Chapter 0

A quick introduction
to stratifolds

In this chapter we say as much as one needs to say about stratifolds in or-
der to proceed directly to chapter 4 where homology with Z/2-coefficients
is constructed. We do it in a completely informal way that does not replace
the definition of stratifolds. But some readers might want to see what strat-
ifolds are good for before they study their definition and basic properties.

An n-dimensional stratifold S is a topological space S together with a
class of distinguished continuous functions f : S — R called smooth func-
tions. Stratifolds are generalizations of smooth manifolds M where the
distinguished class of smooth functions are the C'*°-functions. The distin-
guished class of smooth functions on a stratifold S leads to a decomposition
of S into disjoint smooth manifolds S? of dimension i where 0 < i < n, the
dimension of S. We call the S’ the strata of S. An n-dimensional stratifold
is a smooth manifold if and only if S* = @ for i < n.

To obtain a feeling for stratifolds we consider an important example.
Let M be a smooth n-dimensional manifold. Then we consider the open
cone over M

CM := M x[0,1)/prx 0y
i.e., we consider the half open cylinder over M and collapse M x {0} to a

point.
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(o]
Now, we make C'M an (n + 1)-dimensional stratifold by describing its dis-
tinguished class of smooth functions. These are the continuous functions

FiOM =R,

such that f|jrx(o,1) is a smooth function on the smooth manifold M x (0, 1)

and there is an € > 0 such that f’MX[(]’e)/]\/Ix{O} is constant. In other words,

the function is locally constant near the cone point M x {0}/arx 0} € CE\J.
The strata of this (n + 1)-dimensional stratifold S turn out to be S° =
M x {0}/arx {0y, the cone point, which is a 0-dimensional smooth manifold,
S'=g for 0 <i<n+1and S"! =M x (0,1).

One can generalize this construction and make the open cone over any
n-dimensional stratifold S an (n + 1)-dimensional stratifold C(')S. The strata
of C(’)S are: (C?S)O = pt, the cone point, and for 1 < 7 < n + 1 we have
(COS)Z =81 x (0,1), the open cylinder over the (i — 1)-stratum of S.

Stratifolds are defined so that most basic tools from differential topology
for manifolds generalize to stratifolds.

e For each covering of a stratifold S one has a subordinate partition
of unity consisting of smooth functions.

e One can define regular values of a smooth function f : S — R
and show that if ¢ is a regular value, then f~1(t) is a stratifold of
dimension n — 1 where the smooth functions of f~!(¢) are simply
the restrictions of the smooth functions of S.

e Sard’s theorem can be applied to show that the regular values of a
smooth function S — R are a dense subset of R.

As always, when we define mathematical objects like groups, vector
spaces, manifolds, etc., we define the “allowed maps” between these objects,
like homomorphisms, linear maps, smooth maps. In the case of stratifolds
we do the same and call the “allowed maps” morphisms. A morphism
f:S — S is a continuous map f : S — S’ such that for each smooth
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function p : S — R the composition pf : S — R is a smooth function on S.
It is a nice exercise to show that the morphisms between smooth manifolds
are precisely the smooth maps. A bijective map f : S — S’ is called an iso-
morphism if f and f~! are both morphisms. Thus in the case of smooth
manifolds an isomorphism is the same as a diffeomorphism.

Next we consider stratifolds with boundary. For those who know what
an n-dimensional manifold W with boundary is, it is clear that W is a topo-
logical space together with a distinguished closed subspace OW C W such

(o]

that W —0W =: W is a n-dimensional smooth manifold and OW is a (n—1)-

dimensional smooth manifold. For our purposes it is enough to imagine the

same picture for stratifolds with boundary. An n-dimensional stratifold T

with boundary is a topological space T together with a closed subspace 0T,
o

the structure of a n-dimensional stratifold on T = T — 0T, the structure
of an (n — 1)-dimensional stratifold on T and an additional structure (a
collar) which we will not describe here. We call a stratifold with boundary
a c-stratifold because of this collar.

The most important example of a smooth n-dimensional manifold with
boundary is the half open cylinder M x [0,1) over a (n — 1)-dimensional
manifold M, where 9M = M x {0}. Similarly, if S is a stratifold, then we
give S x[0,1) the structure of a stratifold T with 0T = S x {0}. In the world
of stratifolds the most important example of a c-stratifold is the closed cone
over a smooth (n — 1)-dimensional manifold M. This is denoted by

CM := M x [07 1]/M><{0}7

where O0C M := M x{1}. More generally, for an (n—1)-dimensional stratifold
S one can give the closed cone

CS := 8 x[0,1]/sx{0}
the structure of a c-stratifold with 0C'S = S x {1}.

If T and T are stratifolds and f : 9T — 9T’ is an isomorphism one can
paste T and T’ together via f. As a topological space one takes the disjoint
union TUT’ and introduces the equivalence relation which identifies z € 9T
with f(x) € OT’. There is a canonical way to give this space a stratifold
structure. We denote the resulting stratifold by

T Uy T.
If T = 0T’ and f = id, the identity map, we write
TUuT
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instead of T Uy T".

Instead of gluing along the full boundary we can glue along some com-
ponents of the boundary, as shown below.

=

If a reader decides to jump from this chapter straight to homology (chap-
ter 4), I recommend that he or she think of stratifolds as mathematical ob-
jects very similar to smooth manifolds, keeping in mind that in the world
of stratifolds constructions like the cone over a manifold or even a stratifold

are possible.



Chapter 12

Cohomology and
Poincaré duality

Prerequisites: We assume that the reader knows what a smooth vector bundle is [B-J], [Hi].
1. Cohomology groups

In this chapter we consider another bordism group of stratifolds which at
first glance looks like homology. It is only defined for smooth manifolds
(without boundary). Similar groups were first introduced by Quillen [Q]
and Dold [D]. They consider bordism classes of smooth manifolds instead
of stratifolds.

The main difference between the new groups and homology is that we
consider bordism classes of non-compact stratifolds. To obtain something
non-trivial we require that the map g : T — M is a proper map. We recall
that a map between paracompact spaces is proper if the preimage of each
compact space is compact. A second difference is that we only consider
smooth maps. For simplicity we only define these bordism groups for ori-
ented manifolds. (Each manifold is canonically homotopy equivalent to an
oriented manifold, namely the total space of the tangent bundle, so that one
can extend the definition to non-oriented manifolds using this trick, see the
exercises in chapter 13.)

Definition: Let M be an oriented smooth m-dimensional manifold without
boundary. Then we define the integral cohomology group SHF(M) as
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the group of bordism classes of proper smooth maps g : S — M, where S
is an oriented reqular stratifold of dimension m — k, addition is by disjoint
union of maps and the inverse of [S,g| is [—=S,g| (of course we also require
that the maps for bordisms are proper and smooth and that the stratifolds
are oriented and regular).

The reader might wonder why we required that M be oriented. The def-
inition seems to work without this condition. This will become clear when

we define induced maps. Then we will understand the relationship between
SH*(M) and SH¥(—M) better.

The relation between the grade, k, of SH¥(M) and the dimension m — k
of representatives of the bordism classes looks strange but we will see that
it is natural for various reasons.

If M is a point then g : S — pt is proper if and only if S is compact.
Thus
SH*(pt) = SH_i(pt) = Z, if k=0, and 0 if k # 0.

In order to develop an initial feeling for cohomology classes, we consider
the following situation. Let p : E — N be a k-dimensional, smooth, oriented
vector bundle over an n-dimensional oriented smooth manifold. Then the
total space E is a smooth (k + n)-dimensional manifold. The orientations of
M and FE induce an orientation on this manifold. The 0-section s : N — E
is a proper map since s(NN) is a closed subspace. Thus

[N,s] € SHY(E)

is a cohomology class. This is the most important example we have in
mind and will play an essential role when we define characteristic classes.
A special case is given by a 0-dimensional vector bundle where £ = N
and p = id. Thus we have for each smooth oriented manifold N the class
[N,id] € SHO(N), which we call 1 € SH°(N). Later we will define a multi-
plication on the cohomology groups and it will turn out that multiplication
with [N,id] is the identity, justifying the notation.

Is the class [N, s] non-trivial? We will see that it is often non-trivial but
it is zero if F¥ admits a nowhere vanishing section v : N — FE. Namely then
we obtain a zero bordism by taking the smooth manifold N x [0,00) and
the map G : N x [0,00) — FE mapping (z,t) — tv(xz). The fact that v is
nowhere vanishing implies that G is a proper map. Thus we have shown:
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Proposition 12.1. Letp: EE — N be a smooth, oriented k-dimensional vec-
tor bundle over a smooth oriented manifold N. If E has a nowhere vanishing
section v then [N, s] € SH*(E) vanishes.

In particular, if [NV, s] is non-trivial, then E does not admit a nowhere
vanishing section.

In the following considerations and constructions it will be helpful for
the reader to look at the cohomology class [N,s] € SH*(E) and test the
situation with this class.

2. Poincaré duality

Cohomology groups are, as indicated for example in Proposition 12.1, a use-
ful tool. To apply this tool one has to find methods for their computation.
We will do this in two completely different ways. The fact that they are
so different is very useful since one can combine the information to obtain
very surprising results like the vanishing of the Euler characteristic of odd-
dimensional, compact, smooth manifolds.

The first tool, the famous Poincaré duality isomorphism, only works
for compact, oriented manifolds and relates their cohomology groups to the
homology groups. Whereas in the classical approach to (co)homology the
duality theorem is difficult to prove, it is almost trivial in our context. The
second tool is the Kronecker pairing which relates the cohomology groups to
the dual space of the homology groups. This will be explained in chapter 14.

Let M be a compact oriented smooth m-dimensional manifold. (Here
we recall that if we use the term manifold, then it is automatically with-
out boundary; in this book, manifolds with boundary are always called
c-manifolds. Thus a compact manifold is what in the literature is often
called a closed manifold, a compact manifold without boundary.) If M is
compact and g : S — M is a proper map, then S is actually compact. Thus
we obtain a homomorphism

P:SH*(M) — SH,,_ (M)

which assigns to [S,g] € SH¥(M) the class [S, g] considered as element of
SHy,—(M). Here we only forget that the map ¢ is smooth and consider it
as a continuous map.
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Theorem 12.2. (Poincaré duality) For a closed smooth oriented m-
dimensional manifold M the map

P:SH*(M) — SHy,_1(M)

s an isomorphism

Proof: For the proof we apply the following useful approximation result for
continuous maps from a stratifold to a smooth manifold. It is another nice
application of partitions of unity.

Proposition 12.3. Let f : S — N be a continuous map, which is smooth
in an open neighbourhood of a closed subset A C S. Then there is a smooth
map g : S — N which agrees with f on A and which is homotopic to f rel.
A.

Proof: The proof is the same as for a map f from a smooth manifold M
to N in [B-J, Theorem 14.8]. More precisely, there it is proved that if we
embed NN as a closed subspace into an Euclidean space R™ then we can find
a smooth map g arbitrarily close to f. The proof only uses that M supports
a smooth partition of unity. Finally, sufficiently close maps are homotopic
by ([B-J] Satz 12.9).

q.e.d.

As a consequence we obtain a similar result for c-stratifolds.

Proposition 12.4. Let f : T — M be a continuous map from a smooth
c-stratifold T to a smooth manifold M, whose restriction to OT is a smooth
map. Then f is homotopic rel. boundary to a smooth map.

The proof follows from 12.3 using an appropriate closed subset in the
collar of T for the subset A.

We apply this result to finish our proof. If g : S — M represents an
element of SH,,_ (M), we can apply Proposition 12.3 to replace g by a
homotopic smooth map ¢' and so [S,g] = P([S, ¢']). This gives surjectivity
of P. Similarly we use the relative version 12.4 to show injectivity. Namely,
if for [Sy, g1] and [Sa, go] in SH*(M) we have P([S1, g1]) = P([S2, g2]), there
is a bordism (T, G) between these two pairs, where G is a continuous map
whose restriction to the boundary is smooth. We apply Proposition 12.4 to
replace G by a smooth map G’ which agrees with the restriction of G on the
boundary. Thus [S1, g1] = [S2, g2] € SH¥(M) and P is injective.

q.e.d.
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By considering bordism classes of proper maps on Z/2-oriented regu-
lar stratifolds we can define Z/2-cohomology groups for arbitrary (non-
oriented) smooth manifolds as we did in the integral case. The only differ-
ence is that we replace oriented regular stratifolds by Z/2-oriented regular
stratifolds which means that S» ! = @ and that no condition is placed on
the orientability of the top stratum. The corresponding cohomology groups
are denoted by

SH"(M;Z/2).
The proof of Poincaré duality works the same way for Z/2-(co)homology:

Theorem 12.5. (Poincaré duality for Z/2-(co)homology) For a clo-
sed smooth oriented manifold M the map

P:SH*(M;7/2) — SHy,_(M;7/2)
s an isomorphism.

As mentioned above, we want to provide other methods for comput-
ing the cohomology groups. They are based on the same ideas as used for
computing homology groups, namely to show that the cohomology groups
fulfill axioms similar to the axioms of homology groups. One of the ap-
plications of these axioms will be an isomorphism between SH¥(M) ® Q
and Hom(SH(M),Q) and an isomorphism of Z/2-vector spaces between
SH*(M;7/2) and Hom(SHy(M;Z/2),Z/2). The occurrence of the dual
spaces Hom(SH(M),Q) and Hom(SHy(M;Z/2),Z/2) indicates a differ-
ence between the fundamental properties of homology and cohomology. The
induced maps occurring should reverse their directions. We will see that this
is the case.

3. The Mayer-Vietoris sequence

One of the most powerful tools for computing cohomology groups is, as it is
for homology, the Mayer-Vietoris sequence. To formulate it we have to define
for an open subset U of a smooth oriented manifold M the map induced by
the inclusion ¢ : U — M. We equip U with the orientation induced from
M. If g: S — M is a smooth proper map we consider the open subset
g Y (U) C S and restrict g to this open subset. It is again a proper map
(why?) and thus we define

i*[8,9] = [g7"(U), glg-1 1r))-
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This is obviously well defined and gives a homomorphism * : SH*(M) —
SH¥(U). This map reverses the direction of the arrows, as was motivated
above. If V is an open subset of U and j : V' — U is the inclusion, then by
construction

it = ()"

The next ingredient for the formulation of the Mayer-Vietoris sequence
is the coboundary operator. We consider open subsets U and V' in a smooth
oriented manifold M, denote UUV by X and define the coboundary operator

§:SHYUNV)— SHFY (U UV)

as follows. We introduce the disjoint closed subsets A := X —V and B :=
X — U. We choose a smooth map p: UUV — R mapping A to 1 and B
to —1. Now we consider [S, f] € SH*(U NV). Let s € (—1,1) be a regular
value of pf. The preimage D := (pf)~!(s) is an oriented regular stratifold
of dimension n — 1 sitting in S. We define §([S, f]) := [D, f|p] € SH*(X).
It is easy to check that f|p is proper.

G (D
lp

As with the definition of the boundary map for the Mayer-Vietoris sequence
in homology, one shows that § is well defined and that one obtains an exact
sequence. For details we refer to Appendix B.

IR

At first glance this definition of the coboundary operator looks strange
since f(D) is contained in U N'V. But considered as a class in the coho-
mology of U NV it is trivial. It is even zero in SH**1(U) as well as in
SHF+1(V). The reason is that in the construction of § we can decompose S
as S Up S_ with p(S;) > s and p(S_) < s (as for the boundary operator
in homology we can assume up to bordism that there is a bicollar along D).
Then (S_, f|s_) is a zero bordism of (D, f|p) in U (note that f|s_ is proper
as a map into U and not into V). Similarly (S;, f|s, ) is a zero bordism of
(D, flp) in V. But in SH**1(U U V) it is in general non-trivial.

We summarize:
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Theorem 12.6. (Mayer-Vietoris sequence for integral cohomology)
The following sequence is exact and commutes with induced maps:

= SHMUUV) — SH™(U) & SH™(V)

— SHYUNV) -5 SH™ Y (U UV) — -
The map SH™(UUV) — SH™(U)®SH™(V) is given by o — (5 (), jir (),
the map from SH™(U)®SH™(V) to SH"(UNV) by (o, B) — i () — iy, ().

4. Exercises

(1) Compute the cohomology groups SHF(R™) for k > 0. (Hint: For
SH(R™) construct a map to Z by counting points with orientation
in the preimage of a regular value. For degree > 0 apply Sard’s
theorem.) What happens for k < 07

(2) Let f: M — N be a submersion (i.e., the differential df, at each
point x € M is surjective). Let [g : S — N] be a cohomology class
in SH*(N). Show that the pull-back {(z,y) € (M x S) | (f(z) =
g(y)} is a stratifold and that the projection to the first factor is
a proper map. Show that this construction gives a well defined
homomorphism f* : SH¥(N) — SH*(M). (This is a special case
of the induced map which we will define later.)

(3) Let M be a smooth manifold. Show that the map p* : SH*(M) —
SHE(M x R) is injective. (Hint: Construct a map SH¥(M x R) —
SHF(M) by considering for [g : S — M x R] a regular value of
p2g.) We will see later that p* is an isomorphism; try to prove this
directly.
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