε > 0, there exists η > 0 such that for every pair
λ0, λ1 : S → M of disjoint embeddings within η of inclS, there are strong
ε-deformations of [λ0, λ1] onto λ0(S) and λ1(S), respectively.

Proof. Let WS be a connected neighborhood of S in M that is separated
by S. Reduce WS so it admits an (ε/6)-retraction to S. Apply Corol-
lary 7.1.9 and Lemma 7.3.5 to produce δ1 > 0 such that, for any embed-
ding λ : S → M within δ1 of inclS , λ(S) separates WS and WS admits
an (ε/3)-retraction WS → λ(S). In the presence of two δ1-approximations
λ0, λ1 : S → WS to inclS with disjoint images, we have an (ε/3)-retraction
R : WS → [λ0, λ1] sending one of the components of WS � [λ0, λ1] to
λ0(S) and sending the other to λ1(S). Next, find a compact neighbor-
hood W ′ ⊂ WS of S and δ2 > 0 such that any two maps f, f ′ : W ′ → WS

δ2-close to incl : W ′ → WS are ε/3-homotopic in WS . Set δ = min{δ1, δ2}.
Finally, repeat the initial procedure to find η ∈ (0, δ) such that, for any
embedding λ : S → M within η of inclS , λ(S) ⊂ W ′ ⊂ WS (so it separates
both W ′ and WS) and W ′ admits a δ2-retraction W ′ → λ(S). Hence, if
λ0, λ1 : S → M are two disjoint embeddings within η of inclS , there is a
homotopy µt : [λ0, λ1] → WS such that µ0 = incl[λ0,λ1], µt is constant on,
say, λ0(S), µ1 is a δ-retraction to λ0(S) and µt moves points less than ε/3.
Then Rµt functions as a strong ε-deformation of [λ0, λ1] to λ0(S). �

Lemma 7.3.8. Given ε > 0, there exists δ > 0 such that for each pair
λ0, λ1 : S → M of disjoint, locally flat embeddings within δ of inclS, each
neighborhood U of [λ0, λ1]� λ1(S), and each neighborhood O of λ1(S) there
is an ε-push ψ of (M,S) fixed on λ1(S)∪(M�U) such that ψ([λ0, λ1]) ⊂ O.

Proof. For the given integer n and positive number ε apply Theorem 3.3.7
to get ε′ > 0 such that whenever one is provided with enough ε′-homotopies
of (n − 3)-complexes in any PL n-manifold N , then one also has an (ε/3)-
isotopy of N engulfing such a complex. Then use Lemma 7.3.7 to obtain
δ > 0 corresponding to ε′ > 0 with the properties mentioned there. Assume
δ to be sufficiently small that images of δ-approximations to inclS separate
small neighborhoods of S.

Consider any two locally flat δ-approximations λ0, λ1 with disjoint im-
ages. As an aid, name another locally flat embedding λ∗

0 of S into a bicollar
on λ0(S) in U , with λ∗

0 very close to λ0 and [λ∗
0, λ1] properly containing

[λ0, λ1]. Let W denote the interior of [λ∗
0, λ1]. We will produce an ε-push

of (M,S) moving [λ0, λ1] into O by obtaining an appropriate, compactly
supported isotopy of W .

Find a PL ∂-manifold P such that P is closed in W , P ∪ λ1(S) ⊃
[λ0, λ1] and ∂P ∩ λ0(S) = ∅. Impose a triangulation T on P having mesh
less than ε/3, with diameters of simplices going to 0 as simplices approach
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λ1(S), and let K denote the (n− 3)-skeleton of P . Since W is the union of
[λ′

0, λ
′
1] where λ′

0 varies over close approximations to λ∗
0, and λ′

1 varies over
close approximations to λ1 in W , Lemma 7.3.7 promises the existence of
ε′-homotopies deforming (n − 3)-complexes into OW = O ∩W . Controlled
Engulfing Theorem 3.3.7 provides a compactly supported (ε/3)-isotopy φ+

of W to itself such that φ+(OW ) ⊃ K.

λ (S) * 

* 

0 

λ (S) * 
0 

λ (S) 0 

λ (S) 0 

λ (S) 1 

λ (S) 0 ˜ 

W

W

P

∂P

O
W

U
W

Figure 7.6. Guides for engulfing [λ0, λ1] by OW .

Let UW denote W � [λ0, λ1] = Int[λ∗
0, λ0] and let Sppt+ denote the sup-

port of φ+. The extra wrinkle in this argument is the observation that,
since only a finite part of P extends outside OW , P contains a finite sub-
complex P ∗ such that P ∗ ⊃ (P �OW )∪Sppt+. Let K

′ denote the simplicial

complement of K ∪P � P ∗ (subdivided) in the first barycentric subdivision

of T |P ∗. Find another locally flat approximation λ̃0 to λ0 in W such that

[λ̃0, λ1] properly contains [λ0, λ1] and P ⊃ [λ̃0, λ1]�λ1(S). Let W̃ represent

the interior of [λ̃0, λ1] and ŨW = UW ∩ W̃ ; note that W̃ ⊂ P ⊂ W . Again

there are ε′-homotopies deforming any relative 2-complex in (W̃ , ŨW ) into

ŨW , so there exists a compactly supported isotopy φ− : W̃ → W̃ moving

points less than ε/3 such that φ−(ŨW ) ⊃ K ′ ∩ W̃ . Extend via the identity

on W � W̃ to regard φ− as defined on all of W , with φ−(UW ) ⊃ K ′ and
with φ− fixed on W � P ⊂ UW . Exploit the usual stretch across the join
structure of P ∗ to produce a third (ε/3)-push θ, compactly supported in P ∗,
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such that φ+(OW ) ∪ θφ−(UW ) ⊃ P ∗. Then

W ⊃ φ+(OW ) ∪ θφ−(UW ) ⊃ (P � P ∗) ∪ P ∗ ∪ (W � P ) = W.

Now for ψ = (φ+)
−1θφ− we have OW ∪ ψ(UW ) = W and ψ([λ0, λ1]) ∩

ψ(UW ) = ∅. Thus ψ extends via the identity over M �W to an ε-push of
(M,S) such that O ⊃ OW ⊃ ψ([λ0, λ1]). �

As a routine consequence of Lemmas 7.3.6 and 7.3.8 we obtain:

Lemma 7.3.9. Given ε > 0, there exists η > 0 such that for each pair
λ0, λ1 : S → M of locally flat embeddings within η of inclS and each bicollar
g : S × [−1, 1] → M on λ1(S), there is an ε-push ψ of (M,S) such that
ψ(λ0(S)) ⊂ g(S × (0, 1)).

Lemma 7.3.10. Given n ≥ 5, a compact PL (n−1)-manifold S, and δ > 0,
there exists η > 0 such that every locally flat embedding λ : S × {0} →
S × [−2, 2] within η of inclS×{0} extends to an embedding Λ : S × [−1, 1] →
S × [−2, 2] within δ of inclS×[−1,1].

Proof. Apply Lemma 7.3.8 for the inclusion S × {0} ↪→ S × [−2, 2] and
positive number δ/4 to obtain η′ > 0. Choose a large integer k > 0 such
that 2/k < η′ and set η = 1/k.

Consider a locally flat embedding λ : S × {0} → S × [−2, 2] within η of
inclS×{0}. Extend λ to an embedding g : S× [−1, 1] → S× (−η, η) such that
g(s × [−1, 1]) ⊂ B(〈s, 0〉; η) for all s ∈ S. Arrange the parameterization of
the bicollar determined by g so that g(S × {1}) separates g(S × {0}) from
S × {2}.

For i = 0, 1, 2, ..., k, set t(i) = (k − i)/k. The initial choice of η′ assures
the existence of a controlled (δ/4)-push of (S × [−2, 2], S × {0}) moving
g(S×{±t(i)}) very close to S×{±η}. These pushes will be followed by large
moves that change only the [−2, 2] coordinates and effect a precise shuffle
repositioning each g(S × {±t(i)}) very close to S × {±t(i)} (respecting ±
signs).

Use κ : S×{0} → S×{η} ⊂ S×[−2, 2] to denote the obvious embedding,
and let gt denote the embedding sending 〈s, 0〉 to g(s, t). Note that both κ
and gt are within 2η = 2/k < η′ of inclS×{0}. Thus, Lemma 7.3.8 provides a
(δ/4)-homeomorphism Ψ′

1 of S× [−2, 2] to itself fixed outside a small neigh-
borhood of [gt(1), κ]—in particular, fixed on g(S × [−1, t(2)])—and moving
g(S ×{t(1)}) into S × (η/2, η). Follow Ψ′

1 by another homeomorphism that
changes only [−2, 2] coordinates, fixes Ψ′

1g(S× [−1, t(2)]) = g(S× [−1, t(2)])
and moves Ψ′

1g(S × {t(1)}) into S × [t(1), 1]. Call the composite Ψ1. Re-
peat, obtaining homeomorphisms Ψ2,Ψ3, ...,Ψk−1 of S × [−2, 2] to itself
that change S coordinates by less than δ/4 and satisfy Ψig(S × {t(i)}) ⊂
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S×[t(i), t(i−1)]. Restrict supports so that the composite Ψ = Ψk−1 · · ·Ψ2Ψ1

satisfies Ψ(g(S × {t(i)})) ⊂ S × [t(i), t(i − 1)]. Also require if a point of
g(S × [−1, 1]) is fixed by Ψ1, ...,Ψj but moved by Ψj+1, then its image can
be moved by Ψj+2 but cannot be moved by subsequent Ψi. Define Ψ by
exactly the same process for the other side of the bicollar. One can see
that Ψg : S × [−1, 1] → S × [−2, 2] changes second coordinates by less than
2/k < η′ < δ/4. Since Ψg changes first coordinates less than δ/2, Λ = Ψg is
δ-close to inclS×[−1,1]. �

Remark. Lemma 7.3.10 is one place in this section where the hypothe-
sis about the codimension-one submanifold S being PL plays a role in the
argument, simply by assuring that S × [−2, 2] is PL.

Theorem 7.3.11. Let S denote a compact PL (n−1)-manifold topologically
embedded in a PL n-manifold Mn, n ≥ 5, as a two-sided subset and let
ε be a positive number. Then there exists δ > 0 such that for any two
locally flat embeddings λ0, λ1 of S in Mn within δ of the inclusion, where
λ0(S) ∩ λ1(S) = ∅, there exists an embedding Λ : S × [0, 1] → M such that
Λ0 = λ0, Λ1 = λ1 and diamΛ(s× [0, 1]) < ε for all s ∈ S.

Proof. Once the constraint δ is in place and we get to the locally flat
approximations, we will extend λ1 to an embedding g : S × [−2, 2] → M
for which the fiber arcs g(s× [−2, 2]), s ∈ S, have small images. The image
bicollar will play the role of S × [−2, 2] in Lemma 7.3.10. The plan is to
produce a controlled push ψ of (M,S) that, in spirit, moves λ0(S) into
g(S× (−1, 0)) extremely close to λ1. There will be an obvious short product
structure on something like [λ0, ψλ0], Lemma 7.3.10 will provide a short
product structure on [ψλ0, λ1], and these two pieces will fit together as a
short product structure on [λ0, λ1].

The crucial issue is size control; it is somewhat delicate due to the need
to pass back and forth between the abstract product space S × [−2, 2],
where Lemma 7.3.10 applies, and its image under g, where we must op-
erate. To highlight the distinction we use dM to denote a metric on M
and d to denote both the restriction of dM to S and the product metric on
S × [−2, 2]. Here are rules for obtaining the required δ. Set δ1 = ε/15.
Apply Corollary 7.3.4 for S and ε/15 (= δ1) to obtain δ2 > 0. Take
η1 > 0 to be the positive number corresponding to S and δ2 promised in
Lemma 7.3.10. Set δ3 = min{δ1, η1/6} > 0, and take δ4 to be a positive
number promised by Lemma 7.3.8 with ε replaced by min{ε/3, δ3}. Finally,
let δ = min{δ1, δ2, δ3, δ4/3}.

Consider disjoint, locally flat embeddings λ0, λ1 : S → M within δ of
inclS . Assume δ to be small enough that each λj(S) is two-sided (Corol-
lary 7.1.8). Specify an embedding g : S × [−2, 2] → M with g0 = λ1,
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diam g(s × [−2, 2]) < δ for all s ∈ S, and g(S × [−2, 2]) ∩ λ0(S) = ∅.
For definiteness, parameterize so g(S × {−2}) ⊂ [λ0, λ1]. Note that, since
ρ(λ1, inclS) < δ ≤ δ1 = ε/15,

x, y ∈ S, d(x, y) < δ1 ⇒ dM (λ1(x), λ1(y)) < 3ε/15.

As a result,

x′, y′ ∈ S × [−2, 2], d(x′, y′) < δ1 ⇒ dM (g(x′), g(y′)) < ε/3.

This means that for any embedded S × I in S × [−2, 2] for which fiber arcs
have diameter less than δ1, the image fiber arcs under g have diameter less
than ε/3.

Let c : S × [0, 2] → M be an embedding that determines a collar on
λ0(S) in M � g(S × [−2, 2]), where c0 = λ0, diam c(s× [0, 2]) < δ for all s,
and c1 separates the two boundary components of [λ0, λ1]. Set λ

′
0 = c1.

The choice of δ ≤ δ3 ensures that

x, y ∈ λ1(S), dM (x, y) < 4δ3 ⇒ d(λ−1
1 (x), λ−1

1 (y)) < 6δ3 ≤ η1.

Find a neighborhood O ⊂ g(S × (−1, 1)) of λ1(S) so small that

x, y ∈ O, dM (x, y) < 4δ3 ⇒ d(g−1(x), g−1(y)) < η1.

Note that ρM (λ′
0, inclS) < 2δ, yielding ρM (λ′

0, λ1) < 3δ ≤ δ4. Applying
Lemma 7.3.8 to [λ′

0, λ1], we obtain a δ3-push ψ of (M,S) which is fixed on
λ0(S)∪λ1(S) and satisfies ψ([λ′

0, λ1]) ⊂ O�g(S× [0, 2]). Then ψc(S× [0, 1])
provides an S×I structure on [λ0, ψλ

′
0] for which the fiber arcs have diameter

less than δ + 2δ3 ≤ 3δ3 ≤ 3δ1 < ε/3. Moreover,

ρM (ψλ′
0, λ1) ≤ ρM (ψλ′

0, λ
′
0) + ρM (λ′

0, λ1) < δ3 + 3δ ≤ 4δ3.

Thus, for s ∈ S = S ×{0} ⊂ S × [−2, 2], d(g−1ψλ′
0(s), s) < η1 by the choice

of O. Lemma 7.3.10 promises an embedding

Λ : S × [−1, 1] → S × [−2, 2]

within δ2 of the inclusion, where Λ0 = g−1ψλ′
0. Here Λ0(S)∩ (S× [0, 2]) = ∅,

so Corollary 7.3.4 assures the existence of an (ε/15 = δ1)-product structure
on [g−1ψλ′

0, inclS×0], and its image under g is an (ε/3)-product structure on
[ψλ′

0, λ1], as desired. �

Proof of Theorem 7.3.1. First apply Theorem 7.3.11 with positive num-
ber ε/2 to obtain δ ∈ (0, ε/2), and next apply Lemma 7.3.8 with δ/2 to obtain
η ∈ (0, δ/2). Given two locally flat η-approximations λ0, λ1 to inclS , use 7.3.8
to produce a (δ/2)-push φ of (M,S) moving λ0(S) off λ1(S). Then φλ0, λ1

are disjoint δ-approximations to inclS , so Theorem 7.3.11 yields an (ε/2)-
push ψ of (M,S) supported close to [φλ0, λ1] and sending φλ0 to λ1. �
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Corollary 7.3.12. Suppose M is a connected PL n-manifold, n ≥ 5, S
is a compact, connected, PL (n − 1)-manifold that separates M , and U is
a component of M � S. Then S is collared in U if and only if S can be
pointwise approximated by locally flat embeddings in U .

Corollary 7.3.13. Suppose M is a PL n-manifold, n ≥ 5, and S is a
compact PL (n− 1)-manifold 1-LCC embedded in M as a two-sided subset.
Also suppose S can be pointwise approximated by locally flat embeddings.
Then S is bicollared.

Proof. 1-LCC Pushoff Proposition 7.2.1 indicates that S can be pointwise
approximated by locally flat embeddings on either side. �

Historical Notes. The results of this section, as well as the entire approach,
again are due to (Seebeck, 1970).

Edwards and Kirby were not alone in addressing local contractibility of
the manifold homeomorphism group. Černavskĭı (1969c) had an indepen-
dent, possibly earlier, proof of the main result.

Exercises

7.3.1. Prove Corollary 7.3.12. [Hint: See the proof of Theorem 7.2.3.]

7.3.2. Suppose M is a PL n-manifold (n ≥ 5) and S ⊂ M a PL (n− 1)-
manifold that is one-sided and 1-LCC embedded in M . Suppose
also that S can be pointwise approximated by locally flat embed-
dings. Then S has an I-bundle neighborhood.

7.3.3. Suppose M is a PL n-manifold, n ≥ 5, and S is a closed, PL (n−1)-
manifold topologically embedded in M as a two-sided subset. Then
S is ε-tame if and only if it is 1-LCC and it can be pointwise
approximated by PL embeddings.

7.4. The Cell-like Approximation Theorem

At this juncture we begin to make use of Edwards’s Cell-like Approximation
Theorem, stated below. Many methods found in its proof have already been
employed in this book, and others are completely accessible to all readers.
Nevertheless, we omit the rather lengthy argument and refer readers to
(Edwards, 1980) or the more complete exposition in (Daverman, 1986).

Theorem 7.4.1 (Cell-like Approximation). A proper, surjective, cell-like
mapping f : Mn → X defined on an n-manifold Mn, n ≥ 5 is a near-
homeomorphism if and only if X is a finite-dimensional space with the Dis-
joint Disks Property.
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Definition. A metric space X has the Disjoint Disks Property, abbreviated
as DDP, if for every pair of maps f1, f2 : I2 → X and for every ε > 0
there exist maps F1, F2 : I2 → X such that ρ(Fi, fi) < ε (i = 1, 2) and
F1(I

2) ∩ F2(I
2) = ∅.

Corollary 7.4.2. Every cell-like map f : Mn → Nn between n-manifolds,
n ≥ 5, is a near-homeomorphism. Specifically, if ε : Nn → (0,∞) is
continuous, then there exists a homeomorphism g : Mn → Nn such that
ρ(g(x), f(x)) < ε(x) for all x ∈ Mn.

Corollary 7.4.3. Let f : Mn → Nn be a cell-like map between n-manifolds,
n ≥ 5, C a closed subset of Nn such that f |f−1(C) is 1-1, and ε : Nn →
[0,∞) a continuous function such that ε−1(0) = C. Then there exists a
homeomorphism g : Mn → Nn satisfying ρ(g(x), f(x)) < ε(x) for all x ∈
Mn � f−1(C) and g|f−1(C) = f |f−1(C).

The intent for the remainder of §7.4 is to develop conditions, for later
use, under which a cell-like image of a manifold has the DDP. In support of
that aim, the immediate issue is to prove that such a cell-like image is an
ANR provided it is finite dimensional.

Proposition 7.4.4. Suppose p : Y → X is a closed, cell-like mapping
defined on a locally compact ANR Y , (K,L) is a pair of finite simplicial
complexes, µ : K → X is a map, ν : L → Y is a map such that pν = µ|L
and ε > 0. Then there exists a map µ̃ : K → Y with µ̃|L = ν and there
exists a homotopy Ht : K → X such that H0 = pµ̃, H1 = µ, Ht|L = µ|L
and ρ(Ht, µ) < ε for all t ∈ I.

The preceding proposition supplements Approximate Lifting Proposi-
tion 3.2.10. The next lemma serves as the principal tool, and its proof
retraces the one given for 3.2.10.

Lemma 7.4.5. Under the hypothesis of Proposition 7.4.4, there exists δ > 0
such that, for any two maps α0, α1 : K → Y extending ν with ρ(pαe, µ) < δ
for e = 0, 1, there is a homotopy ht : K → Y such that he = αe and, for all
t ∈ I, ht|L = ν and ρ(pht, µ) < ε.

With Lemma 7.4.5 in hand, the derivation of Proposition 7.4.4 proceeds
like the one showing why every non-isolated point in a locally connected
complete metric space can be joined via a path to another point nearby.
One constructs a sequence of lifts αi : K → Y such that not only do the
images pαi converge to µ but also successive images are connected via shorter
and shorter homotopies, by Lemma 7.4.5.

Corollary 7.4.6. Suppose p : Y → X is a closed, cell-like mapping defined
on a locally compact ANR Y , W is an open subset of X, w ∈ p−1(W ) and
i ≥ 0. Then p∗ : πi(p−1(W ), w) → πi(W, p(w)) is an isomorphism.
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Corollary 7.4.7. If p : Y → X is a closed, cell-like mapping defined on a
locally compact ANR Y , then X is LCk for all integers k ≥ 0.

In light of Theorem 0.6.1, we also have:

Corollary 7.4.8. If p : Y → X is a closed, cell-like mapping from a locally
compact ANR to a finite-dimensional metric space X, then X is an ANR.

Lemma 7.4.9. If Y is a locally compact ANR satisfying the DDP, then
every map g : N2 → Y defined on a compact 2-dimensional ∂-manifold
N2 can be approximated by embeddings. Moreover, if S ⊂ Y is a closed
set that has empty interior and is 0-LCC in Y , then each g : N2 → Y
can be approximated by an embedding λ : N2 → Y such that S ∩ λ(N2) is
0-dimensional.

Proof. Find a countable collection {(Di, Ei)}∞i=1 of disjoint 2-cell pairs that
separate points of N2—that is to say, for any two points x, x′ ∈ N2, there
exists an integer i ≥ 1 such that x ∈ Di and x′ ∈ Ei. In the space C(N2, Y )
of continuous functions from N2 to Y , let

Oi = {f ∈ C(N2, Y ) | f(Di) ∩ f(Ei) = ∅}.

Clearly Oi is open in C(N2, Y ). By the DDP and Estimated Homotopy
Extension Theorem 0.6.4, each f ∈ C(N2, Y ) can be approximated by some
f ′ ∈ C(N2, Y ) such that f ′(Di) ∩ f ′(Ei) = ∅; in other words, Oi is dense
in C(N2, Y ). The Baire Category Theorem assures that each f ∈ C(N2, Y )
can be approximated by λ ∈ ∩iOi, an embedding.

Let S denote a closed 0-LCC subset of Y . Choose triangulations T1, T2, . . .
of I2 with meshTi < 1/i. Let Li denote the 1-skeleton of Ti and

O′
i = {f ∈ Oi | f(Li) ∩ S = ∅}.

Since S is 0-LCC in Y , O′
i is an open dense subset of C(N2, Y ). Each

λ ∈ ∩iO
′
i is an embedding for which λ(N2) ∩ S ⊂ λ(N2 � ∪iLi), a 0-

dimensional set. �

A similar argument yields:

Lemma 7.4.10. Suppose the space X is a union of locally compact ANRs
Y1 and Y2, each Yi is a closed subset of X and has the DDP, S = Y1 ∩ Y2

has empty interior and is 0-LCC in Yi, and any two maps fi : I2 → Yi

can be approximated, arbitrarily closely, by maps Fi : I2 → Yi such that
F1(I

2) ∩ F2(I
2) = ∅. Then S contains disjoint, 0-dimensional, σ-compact

subsets Z1, Z2 such that any map from a compact 2-dimensional ∂-manifold
N2 to Yi can be approximated by a map gi : N

2 → Yi with gi(N
2) ∩ S ⊂ Zi.
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Lemma 7.4.11. Let p : M → X be a closed, cell-like mapping from a
connected n-manifold M onto a metric space X that contains a connected
(n − 1)-manifold S as a closed subset, where X � S is disconnected. Then
X�S has precisely two components, and S is 0-LCC in the closure of each.

Proof. Proposition 3.2.9 promises that p induces a cohomology isomor-
phism p∗ : Hn−1

c (S;Z2) ∼= Z2 → Hn−1
c (p−1(S);Z2). The duality methods

of §7.1 assure that p−1(S) separates M into at most two components, so it
must separate into exactly two components, for otherwise X � S would be
connected. Hence, X � S has exactly two components. Localization yields
the 0-LCC conclusion. �

Proposition 7.4.12. Let p : M → X be a cell-like map from an n-manifold
M onto an ANR X that contains a connected (n − 1)-manifold S, n ≥ 5,
as a closed subset, where X � S is the disjoint union of components U1, U2

such that each U j satisfies the Disjoint Disks Property and, moreover, any

two maps fj : I2 → U j can be approximated, arbitrarily closely, by maps

Fj : I
2 → U j such that F1(I

2)∩F2(I
2) = ∅. Then X has the Disjoint Disks

Property and p is a near-homeomorphism.

Proof. Apply Lemma 7.4.10 to obtain disjoint 0-dimensional σ-compact
sets Z1, Z2 ⊂ S such that any map from a compact 2-dimensional ∂-manifold
N2 to U j can be approximated by a map g : N2 → U j with g(N2)∩S ⊂ Zj .

Since S is an ANR there exists a neighborhood V of S in X and a
retraction r : V → S. Define retractions rj : V ∪ Uj → U j by rj |U j = incl
and rj |V � Uj = r|V � Uj . Choose a neighborhood V ′ of S so that r|V ′ is
homotopic to the inclusion in V . Choose a third neighborhood V ′′ of S so
that the closure of V ′′ is contained in V ′. By the proof of the Estimated
Homotopy Extension Theorem (Theorem 0.6.4) there is a map r′ : X → X
such that r′|V ′′ = r|V ′′, r′|X�V = incl, and r′(V ) ⊂ V . Define r′′ : X → X
by r′′|U j = rir

′|U j ; then r′′|S = incl, r′′(V ′′) ⊂ S, and r′′(U j) = U j .
Observe that r′′ can be made arbitrarily close to the identity.

Given maps f1, f2 : I2 → X, choose compact ∂-manifolds Ai ⊂ I2 such
that f−1

i (S) ⊂ Ai ⊂ f−1
i (V ′′). Define f ′

i = r′′fi. Then f ′
i(Ai) ⊂ S and

each component of I2 � Ai is mapped by f ′
i into either U1 or U2. Add the

components that are mapped to U1 to Ai and define Bi to be the union
of the closures of the remaining components. Then Ai and Bi are compact
boundary submanifolds of I2 that satisfy the following conditions.

(1) Ai ∪Bi = I2,

(2) Ai ∩Bi ⊂ ∂Ai ∩ ∂Bi, and

(3) f ′
i(Ai) ⊂ U1 and f ′

i(Bi) ⊂ U2.

Since S is a PL manifold, we can make a further adjustment so that
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(4) f ′
i(Ai ∩Bi) ⊂ S � (Z1 ∪ Z2) and

(5) f ′
1(A1 ∩B1) ∩ f ′

2(A2 ∩B2) = ∅.
Invoking the hypothesis that Ui has the DDP, one can obtain further ap-
proximations f ′′

i to f ′
i satisfying analogs of conditions (1)–(5), as well as

(6) f ′′
i |Ai ∩Bi = f ′

i |Ai ∩Bi,

(7) f ′′
i (Ai) ⊂ U1 and f ′′

i (Bi) ⊂ U2, and

(8) f ′′
1 (A1) ∩ f ′′

2 (A2) = ∅ = f ′′
1 (B1) ∩ f ′′

2 (B2).

Then by choice of Z1, Z2 one can produce yet another set of approximations
Fi satisfying the analogs of (1)–(8), as well as

(9) S ∩ (F1(IntA1) ∪ F2(IntA2)) ⊂ Z1 and

(10) S ∩ (F1(IntB1) ∪ F2(IntB2)) ⊂ Z2.

It follows from the prearranged (see (4) and (6))

Z1 ∩ Z2 = ∅ = (Z1 ∪ Z2) ∩ (F1(A1 ∩B1) ∪ F2(A2 ∩B2))

that F1(I
2) ∩ F2(I

2) = ∅. �

Corollary 7.4.13. Let p : M → X be a cell-like map defined on an n-
manifold M , n ≥ 5, onto a metric space X containing an (n− 1)-manifold
S embedded in M as a closed, 1-LCC subset, where X�S is an n-manifold.
Then X is an n-manifold and p is a near-homeomorphism.

Proof. Since S locally separates X and the desired conclusion is local, it
suffices to consider the case where X and S are connected and X � S has
two components, U1 and U2. As S is LCC1 in U i = S ∪ Ui (i ∈ {1, 2})
and Ui is an n-manifold, U i has the DDP and the hypotheses of 7.4.12 are
satisfied. �

Proposition 7.4.14. Let p : Sn → X be a cell-like map onto a metric space
X that contains an (n−1)-sphere S, n ≥ 5, and X�S is the disjoint union
of components U, V where U = A embeds in Sn and V = B is an n-cell.
Then X has the Disjoint Disks Property and p is a near-homeomorphism.

Proof. As in Proposition 7.4.12, given maps f1, f2 : I2 → X, for ε > 0
and i = 1, 2 produce ε-approximations f ′

i to fi and ∂-manifolds Ai, Bi in I2

satisfying

(1) I2 = Ai ∪Bi,

(2) Ai ∩Bi = ∂Ai ∩ ∂Bi,

(3) f ′
1(A1) ∪ f ′

2(A2) ⊂ A and f ′
1(B1) ∪ f ′

2(B2) ⊂ B, and

(4) f ′
1(B1) ∩ f ′

2(B2) = ∅ (since B is an n-cell).

Temporarily regard A as a subset of Sn. Identify a neighborhoodW of A
and retraction R : W → A such that R(W �A) ⊂ BdA = S. Restrict W so
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R moves points less than ε. Then approximate f ′
i |Ai → A ⊂ Sn by gi : Ai →

W , with gi ε-close to f ′
i , gi|Ai ∩Bi = f ′

i |Ai ∩Bi, and g1(A1) ∩ g(A2) = ∅.
Once again treating A as a subset of X, exploit the n-cell structure of

B to adjust Rgi to a map g′i : Ai → X such that ρ(g′i, gi) < ε, g′i|g−1
i (A) =

g′i|g−1
i (A) and g′i(g

−1
i (W�A)) ⊂ IntB. Define Fi : I

2 → X as Fi|Ai = g′i and
Fi|Bi = f ′

i |Bi. Note ρ(Fi, fi) < 4ε. Intersections between F1(I
2) and F2(I

2)
occur at points of F1(A1) ∩ F2(A2) ∩ IntB or of Fi(Ai) ∩ Fj(Bj) ⊂ IntB,
i �= j, and can be removed easily by general position. Hence, X has the
DDP. �

Historical Notes. R. D. Edwards outlined a proof of the Cell-like Ap-
proximation Theorem in his ICM 1978 article (Edwards, 1980). Details
of Edwards’s proof for n ≥ 6 are presented in (Daverman, 1986); the 5-
dimensional case is treated in (Daverman and Halverson, 2007). Corol-
lary 7.4.2 is originally due to L. C. Siebenmann (1972); its analog in dimen-
sion n = 3 was done by S. Armentrout (1971) and in dimension n = 4 by
M. H. Freedman and F. S. Quinn (1990).

Cannon (1978), (1979) introduced the Disjoint Disks Property and early
on he conjectured its fundamental role for the Cell-like Approximation The-
orem.

The hypothesis about finite-dimensional-image in the Cell-like Approx-
imation Theorem is a necessary one. A. N. Dranishnikov (1989) established
the existence of a cell-like map on a 3-dimensional compactum with infinite-
dimensional image; this automatically gave a dimension-raising cell-like map
defined on Sn, n ≥ 7. Improving upon Dranishnikov’s example slightly, J.
Dydak and J. J. Walsh (1993) produced dimension-raising cell-like maps on
2-dimensional compacta and, hence, on S5. In contrast, work of G. Kozlowski
and J. J. Walsh (1983) certifies that cell-like maps defined on 3-manifolds
have 3-dimensional images.

Exercise

7.4.1. If Y is a locally compact ANR with the DDP, then each map f :
I2 → Y can be approximated by a 1-LCC embedding.

7.5. Determining n-cells by embeddings of Mn−1
n in Sn

The combined aim of this section and the next is to characterize local flatness
of codimension-one manifold embeddings in terms of the 1-LCC condition.
Taking a step in that direction, this section establishes (Corollary 7.5.10)
that, given an (n− 1)-sphere Σ ⊂ Sn and component W of Sn �Σ, W is an
n-cell if and only if there is an embedded Menger continuum e(Mn−1

n ) in Sn

with Σ ⊂ e(Mn−1
n ) ⊂ W . Rounding this out, the next section demonstrates
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that for any 1-LCC embedded (n − 1)-sphere Σ ⊂ Sn and complementary
domain W , there exists such an embedding e : Mn−1

n → W .

A secondary goal of the section at hand is a positional characterization
of the (n − 1)-dimensional Menger space in Sn. To that end, we present
an ad hoc definition of objects called S-curves, which include the standard
Menger space Mn−1

n , and ultimately (Theorem 7.5.7) we show that any two
such S-curves are homeomorphic. This topological analysis of Mn−1

n is not
essential to the primary purpose: all the lemmas developed in this section
lead to 7.5.7 and can be ignored, provided one broadens Theorem 7.5.8 (using
the same proof presented here) to detect the n-cell though embeddings of
arbitrary S-curves in Sn, not simply through embedded copies of Mn−1

n .

The starting point is an elementary result from decomposition theory.
A sequence of sets X1, X2, . . . in a metric space is called a null sequence if
diamXi → 0 as i → ∞.

Proposition 7.5.1 (Null sequence decompositions into flat n-cells). Let
B1, B2, . . . be a null sequence of pairwise disjoint, flat n-cells in Sn, U an
open subset of Sn containing ∪iBi, and G the decomposition of Sn having
the sets Bi as nondegenerate elements. Then G is shrinkable fixing Sn �U .
In particular, there exists a surjective map f : Sn → Sn such that the
nondegenerate point preimages of f are the cells B1, B2, . . . and f |Sn�U =
Id.

Proof. Consider any nondegenerate g0 ∈ G. Since g0 is flat, regard it as
the standard ball of radius 1 centered at O in Rn = Sn�{∞}. Given δ > 0,
restrict further, if necessary, so B(g0; δ) ⊂ U and let k denote the smallest
positive integer such that kδ/3 > 1. We will produce a homeomorphism
Θ : Sn → Sn such that

(a) Θ|Sn �B(g0; δ) = Id,
(b) diamΘ(g0) < δ, and
(c) for g ∈ G either diamΘ(g) < δ or Θ(g) = g.

The homeomorphism Θ will be expressed as a composition Θ = θk−1 · · · θ1,
of k − 1 homeomorphisms, where each θj moves points less than δ/3 and
compresses θj−1 · · · θ1(g0) radially into the ball of radius (k − j)δ/3.

Using the nullity of the nondegenerate elements, require θ1 to be the
identity outside an open set U1 ⊂ U so near g0 that all g ∈ G meeting U1

have diameter less than δ/3. Similarly, after θj−1, . . . , θ1 have been defined,
require θj to be the identity outside an open set Uj ⊂ Uj−1 so close to
θj−1 · · · θ1(g0) that, for any other g ∈ G whose image under θj−1 · · · θ1 meets
Uj , diam θj−1 · · · θ1(g) < δ/3.

For i = −1, 0, 1, . . . , k, set αi = (k − i)/k. Each θj can be defined so
as to have similar effect on all rays R emanating from O: there will be a
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positive number ξj ∈ (αj−1, αj−2) such that the segment of R of length ξj
based at O lies in Uj . There will be four special points on R: the points
Pj, Qj , Sj , Tj at distances αj+1, αj , αj−1, ξj, respectively, from O; θj will
move only those points between Pj and Tj , will send Sj to Qj and will be
linear on the intervals [Pj , Sj ] and [Sj , Tj ]. Thus, each θj will move points

at most 1/k < δ/3 and will compress B(O;αj−1) to B(O;αj).

0

P
Q

S

Tj

j
j

j

R

Figure 7.7. The action of θj on R

Accordingly, for g ∈ G, g �= g0, and j ∈ {2, 3, . . . , k−1}, either θj · · · θ1(g)
= θj−1 · · · θ1(g) or diam θj · · · θ1(g) < δ; moreover, if after the jth com-
pression, diam θj · · · θ1(g) ≥ δ/3, then diam θj · · · θ1(g) < δ and Θ(g) =
θj · · · θ1(g). Finally, since αk−1 = 1/k < δ/3 and

Θ(g0) = θk−1 · · · θ1(g0) = B(O;αk−1) ⊂ B(O; δ/3),

Θ shrinks g0 to sufficiently small size. By construction Θ moves no point of
Sn � U1.

Upon performing this shrinking in pairwise disjoint neighborhoods of
each of the finitely many large n-cells in the collection G, we see that G
itself is shrinkable fixing Sn � U. �

Remark. While the statement and proof of the last result are elementary,
they are still quite delicate. For example, a decomposition into points and a
null sequence of cellular arcs need not be shrinkable (Daverman and Walsh,
1982).

Corollary 7.5.2. If B1, B2, . . . is a null sequence of pairwise disjoint, flat
n-cells in the interior of Bn and G is the decomposition of Bn having the
sets Bi as nondegenerate elements, then the decomposition space Bn/G is
an n-cell. Furthermore, if Gm is the decomposition of the ∂-manifold Dn

m =
Bn � ∪m

i=1 IntBi having Bm+1, Bm+2, . . . as nondegenerate elements, then
the associated decomposition space is homeomorphic to Dn

m.

Proof. Regard Dn
m as a subset of Sn. Apply Proposition 7.5.1 and Theo-

rem 2.3.4 with U = IntDn
m. �
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We will make use, without proof, of the fundamental Annulus Theorem.
This will be discussed more extensively in §8.8.

Theorem 7.5.3 (Annulus Theorem). Let B′ denote a flat n-cell in the
interior of an n-cell B (n > 4). Then B � IntB′ is homeomorphic to
Sn−1 × I.

Let B1, . . . , Bk be pairwise disjoint, flat n-cells in the interior of an n-
cell B. The ∂-manifold B � ∪i IntBi is called an n-cell with k holes. The
∂-manifold Dn

m of Corollary 7.5.2 is a relevant example of an n-cell with m
holes.

Corollary 7.5.4 (Generalized Annulus Theorem). If B∗ and C∗ are n-cells
with k holes, n > 4, then every homeomorphism h from a component of ∂B∗

to a component of ∂C∗ extends to a homeomorphism H : B∗ → C∗.

The proof is an exercise.

Definition. An (n − 1)-dimensional Sierpiński curve is a compact metric
continuum X which admits an embedding h in Sn such that the components
of Sn �h(X) form a null sequence U1, U2, . . . satisfying: (1) each Sn �Ui is
an n-cell, (2) U i ∩ U j = ∅ whenever i �= j, and (3) ∪iUi = Sn. For brevity
we will say that a compact continuum X ′ ⊂ Sn is an S-curve if it is the
image of an embedding h : X → Sn, where X satisfies conditions (1)–(3).

The prototypical S-curve is the standard Menger space Mn−1
n . The

immediate goal is to prove that any two such S-curves are topologically
equivalent.

Lemma 7.5.5. If X is an (n−1)-dimensional S-curve in Sn, then for each
ε > 0 there is an embedding e : X → Sn such that ρ(e, inclX) < ε and the
components of Sn � e(X) are bounded by flat (n− 1)-spheres.

Proof. For any component U of Sn �X, Sn � U is an n-cell which can be
re-embedded in its own interior so the image of ∂(Sn�U) is bicollared and,
hence, flat. It follows almost automatically that the image of X under this
re-embedding is an S-curve. The re-embedding can be controlled to move
points only a short distance and to have support very close to U . Infinite
repetition, with increasingly strict motion controls, yields the lemma. �

Definitions. Say that an (n− 1)-dimensional S-curve X ⊂ Sn is special if
each of the components of Sn �X is bounded by a flat sphere. Let X be a
special (n−1)-dimensional S-curve in Sn and U0, U1, U2 . . . the components
of Sn�X. A subdivision of X is a division of X into a finite number of such
S-curves, brought about by taking a simplicial subdivision T of the compact
∂-manifold R obtained by adding to X all but a finite number U0, . . . , Um of



7.5. Determining n-cells by embeddings of Mn−1
n in Sn 375

its complementary domains in such a way that the (n− 1)-skeleton of T lies
entirely in X, contains the boundary of R, and does not meet the boundary
of any component of Sn�X other than U0, . . . , Um. The intersection of the
n-cells of T with X gives a collection of (n− 1)-dimensional S-curves. The
subdivision is said to have mesh less than ε if each n-cell in T has diameter
less than ε.

Lemma 7.5.6. Suppose X and Y are special (n− 1)-dimensional S-curves
in Sn (n �= 4), U and V are components of Sn�X and Sn�Y , respectively,
h is any homeomorphism of BdU onto BdV , and ε > 0. Then there exist ε-
subdivisions of X and Y whose (n−1)-dimensional skeleta correspond under
a homeomorphism h′ that extends h.

Proof. List the components U0 = U,U1, U2, . . . of Sn � X and, similarly,
the components V0 = V, V1, V2, . . . of Sn � Y . Choose an integer m >
0 such that all Ui and Vi, i > m, have diameter less than ε. Form the
decomposition space AX of Sn � ∪m

i=0Ui determined by the nondegenerate

elements Um+1, Um+2, . . . and, similarly, the decomposition space AY of
Sn � ∪m

i=0Vi determined by V m+1, V m+2, . . . . Let πX : Sn � ∪m
i=0Ui → AX

and πY : Sn � ∪M
i=0V i → AY denote the associated decomposition maps.

Here AX and AY are n-cells with holes—an equal number of holes, by design.
Corollary 7.5.4 assures that the homeomorphism πY h(πX)−1 : πX(BdU) →
πY (BdV ) extends to a homeomorphism H : AX → AY .

For each δ > 0 there exists a simplicial triangulation T of W ′ of mesh
less than δ whose (n− 1)-skeleton Σ intersects none of the countably many
points having nondegenerate preimages under either HπX or πY . Then the
sets K = (HπZ)

−1(Σ) and K ′ = (πY )
−1(Σ) each correspond in 1-1 fashion

with Σ. Moreover, when σ is an n-simplex of T , then (πY )
−1(∂σ) ⊂ Y and

(HπX)−1(∂σ) ⊂ X are flat (n− 1)-spheres in Sn, by Corollary 7.4.3 to the
Cell-like Approximation Theorem; as a result, K and K ′ effect subdivisions
of X and Y , respectively. Since point preimages under HπX and πY have
diameter less than ε, one can choose T of sufficiently small mesh that K and
K ′ have mesh less than ε. The desired homeomorphism h′ : K → K ′ can be
defined as the restriction of (πY )

−1HπX . �

Theorem 7.5.7. Any two (n− 1)-dimensional S-curves in Sn are homeo-
morphic.

Proof. Consider any two special S-curves X and Y in Sn. For i = 1, 2, . . .
Lemma 7.5.6 promises an embedding ei : X → B(Y ; 1/i) such that Y ⊂
B(ei(X); 1/i). These embeddings submit to controls ensuring that {ei}
forms a Cauchy sequence. Moreover, given any two points x1, x2 ∈ X there
exist disjoint n-cells C1, C2 ⊂ Sn such that ej(x1) ∈ C1 and ej(x2) ∈ C2 for
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sufficiently large j. Hence, the sequence {ei} converges to a homeomorphism
X → Y . �

Theorem 7.5.8. Let e denote an embedding of the (n − 1)-dimensional
Menger space Mn−1

n into Sn (n ≥ 5) and V a component of Sn � e(Mn−1
n ).

Then Sn � V is an n-cell.

Proof. List the components U1, U2, . . . of Sn � Mn−1
n and also the com-

ponents V = V1, V2 . . . of Sn � e(Mn−1
n ). Choose these indices so that

BdVi = e(BdUi) for each i.

Every V i is contractible, since it is a simply connected, homologically
trivial (by duality) ANR.

Examine the decompositions G and G′ of Sn � U1 and Sn � V1 having
U2, U3, . . . and V 2, V 3, . . . as their respective nondegenerate elements. Both
G and G′ are cell-like, upper semicontinuous decompositions; the nondegen-
erate elements of G form a null sequence of flat n-cells in the interior of the
n-cell Sn � U1. Let ϕ : Sn � U1 → A and ϕ′ : Sn � V1 → A′ denote the as-
sociated decomposition maps. Obviously there is a unique homeomorphism
e′ : A → A′ such that the following diagram is commutative:

Mn−1
n

⊂−−−−→ Sn � U1
ϕ−−−−→ A⏐⏐�e

⏐⏐�e′

e(Mn−1
n )

⊂−−−−→ Sn � V1
ϕ′

−−−−→ A′

By Corollary 7.5.2, A is an n-cell, so A′ is an n-cell as well. A minor
modification of Corollary 7.4.3 provides a homeomorphism Φ′ : Sn�V1 → A′

that agrees with ϕ′ on BdV1. Hence, S
n � V1 is also an n-cell. �

Corollary 7.5.9. For any embedding e : Mn−1
n → Sn (n ≥ 5) of the (n−1)-

dimensional Menger space, e(Mn−1
n ) is an S-curve.

Corollary 7.5.10. Let λ : ∂In → Sn (n ≥ 5) be an embedding and W a
component of Sn � λ(∂In). Then W is an n-cell if and only if λ can be
extended to an embedding Λ : Mn−1

n → W .

Historical Notes. The positional characterization of Sierpiński curves in
Sn presented in Theorem 7.5.7 is due to Cannon (1973b), who based his
argument on that given by G. T. Whyburn for the 2-dimensional case.

The proof of the Annulus Conjecture was a sweeping breakthrough, by
Kirby (1969); the key idea, usually referred to as the torus trick, had pro-
found implications, including the deep analysis of PL and DIFF structures
of manifolds (Kirby and Siebenmann, 1977). More about the momentous
importance of tori comes up in Chapter 8.
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Proposition 7.5.1, in more general form, was proved by R. J. Bean (1967),
who credited Bing for the technique.

Exercises

7.5.1. Let G denote an upper semicontinuous decomposition of an n-
dimensional ∂-manifold N such that for each nondegenerate el-
ement g0 ∈ G and each ε > 0 there exists an n-cell B with
g0 ⊂ B ⊂ B(g0; ε), where all nondegenerate elements of G that
meet B lie in IntB. Then G is shrinkable.

7.5.2. Show that every homeomorphism between two special S-curves in
Sn extends to a homeomorphism of Sn.

7.5.3. Prove Corollary 7.5.4.

7.6. The 1-LCC characterization of local flatness

All the groundwork now has been laid for the foundational characterization,
in Theorem 7.6.1 below, of locally flat codimension-one manifold embed-
dings in terms of the 1-LCC condition. The initial steps reduce the issue to
the 1-LCC characterization of flat codimension-one spheres in Sn, which is
treated in Theorem 7.6.5; its proof, in turn, capitalizes on the Menger space
technology of the preceding section (Corollary 7.5.10).

Theorem 7.6.1. Every 1-LCC embedding of an (n − 1)-manifold S in an
n-manifold M (n ≥ 5) is locally flat.

No hypothesis about M being PL is needed here; all constructions can
be localized to Euclidean patches in M .

The indispensable tool is the following Bubble Lemma. Its proof retraces
that of 1-LCC Push-off Proposition 7.2.1, using infinite controlled engulfing.

Lemma 7.6.2 (Bubble Lemma). Suppose S is an (n − 1)-manifold in a
connected PL n-manifold M (n ≥ 5), D ⊂ S is an (n−1)-cell such that S is
1-LCC at each point of IntD, U is a component of M � S and ε : IntD →
(0, 1) is a continuous function. Then there exists a 1-LCC embedding e :
IntD → U such that d(s, e(s)) < ε(s) for all s ∈ IntD.

Proof. The embedding e will be ψ| IntD, where ψ is a controlled push
of M such that ψ(IntD) ⊂ U and ψ|∂D = incl∂D. The existence of this
ψ stems from an engulfing program establishing that infinite codimension-
three complexes near IntD can be pushed into a preassigned component of
M � S.

Determine a small connected neighborhood W of IntD such that W
intersects S at IntD, and let W+ be a component of W �D. The claim is
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that, for k ≤ n− 3 and a sufficiently small neighborhood W ′ ⊂ W of IntD,
any infinite k-complex in W ′ admits a controlled push ϕ into W+, where
ϕ|M �W = incl|M �W . To complete the argument, one works with a PL
neighborhood N of IntD in W ′, pushes the (n − 3)-skeleton of N to one
side of W �D, pushes the dual 2-skeleton of N to the other side of W �D,
and stretches across the join structure of N to obtain ψ, just as in 7.2.1. Of
course, controls on the pushes and, more automatically, on the stretch are
necessary to assure that all three adjustments operating in W extend over
the rest of M via the Identity.

One way to nail down the engulfing claim is to produce ∂-manifolds A
and B whose interiors cover IntD and whose components are compact, and
then to use the usual controlled engulfing methodology, applied component
by component, to obtain that complexes near either A or B can be pushed
into W+ with control. Given a k-complex K in W ′, express it as a union of
closed subpolyhedra KA and KB, where KA,KB are near A,B, respectively.
PushKA intoW ′ with enough control that image ofKB is still near B. Then
push that image into W ′, fixing the image of KA. Details are left to the
reader. �

Lemma 7.6.3. Suppose the (n − 1)-sphere Σ ⊂ Sn is the union of two
(n − 1)-cells D and D′ such that ∂D = D ∩D′ = ∂D′, D is 1-LCC in Sn

and IntD′ is 1-LCC in Sn. Then Σ is 1-LCC in Sn.

Proof. Focus on s ∈ ∂D; the conclusion is obvious for other points of Σ.
Given any neighborhood N1 of s, find a smaller neighborhood N2 such that
N2 ∩ (D′ � D) is simply connected (and connected). Use the hypothesis
about D being 1-LCC in Sn to locate another neighborhood N3 ⊂ N2 such
that all loops in N3 �D are null-homotopic in N2 �D.

Hence, each loop f : ∂I2 → N3�Σ extends to a map F1 : I
2 → N2�D.

Let Z denote the component of I2�(F1)
−1(D′) containing ∂I2. SinceD′∩N2

is an ANR, F1|FrZ extends to a map sending a small neighborhood of FrZ
in I2 � Z into D′ ∩N2. Thus, there exist a compact, connected ∂-manifold
Q, ∂I2 ⊂ Z ⊂ Q ⊂ I2, and map F2 : Q → N2 �D such that F2|Z = F1|Z
and F2(Q � Z) ⊂ N2 ∩ (D′ � D). The connectedness of Q implies each
component of I2 �Q is bounded by a simple closed curve, so by the simple-
connectedness of N2 ∩ (D′ �D), F2|Z extends to a map F3 : I2 → N2 �D
with (F3)

−1(Σ) = I2 � Z.

As N2∩D′ is two-sided in N2 (Corollary 7.1.7), choose a connected open
set UD′ such that N2 ∩D′ ⊂ UD′ ⊂ N2 and UD′ �D′ has two components;
N2 ∩ D′ is LCC1 in the closure (rel N2) of each of these components, by
Proposition 7.1.11. Cover (F3)

−1(D′) by another compact ∂-manifold Q′ ⊂
(F3)

−1(UD′) ∩ Int I2.
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We claim that the image of each component C of Q′ under F3 meets the
closure of only one component of UD′ �D′. To examine that image, let Zc

denote I2 � Z. By duality,

Ȟ1(Zc) ∼= H1(Int I
2, IntZ) ∼= H̃0(IntZ) ∼= 0.

Since Zc splits into the disjoint union of the compact sets Zc∩C and Zc�C,
Ȟ1(Zc ∩ C) ∼= 0. Consequently,

0 ∼= Ȟ1(Zc ∩ IntC) ∼= H1(IntC, IntC � Zc) → H̃0(IntC � Zc) → 0,

so IntC �Zc is connected, and its image under F3 meets exactly one of the
components of UD′ � D′. Applying Lemma 3.3.3 to F3|C for each C, we
obtain a map F4 : I2 → N2 � Σ such that F4|I2 � Q′ = F3|I2 � Q′ (and
F4(C) ⊂ UD′ �D′); in particular, F4|∂I2 = f . �
Corollary 7.6.4. Suppose S is an (n− 1)-manifold 1-LCC embedded in an
n-manifold M (n ≥ 5) and s ∈ S. Then there exist a neighborhood Ns of s
in M and a 1-LCC embedded (n− 1)-sphere Σ ⊂ Ns such that Ns ≈ Rn and
Σ ∩ S contains a neighborhood of s in S.

As a result, Theorem 7.6.1 reduces to the following:

Theorem 7.6.5. An (n− 1)-sphere Σ in Sn (n ≥ 5) is flat if and only if it
is 1-LCC embedded.

Proof. Let λ : ∂In → Σ be a homeomorphism and W a component of
Sn � Σ. The goal will be to extend λ to an embedding e : Mn−1

n → W and
to apply Corollary 7.5.10.

Let κ = {k1, k2, . . . } be a sequence of integers, ki ≥ 3. Associated with
κ is an (n− 1)-dimensional S-curve, Xκ, constructed in a manner modelled
on that of Mn−1

n in §3.5. Let T0 be the trivial subdivision of I, just as in
that construction. Let T1 be the subdivision of I into k1 subintervals of
equal length. Assuming Tj to be a subdivision of I into intervals of equal
length 1/k1 · · · kj , let Tj+1 denote the subdivision obtained by sectioning
each interval of Tj into kj+1 subintervals of equal length. As a result, Tj+1

induces a subdivision Tn
j+1 of In into a multitude of isometric subcubes. Set

P0 = In and let Pj+1 denote the union of all n-dimensional subcubes of Tn
j+1

that lie in Pj and intersect its (n − 1)-skeleton Lj (as determined by Tn
j ).

Then Xκ = ∩jPj .

By definition Xκ = Mn−1
n in the special case κ = {3, 3, 3, . . . }.

For j = 1, 2, . . . there exists a retraction rj : Pj → Lj−1 (since Pj fills
no n-cube of Tn

j−1), where rj moves no point more than dj−1, the diameter
of the n-cubes from Tn

j−1.

The proofs of the next two results are based on routine inverse limit
arguments.
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Lemma 7.6.6. The inverse limit of the sequence {Lj , rj |Lj} is Xκ.

Lemma 7.6.7. Suppose {Lj, rj |Lj} as above, and suppose {λj : Lj → Sn}
is a sequence of embeddings such that λj+1|Lj = λj for all j ≥ 1. Suppose
also that for each ε > 0 there exists an index mε such that diam λj(∂σ) < ε
for all j ≥ mε and all n-cells σ ⊂ Pj in Tn

j . Then there exists an embedding

Λ : Xκ → Sn such that Λ|Lj = λj for all j ≥ 0.

Continuing with the proof of 7.6.5, we choose an integer k1 ≥ 3 such
that, for the subdivision T1 of I into k1 intervals of equal length and Tn

1 the
associated subdivision of In determined by the product of n copies of T1, we
have diam λ(σ ∩ L0) < 1/(3n−1 · 2) = δ1 for all σ ∈ Tn

1 . Order the n-cubes

σ1, σ2, . . . , σm(1) of T
n
1 in P1 so that ∂σi∩Li−1

0 is a PL (n−1)-cell Ei, where

Li−1
0 = L0 ∪ ∪i−1

t=1∂σt. We will apply Lemma 7.6.2 recursively to extend λ

to an embedding λ : Li
0 → W such that diamλ(∂σi) < 1/2 for all σi. In

addition, we will have assured that λ(Ei) is 1-LCC, so λ(∂σi) will be 1-LCC
by Lemma 7.6.3. At the end of the process, when i = m(1), we will have an
embedding λ1 : L1 → W with λ1(∂σi) being a 1-LCC embedded sphere and
diamλ1(∂σi) < 1/2 for i = 1, 2, . . . ,m(1).

For the promised assurance that λ(Ei) is 1-LCC, we will employ the
following variation on Lemma 7.6.3. The proof is an exercise.

Lemma 7.6.8. Suppose the (n−1)-cell E ⊂ Sn is the union of two (n−1)-
cells E′ and E′′ such that E′ ∩E′′ is an (n− 2)-cell in the boundary of each,
E is 1-LCC in Sn and E � E′ is 1-LCC in Sn. Then E is 1-LCC in Sn.

The recursive process runs as follows. Start with S0 = λ(∂In). We
produce (n − 1)-spheres Si (i = 1, . . . ,m(1)) and extensions of λ over Li

so Si ⊂ λ(Li) using the Bubble Lemma. It gives approximations λ| IntEi

by new 1-LCC embeddings λ′
i with image very close to λ(Ei); since each

∂σi � IntEi is a PL (n − 1)-cell E′
i, λ|∂E′

i extends to a homeomorphism
(still called λ) of E′

i to the closure of λ′
i(IntEi). The sphere Si is obtained

from Si−1 by replacing λ(Ei) with λ(E′
i) = λi(E

′
i). Let Wj denote the

component of Sn � Sj contained in W . In the successive applications of
the Bubble Lemma require that λ′

i(Ei) ⊂ Wi. Inductively assuming that
λ(Li−1)∩Wi−1 = ∅, we see that λ|Li = Li−1 ∪E′

i is 1-1 and λ(Li)∩Wi = ∅,
as required.

To control sizes of the λ(σj), one can partition the cubes σi into n
pairwise disjoint groups. Begin with the cubes from the first group, proceed
to those in the second group, and so on. One way to obtain an acceptable
grouping is to insist that k1 be odd and to partition the intervals of T1

into two pairwise disjoint groups, designated as black and white, with the
two intervals containing the endpoints of I being black. The first group
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of cubes from Tn
1 consists of all products of black intervals; generally, the

jth group (j > 1) consists of all n-cubes from Tn
1 expressed as a product

involving exactly j − 1 white intervals. There are exactly n such groups,
not n+1, since no product determined by n white intervals meets L0. When
using the Bubble Lemma with the first group, insist that diamλ(σi) <
1/(3n−1 ·2) = δ1. Consequently, when treating cubes from the second group,
we see that λ(Ei) has diameter at most 3δ1, and we can extend λ over E′

i

so diamλ(σi) < 3δ1. Each time we progress from one group to the next the
diameters of the λ(Ei) can triple. Thus, at the end, the extension λ satisfies
diamλ(σi) < 3n−1 · δ1 = 1/2 for all i.

σ1

1

σ8

σ6

σ5 σ7

σ4

σ2 σ3

λ(E )

5λ(E )

2λ(E )

3λ(E )

4λ(E )

6λ(E )

7λ(E )

8λ(E )′

′

′

′

Figure 7.8. P1 and λ(L1) for n = 2, k1 = 3

The next step simply repeats this procedure, except that the role of
λ|∂In now is taken over successively by λ1|∂σi, and the role of W by the
component of Sn � λ(∂σi) contained in W . Critical size control is imposed
by choosing an integer k2 ≥ 3 such that for the subdivision T2 of I into k1k2
intervals of equal length and Tn

1 the associated iterated product subdivision
of In, we have diamλ1(σ ∩ L1) < 1/(3n−1 · 4) for all σ ∈ Tn

2 . Fix an n-
cube Cj of Tn

1 in P1 and order the n-cubes σ1, σ2, . . . , σm(2) of T
n
2 in Cj so

that ∂σi ∩CjL
i−1
1 is an (n− 1)-cell, where CjL

i−1
1 = ∂Cj ∪ ∪i−1

t=1∂σi. Apply

Lemma 7.6.2 to extend λ1 to an embedding λ1 : CjL
i
1 → V such that each

λ1(∂σi) is a 1-LCC embedded (n− 1)-sphere of diameter less than 1/4. At
the end of the second stage of this process we have an extension of λ1 to an
embedding λ2 : L2 → V such that λ2(∂σ) is a 1-LCC embedded sphere of
diameter less than 1/4 for all n-cubes σ ⊂ P2 from Tn

2 .

Continue in the same way, thereby generating infinite sequences κ =
{k1, k2, k3, . . . } of positive integers, with each ki ≥ 3, {T1, T2, T3, . . . } of
subdivisions of I, with Ti determining k1k2 · · · ki equal length subintervals,
and {λi : Li → W} of embeddings such that λi+1|Li = λi and, for each
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n-cube σ ⊂ Pi from Tn
i , λi(σ) is a 1-LCC embedded sphere of diameter less

than 1/2i.

Lemma 7.6.7 furnishes an embedding Λ : Xκ → W of the associated S-
curve Xκ such that Λ|∂In = λ|∂In. By Theorem 7.5.7, Xκ is topologically
equivalent to the standard Menger space Mn−1

n , and then Corollary 7.5.10
assures that W is an n-cell. Finally, since W could be either component of
Sn � Σ, Σ is flat. �
Corollary 7.6.9. Every 1-LCC embedding of an (n − 1)-dimensional ∂-
manifold S in an n-manifold M (n ≥ 5) is locally flat.

Proof. The Bubble Lemma and Lemma 7.6.3 indicate any sufficiently small
(n−1)-disk D in S lies on a 1-LCC embedded (n−1)-sphere ΣD that lives in
a coordinate chart of M , and D can be assumed to be standardly embedded
in ΣD. �
Corollary 7.6.10. Every (n− 1)-cell E ⊂ Sn as in Lemma 7.6.8 is flat.

Corollary 7.6.11. An (n− 1)-cell E in Sn (n ≥ 5) is flat if and only if E
is 1-LCC at points of IntE and ∂E is locally homotopically unknotted.

Historical Notes. The approach to Theorem 7.6.1 presented here was de-
veloped by Černavskĭı (1973). Another argument was given by Daverman
(1973b).

The 3-dimensional analogs of the main results of this section were de-
veloped by Bing (1961b), and the 4-dimensional analogs were produced by
Freedman and Quinn (1990).

On a topic related to Corollary 7.6.10, Černavskĭı (1967) showed the
union of two locally flat (n−1)-cells that intersect in an (n−2)-cell standardly
embedded in the boundary of each to be flat itself, and Kirby (1968b) did the
same for n = 4. Earlier, P. H. Doyle (1960) established the 3-dimensional
version. More recently, Černavskĭı (2006) provided a new proof of the result.

Exercises

7.6.1. Show that if σi ∈ Tn
1 in the proof of 7.6.5 belongs to the (j + 1)st

group and contains no point with coordinate 0 or 1, then Ei is
congruent to a rescaled version of [Ij ∪ (∂Ij × I)]× In−j.

7.6.2. Prove Lemma 7.6.8.

7.6.3. Prove Corollary 7.6.11.

7.7. Locally flat approximations

Theorem 7.7.1 (Locally Flat Approximation). Let M be an n-manifold
(n ≥ 5), Q an (n − 1)-manifold topologically embedded in M as a closed
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subset and ε : Q → (0, 1) a continuous function. Then there exists a locally
flat embedding λ : Q → M such that ρ(λ(q), q) < ε(q) for all q ∈ Q.

To establish this foundational result, we will follow the lead of Ancel and
Cannon (1979) who exploited a notion of embedding relation originally in-
troduced in (Cannon, 1975). Embedding relations involve considerable new
terminology, which will be laid out in what immediately follows, to provide
context for statements of some forthcoming rather technical results. The
conclusion of this section contains a brief appendix in which basic proper-
ties of embedding relations are developed.

A relation R : X → Y is simply a subset of X × Y whose projection to
the first factor is surjective; in other words, R is a multi-valued function.
Its image R(X) has the usual meaning, and its inverse R−1 : R(X) → X
is the relation {〈y, x〉 ∈ R(X) × X | 〈x, y〉 ∈ R}. A relation R : X →
Y is continuous if for each closed subset C of Y , R−1(C) is closed in X
(expecting inverses of open sets to be open would be unreasonable), and it
is an embedding relation if any two of its point images are disjoint.

For simplicity, assume that all spaces are locally compact, separable
and metrizable. A relation R : X → Y is proper if both R and R−1 are
continuous with compact point images.

Given a metric space (X, d) and ε > 0, (ε) denotes the relation (ε) : X →
X defined as {〈x, y〉 ∈ X ×X | d(x, y) < ε}. When such expressions appear
as terms in a composition of relations, we occasionally omit the parentheses
to shorten the formulae. It should be noted that, if R : X → Y is a relation,
even when the metric on X×Y is, say, the sum of the metrics on its factors,
(ε) ◦R ⊂ X × Y is not identical to the ε-neighborhood of R but, instead, is
a subset. Also, given two functions f, f ′ : Y → X, ρ(f, f ′) < ε if and only if
f ′ ⊂ (ε) ◦ f as relations.

A relation R : X → Y is 1-LCC if for each x ∈ X and neighborhood U
of R(x) in Y there exists a neighborhood V ⊂ U of R(x) such that loops in
V � ImR are null-homotopic in U � ImR. Quite obviously, when R is an
embedding relation, R(X) is closed in Y and π : Y → Y/R is the quotient
map determined by the decomposition of Y into singletons from Y �R(X)
and the sets {R(x) | x ∈ X}, then R is 1-LCC if and only if πR(X) (which
is an embedded copy of X) is a 1-LCC subset of Y/R, in the usual sense.

A cell-like embedding relation is a proper embedding relation R : X → Y
from a locally compact metric space X to an ANR Y such that the point
images under R are non-empty, disjoint, cell-like sets. By definition, con-
tinuous embedding relations between compact ANRs are necessarily proper
if point images are cell-like. Our attention will focus on cell-like embedding
relations R : Sn−1 → Sn; it follows easily that then R(Sn−1) is compact
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and R−1 : R(Sn−1) → Sn−1 is a genuine cell-like mapping. It is perfectly
appropriate to regard a cell-like embedding relation simply as the inverse of
a cell-like mapping. Approximation of one embedding relation by another
permits the domain of the inverse cell-like map to change, in a controlled
way, while preserving the target. In the strategy employed here, given a
cell-like embedding relation R : Sn−1 → Sn, one will find a better approx-
imating relation R′; the associated image R′(Sn−1) then will be close, in a
reasonably rich sense, to R(Sn−1) and both images will admit cell-like maps
(R−1 and (R′)−1) to Sn−1. Ultimately, upon passage to a limit, the resulting
cell-like embedding relation will admit an approximating 1-LCC embedding
of Sn−1, which will be flat, by Theorem 7.6.1.

In partial compensation for the introduction of unfamiliar concepts, we
will address only the most familiar case of 7.7.1: an embedding of the (n−1)-
sphere in Sn. Restated in the language of embedding relations, the precise
aim of §7.7 is to establish the following 1-LCC variation of Theorem 7.7.1.

Theorem 7.7.2 (1-LCC Approximation of Relations). Suppose R : Sn−1 →
Sn (n ≥ 5) is a cell-like embedding relation and L is a neighborhood of
R in Sn−1 × Sn. Then L contains a 1-LCC cell-like embedding relation
R′ : Sn−1 → Sn.

Given a cell-like embedding relation R : Sn−1 → Sn, we will denote by
πR : Sn → Sn/R the quotient map associated with the decomposition of Sn

into the sets R(x), x ∈ Sn−1, and the singletons of Sn�R(Sn−1). A central
difficulty is that, generally, Sn/R need not be a manifold.

Corollary 7.7.3. Under the hypotheses of Theorem 7.7.2, L contains a
locally flat embedding λ : Sn−1 → Sn.

Proof. Given R : Sn−1 → Sn and L, use 7.7.2 to obtain a 1-LCC embedding
relation R′ : Sn−1 → Sn in L. Find ε > 0 such that the ε-neighborhood
Nε of R′ is a subset of L. Proposition 7.4.13 assures that Sn/R′ has the
DDP and, hence, in view of the Cell-like Approximation Theorem, that the
decomposition induced by R′ is shrinkable. Choose δ > 0 such that

(π′)−1 ◦ (δ) ◦ (πR′) ⊂ Nε,

where π′ : Sn → Sn/R′ is the decomposition map, and apply Theorem 2.3.3
to obtain a map µ : Sn → Sn realizing that decomposition—in other words,
µ satisfies

{µ−1(s) | s ∈ Sn} = {(π′)−1(x) | x ∈ Sn/R′}
—and require ρ(π′µ, π′) < δ as well. It follows that λ = µR′ ⊂ Nε ⊂ L is an
embedding and a 1-LCC approximation to R. Hence, λ(Sn−1) is (locally)
flat, by Theorem 7.6.1. �
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Application of Corollary 7.7.3 to an arbitrary embedding λ′ : Sn−1 → Sn

and to the neighborhood L = (ε) ◦ λ′ in Sn−1 × Sn immediately yields
Theorem 7.7.1 for codimension-one spheres in Sn.

Lemma 7.7.4. For any cell-like embedding relation R : Sn−1 → Sn, ImR
separates Sn into two components.

Proof. By Proposition 3.2.9, R(Sn−1) has the Čech cohomology of Sn−1.
Repeat the analysis given in Proposition 7.1.1. �

Let f : ∂I2 → Sn � ImR be a loop, and let f∗ : I2 → Sn/R be a
map extending πR ◦ f such that Im f∗ misses one of the complementary
domains of the (n − 1)-sphere Im(πR ◦ R) in Sn/R. Then the relation

F̂ = π−1
R ◦f∗ : I2 → Sn is called an R-disk bounded by f . In the proof of the

1-LCC Approximation Theorem of Relations we shall show that every such
loop f near a point image of R bounds a “small” R-disk F̂ . That notion of
smallness is measured as R-diameter, where the R-diameter of a set X ⊂ Sn

is defined as

R- diam(X) = inf{ε > 0 | for some s ∈ Sn−1, X ⊂ ε ◦R ◦ ε(s)};

for simplicity, we also define R-diam(F̂ ) = R-diam(Im F̂ ).

Lemma 7.7.5 (Basic Lemma). Suppose R : Sn−1 → Sn (n ≥ 5) is a cell-like

embedding relation, F̂ : I2 → Sn is an R-disk, and L,O are neighborhoods
of R, F̂ , respectively. Then L contains a cell-like embedding relation R′′′ :
Sn−1 → Sn and O contains a continuous function F ∗ : I2 → Sn such that
R′′′(Sn−1) ∩ F ∗(I2) = ∅.

Proof that Basic Lemma 7.7.5 implies Theorem 7.7.2. For purposes
of this argument, given two relations L′, L′′ : Sn−1 → Sn, we will say that
L′ is slice-trivial in L′′ if L′ ⊂ L′′ and L′(s) is null-homotopic in L′′(s) for
each s ∈ Sn−1.

Let f1, f2, . . . : S
1 → Sn denote a countable set of embeddings dense in

the space of all loops in Sn.

Set R0 = R and let L0 ⊂ L be a compact neighborhood of R0. Assume
inductively that cell-like embedding relations R0, . . . , Ri−1 : Sn−1 → Sn,
compact neighborhoods L0 ⊃ R0, · · · , Li−1 ⊃ Ri−1 in Sn−1 × Sn, and con-
tinuous functions F1, . . . , Fi−1 : I

2 → Sn bounded by f1, . . . , fi−1 have been
determined satisfying the following four conditions for j = 0, 1, . . . , i− 1:

(1j) Rj ⊂ IntLj ⊂ Lj ⊂ (1/j) ◦Rj ◦ (1/j);
(2j) Lj is slice-trivial in Lj−1;

(3j) L−1
j ◦ Lj ⊂ (1/j) (the j = 0 case is vacuous); and
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(4j) if fj bounds an Rj−1-disk and if

εj = inf{Rj−1- diam(F̂ ) | F̂ is an Rj−1-disk bounded by fj},
then Rj−1- diam(ImFj) < 2εj and ImLj ∩ ImFj = ∅.

Choose Ri, Li and Fi as follows. In case fi bounds an Ri−1-disk and
εi is the infimum defined in (4i), an easy consequence of the Basic Lemma
gives a cell-like embedding relation (Ri : Sn−1 → Sn) ⊂ IntLi−1 and a
continuous function Fi : I

2 → Sn bounded by fi such that ImRi∩ ImFi = ∅
and Ri−1-diam(ImFi) < 2εi. That Condition (4i) holds is obvious. There is
a compact neighborhood Li of Ri in IntLi−1 ∩ [(1/i) ◦ Ri ◦ (1/i)] by (5) in
the Appendix on Continuous Relations; with this choice of Li, (1i) will be
satisfied. Condition (2i) can be obtained using (9) of the Appendix. Since
R−1

i ◦ Ri = Id ⊂ (1/i), Condition (3i) can be obtained by Composition
Theorem (6) of the Appendix.

In the other case, where fi bounds no Ri−1-disk, Condition (4i) is vacu-
ous; one then can take Ri = Ri−1, Fi arbitrary and Li satisfying (1i)− (3i),
in order to complete the inductive step.

Define R′ : Sn−1 → Sn as R′ = ∩∞
i=0Li. We claim that R′ is a 1-LCC

cell-like embedding relation. Clearly it is contained in L0 ⊂ L and clearly
ImR′ ∩ ImFi = ∅ for all i such that fi bounds an Ri−1-disk.

(i) R′ is a proper relation. Being an intersection of compact sets, R′

itself is compact and, thus, proper, by (5) in the Appendix.

(ii) R′ is cell-like. For each x ∈ Sn−1, R′(x) has a neighborhood system
L0(x) ⊃ L1(x) ⊃ · · · , with Li(x) compact, nonvoid, and contractible in
Li−1(x), by (2i). As a result, R′(x) = ∩iLi(X) is cell-like.

(iii) R′ is 1-1. Indeed,

(R′)−1 ◦R′ ⊂ ∩i(L
−1
i ◦ Li) ⊂ ∩i(1/i) = IdSn−1 ;

hence, point images under R′ are disjoint.

Consequently, R′ is a cell-like embedding relation. Showing it to be
1-LCC is the only remaining issue.

(iv) R′ is 1-LCC. Consider any point x ∈ Sn−1 and any neighborhood
U of R′(x) in Sn. The task ahead is to find a neighborhood V of R′(x) in
U ⊂ Sn such that loops in V � ImR′ are null-homotopic in U � ImR′.

We rely on (6) of the Appendix again to supply technical estimates.
Since

U ⊃ R′(x) = (Id ◦R′ ◦ Id) ◦ (Id ◦R′−1 ◦ Id) ◦ (Id ◦R′ ◦ Id)(x),
Composition Theorem (6) assures the existence of an α > 0 and an integer
I > 0 satisfying:

(1) U ⊃ (2α ◦ LI ◦ 2α) ◦ (2α ◦ L−1
I ◦ 2α) ◦ (α ◦R′ ◦ α)(x).
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Set β = α/2 and choose an integer J > 2/α. Then i > J implies

(2) β ◦R′ ◦ β(x) ⊂ (α/2) ◦ Li−1 ◦ (α/2)(x)
⊂ (α/2) ◦ [(α/2) ◦Ri−1 ◦ (α/2)] ◦ (α/2)(x), by (1i−1)

= α ◦Ri−1 ◦ α(x).
Having chosen α, β, I, and J , we specify an (n− 1)-cell neighborhood D

of x in Sn−1 ∩ β(x), a compact neighborhood V ′ of R′(x) in β ◦ R′ ◦ β(x)
intersecting ImR′ only in R′(IntD) and a compact neighborhood V of R′(x)
which contracts in V ′ (recall that R′(x) is cell-like).

We show that each loop f : S1 → Sn in V �ImR′ contracts in U�ImR′.
Pick K >Max{I, J} so large that, when i > K,

(3) Ri−1(D) ⊂ β ◦R′ ◦ β(x),
(4) Ri−1(S

n−1 � IntD) ∩ V ′ = ∅, and
(5) Im f ∩ ImRi−1 = ∅.

Using (5) and the density of {fi}, pick i > K such that the loop fi is
homotopic to f in V � Im(R′ ∪ Ri−1). We now explain why the associated
extension Fi : I2 → Sn given by (4i) has image in U � ImR′, which will
complete the proof.

Since V contracts in V ′, f admits a continuous extension g : I2 → V ′.
Let π denote the decomposition map Sn → Sn/Ri−1 associated with Ri−1,
and identify Sn−1 with its image under the embedding π ◦ Ri−1. The set
π ◦ f(S1) lies in one of the two components of (Sn/Ri−1) � Sn−1, and the
set π ◦ g(I2) intersects Sn−1 only in the (n − 1)-cell π ◦ Ri−1(D) by (4).
By the Tietze Extension Theorem, there is a continuous function f∗ : I2 →
Sn−1/Ri−1 extending π ◦f , the image of which lies in π ◦g(I2)∪π ◦Ri−1(D)
and misses one component of (Sn/Ri−1)�Sn−1, namely, the component not
containing f(S1).

The relation F̂ = π−1 ◦ f∗ : I2 → Sn is an Ri−1-disk bounded by f .
Since Im f∗ ⊂ π ◦ g(I2) ∪ π ◦Ri−1(D), it follows that

Im F̂ ⊂ g(I2) ∪Ri−1(D) ⊂ β ◦R′ ◦ β(x)
(by (3) and the choice of V ′ ⊃ g(I2)). But β ◦ R′ ◦ β(x) ⊂ α ◦ Ri−1 ◦ α(x)
(by (2)). Hence, by definition of Ri-diam(F̂ ) and rules governing the choice
of Fi, Fi is a singular disk in Sn � Li bounded by fi and lying, for some
y ∈ Sn−1, in the set (2α)◦Ri−1◦(2α)(y), by (4i−1). The only issue remaining
is to show that 2α ◦Ri−1 ◦ 2α(y) ⊂ U .

Since ImFi ⊂ α ◦R′ ◦ α(x) ∩ (2α) ◦Ri−1 ◦ (2α)(y) and is nonempty, we
have ImFi contained in

(2α) ◦Ri−1 ◦ (2α)(y) ⊂ [(2α) ◦Ri−1 ◦ (2α)][(2α) ◦R−1
i−1 ◦ (2α)][α ◦R′ ◦α](x),

and this latter set lies in U , by (1). �
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Before proceeding it might be beneficial to review the extensive collection
of definitions and notation from §5.5 concerning Štan′ko moves, the template
(A,B,C,D, e) in Î2, the n-dimensional expansions

A = A× În−2, B = B × În−2, C = C × [−1, 1]× În−3,

the 2-cells D = D × 0 ⊂ În and e× Î = e× {0} × Î × 0 ⊂ În, semi-capped
surfaces, Delta structures, branching systems, Štan′ko complexes, and the
special homeomorphism Φn : În → În.

Here is the setting for the Basic Lemma, the proof of which occupies most
of the remainder of this section. All this data and notation is presumed to
be in place until the completion of that proof.

R : Sn−1 → Sn, a cell-like embedding relation, with associated cell-like
decomposition map: π = πR : Sn → Sn/R;

(F̂ = π−1 ◦ f∗) : I2 → Sn, an R-disk with f∗ : I2 → Sn/R a continuous

function and with F̂ |∂I2 an embedding;

L, a neighborhood of R in Sn−1 × Sn;

O, a neighborhood of F̂ in I2 × Sn.

We identify Sn−1 with Im(π◦R) via the homeomorphism π◦R : Sn−1 →
Im(π ◦R) so that R = π−1|Sn−1, and we also make use of the notation:

W , a component of Sn/R� Sn−1 containing f∗(∂I2);

L0, a neighborhood of π−1 in Sn/R×Sn whose restriction to Sn−1 is L.

Anticipating the verifications to be made near the end of the proof of
the Basic Lemma, we now impose certain essential controls using the Com-
position Theorem (6): since

[Id ◦ Id ◦ π−1 ◦ IdSn/R ◦ π ◦ Id ◦ Id] ◦ Id ◦ π−1 = π−1 ⊂ L0

(where all unsubscripted “Id” denote Id : Sn → Sn), and since

Id ◦ π−1 ◦ IdSn/R ◦ f∗ = F̂ ⊂ O,

there is an ε > 0 such that

(S†) (ε ◦ ε ◦ π−1 ◦ (2ε) ◦ π ◦ ε ◦ ε) ◦ ε ◦ π−1 ⊂ L0 and

(S‡) ε ◦ π−1 ◦ ε ◦ f∗ ⊂ O.

Theorem 7.7.6 (Štan′ko Complex Mapping). For each ε > 0 there exist a
branching system ∆ : ∆0 → ∆1 → ∆2 → · · · , with D0 of ∆0 = (D0, E0,Γ0)
equal to I2, and a continuous function h : C(∆) → Sn/R satisfying:

(1) h(C(∆)� IntE∗) ⊂ W ⊂ Sn/R� Sn−1,

(2) h(D∗
i ∪D∗

i+1 ∪D∗
i+2 ∪ · · · ) ⊂ B(Sn−1; ε/2i−1) for i > 0,

(3) ρ(h ◦ (∗)|D0, f
∗) < ε,

(4) h ◦ (∗)|∂D0 = f∗|(∂D0 = ∂I2),
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(5) diamh(Pi) < ε/2i for i > 0 and each component Pi of D
∗
i ∪ E∗

i−1.
In addition, the map h may be chosen so there exists a PL injective map
h′ : C(∆) → Sn with π ◦ h′ = h.

Remark. Unlike the output of the related codimension-three Štan′ko Em-
bedding Theorem (5.5.5), h′ need not be a homeomorphism: a sequence
{x1, x2, x3, . . . | xi ∈ h′(D∗

i )} can accumulate at a point of h′(E∗
0), causing

(h′)−1 to be discontinuous. An example will be provided later, in §7.10, of an
actual embedding R : Sn−1 → Sn and disjoint simple closed curves J1 and J2
in π−1(W ) such that for every singular disk D1 in Cl(π−1(W )) bounded by

J1 and every singular disk D2 in Sn bounded by J2, D1∩D2 �= ∅. If F̂ would
be an R-disk sending ∂D homeomorphically onto J1 and if J2 would bound
a component of h(E∗

i ), then points of h′(C(∆)�E∗) necessarily would accu-
mulate at h′(IntE∗

i ). This possibility accounts for a thickening procedure to

be employed later, in Štan′ko Complex Embedding Theorem 7.7.8, and, to
a large extent, for the prolonged diversion through the realm of embedding
relations. To establish the Embedding Theorem we will employ a carefully
constructed cell-like embedding relation R′ : Sn → Sn, will replace R by
R′ ◦R, and will obtain a PL embedding of C(∆) → Sn for the modified R.

As in §5.5, the Mapping Theorem is a consequence of iterated applica-
tions of the following, which in turn is simply a variation on Lemma 5.5.6
for the slightly more general context to be faced.

Lemma 7.7.7. Suppose g : (D, ∂D) → (W,W ) is a map of pairs, where D
is a disk, and δ > 0. Then there exist a Delta structure ∆ = (D,E,Γ) and
a map f : D∗ → W satisfying:

(1′) f(D∗ � IntE∗) ⊂ W ,

(2′) f(E∗) ⊂ B(Sn−1; δ),

(3′) ρ(f ◦ (∗)|D, g) < δ,

(4′) f ◦ (∗)|∂D = g|∂D, and

(5′) diam f(P ) < δ for each component P of E∗ or Γ∗.

Proof. Being the finite-dimensional image of Sn under a cell-like map, Sn/R
is an ANR (Corollary 7.4.8). Since W is a closed subset of Sn/R bounded
by the (n− 1)-sphere πR(Sn−1), W is also an ANR.

Claim: each s ∈ πR(Sn−1) has arbitrarily small pairs of neighbor-
hoods N ′ ⊂ N such that H1(N

′ ∩ W ;Z) → H1(N ∩ W ;Z) is trivial.
Given N with N ∩ πR(Sn−1) contractible, choose N ′ ⊂ N with incl :
N ′ → N homotopically trivial; by Proposition 3.2.9 it suffices to show that
H1(π

−1(N ′ ∩ W );Z) → H1(π
−1(N ∩ W );Z) is trivial, and that property

holds just as in the proof of Proposition 7.1.11.
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Hence, there exist positive numbers α < β < η < δ/4 such that

(η) η-loops in W bound singular (δ/4)-disks in W ,

(β) β-loops in W bound singular, orientable disks with handles of diam-
eter less than η in W (recall Lemma 5.5.3), and

(α) any two points of W within α of each other are joined by (β/2)-arcs
in W .

TriangulateD with mesh so small that the image under g of each simplex
has diameter less than α, and let D(0), D(1) and D(2) denote the successive
skeleta of this triangulation. Since g(∂D) ⊂ W we may define f on ∂D as

g|∂D and define f for any other vertex v of D(0) as a point in W so close
to g(v) that vertices of the same simplex have images in W within α of one
another and within α of their image under f .

Apply (α) to extend f over |D(1)| so that the image of each 1-simplex
lies in W and has diameter less than β/2.

Apply (β) for each σ ∈ D(2) to obtain an orientable disk-with-handles
Qσ bounded by ∂σ and a continuous extension fσ : Qσ → W of f |∂σ sending
Qσ to a set of diameter less than η.

In the interior of each Qσ identify complete sets Γσ,Γ
′
σ of handle curves,

as before.

By (η) there exists for each σ ∈ D(2) a finite disjoint union Eσ of disks
whose boundaries equal Γ′

σ and whose interior points have no intersection
with ∪σQσ as well as a continuous extension f : Eσ → W taking each
component of Eσ to a set of diameter less than δ/4. Define

D∗ = |D(1)| ∪ [∪σ(Qσ ∪ Eσ)], E∗ = ∪σEσ, Γ∗ = ∪σΓσ.

It should be clear that D∗ is the semi-capped surface of a Delta structure
∆ = (D,E,Γ), where (∗)| |D(1)| = Id and (∗):σ → Qσ ∪ Eσ. Clearly f as
defined on D∗ satisfies (1′), (3′), (4′) and (5′). If (2′) is not already satisfied,
it can only stem from the presence of a component of E∗ ∪ Γ∗ whose image
misses Sn−1; the preimage of such a component should simply be deleted
from E and Γ. �

Proof of Mapping Theorem 7.7.6. Choose a sequence δ0 > δ1 > · · · of
positive numbers such that

(i) 4δi < ε/2i for i ≥ 0 and

(ii) δi+1-loops in W bound singular δi-disks in W .

Lemma 7.7.7 provides a Delta structure ∆0 = (D0, E0,Γ0), where D0 = I2,
plus a continuous function h : D∗

0 → W satisfying the conditions below for
j = 0, where f0 = f |D0:

(1j) h(D∗
j � IntE∗

j ) ⊂ W ,
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(2j) h(E∗
j ) ⊂ B(Sn−1; δj+1),

(3j) ρ(h ◦ (∗)|Dj, fj) < δj+1,

(4j) h ◦ (∗)|∂Dj = fj |∂Dj, and

(5j) diamh(P ) < δj+2 for each component P of E∗
j or Γ∗

j .

Assume inductively that ∆0 → · · · → ∆i−1, fj : Dj → W and

h|D∗
0 ∪ · · · ∪D∗

i−1 : D
∗
0 ∪ · · · ∪D∗

i−1 → W

have been obtained satisfying (1j)–(5j) for each j ∈ {0, . . . , i − 1}. For
each component γ of Γ∗

i−1, let D(γ) be a disk with boundary γ. By (5i−1),
diamh(γ) < δi+1, so (ii) assures the existence of a continuous extension
fi(γ) : D(γ) → W of h|γ, the image of which has diameter less than δi. Set
Di = ∪γD(γ) and define fi on Di as fi = ∪γfi(γ). By Lemma 7.7.7 there

exist a Delta structure (+) ∆i = (Di, Ei,Γi) and a map h|D∗
i : D∗

i → W
satisfying (1i)–(5i). This completes the inductive construction of

∆ : ∆0 → ∆1 → ∆2 → · · · and h : C(∆) → Sn/R.

Conditions (1), (3) and (4) of the Mapping Theorem obviously hold here.
For each component P ∪ Q of D∗

i ∪ E∗
i−1 (i ≥ 1), P ⊂ D∗

i , Q ⊂ E∗
i−1, we

have

diamh(P ) ≤ 2ρ(h ◦ (∗)|P, fi|P ) + diam fi(P ) < 3δi

and diamh(Q) < δi+1; thus, diamh(P ∪Q) < 4δi < ε/2i and (5) is satisfied.
Also, for i ≥ 1, d(h(P ), Sn−1) ≤ ε/2i, by (2i−1), since h(P ) ∩ h(E∗

i−1) = ∅.
But diamh(P ) < ε/2i, so h(P ) ⊂ B(Sn−1; ε/2i−1), and (2) is satisfied. �

Theorem 7.7.8 (Štan′ko Complex Embedding). Let ∆, h and h′ be as in
the conclusion of Mapping Theorem 7.7.6. Then the ε-neighborhood of Id :
Sn → Sn contains a cell-like embedding relation R′ : Sn → Sn such that
there is a PL embedding h′′ : C(∆) → Sn with (R′)−1 ◦ h′′ = h′.

Proof. In view of Conditions (1) and (2) of the Mapping Theorem, the
function (h′)−1|h′(C(∆)) is already continuous except possibly at points
of h′(Int(E∗

0 ∪ E∗
1 ∪ · · · )). We will split Sn apart in stages, starting with

h′(IntE∗
0), to provide enough room to isolate h′′(IntE∗

0) = h′(IntE∗
0) from

h′′(C(∆)�E∗
0). This will make (h′′)−1 continuous at points of h′′(IntE∗

0). It-
eration of the splitting will accomplish the same goal at images of E∗

1 , E
∗
2 , . . .

and will complete the proof of this Embedding Theorem.

The basic splitting move is the inverse of a simple collapsing map. Define
r : Î2 → [0, 1] as r(x) = (1/4) · d(x, ∂Î2) ∈ [0, 1/2] and set

Î2 ×r Î
n−2 = ∪{x× [r(x) · În−2] | x ∈ Î2} ⊂ Î2 × În−2 ⊂ În.

Note that Î2 ×r În−2 is a closed neighborhood of Int Î2 × 0 in În. Let
ψ : Î2 ×r Î

n−2 → Î2 × 0 denote projection to the first factor. Define a map
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Ψ : În → În extending ψ, fixed on ∂In, sending each x × În−2 onto itself,
and having as its nondegenerate point preimages precisely the nondegenerate
point preimages of ψ. The relation Ψ−1 is called the basic splitting relation.

I
n-2
ˆ

I
n-2
ˆ

I
2
ˆ

I
2
ˆ

I
2
ˆ ×

×

r

0

Figure 7.9. The basic splitting relation Ψ−1

For each component E of h′(E∗
0) there is a PL embedding PE : Î2 ×

În−2 → Sn taking Î2 × 0 onto E and taking each fiber x × În−2 onto a
very small set. The embeddings {PE | E ⊂ h′(E∗

0)} should be chosen with
disjoint images. Define R : Sn → Sn splitting Sn along h′(E∗

0) by the
formula

R0(x) =

{
PEΨ

−1P−1
E (x) if x ∈ PE(Î

n)

x if x �∈ ∪EPE(Î
n).

The restriction on În−2 fiber size assures that R0 lives in the ε-neighborhood
(ε) of the relation Id : Sn → Sn. Define h0 : C(∆) → Sn as

h0(x) =

{
h′(x) if x ∈ E∗

0

R0 ◦ h′(x) if x �∈ E∗
0 .

Then h0 is PL and injective, R−1
0 ◦h0 = h′, and h−1

0 |h0(C(∆)) is continuous
at the points of h0(E

∗
0). Choose a compact neighborhood N0 of R0 in (ε)

slice-trivial in (ε), with N−1
0 ◦N1 ⊂ (1).

In the same manner choose R1 : Sn → Sn splitting Sn along h0(E
∗
1),

fixing R0 ◦ h′(D∗
0), and satisfying R1 ◦R0 ⊂ IntN0. Define h1 : C(∆) → Sn

by

h1(x) =

{
h0(x) if x ∈ E∗

1

R1 ◦ h0(x) if x �∈ E∗
1 .

Choose a compact neighborhood N1 of R1 ◦ R0 in IntN0, slice-trivial in
IntN0, with N−1

1 ◦N1 ⊂ (1/2).
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In general, have Ri split Sn along hi−1(E
∗
i ), fixing Ri−1 ◦ · · · ◦ R0 ◦

h′(D∗
i−1), and satisfyingRi◦Ri−1◦· · ·◦R0 ⊂ IntNi−1. Define hi : C(∆) → Sn

as

hi(x) =

{
hi−1(x) if x ∈ E∗

i

Ri ◦ hi−1(x) if x �∈ E∗
i .

Again choose a compact neighborhood Ni of Ri ◦ · · · ◦R0 in IntNi−1, slice-
trivial in IntNi−1, with N−1

i ◦Ni ⊂ (1/(i+ 1)).

Finally, define R′ as [R′ = ∩iNi] : S
n → Sn. Just as in the proof of the

1-LCC Approximation Theorem, R′ is a cell-like embedding relation. Define
h′′ : C(∆) → Sn as h′′ = ∪i(hi|D∗

i ). That h′′ is the embedding required in
this Embedding Theorem is easily confirmed. �

Theorem 7.7.9 (Unknotting). Suppose C(∆) is a Štan′ko complex PL em-
bedded in a PL n-manifold M (n ≥ 5) and Z is a compact subset of C(∆).
Then there exist a PL 3-cell Y 3

Z and a PL embedding ψ : Y 3
Z × In−3 → M

such that Z ⊂ ψ(Y 3
Z × 0).

Proof. All but the case n = 5 is covered by Lemma 5.5.8. By Lemma 5.5.7
Z is contained in some PL-embedded, collapsible, finite 2-complex in M .
According to (Price, 1966), any two homotopic PL embeddings of a col-
lapsible finite k-complex in M are ambient isotopic provided n ≥ 2k+ 1, so
the remaining n = 5 case follows like the others. �

Proof of Basic Lemma 7.7.5. Take ∆, h and h′ from the conclusion of
Štan′ko Complex Mapping Theorem 7.7.6, and then take the relation R′ and
the embedding h′′ from the conclusion of the Embedding Theorem 7.7.8.
Identify C(∆) with h′′(C(∆)) via the homeomorphism h′′. Recall the com-
bined identification map

(∗) : D0 
D1 
 · · · → C(∆) = D∗
0 ∪D∗

1 ∪ · · · = h′′(C(∆)) ⊂ Sn.

For i ≥ 0 identify that Di associated with the Delta structure (+)∆i =
(∆i, Ei,Γi) with the Di from the template (+)(Ai, Bi, Ci, Di, ei) in such a
manner that Ei ∪ Γi ⊂ IntBi and (Di ∩ ei)

∗ = D∗
i ∩ E∗

i−1 ⊂ C(∆) ⊂ Sn.
Keep in mind that Im(R′ ◦R) ∩ C(∆) ⊂ ∪iE

∗
i ⊂ ∪iB

∗
i .

By Unknotting Theorem 7.7.9 there exist a regular neighborhood Ni

of D∗
i ∪ E∗

i−1 in C(∆), a PL 3-manifold Yi and an embedded PL product

Yi × În−3 ⊂ Sn such that Ni ⊂ Yi = Yi × 0 ⊂ Yi × În−3 ⊂ Sn. For i > 0
we will use the sets D∗

i ∪E∗
i−1 ⊂ Ni and the product structure Î3 × În−3 to

construct an embedding αi : Î
n = Ai ∪ Bi → Sn suitable for use in a basic

Štan′ko move. The αi’s will be constructed in three steps, which proceed
exactly like those of the second proof of Fundamental Lemma 5.5.2, only
with X replaced throughout by Im(R′ ◦R). Those steps are not reproduced
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here, but the properties of these αi are listed below for easy reference later
on in the verification steps:

(1) Im(Ai ∪ Bi) ⊂ B(D∗
i ∪E∗

i−1; ε/i) (component by component);

(2) of the sets in the list

[D∗
0 ∩A∗

0], [B
∗
0 ], [A

∗
1, ImA1], [B

∗
1 , ImB1], [A

∗
2, ImA2], [B

∗
2 ,B2], . . . ,

only the ones in the same or adjacent square brackets can intersect,

(3) X ∩ αi(Ai) ⊂ αi(Ci);

(4) αi(Ai ∩ Φn(Ci)) ⊂ Sn � C(∆).

(5) Im(R′ ◦R) ∩ αi(Bi) ⊂ αi+1(Ci+1);

(6) αi(Bi) ∩ αi+1(Ai+1 ∩ Φn(Ci+1)) = ∅;
(7) αi(Bi ∩ Φn(Ci)) ⊂ Sn � C(∆).

With the embeddings αi all in place, we define the infinite Štan′ko move
that leads to the desired cell-like embedding relation and establishes the
Basic Lemma. Set

R′′(x) =

{
αi ◦ Φn(x) ◦ α−1

i (x) if x ∈ αi(Ci) ∩ Im(R′ ◦R)

x otherwise,

and note that R′′ is a function. The cell-like embedding relation R′′′ :
Sn−1 → Sn whose existence is posited in the statement of the Basic Lemma
is given by R′′′ = R′′ ◦ R′ ◦ R, and the continuous function F ∗ : I2 →
Sn � ImR′′′ named there is given by F ∗ = (∗)|(I2 = D0).

Verification that R′′′ and F ∗ have the desired properties is a lengthy
process. Each of the verification items labelled (Vi) below opens with a
statement of what it confirms. The first of them is a technical calculation
ultimately used for showing that R′′′ ⊂ L, that R′′′ is proper and that R′′′

is cell-like.

(V1) If 〈x, y〉 ∈ R′ ◦R and 〈x,R′′y〉 ∈ R′′′�∪i<N [Sn−1× Intαi(Ai∪Bi)]
then

〈x,R′′y〉 ∈ (ε/N) ◦ [R′ ◦ π−1 ◦ (ε/N) ◦ π ◦ (R′)−1] ◦ (ε/N) ◦ [R′ ◦R].

It suffices to check the case where R′′(y) �= y, and that is done by finding
points y1, y2 ∈ Sn such that

〈x, y〉 ∈ R′ ◦R, y1 ∈ (ε/N)(y),

y2 ∈ R′ ◦ π−1 ◦ (ε/N) ◦ π ◦ (R′)−1(y1), and R′′(y) ∈ (ε/N)(y2).

By construction of R′′ there exist an integer j ≥ N and a component P
of αj(Aj ∪ Bj) containing both y and R′′(y). Let Q be the component of
D∗

j ∪ E∗
j−1 intersecting P . By (1), P ⊂ (ε/j)(Q). Thus, there exist points

y1, y2 ∈ Q satisfying y1 ∈ (ε/j)(y) and R′′(y) ⊂ (ε/j)(y2) ⊂ (ε/N)(y2).
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Since h(Q) = π ◦ (R′)−1(Q) has diameter less than ε/j by Conclusion (5) of
7.7.6, y2 ∈ R′′ ◦ π−1 ◦ (ε/N) ◦ π ◦ (R′)−1(y1).

(V2) R′′′ ⊂ L. By (V1) with N = 1,

R′′′ ⊂ ε ◦ [R′ ◦ π−1 ◦ ε ◦ π ◦ (R′)−1] ◦ ε ◦ [R′ ◦R]

and the latter set lies in L0, by Condition (S†) of the setting for the Basic
Lemma. Since L0|Sn−1 = L,R′′′ ⊂ L.

(V3) R′′′ is proper. It suffices to show thatR′′′ is compact. Let 〈x1, R′′y1〉,
〈x2, R′′y2〉, . . . be a sequence in R′′′. Passing to a subsequence, if necessary,
we see that it suffices to address two cases.

Case 1. The points y1, y2, . . . all lie in αiAi for some fixed index i. Since
R′′| [αiAi ∩ Im(R′ ◦ R)] is continuous, 〈x1, R′′y1〉, 〈x2, R′′y2〉, . . . all belong
to the compact set

[(R′ ◦R)−1, R′′][αiAi ∩ Im(R′ ◦R)] ⊂ [(R′ ◦R)−1, R′′] Im(R′ ◦R) ⊂ R′′′.

Hence, the points cluster in R′′′.

Case 2. For each integerN > 0, only finitely many of the points y1, y2, . . .
lie in ∪i<N IntαiAi. Then the intersection of the sequence {〈xi, R′′yi〉}∞i=N

with the set ZN = R′′′ − ∪i<N [Sn−1 × Intαi(Ai ∪ Bi)] is contained in the
portion of

(ε/N) ◦ [R′ ◦ π−1 ◦ (ε/N) ◦ π ◦ (R′)−1] ◦ (ε/N) ◦ [R′ ◦R|
outside ∪i<N [Sn−1× Intαi(Ai∪Bi)] and is nonempty for each such N . The
intersection of the Zn (over all N ≥ 1) equals

R′ ◦R� ∪∞
i=1[S

n−1 × Intαi(Ai ∪ Bi)],

which is a compact subset of R′′′. It follows easily that the points cluster at
a point of R′′′. We conclude that R′′′ is compact and, thus, proper.

(V4) R′′′ is injective. Since R′ ◦ R is injective, it suffices to show that
R′′ is injective. We have

Im(R′ ◦R) = [Im(R′ ◦R)� ∪i Imαi] ∪ [Im(R′ ◦R) ∩ (α1C1 ∪ α2C2 ∪ · · · )]
by conditions (3) and (5). The set R′′[Im(R′ ◦ R) ∩ αiCi] lies in αiΦn(Ci).
The sets αiΦn(Ci) and αjΦn(Cj) miss one another if j �= i − 1, i, i + 1, by
(2). Intersections of the form αiΦn(Ci) ∩ αi+1Φn(Ci+1) lie in

αi(Bi ∩ ΦnCi) ∩ αi+1(Ai+1 ∩ ΦnCi+1)

by (2) and the latter intersection is empty by (6). Thus R′′′ is injective.

(V5) R′′′ has nonempty point images. This follows immediately, since
R′′ is a function and R′ ◦R has nonempty point images.

(V6) F ′ ⊂ O. We have F ∗ = (∗)|I2 = h′′(∗)|(I2 = D0), and

h′′|D∗
0 ⊂ R′ ◦ π−1 ◦ h ⊂ R′ ◦ π−1 ◦ ε ◦ f∗ ⊂ ε ◦ π−1 ◦ ε ◦ f∗ ⊂ O
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by definition of h′′, limits on the distance between h and f∗, limits on the
motion of R′, and Condition (S‡) of the Setting.

(V7) ImF ∗ ∩ ImR′′ = ∅. Here we have

ImF ∗ ∩ Im(R′ ◦R) ⊂ E∗
0 ⊂ α1C1;

C(∆) ∩R′′(α1C1 ∩ Im(R′ ◦R)) = ∅; and

R′′(αiCi ∩ Im(R′ ◦R)) ∩ ImF ∗ = ∅ for i > 1,

since αi(Ai ∪ Bi) ∩ ImF ∗ = ∅ for i > 1. Disjointness of the two images
follows from these three observations.

(V8) R′′′ is cell-like. Consider any x ∈ Sn−1 and X = R′ ◦ R(x). If X
meets only finitely many of the sets αiAi, then R′′|X is a re-embedding of
X, so R′′(X) is also cell-like. Assume then that X meets infinitely many of
the αiAi. Let Ui denote the union of the components of αiAi intersecting
X, Vi the union of the components of αi(Ai ∪ Bi) intersecting Ui, and
Xi = X∩αiAi. There clearly exist homotopies Hi : Ui× [0, 1] → Sn starting
at the inclusion, fixing FrUi and having images in Vi such thatHi(−, 1)|Xi =
R′′|Xi. By the same calculation performed in (V1), VN ∪ VN+1 ∪ · · · is
contained in

(ε/N)◦R′◦π−1◦(ε/N)◦π◦(R′)−1◦(ε/N)◦R′◦R(x)�∪i<N [Sn−1×Intαi(Ai∪Bi)].

It follows from the Composition Theorem that, as N → ∞, the various sets
named immediately above converge uniformly to the compact set

X � ∪∞
i=1 Intαi(Ai ∪ Bi) ⊂ R′′(X).

ThusX,U1, U2, . . . , H1, H2 . . . satisfy the hypotheses of Lemma 7.7.10 below,
application of which will establish that R′′(X) is cell-like and will complete
the proof of the Basic Lemma. �

Suppose given the following: a cell-like continuum X in Sn; pairwise
disjoint compact subsets U1, U2, . . . in Sn; X− = X�∪∞

i=1 IntUi; a sequence
{εi} of positive numbers, with εi → 0; and a collection of homotopies Hi :
Ui × [0, 1] → Sn starting at the identity, moving only points of IntUi and
having image in B(X−; εi). Define a function f : X → Sn as f |X− = inclX−

and f |X ∩ Ui = Hi(−, 1).

Lemma 7.7.10. If f is injective, then f(X) is cell-like.

Remark. Even if it is injective, f need not be a homeomorphism.

Proof. Consider x1, x2, . . . ∈ X. If infinitely many xi belong to one of the
sets Ai = (X∩Ui)∪X−, then the sequence f(x1), f(x2), . . . clusters at some
point of f(Ai), since f |Ai is continuous. On the other hand, if none of the
Ai contains infinitely many points of {x1, x2, . . . }, then we can assume that
xi ∈ IntUj(i), where j(1) < j(2) < · · · . Hence f(xi) ∈ B(X−; εj(i)) for each
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U
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f(X)
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3

Figure 7.10. An injective f which is not a homeomorphism

i, and so f(x1), f(x2), . . . clusters at some point of X− ⊂ f(X). This yields
that f(X) is compact.

As an aid to showing f(X) is cell-like, for each positive integer N define
a map µN : Sn → Sn as the inclusion on Sn � ∪N

i=1 IntUi and as Hi(−, 1)
on IntUi, i = 1, . . . , N . Similarly, define another collection of maps µ̂N :
f(X) → Sn as inclusion on f(X)�f(∪N

i=1 IntUi) and as [Hi(−, 1)|X∩Ui]
−1

on f(X ∩ Ui). The injectivity of f assures that each µ̂N is well-defined and
continuous.

Given an arbitrary neighborhood U of f(X), choose an integer N so
large that i > N implies Hi(Ui × [0, 1]) ⊂ U . As a consequence,

µN (X ∩ Ui) = H(X ∩ Ui, 0) ⊂ Hi(Ui, 0) ⊂ U for all i > N,

and

µN (X ∩ Ui) = H(X ∩ Ui) = f(X ∩ Ui) ⊂ U for i = 1, 2, . . . , N.

Hence, µN (X) ⊂ U . The map (Id, µN ) : Sn → Sn × Sn sends X into
Sn × U . Since (Id, µN )(X) is cell-like, being homeomorphic to X, there is
a neighborhood V of (Id, µN)(X) that is contractible in Sn × U . In turn,
there is another neighborhood W of X in Sn such that (Id, µN )(W ) ⊂ V .

Choose an integer M > N so large that i > M implies Hi(Ui × [0, 1]) ⊂
W. As above, µ̂M (f(X)) ⊂ W .

Using π2 : Sn × Sn → Sn to denote projection to the second factor,
consider the continuous function

µN ◦ µ̂M = π2 ◦ (Id, µN ) ◦ µ̂M : f(X) → Sn.

It is null homotopic in U , since (Id, µN )◦µ̂M (f(X)) ⊂ (Id, µN )(W ) ⊂ V and
V is null homotopic in π−1

2 (U). But inclf(X) and µN ◦ µ̂M are homotopic in
U via the homotopy that fixes f(X ∩ Ui) for i �∈ {N + 1, . . . ,M} and that
moves f(X ∩Ui) to X ∩Ui by the reverse of the homotopy Hi(−, t)|(X ∩Ui)
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in the other finite set of cases. Thus, f(X) is cell-like, as it is null homotopic
in an arbitrary neighborhood U . �
Theorem 7.7.11. Let R : Sn−1 → Sn be a cell-like embedding relation and
π : Sn → Sn/R the associated decomposition map. Let C denote the closure
of one of the components of Sn/R � π ◦ R(Sn−1), T : C → Sn a cell-like
embedding relation, and L a neighborhood of T . Then L contains a 1-LCC
cell-like embedding relation T ′′′ : C → Sn.

Proof. The argument is a fairly straightforward repetition of the one just
given for Theorem 7.7.2, except that in this setting the focus rests on loops
lying toward only one specific side of the sequence of cell-like embedding
relations. Here π−1 : Sn/R → Sn restricts to a cell-like embedding rela-

tion R̂ : C → Sn. One needs an analog of Basic Lemma 7.7.5 for R̂-disks
that meet Im R̂ only at points of R̂(BdC). Given a countable dense col-
lection {fi : S1 → Sn} of embedded loops in Sn, as in the proof that
7.7.5 implies 7.7.2, the adapted Basic Lemma gives rise to a sequence of
cell-like embedding relations R̂i : C → Sn, neighborhoods Li of R̂i and
controlled mappings Fi : I

2 → Sn such that Im R̂i ∩ ImFi = ∅ as before,
unless fi(S

1) ∩ R̂i−1(IntC) �= ∅, in which case R̂i = R̂i−1 and Fi, which is
essentially irrelevant, is chosen arbitrarily. �
Corollary 7.7.12. Let R : Sn−1 → Sn be a cell-like embedding relation and
let π : Sn → Sn/R be the associated decomposition map. Suppose C is the
closure of one of the components of Sn/R�π ◦R(Sn−1) and π ◦R(Sn−1) is
1-LCC in C. Then C is an n-cell.

Proof. Let T ′′′ : C → Sn denote the 1-LCC cell-like embedding relation
promised by Theorem 7.7.11, and use π′′′ to denote the quotient map for
the decomposition of Sn whose elements are {T ′′′(x) | x ∈ C} and the
singletons from Sn � ImT ′′′. Here the frontier of π′′′T ′′′(C) in Sn/T ′′′ is the
1-LCC embedded (n−1)-sphere π′′′T ′′′(BdC), so Proposition 7.4.13 assures
that Sn/T ′′′ is the n-sphere. Furthermore, being 1-LCC, π′′′T ′′′(BdC) is
flatly embedded, so π′′′T ′′′(C) ∼= C is an n-cell. �
Corollary 7.7.13. If λ : Sn−1 → Sn is an embedding, n ≥ 5, and C is
the closure of one of the components of Sn � λ(Sn−1) such that λ(Sn−1) is
1-LCC in C, then C is an n-cell.

Theorem 7.7.14. Let λ : Sn−1 → Sn be an embedding, n ≥ 5, C the closure
of one of the components of Sn � λ(Sn−1), and ε > 0. Then there exists an
embedding λ′ : C → Sn such that ρ(λ′, inclC) < ε and Cl(Sn � λ′(C)) is an
n-cell.

Proof. Apply Theorem 7.7.11 to obtain a 1-LCC embedding relation T ′′′ :
C → Sn in the ε-neighborhood of inclC : C → Sn. Form the associated
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decomposition G into the sets {T ′′′(x) | x ∈ C} and the singletons from
Sn � ImT ′′′, and let C ′ denote the closure of the component of Sn/G not
containing the image of T ′′′(IntC). Corollary 7.7.12 indicates that C ′ is an
n-cell. Proposition 7.4.14 yields that Sn/G is topologically Sn. Hence,
Sn ∼= Sn/G is expressed as the union of a copy of C and the n-cell C ′,
where C ∩ C ′ = ∂C ′. Obtaining this reembedded copy of C pointwise close
to C itself comes about by a controlled shrinking of G , as in the proof of
Corollary 7.7.3. �

The Locally Flat Approximation Theorem (7.7.1) combines with Corol-
lary 7.6.11 to give

Corollary 7.7.15. A locally homotopically unknotted (n − 2)-sphere Σ in
Sn (n ≥ 5) is flat if and only if Σ bounds an (n− 1)-cell E ⊂ Sn.

As another consequence of 7.7.1, local issues about codimension-one
embeddings involving manifolds reduce to problems about embeddings of
(n− 1)-spheres in Sn.

Theorem 7.7.16. Suppose n ≥ 5, Q is an (n−1)-manifold embedded in an
n-manifold M as a closed subset, and q ∈ Q. Then there exist an (n − 1)-
sphere Σ in Sn, a neighborhood Nq of q in M , and an embedding e : Nq → Sn

such that e(Nq ∩Q) ⊂ Σ.

Proof. Exploiting coordinate charts in M , we can simplify the setting so
that q ∈ Q ⊂ Rn ⊂ Sn. Fix an (n− 1)-cell B with q ∈ IntB ⊂ B ⊂ Q, and
choose a neighborhood U of q in Sn for which Q ∩ U ⊂ IntB. According to
Theorem 7.7.1 we can assume that Q is locally flat at each point of Q� U.
Here ∂B is flat (Corollary 7.7.15). Thus we can assume that ∂B is the
standard (n − 2)-sphere in Sn and that a collar C on ∂B in B lies in the
standard copy of Sn−1 ⊂ Sn.

Consider the universal cover p : E → Sn � ∂B; E is homeomorphic to
IntBn−1 × R in such a way that p(IntB × {0}) ⊂ Sn−1. Lift IntB to the
universal cover E via λ : IntB → E with the collar C on ∂B mentioned
earlier going into, say, IntBn−1 × {0}, and extend λ to a lift λ′ : N → E
defined on some neighborhood N of IntB for which N ∩Q = IntB. Find an
embedding h of the universal cover into a neighborhood of p(IntBn−1×{0})
such that pλ(x) = pλ′(x) = x for all x ∈ C and h(E)∩Sn−1 = p(IntB×{0}).
Then

Σ = hλ′(B) ∪ (Sn−1 � p(IntB × {0}))
is an (n− 1)-sphere in Sn and e = hλ′ embeds the neighborhood N of q in
the required way. �
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Appendix on Embedding Relations

Standard results about continuous relations that carry over from the
function setting are:

(1) If R : X → Y and S : Y → Z are continuous, then S ◦R : X → Z is
continuous.

(2) If R : X → Y is continuous with compact point images and C ⊂ X
is compact, then R(C) is compact.

(3) If R : X → Y is continuous with nonempty, connected point images
and C ⊂ X is connected, then R(C) is connected.

For simplicity we assume all spaces under consideration to be locally
compact, separable metric spaces. The relations most useful in geometric
topology are the proper relations—recall that a relation R : X → Y is proper
if both R and R−1 are continuous with compact point images. The equiva-
lent but asymmetric defining property usually ascribed is the following:

(4) A relation R : X → Y is proper provided R is continuous with com-
pact point images and the inverse of each compact subset of Y is compact.

The basic results on proper relations are:

(5) A proper relation R : X → Y is a closed subset of X × Y . Each
neighborhood of R in X × Y contains a proper neighborhood N : X → Y
of R in X × Y . Each closed subset of a proper relation is a proper relation.

(6) Composition Theorem. Suppose R : X → Y and S : Y → Z are
relations where R−1 and S both are continuous with compact point images
and U is a neighborhood of S ◦R in X×Z. Then there exist neighborhoods
V of R in X × Y and W of S in Y × Z such that W ◦ V ⊂ U .

Proof. Fix y ∈ Y and observe that the (possibly empty) compact set
R−1(y)× S(y) lies in U , since

U ⊃ S ◦R = S ◦ IdY ◦R = (R−1 × S)(IdY ).

There exist open neighborhoods By of R−1(y) in X and Cy of S(y) in Z such
that By × Cy ⊂ U . Continuity of R−1 and S gives an open neighborhood
Ay of y such that R−1(Ay) ⊂ By and S(Ay) ⊂ Cy.

The paracompactness of Y assures the existence of a precise, locally
finite, open refinement {A′

y | y ∈ Y } of the open cover {Ay | y ∈ A} that
covers Y and satisfies Cl(A′

y) ⊂ Ay for each y ∈ Y . Define V : X → Y

and W : Y → Z by the formulae V −1(y) = ∩{By(0) | y ∈ Cl(A′
y(0))} and

W (y) = ∩{Cy(0) | y ∈ Cl(A′
y(0))}. �
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(7) Corollary. If R : X → Y and S : Y → Z are continuous with
compact point images and U is a neighborhood of S ◦R in X×Z, then there
is a neighborhood V of R in X × Y such that S ◦ V ⊂ U .

Proof. Choose compact sets X1, X2, . . . whose interiors cover X. The re-
lations R|Xi : Xi → Y are proper by (4). Accordingly, by the Composition
Theorem, there exist neighborhoods Vi of R|Xi in Xi × Y with S ◦ Vi ⊂ U ,
and V = ∪iVi satisfies the requirements of the Corollary. �

The characteristic feature of cell-like embedding relations is that, by and
large, they can be approximated by continuous functions.

(8) Continuous Approximation Theorem. Suppose R : X → Y is a
continuous cell-like embedding relation from a finite-dimensional space X to
an ANR Y . Then each neighborhood of R in X × Y contains a continuous
function from X to Y .

See (Cannon, 1975) for a proof. The Continuous Approximation Theo-
rem is not used in this book.

(9) Slice Triviality Theorem. Suppose R : X → Y is a continuous
relation with cell-like point images and L′′ : X → Y is a neighborhood of
R. Then there exists another neighborhood L′ of R such that L′ ⊂ L′′ and
x ∈ X implies L′(x) contracts in L′′(x).

Proof. For each x ∈ X find an open setW ⊃ R(x) in Y and a neighborhood
V of x such that V × W ⊂ L′′. Cell-likeness of R(x) leads to another
Wx ⊃ R(x) that contracts in W . Moreover, x has a neighborhood Ux ⊂ V ,
such that R(x′) ⊂ Wx for all x′ ∈ Ux. In case X is compact, corresponding
to the open cover U = {Ux × Wx | x ∈ X} of R is a δ > 0, a kind of
Lebesgue number for U , such that for the δ-neighborhood L′ of R ⊂ X × Y
and for arbitrary x ∈ X, some Uz ×Wz ∈ U contains {x} × L′(x). Hence,
L′(x) ⊂ Wz contracts in L′′(x). The general case (X locally compact) is left
to the reader. �

Historical Notes. There are other approaches to the Locally Flat Ap-
proximation Theorem. Cannon, Bryant and Lacher (1979) performed mul-
tiple grope replacements in M , changing it to ANR homology n-manifold
Y equipped with a cell-like map p : Y → M and a 1-LCC embedding
λ : Q → Y of the given (n − 1)-manifold Q such that Y � λ(S) is an n-
manifold and pλ = inclQ. Either work of S. Ferry (1979) or application of
Quinn’s Index Theorem (see §8.5) yields that Y actually is an n-manifold.
Upon approximating p by a homeomorphism (Corollary 7.4.2), one obtains
a 1-LCC approximation hλ(Q) to Q.

Ferry (1992) provided another argument for the Locally Flat Approxi-
mation Theorem which combines surgery below the middle dimension with
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an application of his α-Approximation Theorem, a topic treated briefly in
Chapter 8.

As an alternative, in case Q of Theorem 7.7.1 is two-sided, let C+, C−
denote the closures of the components of M � Q. Form a new space M∗

from C + 
 (Q × [−1, 1]) 
 C− by identifying each 〈q,−1〉 with q ∈ C−
and, similarly, identifying each 〈q,+1〉 with q ∈ C+. By (Quinn, 1987) M∗

is the cell-like image of an n-manifold, and quite obviously it satisfies the
Disjoint Disks Property, so M∗ itself is an n-manifold. Moreover, there is
an evident cell-like map p : M∗ → M that sends each arc q × [−1, 1] to
q; approximating p by a homeomorphism, one notices that the image of
Q×{0} ⊂ Q× [−1, 1] ⊂ M∗ is a bicollared approximation to the original Q.

L. L. Lininger (1965) and N. Hosay (1963) independently proved the
3-dimensional version of Theorem 7.7.11 for embeddings T : C → Sn; Dav-
erman (1977), (1987) did the same in higher dimensions.

Exercises

7.7.1. Suppose Σn−2 ⊂ Sn is a locally flat (n − 2)-sphere that bounds a
topologically embedded (n− 1)-cell B ⊂ Sn, n ≥ 5. Then Σn−2 is
flat.

7.7.2. If R : X → Sn is a 1-LCC cell-like embedding relation defined on
the compact, k-dimensional space X, where k ≤ n − 3 and n ≥ 5,
then the decomposition of Sn into points of Sn� ImR and the sets
{R(x) | x ∈ X} is shrinkable.

7.8. Kirby-Siebenmann obstruction theory

The PL Structure Theorem 6.8.2 of Kirby and Siebenmann has crucially
important consequences in codimension one, just as it does in codimension
two.

Say that an embedding ϕ : Qn−1 → Mn of one PL manifold in another
is PL locally flat if ϕ is PL and if all link pairs in (Mn, ϕ(Qn−1)) are PL
standard pairs.

Corollary 7.8.1 (Codimension-One Taming). Suppose Qn−1 is a PL (n−
1)-manifold such that H3(Qn−1;Z2) = 0, h : Qn−1 → Mn is a locally flat
topological embedding of Qn−1 into a PL n-manifold Mn, n ≥ 5, and ε > 0.
Then h is ambient isotopic to a PL locally flat embedding via an ε-isotopy
of Mn.

The proof coincides with that for the codimension-two taming result
(Corollary 6.8.3).
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Corollary 7.8.2. If Qn−1 is a PL (n − 1)-manifold, n ≥ 5, such that
H3(Qn−1;Z2) �= 0, then there exist a PL n-manifold Mn and a locally flat
embedding h : Qn−1 → Mn that is not ambient isotopic to a PL locally flat
embedding.

Proof. The Product Structure Theorem promises a PL structure on Mn =
Qn−1 ×R not compatible with the obvious product structure on Qn−1 ×R.
If there were a PL locally flat embedding Qn−1 → Mn isotopic to Qn−1 →
Qn−1 × {0}, then an open PL bicollar on the image could be expanded to
produce a PL homeomorphism Qn−1 × R → Mn. �

Locally Flat Approximation Theorem 7.7.1 then leads to a PL Approxi-
mation Theorem for the PL manifolds with trivial Z2-cohomology in dimen-
sion 3.

Corollary 7.8.3 (Codimension-One PL Approximation). Suppose Qn−1 is
a PL (n−1)-manifold such that H3(Qn−1;Z2) = 0, and suppose h : Qn−1 →
Mn is a topological embedding of Qn−1 into a PL n-manifold Mn, n ≥ 5.
Then h can be approximated, arbitrarily closely, by PL locally flat embed-
dings.

7.9. Detecting 1-LCC embeddings

§4.6 presents conditions for detecting 1-LCC embeddings of codimension-
three compacta. This section does the same for embeddings of codimension-
one manifolds. Among the conditions covered are local flatness modulo
certain twice-flat subsets (Theorem 7.9.2), singular regular neighborhoods
(Theorem 7.9.8), and a local spanning property (Theorem 7.9.15).

Here is a slight strengthening of an observation appearing earlier in the
proof that 7.7.5 implies 7.7.2.

Lemma 7.9.1. Let β denote an (n−1)-cell in an n-manifold Mn, f : I2 →
Mn a map such that f(∂I2) ∩ β = ∅, and Z the component of I2 � f−1(β)
containing ∂I2. Then there exists a map g : I2 → Mn such that g|Z = f |Z
and g(I2 � Z) ⊂ β; moreover, g can be obtained so that g(I2 � Z) ∩ ∂β ⊂
f(I2) ∩ ∂β.

Proof. This follows using the Tietze Extension Theorem to extend

f |Z ∩ (I2 � Z) : Z ∩ (I2 � Z) → β

to a map I2 � Z → β. For the strengthened conclusion, simply apply the
result using an (n − 1)-cell β′ ⊂ β such that β′ ⊃ f(I2) ∩ β and β′ ∩ ∂β =
f(I2) ∩ ∂β. �
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Theorem 7.9.2. Suppose Σn−1 is an (n−1)-manifold embedded as a closed
subset of an n-manifold Mn and X is a closed subset of Σn−1 such that
Σn−1 is 1-LCC in Mn at each point of Σn−1 � X and X is LCC1 in both
Σn−1 and Mn. Then Σn−1 is 1-LCC in Mn.

Proof. Start with s ∈ Σn−1 and ε > 0. Identify an (n− 1)-cell β in Σ with
s ∈ Intβ ⊂ β ⊂ B(s; ε), and then choose a simply connected neighborhood
Ws ⊂ B(s; ε) with Ws∩Σn−1 ⊂ β. Given any loop f : ∂I2 → Ws�Σ, extend
f to F : I2 → Ws. Since X is LCC1 in Mn, Lemma 3.3.3 assures that F can
be approximated by a map F ∗ : I2 → Ws�X such that F ∗|∂I2 = F |∂I2 = f.
Let H denote the component of I2 � (F ∗)−1(Σ) containing ∂I2, and note
that F ∗(H)∩X = ∅. Apply Lemma 7.9.1 to obtain a map g : I2 → F ∗(H)∪β
such that g|H = F ∗|H and g(I2�H) ⊂ β. Since X is also LCC1 in Σn−1, a
mild extension of Lemma 3.3.3 assures that g can be approximated by a map
g∗ : I2 → F ∗(H)∪β such that g∗|H = g|H = F ∗|H and g∗(I2�H) ⊂ β�X.
Note that g∗(I2) ⊂ (F ∗(H)∪β)�X ⊂ B(s; ε). Now g∗ can be approximated
by a map g : I2 → B(S; ε) � Σn−1 with g|∂I2 = g∗|∂I2 = f , since Σn−1 is
1-LCC at points of Σn−1 ∩ g∗(I2). �

Corollary 7.9.3. If the (n − 1)-sphere Σn−1 ⊂ Sn, n ≥ 5, is locally flat
modulo a finite set, then Σn−1 is flat.

Corollary 7.9.4. If the (n−1)-sphere Σn−1 ⊂ Sn ≥ 5, is locally flat modulo
a twice-flat k-cell or k-sphere, k ≤ n− 4, then Σn−1 is flat.

Remark. Suspensions of examples like the Fox-Artin 2-sphere in S3 (§2.8.3)
indicate that Corollary 7.9.4 fails when k = n− 3.

Definition. Let Σn−1 denote an (n− 1)-sphere topologically embedded in
Sn and C ⊂ Σn−1 a Cantor set. Extending a previous definition for cells
and spheres in Σn−1, we say that C is twice flat if it is flat as a subset of
both Σn−1 and Sn.

Corollary 7.9.5. If the (n − 1)-sphere Σn−1 ⊂ Sn, n ≥ 5, is locally flat
modulo a twice-flat Cantor set, then Σn−1 is flat.

Definition. Let Σ denote a connected (n − 1)-manifold topologically em-
bedded in an n-manifold M as a closed, separating subset, and let U denote
a component of M � Σ. We say that Σ can be homeomorphically approxi-
mated from U if for each ε > 0 there exists an embedding λε : Σ → U ⊂ M
such that ρ(λε, inclΣ) < ε.

Theorem 7.9.6. Let Σ denote a connected (n − 1)-manifold topologically
embedded in an n-manifold M as a closed, separating subset, and let U
denote a component of M �Σ such that Σ can be homeomorphically approx-
imated from U . Then Σ is 1-LCC embedded in U .
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The proof is an exercise. Here there is no need to restrict n.

Corollary 7.9.7. Let Σ denote a connected (n − 1)-manifold topologically
embedded in an n-manifold M as a closed, separating subset. Then Σ is
locally flat in M if and only if it can be homeomorphically approximated
from each component of M � Σ.

Definition. Let Q denote a connected (n − 1)-manifold topologically em-
bedded in an n-manifold M as a closed, separating subset, and let U denote
a component of M � Q. We say that Q is singularly collared in U if there
exists a map µ : Q× [0, 1] → U such that µ0 = inclQ and µ(Q× (0, 1]) ⊂ U .

Theorem 7.9.8. Suppose Q is a connected (n − 1)-manifold topologically
embedded in a connected n-manifold M as a closed, separating subset, and
suppose U is a component of M �Q such that Q is singularly collared in U .
Then Q is 1-LCC in U .

The argument for 7.9.8 hangs on the notion of degree for maps between
(orientable) manifolds, on a result about degree being locally determined
relative to the target, and on another result that degree-one maps induce
epimorphisms of fundamental groups.

Definitions. An orientation of a connected, orientable n-manifold U is a
choice of generator ofHn

c (U ;Z). Given connected n-manifolds U, V equipped
with orientations γU , γV , respectively, the degree of a proper map f : U → V
is the integer d such that f∗(γV ) = d · γU . Functorial properties assure that
the degree of a composite (of proper mappings) is the product of degrees.

Lemma 7.9.9. Suppose f : M → N is a proper map between connected,
oriented n-manifolds and V is a connected open subset of N such that U =
f−1(V ) is connected. Then the degree of f equals the degree of f |U , provided
U, V are oriented with the orientations obtained by restriction from M,N ,
respectively.

Proof. Let ρU : Hn
c (U ;Z) → Hn

c (M ;Z) and ρV : Hn
c (V ;Z) → Hn

c (N ;Z)
denote the isomorphisms induced by extension. Equality of the degrees
follows immediately from the commutativity of

Hn
c (U ;Z)

(f |U)∗←−−−− Hn
c (V ;Z)

∼=
⏐⏐�ρU ∼=

⏐⏐�ρV

Hn
c (M ;Z)

f∗
←−−−− Hn

c (N ;Z),

together with the prescription that the vertical isomorphisms preserve pre-
ferred orientations. �
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Corollary 7.9.10. Every proper, non-surjective mapping f : M → N be-
tween orientable n-manifolds has degree 0.

Proof. Properness implies that f(M) is closed in N . Applying the analysis
of 7.9.9 to a connected open subset V of N � f(M), observe that f∗ factors
through the trivial group Hn

c (∅;Z). �

Lemma 7.9.11. Suppose f : M → N is a proper map between connected,
oriented n-manifolds, V is a connected open subset of N , U1, U2 . . . are the
components of f−1(V ), and f |Ui : Ui → V has degree di (i = 1, 2, . . .). Then
di = 0 for all but finitely many values and the degree of f equals Σidi.

Proof. We re-employ the notation from the preceding lemma and examine
the diagram:

Hn
c (f

−1(V );Z)
(f |)∗←−−−− Hn

c (V ;Z)⏐⏐�ρ ∼=
⏐⏐�ρV

Hn
c (M ;Z)

f∗
←−−−− Hn

c (N ;Z).

As above, choices of orientations for M,N give rise to preferred generators
γV of Hn

c (V ;Z) and γi for Hn
c (Ui;Z). Here, by hypothesis (f |Ui)

∗ sends
γV to di · γi ∈ Hn

c (Ui;Z). For v ∈ V , at most finitely many components
of f−1(V ) meet f−1(v), by properness, and Corollary 7.9.10 attests that
di = 0 for those Ui that do not surject to V . Moreover, Hn

c (f
−1(V );Z) ∼=

Hn
c (∪Ui;Z) ∼= ⊕iH

n
c (Ui;Z), so the image of γV under the homomorphism

in the upper row is ξ = Σi(di · γi). Under the extension ρ : Hn
c (∪iUi;Z) →

Hn
c (M), we see that ρ(ξ) = (Σidi) ·γM , since each γi is sent to the preferred

orientation class γM ∈ Hn
c (M ;Z) via the extension ρ. �

Lemma 7.9.12. Let p denote a positive integer. If θ : M̃ → M is a p-fold
covering map between oriented PL n-manifolds, then the degree of θ is ±p.

Proof. This widely known result typically is based on other definitions of
orientability. In the context at hand, the usual diagram

Hn
c (V ;Z)

(h|V )∗←−−−− Hn
c (V ;Z)

∼=
⏐⏐�ρV ∼=

⏐⏐�ρV

Hn
c (M ;Z) h∗=Id∗←−−−− Hn

c (M ;Z)

reveals that, given a homeomorphism h : M → M properly homotopic to
IdM and open subset V such that h(V ) = V , h|V must be orientation
preserving. Let V ⊂ M denote the interior of a PL n-cell evenly covered
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by θ, U1, . . . , Up the components of θ−1(V ), and εi the degree of θ|Ui :
Ui → V . Since θ|Ui is a homeomorphism, εi = ±1. Should there be a
pair {εi, εj} with εi = −εj , then just as in (Rourke and Sanderson, 1972,

p. 44ff) an isotopy M̃ → M̃ carrying Ui to Uj could be used to produce
a homeomorphism h : M → M properly isotopic to IdM whose restriction
to V reverses orientations. Consequently, Lemma 7.9.11 implies that θ has
degree p · ε1 = ±p. �

Lemma 7.9.13. Any proper map f : M → N between connected, oriented,
PL n-manifolds of degree ±1 induces an epimorphism f∗ : π1(M) → π1(N).

Proof. Suppose to the contrary that f∗(π1(M)) �= π1(N). Construct the

covering space θ : Ñ → N corresponding to f∗(π1(M)). Then f lifts to a

map f̃ : M → Ñ such that f = θf̃ . Localization as in Lemma 7.9.9 assures
that f is surjective, for otherwise it would have degree 0.

It can be easily shown that f̃ is a proper mapping. When θ is a p-fold

covering, p < ∞, both θ and f̃ are proper. By Lemma 7.9.12 |degree(f̃)| =
[π1(N) : f∗(π1(M))] > 1. But this is impossible, as it would yield 1 =

|degree(f)| = |degree(θ)| · |degree(f̃)| > 1.

We conclude by explaining why θ must be a finite-sheeted cover. Adjust-
ing f via a proper homotopy, we can assume that for some small open set
V in N , f |f−1(V ) is PL. Let V ′ denote the interior of an n-simplex σ in V
whose preimage under f consists of finitely many n-simplices, each mapped

homeomorphically to σ. If θ were infinite-sheeted, f̃ would have degree 0, as
it could not be onto. Let U1, . . . , Uk denote the components of f−1(V ′) and
εi the degree of f |Ui : Ui → V ′. The collection {U1, . . . , Uk} is partitioned

into finitely many subcollections corresponding to the preimages under f̃ of
the various components V ∗ of θ−1(V ′). Over each subcollection the various

degrees of the restricted f̃ sum to 0, by Lemma 7.9.11. Upon composing

θ and f̃ , we obtain ε1 + · · · + εk = 0, yielding degree(f) = 0, contrary to
hypothesis. �

Proof of Theorem 7.9.8. Focus on a point q ∈ Q. In light of Corol-
lary 7.7.16, we can transfer to the setting in which there are an embedding
λ : Nq → Sn defined on some neighborhood Nq of q in M and an (n − 1)-
sphere Σ in Sn with λ(Nq∩Q) ⊂ Σ. Let U ′ denote the component of Sn�Σ
containing points of λ(Nq ∩ U) arbitrarily close to s = λ(q). It will suffice
to prove that U ′ is 1-LC at s.

Fix ε > 0. As Q is singularly collared in U , there exist a small (n−1)-cell
D on Σ with s ∈ IntD and a map µ : D × [0, 1] → B(s; ε) ∩ U ′ such that
µ0 = inclD and µ(D × (0, 1]) ⊂ U ′.
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Lemma 7.9.14. In the setting above, U ′ contains an open subset W such
that IntD ⊂ W ⊂ f(D × [0, 1]).

Proof. Use µ to produce a map h of Σ × [0, 1] to Σ ∪ µ(D × [0, 1]) ⊂ Sn

such that h(z, 0) = z for all z ∈ Σ, h(z′, t) = z′ for all z′ ∈ Σ � IntD,
and h(IntD × {t}) ∩ Σ = ∅ for all t > 0. Define W as the intersection of
U ′ and the component of Sn � h1(Σ) that contains IntD. We show that
W ⊂ µ(D × [0, 1]).

Suppose to the contrary that there exists

w ∈ W � µ(D × [0, 1]) ⊂ W � h(Σ× [0, 1]).

Choose z0 ∈ Ns � U ′ and regard Sn � {z0} as Rn. As in (Hurewicz and
Wallman, 1948), for x �= z0 let πx denote the radial map of Rn � {x} =
Sn � {x, z0} onto the unit (n − 1)-sphere centered at x. Then πwh0 and
πwh1 are homotopic maps of Σ to Sn−1. For any y ∈ Sn �U ′ we see that w
and y belong to different components of Sn � h(Σ× {0}) and belong to the
same component of Sn�h(Σ×{1}). This leads to the desired contradiction,
because according to Theorem VI.10 of (Hurewicz andWallman, 1948), πwh0
is an essential map and πwh1 is an inessential map. �

Continuing with the proof of Theorem 7.9.8, apply Lemma 7.9.14 to
obtain the promised connected open subset W of U ′ such that

IntD ⊂ W ⊂ µ(D × [0, 1]) ⊂ B(s; ε).

Identify the component Y of µ−1(W ) containing IntD × {0}. Set WU =
W ∩ U ′, YU = Y ∩ µ−1(WU ), and µU = µ|YU . It follows immediately that
µU : YU → WU is a proper map between (orientable) n-manifolds, which
implies that the degree of µU is defined. We shall prove that µU has degree
±1.

By Theorem 7.7.14 we can assume that U ′ is embedded in Sn with an
n-cell as its complement. Hence, µU extends to a map

µ̃ : YU ∪ (IntD × (−1, 0]) → Sn

with µ̃| IntD × (−1, 0] an embedding into Sn � U ′ such that

µ̃(IntD × (−1, 0]) ∩ Σ = µ̃(IntD × {0}).
It follows that µ̃ is a proper mapping between orientable n-manifolds. Since
the image obviously contains the connected open subset µ̃(IntD × (−1, 0))
over which µ̃ is a homeomorphism, Lemma 7.9.9 assures that µ̃ and µU have
degree ±1.

As a result, µU induces an epimorphism at the fundamental group level
(Lemma 7.9.13). To each loop α in WU corresponds a loop α′ in YU with
(µU )∗([α′]) = [α]. Since α′ is contractible in IntD × (0, 1], α is contractible
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in µ(IntD × (0, 1]) ⊂ B(s; ε) ∩ U ′. Hence, U ′ is 1-LC at s, and Q is 1-LCC
in U . �

Definition. Suppose Q is an (n−1)-manifold topologically embedded in an
n-manifold M as a closed subset, and suppose U is a component of M �Q.
We say that Q can be locally spanned from U if, for each neighborhood Nq of

each q ∈ Q, there exist (n− 1)-cells B ⊂ Q and D ⊂ U such that s ∈ IntB,
D ∩Q = ∂B, and B ∪D ⊂ Nq.

Theorem 7.9.15. Suppose Σ is a connected (n− 1)-manifold topologically
embedded in a connected n-manifold M as a closed, separating subset, and
suppose U is a component of M �Σ such that Σ can be locally spanned from
U . Then Σ is 1-LCC in U .

Proof. Consider a map f of ∂I2 into a small subset of U . Extend f to a map
F of I2 into a small subset of U . In view of the locally spanned condition,
we determine a finite collection of very small (n − 1)-cells B1, ..., Bk in Σ
whose interiors cover Σ ∩ F (I2), and corresponding (n − 1)-cells D1, ..., Dk

in U such that Di ∩ Σ = ∂Bi and Di ∩ f(∂I2) = ∅ for each i. Application
of Lemma 7.9.1 yields a new map F1 : I2 → U with small image contained
in F (I2) ∪D1 � IntB1 and with F1|∂I2 = F |∂I2 = f , where in particular
F1(I

2)∩∂B1 ⊂ F (I2)∩∂B1. Consequently, F1(I
2)∩Σ ⊂ F (I2)∩(Σ�IntB1).

Another k − 1 applications of Lemma 7.9.1 yield a new map Fk : I2 → U
with small image in (F (I2)∪ (∪iDi))�Σ and Fk|∂I2 = F |∂I2 = f. The key
is that, once a point of Σ is removed from the image of Fi, it reappears in
none of the succeeding images. �

Corollary 7.9.16. An (n− 1)-sphere Σ in Sn is 1-LCC if and only if Σ is
locally spanned from each component of Sn � Σ.

Corollary 7.9.17. An (n− 1)-sphere Σ in Sn, n ≥ 5, is flat if and only if
Σ is locally spanned from each component of Sn � Σ.

Historical Notes. The distinction between the cases n = 3 and n > 3 of
codimension-one embeddings was first displayed by J. C. Cantrell’s doctoral
dissertation, ultimately refined into the result about (n− 1)-spheres in Sn,
n > 3, necessarily being flat if they are locally flat modulo a single point.
Key ideas appeared in the treatment of Theorem 2.9.3. Corollary 7.9.3 is a
mild generalization. Kirby (1968a) provided an elegant geometric construc-
tion to establish Corollary 7.9.5 for all n > 3.

For embeddings in 3-manifolds flatness results emerged in an order rather
opposite to those in high dimensions. Bing’s original flattening theorem
(1959b) was the low-dimensional version of Corollary 7.9.7. Later he used it
to show that a surface in a 3-manifold is locally flat if it is 1-LCC embedded
(Bing, 1961b).
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J. Hempel (1964) showed that a compact 2-manifold in S3 which is singu-
larly collared on both sides is 1-LCC embedded; Daverman (1976) developed
the argument used here for Theorem 7.9.8 that works in all ambient dimen-
sions; Bryant and Lacher (1975) independently obtained the same result and
generalizations to other codimensions as well.

P. Olum (1953) proved that maps of degree 1 between connected ori-
ented n-manifolds induce epimorphisms at the π1 level. D. B. A. Epstein
(1966) introduced a valuable geometric notion of degree; he showed that a
proper map : M → N between connected, oriented n-manifolds has degree
p if and only if p is the minimum integer such that, for some map g prop-
erly homotopic to f and small open n-cell V ⊂ N , g−1(V ) has exactly p
components, on each of which g restricts to a homeomorphism.

A singular regular neighborhood can be regarded as the image of a ho-
motopy of a codimension-one manifold S that instantly deforms S into its
complement. Instead of homotopies, one might consider a sequence of ap-
proximations to the inclusion; a codimension-one sphere Σ in Sn is said to
be free if, for each ε > 0 and each component U of Sn � Σ, there is a map
fε : Σ → U that moves points less than ε. As of this writing, whether free
(n− 1)-spheres in Sn, n ≥ 3, must be 1-LCC embedded is still unknown; a
partial result about the implications of freeness toward flatness appears in
§7.11.

C. E. Burgess (1965) introduced the locally spanned concept and proved
Theorem 7.9.15 in the 3-dimensional setting; his proof immediately applies
in all dimensions.

Exercises

7.9.1. Suppose Σn−1 ⊂ Sn, n ≥ 5, is a wildly embedded (n − 1)-sphere
with complementary domains U, V for which there is a homeomor-
phism ψ : U → V with ψ|Σ = inclΣ. Also suppose Σ is locally flat
modulo a k-cell, k ≤ n − 3, or a Cantor set C. Show that C is
wildly embedded in Sn.

7.9.2. Prove Theorem 7.9.6.

7.9.3. Show that most embeddings of Sn−1 in Sn, n ≥ 5, are locally flat
(i.e., show that the locally flat embeddings form a dense, Gδ-subset
of Emb(Sn−1, Sn)).

7.10. Sewings of crumpled n-cubes

Definitions. Let Σ be an (n− 1)-sphere topologically embedded in Sn and
U one of the components of Sn �Σ. Then U is a crumpled n-cube, and the
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sphere Σ is called the boundary of U , denoted BdU . A crumpled n-cube C
in Sn is a closed n-cell complement if Cl(Sn � C) is an n-cell.

Restated in this terminology, Theorem 7.7.14 certifies that every crum-
pled n-cube (n ≥ 5) admits an embedding in Sn as a closed n-cell comple-
ment. This signals that wildness on one side of an embedded codimension-
one manifold forces no corresponding wildness on the other side. Our at-
tention next turns to a complementary issue: what sorts of wildness on one
side can be matched with wildness on the other side?

Definitions. A sewing of crumpled n-cubes C1 and C2 is a homeomorphism
h : BdC1 → BdC2. Associated with any such sewing h is the sewing space
C1∪hC2, namely, the quotient space obtained from the disjoint union C1
C2

after identification of each x ∈ BdC1 with h(x) ∈ BdC2.

Sewings of crumpled cubes enhance the proliferation of wildness. The
crucial question about a sewing of crumpled n-cubes is whether the sewing
space is an n-manifold. When it is, the manifold necessarily is Sn (see Corol-
lary 7.10.3), and then Sn contains a separating (n − 1)-sphere Σ bounding
copies of the two crumpled cubes, which are matched up along Σ exactly as
prescribed by the sewing.

In light of Theorem 7.7.14, the sewing will always yield Sn when no
wild point in one crumpled cube is matched with a wild point in the other.
This section presents several examples indicating that an arbitrary sewing of
crumpled cubes need not have a manifold as its sewing space and it probes
conditions under which a sewing space is Sn, despite possible overlapping of
the wildness. It also introduces an inflation technique for producing wild-
ness, which it exploits to fabricate wild spheres in Rn that are locally flat
modulo subspheres flatly embedded in Rn. The most elaborate example—
Example 7.10.14, which relies upon the construction of ramified wild Can-
tor sets from §4.8—is a crumpled cube C such that C ∪Id C does not yield
Sn. This C contains two embedded loops such that any singular disk in C
bounded by the first meets every singular disk in Sn bounded by the second.
That is precisely the feature necessitating the elaborate blow-up procedure
of §7.7 used to establish the 1-LCC Approximation Theorem.

Here is an elementary consequence of Theorem 7.7.14.

Proposition 7.10.1. If C is any crumpled n-cube in Sn, n ≥ 5, and h :
BdC → ∂Bn any sewing to the boundary of an n-cell, then C ∪h B

n ∼= Sn.

Proposition 7.10.2. For any sewing h : BdC1 → BdC2 of crumpled n-
cubes, n ≥ 5, there exists a cell-like mapping Sn → C1 ∪h C2.

Proof. Apply Theorem 7.4.14 or the preceding proposition to regard C2

as embedded in Sn so that Cl(Sn � C2) is an n-cell B. Specify a collar
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λ : ∂B × [0, 1] → B on ∂B = BdC2 (with λ0 = incl∂B), set

B′ = C2 ∪ λ(∂B × [0, 1]),

and note that, by Corollary 2.4.12 to the Generalized Schönflies Theorem,
B′ is also an n-cell (see Figure 7.11). Define a sewing h′ : BdC1 → ∂B′ as
h′(x) = λ(h(x), 1). Then C1 ∪h′ B′ ∼= Sn, by Proposition 7.10.1, and the
decomposition of Sn = C1 ∪h′ B′ into points and the arcs

{λ({b} × [0, 1]) ⊂ B′ | b ∈ ∂B}
gives rise to a cell-like mapping Sn → C1 ∪h C2. �

λ(∂B×[0,1])

λ(∂B×{1})

C2

2B B = C  ∪ λ(∂B×[0,1])

Figure 7.11. The domain of the cell-like map Sn → C1 ∪h C2

With an application of Corollary 7.4.2 we obtain:

Corollary 7.10.3. If a sewing h : BdC1 → BdC2 of crumpled n-cubes
(n ≥ 5) yields a manifold, then C1 ∪h C2 ≈ Sn.

Proposition 7.10.4. Let C1 and C2 be closed n-cell complements in Sn,
n ≥ 5, and h : BdC1 → BdC2 a sewing. Then a necessary condition for
C1 ∪h C2 to be Sn is that any two maps fi : I2 → Ci, i ∈ {1, 2}, can be
approximated, arbitrarily closely, by maps Fi : I

2 → Sn such that

F2(I
2) ∩ h(BdC1 ∩ F1(I

2)) = ∅.

Proof. Let λi : Ci → Sn, i ∈ {1, 2}, be embeddings such that

λ1(C1) ∩ λ2(C2) = λ1(BdC1) = λ2(BdC2),

λ1(C1)∪ λ2(C2) = Sn, and λ1|BdC1 = λ2h. Find a small neighborhood Wi

of λi(Ci) and a retraction Ri : Wi → λi(Ci) close to the identity on Wi, with
Ri(Wi � λi(Ci)) ⊂ λi(BdCi). Approximate the maps λifi : I

2 → λi(Ci) by
maps gi : I

2 → Wi with disjoint images and with λ−1
i Rigi close to fi. Set

Ui = g−1
i (Wi � λi(Ci)), observe that λ−1

i Rigi(Ui) ⊂ BdCi, and use the fact

that each Ci is a closed n-cell complement in Sn to adjust each λ−1
i Rigi to a
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new map Fi : I
2 → Sn such that Fi|I2�Ui = λ−1

i Rigi|I2�Ui = λ−1
i gi|I2�Ui

and Fi(Ui) ⊂ Sn � Ci. Set Yi = (Fi)
−1(BdCi). It follows that

F2(I
2) ∩ h(BdC1 ∩ F1(I

2)) ⊂ λ−1
2 g2(Y2) ∩ hλ−1

1 g1(Y1)

⊂ λ−1
2 (g2(Y2) ∩ g1(Y1)) = ∅. �

Theorem 7.10.5. Let C1 and C2 be crumpled n-cubes (n ≥ 5) satisfying
the Disjoint Disks Property and let h : BdC1 → BdC2 be a sewing such
that any two maps fi : I

2 → Ci, i ∈ {1, 2}, can be approximated, arbitrarily
closely, by maps Fi : I

2 → Ci such that

F2(I
2) ∩ h(BdC1 ∩ F1(I

2)) = ∅.

Then C1 ∪h C2 is topologically Sn.

Proof. This is mainly a rephrasing of Proposition 7.4.12. Its hypotheses
hold by Proposition 7.10.2 and Corollary 7.4.8. �

Remark. Regardless of whether C1 and C2 satisfy the Disjoint Disks Prop-
erty, a sewing h : BdC1 → BdC2 yields Sn if h satisfies the mismatch
property of Theorem 7.10.5 (Cannon and Daverman, 1981).

Theorem 7.10.6. For any crumpled n-cube C, n ≥ 5, C ∪IdC ∼= Sn if and
only if C satisfies the Disjoint Disks Property.

Proof. If C satisfies the Disjoint Disks Property, then the identity sewing
satisfies the mismatch property of Theorem 7.10.5 and C ∪Id C ∼= Sn.

For the other implication, in case C∪IdC ∼= Sn, there exists a retraction
r : Sn → C that is 1-1 over BdC; r simply folds one of the copies of C over
onto the other. As in 7.10.4, let λi : C → Sn, i ∈ {1, 2}, be embeddings
such that λ1(C) ∪ λ2(C) = Sn, λ1(C) ∩ λ2(C) = λ1(BdC) = λ2(BdC) and
rλ1 = rλ2 = IdC . Given maps µ1, µ2 : I2 → C, approximate λ1µ1, λ2µ2 by
maps µ′

1, µ
′
2 : I2 → Sn with disjoint images. Then rµ′

1, rµ
′
2 are maps of I2

to C such that

rµ′
1(I

2) ∩ rµ′
2(I

2) ∩ BdC = ∅.
Make a further (general position) approximation over the n-manifold IntC
to obtain maps µ′′

1, µ
′′
2 : I2 → C with disjoint images. �

Corollary 7.10.7. If C is a crumpled n-cube, n ≥ 5, satisfying the Disjoint
Disks Property, then there exists an involution u : Sn → Sn with orbit space
homeomorphic to C. In particular, the fixed point set of u is a wild (n− 1)-
sphere (provided C is not an n-cell).

Definition. The orbit space of an involution u : Sn → Sn is the quotient
of Sn obtained by identifying each x ∈ Sn with u(x).
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To obtain quick applications of Theorem 7.10.5 it is advantageous to
develop conditions under which a crumpled cube C has the Disjoint Disks
Property.

Lemma 7.10.8. If the boundary of a crumpled n-cube C ⊂ Sn is locally flat
modulo a Cantor set, k-cell or k-sphere Z that is flat in BdC, where n ≥ 5
and 1 ≤ k ≤ n− 4, then C has the Disjoint Disks Property.

Proof. As before, identify a neighborhood W of C in Sn and retraction
R : W → C for which R(W � C) ⊂ BdC. Given maps f1, f2 : I2 → C,
produce approximations f ′

1, f
′
2 : I

2 → W ⊂ Sn such that f ′
1(I

2)∩f ′
2(I

2) = ∅.
Restrict W to assure that each Rf ′

i is a close approximation to fi. Let
Ui = (f ′

i)
−1(W � C). Invoke the hypothesis about Z being flat in BdC

to determine maps F1, F2 : I2 → C such that Fi|I2 � Ui = Rf ′
i |I2 � Ui =

f ′
i |I2 � Ui, Fi(Ui) ⊂ BdC � Z, and Fi is close to Rf ′

i . Since BdC is locally
collared in C at points of Fi(Ui), the maps Fi can be further adjusted, fixing
I2 � Ui while pushing points of Fi(Ui) away from BdC, thereby yielding
maps F ′

i : I
2 → C such that

F ′
1(I

2) ∩ F ′
2(I

2) ∩ BdC ⊂ f ′
1(I

2 � U1) ∩ f ′
2(I

2 � U2) ∩ BdC = ∅.
Finally, they can be adjusted once more over IntC so as to have disjoint
images. �

Example 7.10.9. There exists a wild (n− 1)-sphere Σ in Rn that is locally
flat modulo a k-sphere flatly embedded in Rn (1 ≤ k ≤ n− 2).

Such an example arises by inflating any crumpled (n − 1)-cube C in Rn−1

whose double C ∪Id C is Sn−1 (or, equivalently, C has the Disjoint Disks
Property). Think of C as a subset of Rn−1—for definiteness, assume C to
be collared in Rn−1 � IntC—and let ν : C → [0, 1] be a map such that
ν−1(0) = BdC. By an inflation of C we mean

Infl(C, ν) = {〈x, t〉 ∈ Rn−1 × R1 = Rn | x ∈ C and |t| ≤ ν(x)}.
The frontier Σ of Infl(C, ν) is the union of the two copies of C, the graphs
of ±ν, sewn together via the Identity map along their boundaries and so, by
hypothesis, is an (n − 1)-sphere. Clearly, the topological type of Infl(C, ν)
does not depend on the choice of map ν, so from here on out we shall refer to
such a construction as an inflation of C, denoted Infl(C), without reference
to any specific ν.

The (n − 1)-sphere Σ = Bd Infl(C) is locally flat modulo the (n − 2)-
sphere Σ∩ (Rn−1 ×{0}) ∼= BdC, which is flat in Rn (see Exercise 6.3.2 and
Theorem 6.3.6). Moreover, Σ is wildly embedded (assuming C is not a cell)
because C×{0} is a strong deformation retract of Infl(C) via a deformation
that moves points vertically—in the R1 direction—and preserves interiors;
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hence, the interior of Infl(C) is 1-LCC at 〈x, 0〉 ∈ BdC × {0} if and only if
IntC is 1-LCC at x.

Take C to be a crumpled (n − 1)-cube in Rn−1, n > 5, whose fron-
tier is locally flat modulo a Cantor set X standardly embedded in BdC.
Theorem 7.10.6 and Lemma 7.10.8 assure that C ∪Id C ∼= Sn−1. For
k = 1, . . . , n − 2 let Dk denote a k-cell in BdC containing X. Then Σ
is locally flat modulo the k-cell Dk ×{0} ⊂ BdC ×{0} ⊂ Σ, which is flat in
Rn by Corollary 4.6.10 when k < n−2 and by Theorem 6.3.6 when k = n−2.
For that matter, Σ is locally flat modulo the Cantor set X×{0}, which also
is flat in Rn.

Lemma 7.10.10. If the boundary of a crumpled n-cube C is locally flat
modulo a Cantor set, k-cell or k-sphere that is flat in Sn, where n ≥ 5 and
1 ≤ k ≤ n− 3, then C has the Disjoint Disks Property.

The proof, which is similar to that of 7.10.8, is left as an exercise.

Definition. A group G of homeomorphisms on a space X is said to act
semifreely on X if there exists a subset Z of X such that for every g ∈ G,
g(z) = z for all z ∈ Z and g(x) �= x for all x ∈ X � Z and all g �= IdX .

Theorem 7.10.11. Let C be a crumpled n-cube, n ≥ 5, such that C∪IdC ∼=
Sn. Then there exists a semifree S1-action on Sn+1 having an (n−1)-sphere
as its fixed point set and having orbit space homeomorphic to C.

Proof. There is a map p : S1×C → Infl(C)∪Id Infl(C) which is 1-1 on S1×
IntC and which behaves like projection to the second factor on S1 × BdC.
The obvious free S1-action on S1×C (trivial on the C factor) descends under
p to a semifree action on Infl(C) ∪Id Infl(C), and the latter is topologically
Sn, since Infl(C) has the Disjoint Disks Property (another exercise). �

Example 7.10.12. There exist a crumpled n-cube C having the Disjoint
Disks Property and a homeomorphism h : BdC → BdC such that C ∪h C
fails to be a manifold.

Proof. Start with a wild Cantor set Xn in Sn equipped with a special
geometric defining sequence and an embedded loop en(∂I

2) ⊂ Sn � Xn as
in Lemma 4.8.5. Construct an n-cell B in Sn � en(∂I

2) containing Xn as
a standardly embedded Cantor set in ∂B, and set C = Sn � IntB. Apply
Mixing Lemma 4.8.1 to obtain a homeomorphism τ : Xn → Xn mixing the
admissible subsets of Xn. Since Xn is flat in BdC = ∂B, τ extends to
a homeomorphism h : BdC → BdC. Now by Proposition 7.10.4 C ∪h C
cannot be an n-manifold: there is a special Cantor set X, the image of Xn

in the sewing space, and disjoint loops away from X, one in each copy of C,
which ought to bound essentially disjoint disks in the n-manifold (at least
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for n ≥ 5), but any two such singular disks must meet somewhere in X, by
the mixing property. �

Example 7.10.13. There exist a crumpled n-cube C∗ ⊂ Sn and embedded
loops en(∂I

2), e′(∂I2) in IntC∗ such that the image of every singular disk in
C∗ bounded by en intersects the image of every singular disk in Sn bounded
by e′.

For k = n − 1, n, apply Lemma 4.8.7 to produce wild Cantor sets Xk

in Sk equipped with compatible special geometric defining sequences, each
with the strong interior inessential property. Identity loops ek(∂I

2) ⊂ Sk �
Xk such that every singular disk in Sk bounded by ek(∂I

2) contains an
admissible subset of Xk (Corollary 4.8.6). Build k-cells Bk ⊂ Sk � ek(∂I

2)
withXk standardly embedded in ∂Bk and ∂Bk locally flat moduloXk. Form
the complementary crumpled k-cube Ck = Sk � IntBk.

Note that Ck has the Disjoint Disks Property by Lemma 7.10.8 (provided
k ≥ 5) . Inflate Cn−1 to a crumpled n-cube C ′ = Infl(Cn−1). There is a
natural embedding e′ : ∂I2 → C ′ for which every singular disk F ′(I2) in
C ′ bounded by e′(∂I2) contains an admissible subset of Xn−1. Construct
an (n− 1)-cell β′ ⊂ BdC ′ containing Xn−1 in its boundary as a standardly
embedded subset, with β′ locally flatly embedded in BdC ′ modulo Xn−1,
and construct a similar (n−1)-cell β ⊂ BdCn withXn standardly embedded
in Bdβ. Produce a homeomorphism h : β′ → β such that h|Xn−1 : Xn−1 →
Xn mixes the admissible subsets of the Cantor sets.

Let C∗ = C ′ 
h Cn denote the object obtained from the disjoint union
of C ′ and Cn by gluing β′ ⊂ BdC ′ to β ⊂ BdCn via h. Regard C ′ as
embedded in Sn so Sn�IntC ′ is an n-cell B′. Thicken β′ to an n-cellD′ ⊂ B′

locally flat modulo Xn−1 ⊂ ∂D′, where β′ and Xn−1 are flatly embedded
in ∂D′. Then D′ is flat in Sn, so Sn � IntD′ is an n-cell D ⊃ C ′. The
homeomorphism h : β′ → β extends to a homeomorphism H : ∂D → BdCn.
Then C∗ = C ′ ∪h Cn has an obvious embedding in D ∪H Cn

∼= Sn.

This object C∗ contains two noteworthy loops: en : ∂I2 → Cn ⊂ C∗

and e′ : ∂I2 → C ′ ⊂ C∗. Consider singular disks Fn(I
2), F ′(I2) in Sn, C ′

bounded by en, e
′, respectively. Then Fn(I

2) contains an admissible subset
of j(Xn) ⊂ j(Cn). To see that F ′(I2) contains an admissible subset of
j′(Xn−1) ⊂ j′(C ′), one can modify F ′ using Lemma 7.9.1 to obtain another
map F ∗ : I2 → C ′ such that F ∗(I2) ⊂ F ′(I2) ∪ β∗, where β∗ denotes the
image of β = h(β′) in C∗, and where F ∗(I2) ∩ ∂β∗ = F ′(I2) ∩ ∂β∗. Hence,
F ′(I2) ∩ j′(Xn−1) = F ∗(I2) ∩ j(Xn−1) contains the image under j′ of an
admissible subset of Xn−1. This implies that F ′(I2) and Fn(I

2) intersect.

Clearly C∗ cannot have the Disjoint Disks Property. As a result, it also
serves as:
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Example 7.10.14. There exists a crumpled n-cube C∗ such that C∗ ∪Id C
∗

fails to be a manifold.

Historical Notes. Bing was the first to produce periodic homeomorphisms
of Rn and Sn having wild fixed point sets; in perhaps his most widely known
example of this type, he demonstrated (Bing, 1952) that AH ∪Id AH ∼= S3,
where AH denotes the crumpled 3-cube bounded by Alexander’s horned
sphere, so S3 admits an involution fixing a wild 2-sphere. R. J. Daverman
and W. T. Eaton (1969) proved that an arbitrary sewing h : BdC1 → BdC2

of crumpled 3-cubes can be approximated by another sewing h′ such that
C1 ∪h′ C2

∼= S3; nothing comparable is known about arbitrary sewings of
crumpled n-cubes, n ≥ 5. Eaton (1972) showed the mismatch property of
Theorem 7.10.5 to be a necessary and sufficient condition for a sewing of two
crumpled 3-cubes to yield S3; Cannon and Daverman (1981) showed it be
a sufficient condition for a sewing of crumpled n-cubes to yield Sn, n ≥ 4.
Daverman (see comments in (1981)) introduced the inflation process as a
method of constructing wild codimension-one embeddings. He also (2007)
provided various mismatch properties under which a sewing of crumpled
cubes yields Sn.

Exercises

7.10.1. If the inflation Infl(C) of a crumpled (n− 1)-cube C is bounded by
a sphere Σ, n ≥ 5, then Σ is collared from Cl(Rn � Infl(C)).

7.10.2. Prove Lemma 7.10.10.

7.10.3. If the crumpled cube C satisfies the Disjoint Disks Property, then
so does Infl(C).

7.10.4. For n > 3 the suspension of any crumpled n-cube C satisfies the
Disjoint Disks Property.

7.10.5. If the crumpled cube C satisfies the Disjoint Disks Property, then
each map f : I2 → C can be approximated by an embedding
F : I2 → C such that F (I2) ∩ BdC is 0-dimensional.

7.11. Wild examples and mapping cylinder neighborhoods

The presence of mapping cylinder neighborhoods imposes considerable reg-
ularity on an embedding, but not enough regularity to ensure local flatness.
At the heart of §7.11 is a construction in Example 7.11.2 of a codimension-
one sphere wildly embedded in Sn despite possessing a mapping cylinder
neighborhood. Complementing the example is an initial result indicating
that the combination of mapping cylinder neighborhood and freeness im-
plies local flatness for codimension-one manifold embeddings.
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The methods for producing Example 7.11.2 lead to other applications,
including the construction here of a wild Cantor set whose embedding sat-
isfies a strong homogeneity property.

Theorem 7.11.1. Suppose Σn−1 is a connected, two-sided (n−1)-manifold
in an n-manifold M , n ≥ 5, such that Σn−1 has a mapping cylinder neigh-
borhood and is free. Then Σn−1 is bicollared.

Proof. Specify a component U of M�Σn−1. It suffices to show that Σn−1 is
1-LCC in U . Apply the hypothesis to obtain a proper map ψ : Nn−1 → Σn−1

defined on an (n− 1)-manifold Nn−1 such that Σn−1 has a closed neighbor-
hood in U naturally homeomorphic to Map(ψ), the mapping cylinder of
ψ.

Consider s ∈ Σn−1 and ε > 0 such that B(s; ε) lies in a Euclidean patch
in M . Identify a small (n − 1)-cell D ⊂ Σn−1 ∩ B(s; ε) with s ∈ IntD.
Pushing down the mapping cylinder structure of Map(ψ), if necessary, we
assume the part W of the mapping cylinder determined by ψ−1(D) lies in
B(s; ε). Let D1, D2, D3 be additional (n− 1)-cells with

s ∈ IntDi+1 ⊂ Di+1 ⊂ IntDi ⊂ Di ⊂ IntD ⊂ D = D0,

and then let Wi denote the portion of Map(ψ) determined by ψ−1(IntDi)
(i = 0, 1, 2, 3). Delete all points of Nn−1 from Wi to form W ∗

i (i = 1, 2, 3).

We claim that any loop α inW ∗
3�Σ is null-homotopic in B(s; ε)∩U . Find

γ ∈ (0, 1) so close to 1 that the image W−
3 ⊂ W ∗ of ψ−1(IntD3) × (0, γ)

in Map(ψ) contains α. Use freeness of Σn−1 in U to obtain a map g :
D → U so close to inclD : D → U in the ANR U to allow a homotopy
µ : D × [0, 1/3] → U between µ0 = inclD and µ1/3 = g; do this so the

image of µ lies in the portion of Map(ψ) corresponding to Nn−1 × [γ, 1].
The mapping cylinder structure offers the means to push the image of g out
to the frontier FrMap(ψ) (relative to U); push first through the image of
Nn−1 × [γ, 1) to the level corresponding to γ, and then through the image
of Nn−1 × [0, γ] out to the frontier. This gives an extension of µ to a map
µ : D × [0, 1] → U satisfying

µ(D × [1/3, 1]) ⊂ U ,

µ1(D) ⊂ FrMap(ψ) (relative to U),

µ(D × [1/3, 2/3]) ⊂ Nn−1 × [γ, 1) ⊂ Map(ψ) ∩ U ,

µ(D × [2/3, 1]) ⊂ Nn−1 × [0, γ] ⊂ Map(ψ) ∩ U , and

µ(D × [0, 1)) ∩ FrMap(ψ) = ∅.
Furthermore, this can be arranged so that

µ(D × [0, 1)) ⊂ B(s; ε),

µ(∂D0 × [0, 1]) ∩W1 = ∅,
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µ((D0 � IntDi)× [0, 1]) ∩Wi+1 = ∅ (i = 1, 2), and

µ(Di × [0, 1]) ⊂ Wi−1 (i = 1, 2, 3).

By the argument given for Lemma 7.9.14, µ(D0× [0, 1]) contains points of U
very close to each point of IntD1; in view of the connections along mapping
cylinder lines and away from µ(∂D0 × [0, 1]), the same argument gives that
µ(D0 × [0, 1]) ⊃ W1. In like fashion, µ(Di × [0, 1]) ⊃ Wi+1 (i = 1, 2).
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Figure 7.12. The neighborhood W3 and other structures near s

Let Y ∗
1 denote the component of µ−1(W ∗

1 ) containing IntD1 × {0}. As
in the proof of Theorem 7.9.8, one can append a collar IntD1 × (−1, 0] to
W ∗

1 and extend µ|Y ∗
1 : Y ∗

1 → W ∗
1 to a map

ν : Y ∗
1 ∪ (IntD1 × (−1, 0]) → W ∗

1 ∪ (IntD1 × (−1, 0])

in the obvious way. Here ν has degree ±1, since it is a homeomorphism over
the appended collar (Lemma 7.9.9). Note that Y ∗

1 ⊃ IntD2 × (0, 1).

Form Y −
3 = µ−1(W−

3 ). Properties of µ force Y −
3 ⊂ IntD2 × (2/3, 1) ⊂

Y ∗
1 . List the components U1, U2, . . . of Y

−
3 and use di to denote the degree

of µ|Ui : Ui → W−
3 . Then Σidi = ±1, by Lemma 7.9.11.

Let W−
1 , like W−

3 , denote the portion of W1 corresponding to the image
of Nn−1 × (0, γ) and let Y −

1 denote the component of µ−1(W−
1 ) containing

IntD2×(2/3, 1). Now we have Y −
3 ⊂ Y −

1 ⊂ D0×(2/3, 1). Another appeal to
Lemma 7.9.11 assures that µ|Y −

1 : Y −
1 → W−

1 is a degree ±1 map between
connected manifolds. Thus, Lemma 7.9.13 promises a loop α′ ⊂ Y −

1 such
that µ(α′) is homotopic to α in W−

1 . As α′ is null homotopic in D×(2/3, 1),
α is null homotopic in µ(D × (2/3, 1)) ⊂ B(s; ε) ∩ U . �

Example 7.11.2. For n ≥ 6, Sn contains a wildly embedded (n− 1)-sphere
Σ with a mapping cylinder neighborhood.
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This example introduces a remarkably useful and direct new method
for producing wildness. It involves decompositions into acyclic sets. Typ-
ically the methodology brings about an associated decomposition space S
that contains an object which obviously is “wild”, in the sense of failing
to be 1-LCC embedded; however, it can be far from obvious that S is a
manifold. Although the given decomposition is only acyclic, not cell-like, in
many instances there does exist a cell-like map from another manifold onto
S, in which event the Cell-like Approximation Theorem possibly could be
exploited to detect that S is a manifold.

For the specific issue at hand, Example 7.11.2, the decomposition space S
associated with an acyclic decomposition of Sn contains an object Σ related
to the (n − 1)-sphere, and the latter obviously has a neighborhood P with
the structure of a mapping cylinder. Moreover, the sphere-like subspace Σ
has wildness features, by virtue of containing a 1-sphere that fails to be
1-LCC in S.

Construction of the Example. Assume n ≥ 7; something similar can be
done for n = 6, but we will ignore that special case. Fix a finite, acyclic
2-complex A that is PL embedded in Sn−2 with contractible complement
(see Example 0.10.3). Take a regular neighborhood N(A) of the embedded
A and then spin an (n− 2)-ball B, N(A) ⊂ IntB ⊂ B ⊂ Sn−2, to produce
a PL embedding of N(A)× S1 in Sn−1. Treat Sn−1 as an equatorial sphere
in Sn. Form the decomposition of Sn having the sets {A × {s} | s ∈ S1}
as nondegenerate elements, and let p : Sn → S denote the map to the
associated decomposition space S. We will show that both S and p(Sn−1)
are spheres. The image under p of an annular neighborhood of Sn−1 in Sn

will be a mapping cylinder neighborhood of p(Sn−1). The 1-sphere p(A×S1)
will be wildly embedded in S (and in p(Sn−1) as well) because it fails to be
1-LCC.

Lemma 7.11.3. The quotient space N(A)/A is the cell-like image of a ∂-
manifold W under a cell-like map that restricts to a homeomorphism on a
neighborhood of ∂W .

Proof. The complex A is embedded in Sn−2 with contractible complement.
Therefore, the closed complement C ′ of a collar on ∂N(A) in Sn−2�IntN(A)
is contractible, and N(A)/A ∼= (Sn−2 � IntN(A))/C ′, since each is a cone
over ∂N(A). �

Lemma 7.11.4. Suppose M is an m-manifold and p : M × S1 → X is
a closed, surjective mapping for which there exist an (m − 2)-dimensional,
compact ANR Z in M and a closed subset C of S1 such that the nondegen-
erate point preimages under p are the sets {Z × {s} | s ∈ C}. Let D be a
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dense subset of C. Then each map f : I2 → X can be approximated by a
map F : I2 → X such that F (I2) ∩ p(Z × C) ⊂ p(Z ×D).

Proof. Given f : I2 → X, choose a triangulation T on I2 so images of its
simplices under f have small diameter. Let L denote the subcomplex of T
containing the 1-skeleton plus all 2-simplices τ ∈ T with f(τ)∩p(Z×C) = ∅.
Here f can be approximately lifted to a map g : L → M : for each 2-simplex
τ ∈ L set g|τ = p−1f |τ ; for vertices and 1-simplices of L not contained in any
2-simplex there, the existence of such an approximate lift g follows readily
from the dimension restriction on Z. The desired map F will coincide with
pg on L. For each 2-simplex σ ∈ T � L, g|∂σ is homotopic in (U � Z) × J
to a map sending ∂σ into U ×{d}, where U is a small neighborhood of Z in
M , J is a small subset of S1, and d ∈ D. Thus, F |∂σ = pg|∂σ extends over
σ to a map F : σ → p((U � Z) × J) ∪ (U × {d}), which gives the desired
approximation to f . �

Corollary 7.11.5. The space (N(A)/A)× S1 satisfies the DDP.

Proof. Specify disjoint dense subsets D1, D2 of S1. Let p : N(A) × S1 →
X = (N(A)/A) × S1 denote the decomposition map. Given two maps fi :
I2 → (N(A)/A)× S1, approximate by maps Fi : I

2 → (N(A)/A)× S1 with
F (I2) ∩ p(A × S1) ⊂ p(A × Di) (i = 1, 2). A general position adjustment
near points of F1(I

2) ∩ F2(I
2) in the ∂-manifold p((N(A)�A)× S1) yields

disjoint approximations. �

It follows from the Cell-like Approximation Theorem that (N(A)/A)×S1

is a ∂-manifold, and hence p(Sn−1) is a manifold. The latter is a sphere since
it is a simply-connected homology sphere (by the Vietoris-Begle Theorem).
Similarly, S = p(Sn) is an n-sphere. Finally, p(A× S1) is wildly embedded
in S since it fails to be 1-LCC: it has a compact neighborhood P of the form
(c ∗ ∂(N(A)× [−1, 1]))× S1 and its complement in P deformation retracts
to ∂(N(A)× [−1, 1])× S1. �

Definition. A subset X of a space S is strongly homogeneously embedded
in S if every homeomorphism h : X → X extends to a homeomorphism
H : S → S.

Example 7.11.6. For n ≥ 6, Sn contains a wild, strongly homogeneously
embedded Cantor set.

Proof. Again we use acyclic decompositions to build a space S containing
a Cantor set X that is both strongly homogeneously embedded and wild, in
the sense of failing to be 1-LCC embedded. The real work involves showing
that S is a manifold.
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As before, consider the acyclic 2-complex A PL embedded in Sn−2 with
contractible complement. Let C be a Cantor set,

C ⊂ Int I = Int I × {1/2} ⊂ Int I2.

Consider Sn−2 × I2 as a PL subset of Sn.

Let p : Sn → S be the decomposition map associated with the decom-
position of Sn into points and the sets {A × {c} | c ∈ C}. The Cantor
set of interest is X = p(A × C). Obviously it is strongly homogeneously
embedded in S because for any homeomorphism h : X → X there exists a
homeomorphism g : C → C rendering the following diagram commutative:

A× C
Id×g−−−−→ A× C⏐⏐�p|A×C

⏐⏐�p|A×C

X
h−−−−→ X

This g extends to a homeomorphism G : I2 → I2 that reduces to the identity
on ∂I2, and

Id×G : Sn−2 × I2 → Sn−2 × I2

extends to H : Sn → Sn via the Identity off Sn−2 × I2. Then H, in turn,
induces a homeomorphism Ĥ : S → S as Ĥ = pHp−1, and Ĥ|X = h.

By Corollary 7.11.5, S has the DDP.

Finally, we explain why S is the cell-like image of a manifold. Let N1 be
a regular neighborhood of A in IntN(A) and let E1 be the union of a pair
of disjoint 2-cells in Int I2, with IntE1 ⊃ C. As N(A)× I2 ⊂ Sn is a regular
neighborhood of a copy of A, ∂(N(A)× I2) bounds a compact, contractible
n-manifold Q0. We claim that IntQ0 contains a pair of disjoint copies of Q0

whose union Q1 satisfies Q0 � IntQ1
∼= N(A)× (I2 � Int(N1 × E1)). Form

a second compact contractible n-manifold Q′ by removing Int(N1 × E1)
from N(A)× I2 and attaching in a copy of Q0 to what remains along each
component of ∂(N1 × E1). Remarkably, Q′ is PL homeomorphic to Q0, by
the Relative h-Cobordism Theorem (Rourke and Sanderson, 1972, p. 87):
the union of Q0, Q

′ and a collar joining ∂Q0 to ∂Q′ is an n-sphere, hence
that union bounds an (n + 1)-cell W , the resulting triple (W,Q0, Q

′) is a
relative h-cobordism, so W ∼= Q0× [0, 1] with Q0 corresponding to Q0×{0}
and Q′ to Q0 × {1}.

Let N1 ⊃ N2 ⊃ · · ·Nk ⊃ · · · be regular neighborhoods of A in Sn−2

such that Nk ⊂ IntNk−1 and ∩kNk = A. For k ≥ 2 let Ek be a union of 2k

pairwise disjoint 2-cells in IntEk−1, where ∩kEk = C. Each component of
Nk−1×Ek−1� Int(Nk ×Ek) is homeomorphic to N(A)× I2� Int(N1×E1).
Now Sn−2 × I2 contains a sequence Q0 ⊃ Q1 ⊃ · · ·Qk−1 ⊃ Qk ⊃ · · · , where
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for k > 0 Qk consists of 2k pairwise disjoint copies of Q0, Qk ⊂ IntQk−1

and

Qk−1 � IntQk
∼= Nk−1 ×Ek−1 � Int(Nk × Ek).

As a result, there is a natural surjective map q : Q0 → p(N(A) × I2) ⊂ S
sending distinct components of ∩kQk to distinct points of X and being 1-1
on Q0 � ∩kQk. Rather obviously, the components of ∩Qi are cell-like sets,
so q is a cell-like mapping and therefore a near-homeomorphism. It follows
that S is a manifold. �

Constructions like those of Example 7.11.2 or §2.6 give wild but strongly
homogeneously embedded 1-spheres in S5 × S1 and S3 × S1, respectively.
Exactly the same methods, with Sk in place of S1, lead to wild but strongly
homogeneously embedded k-spheres in codimensions 5 and 3. Whether there
is a wild and strongly homogeneously embedded (or even just homogenously
embedded) codimension-one manifold example remains an open question.

Historical Notes. Theorem 7.11.1 is due to Bryant and Lacher (1975),
who did considerably more, showing there that the combination of mapping
cylinder neighborhood and a generalized concept of freeness implies local
flatness for embedded manifolds of all other codimensions. In low dimen-
sions freeness is not a necessary ingredient: V. Nicholson (1969) proved that
complexes in 3-manifolds with mapping cylinder neighborhoods are tame,
and Lacher and A. Wright (1970) showed that 3-manifolds with mapping
cylinder neighborhoods in 4-manifolds are locally flat.

S. Ferry and E. Pederson (1991) produced a catalogue of wildly embed-
ded circles in Sn (n ≥ 7) similar to the wild circles of Example 7.11.2. Theirs
are indexed by Wall’s finiteness obstruction.

M. A. Kervaire (1969) proved that every PL homology n-sphere, n ≥ 5,
bounds a compact, contractible, PL (n+ 1)-manifold; Kervaire derived the
same result in the smooth category, provided one allows modification of
the homology sphere by taking its connected sum with a (unique) smooth
homotopy sphere.

Alternate ways of getting a cell-like mapping from a manifold onto spaces
like these acyclic decomposition spaces are treated in Chapter 8.

The methods arising in the development of Example 7.11.2 are those
used to settle the Double Suspension Problem, discussed later here in §8.10.
The connection is exposed in Exercise 7.11.2 below.

The strongly homogeneous but wildly embedded Cantor set is due to
Daverman (1979).
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Exercises

7.11.1. Suppose Σn−1 is a connected, two-sided (n− 1)-manifold in a con-
nected n-manifold M (n ≥ 5), ψ : Σn−1 → Σn−1 is a cell-like
mapping, and U is a component of M �Σn−1 such that Σn−1 has a
closed neighborhood in U naturally homeomorphic to the mapping
cylinder of ψ. Then Σn−1 is collared from U .

7.11.2. Show that the join of S1 and ∂N(A), where N(A) is the acyclic,
(n − 2)-dimensional ∂-manifold described in Example 7.11.2, is
topologically Sn.

7.11.3. Show that Sn contains a wild, homogenously embedded (n − 2)-
torus (n > 2). [Hint: spin the Bing sling of Subsection 2.8.5.]
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