
Chapter 7

Representation Theory

Recall that a representation of a ring R is a ring homomorphism R → EndZ(M),
where M is an abelian group. Now Proposition 6.14 shows that R-modules are
just another way to view representations: every representation R → EndZ(M)
equips M with the structure of a left R-module, and conversely. In this chapter,
we focus on R = kG, the group algebra of a finite group G over a field k, and
representations kG→ Endk(V ), where V is a finite-dimensional vector space over k.
A key tool in this study is the notion of character, and we will use it to prove
group-theoretic theorems of Burnside and of Frobenius. The chapter ends with a
discussion of division rings as well as a theorem characterizing categories of modules
which explains why matrix rings arise in the study of semisimple rings.

Section 7.1. Chain Conditions

This chapter begins with rapid rephrasing of some earlier results about groups
and rings into the language of modules. We have already proved the Jordan–
Hölder Theorem for groups (Theorem 4.55); here is the version of this theorem
for modules. [Both of these versions are special cases of a theorem about operator
groups (Robinson, A Course in the Theory of Groups, p. 65).]

Theorem 7.1 (Zassenhaus Lemma). Given submodules A ⊆ A∗ and B ⊆ B∗

of a left R-module M over a ring R, there is an isomorphism

A+ (A∗ ∩B∗)

A+ (A∗ ∩B)
∼=

B + (B∗ ∩ A∗)

B + (B∗ ∩A)
.

Proof. A straightforward adaptation of the proof of Lemma 4.52. •

Definition. A series (or filtration) of a left R-module M over a ring R is a
sequence of submodules, M = M0,M1, . . . ,Mn = {0}, such that

M = M0 ⊇M1 ⊇ · · · ⊇Mn = {0}.
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The quotients M0/M1,M1/M2, . . . ,Mn−1/Mn = Mn−1 are called the factor mod-
ules of this series, and the number of strict inclusions is called the length of the
series; equivalently, the length is the number of nonzero factor modules.

A refinement of a series is a series M = M ′
0,M

′
1, . . . ,M

′
t = {0} having the

original series as a subsequence. Two series of a module M are equivalent if
there is a bijection between the lists of nonzero factor modules of each so that
corresponding factor modules are isomorphic.

Theorem 7.2 (Schreier Refinement Theorem). Any two series

M = M0 ⊇M1 ⊇ · · · ⊇Mn = {0} and M = N0 ⊇ N1 ⊇ · · · ⊇ Nt = {0}

of a left R-module M have equivalent refinements.

Proof. A straightforward adaptation, using the Zassenhaus Lemma, of the proof
of Theorem 4.54. •

Recall that a left R-module M is simple (or irreducible) if M �= {0} and M has
no submodules other than {0} and M itself. The Correspondence Theorem shows
that a submodule N of a left R-module M is a maximal submodule if and only if
M/N is simple; indeed, the proof of Corollary 6.25 (a left R-module M is cyclic
if and only if M ∼= R/I for some left ideal I) can be adapted to show that a left
R-module is simple if and only if it is isomorphic to R/I for some maximal left
ideal I.

Definition. A composition series of a module is a series all of whose nonzero
factor modules are simple.

A module need not have a composition series; for example, the abelian group Z,
considered as a Z-module, has no composition series (Proposition 7.11). Notice that
a composition series admits only insignificant refinements; we can only repeat terms
(if Mi/Mi+1 is simple, then it has no proper nonzero submodules and, hence, there
is no submodule L with Mi � L � Mi+1). More precisely, any refinement of a
composition series is equivalent to the original composition series.

Theorem 7.3 (Jordan–Hölder Theorem). Any two composition series of a left
R-module M over a ring R are equivalent. In particular, the length of a composition
series, if one exists, is an invariant of M , called the length of M .

Proof. As we have just remarked, any refinement of a composition series is equiva-
lent to the original composition series. It now follows from the Schreier Refinement
Theorem that any two composition series are equivalent; in particular, they have
the same length. •

Corollary 7.4. If a left R-module M has length n, then every ascending or de-
scending chain of submodules of M has length ≤ n.

Proof. There is a refinement of the given chain that is a composition series, and
so the length of the given chain is at most n. •
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The Jordan–Hölder Theorem can be regarded as a kind of unique factorization
theorem; for example, we used it in Corollary 4.56, to prove the Fundamental
Theorem of Arithmetic. We now use it to prove Invariance of Dimension. If V is
an n-dimensional vector space over a field k, then V has length n, for if v1, . . . , vn
is a basis of V , then a composition series of V is

V =
〈
v1, . . . , vn

〉
�

〈
v2, . . . , vn

〉
� · · · �

〈
vn

〉
� {0}

(the factor modules are one-dimensional, hence they are simple k-modules).

In Chapter 5, we considered chain conditions on a ring and its ideals; we now
consider chain conditions on modules and submodules.

Definition. A left R-module M over a ring R has ACC, the ascending chain
condition, if every ascending chain of submodules stops ; that is, if

S1 ⊆ S2 ⊆ S3 ⊆ · · ·

is a chain of submodules, then there is some t ≥ 1 with

St = St+1 = St+2 = · · · .

A left R-moduleM over a ring R hasDCC, the descending chain condition,
if every descending chain of submodules stops ; that is, if

S1 ⊇ S2 ⊇ S3 ⊇ · · ·

is a chain of submodules, then there is some t ≥ 1 with

St = St+1 = St+2 = · · · .

We specialize these definitions to R considered as a left R-module.

Definition. A ring R is left noetherian if it has ACC on left ideals: every
ascending chain of left ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · stops; that is, there is some t ≥ 1
with It = It+1 = It+2 = · · · .

If k is a field, then every finite-dimensional k-algebra A is both left and right
noetherian, for if dimk(A) = n, then there are at most n strict inclusions in any
ascending chain of left ideals or of right ideals. In particular, if G is a finite group,
then kG is finite-dimensional, and so it is left and right noetherian.

Definition. A ring R is left artinian if it has DCC: every descending chain of
left ideals I1 ⊇ I2 ⊇ I3 ⊇ · · · stops; that is, there is some t ≥ 1 with It = It+1 =
It+2 = · · · .

We define right artinian rings similarly, and there are examples of left artinian
rings that are not right artinian (Exercise 7.10 on page 533). If k is a field, then
every finite-dimensional k-algebra A is both left and right artinian, for if dimk(A) =
n, then there are at most n strict inclusions in any descending chain of left ideals
or of right ideals. In particular, if G is a finite group, then kG is finite-dimensional,
and so it is left and right artinian. We conclude that kG has both chain conditions
(on the left and on the right) when k is a field and G is a finite group.
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The ring Z is (left) noetherian, but it is not (left) artinian, because the chain

Z ⊇ (2) ⊇ (22) ⊇ (23) ⊇ · · ·

does not stop. In the next section, we will prove that left artinian implies left
noetherian.

Proposition 7.5. Let R be a ring. The following conditions on a left R-module
M are equivalent.

(i) M has ACC on submodules.

(ii) Every nonempty family of submodules of M contains a maximal element.

(iii) Every submodule of M is finitely generated.

Proof. Adapt the proof of Proposition 5.33. •

Proposition 5.33 is a special case of Theorem 7.5.

Corollary 7.6 (= Proposition 5.33). The following conditions on a ring R are
equivalent.

(i) R is left noetherian; that is, R has ACC on left ideals.

(ii) Every nonempty family of left ideals of R contains a maximal element.

(iii) Every left ideal is finitely generated.

Proof. Consider R as a left module over itself. •

Here is the analog of Proposition 7.5.

Proposition 7.7. Let R be a ring. A left R-module M has DCC on submodules if
and only if every nonempty family of submodules of M contains a minimal element.

Proof. Adapt the proof of Proposition 5.33, replacing ⊆ by ⊇. •

Corollary 7.8. A ring R has the DCC on left ideals if and only if every nonempty
family of left ideals of R contains a minimal element.

Proof. Consider R as a left module over itself. •

Definition. A left ideal L in a ring R is a minimal left ideal if L �= (0) and
there is no left ideal J with (0) � J � L.

A ring need not contain minimal left ideals. For example, Z has no minimal
ideals: every nonzero ideal I in Z has the form I = (n) for some nonzero integer n,
and I = (n) � (2n) �= (0).

Example 7.9. Let R = Matn(k), where k is a field. For any � between 1 and n,
let col(�) denote the �th columns; that is,

col(�) =
{
A = [aij ] ∈ Matn(k) : aij = 0 for all j �= �

}
.
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Let e1, . . . , en be the standard basis of kn. We identify R = Matn(k) with Endk(k
n),

and so col(�) is identified with

col(�) = {T : kn → kn : T (ej) = 0 for j �= �}.
We claim that col(�) is a minimal left ideal in R. If I is a nonzero left ideal with
I ⊆ col(�), choose a nonzero F ∈ I; now F (e�) = u �= 0; otherwise F would
kill every basis element and, hence, would be 0. To see that col(�) ⊆ I, take
T ∈ col(�), and write T (e�) = w. Since u �= 0, there is S ∈ Endk(k

n) with
S(u) = w. Observe that

SF (ej) =

{
0 if j �= �;

S(u) = w if j = �.

Therefore, T = SF , because they agree on a basis; since I is a left ideal, T ∈ I.
Therefore, col(�) = I, and col(�) is a minimal left ideal. �

Proposition 7.10.

(i) Every minimal left ideal L in a ring R is a simple left R-module.

(ii) If R is left artinian, then every nonzero left ideal I contains a minimal left
ideal.

Proof.

(i) If L contained a submodule S with {0} � S � L, then S would be a left ideal
of R, contradicting the minimality of L.

(ii) If F is the family of all nonzero left ideals contained in I, then F �= ∅ because
I is nonzero. By Proposition 7.8, F has a minimal element, and any such is
a minimal left ideal. •

Proposition 7.11. A left R-module M over a ring R has a composition series if
and only if M has both chain conditions on submodules.

Proof. If M has a composition series of length n, then no sequence of submodules
can have length > n, lest we violate the Schreier Refinement Theorem (refining a
series cannot shorten it). Therefore, M has both chain conditions.

Conversely, let F1 be the family of all the proper submodules of M . By Propo-
sition 7.8, the maximum condition gives a maximal submodule M1 ∈ F1. Let F2 be
the family of all proper submodules of M1, and let M2 be maximal such. Iterating,
we have a descending sequence

M � M1 � M2 � · · · .
If Mn occurs in this sequence, the only obstruction to constructing Mn+1 is if
Mn = {0}. Since M has both chain conditions, this chain must stop, and so
Mt = {0} for some t. This chain is a composition series of M , for each Mi is a
maximal submodule of its predecessor. •

If Δ is a division ring, then a left Δ-module V is called a left vector space
over Δ. The following definition from Linear Algebra still makes sense here.
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Definition. Let V be a left vector space over a division ring Δ. A list X =
x1, . . . , xm in V is linearly dependent if

xi ∈
〈
x1, . . . , x̂i, . . . , xm

〉
for some i; otherwise, X is called linearly independent.

As for vector spaces over fields, linear independence of x1, . . . , xm implies that〈
x1, . . . , xm

〉
=

〈
x1

〉
⊕ · · · ⊕

〈
xm

〉
.

The proper attitude is that theorems about vector spaces over fields have true
analogs for left vector spaces over division rings, but the reader should not merely
accept the word of a gentleman and scholar that this is so. Here is a proof of
Invariance of Dimension similar to the proof (using the Jordan–Hölder Theorem)
that we gave on page 527 for vector spaces over fields.

Proposition 7.12. Let V be a finitely generated 1 left vector space over a division
ring Δ.

(i) V is a direct sum of copies of Δ; that is, every finitely generated left vector
space over Δ has a basis.

(ii) Any two bases of V have the same number of elements.

Proof.

(i) Let V =
〈
v1, . . . , vn

〉
, and consider the series

V =
〈
v1, . . . , vn

〉
⊇

〈
v2, . . . , vn

〉
⊇

〈
v3, . . . , vn

〉
⊇ · · · ⊇

〈
vn

〉
⊇ {0}.

Denote
〈
vi+1, . . . , vn

〉
by Ui, so that

〈
vi, . . . , vn

〉
=

〈
vi
〉
+Ui. By the Second

Isomorphism Theorem,〈
vi, . . . , vn

〉
/
〈
vi+1, . . . , vn

〉
= (

〈
vi
〉
+ Ui)/Ui

∼=
〈
vi
〉
/(
〈
vi
〉
∩ Ui).

Therefore, the ith factor module is isomorphic to a quotient of
〈
vi
〉 ∼= Δ if

vi �= 0. Since Δ is a division ring, its only quotients are Δ and {0}. After
throwing away those vi corresponding to trivial factor modules {0}, we claim
that the remaining v’s, denote them by v1, . . . , vm, form a basis. For all j,
we have vj /∈

〈
vj+1, . . . , vn

〉
. The reader may now show, by induction on m,

that
〈
v1
〉
, . . . ,

〈
vm

〉
generate their direct sum.

(ii) As in the proof of (i), a basis v1, v2, . . . , vn of V gives a series

V =
〈
v1, v2, . . . , vn

〉
�

〈
v2, . . . , vn

〉
�

〈
v3, . . . , vn

〉
� · · · �

〈
vn

〉
� {0}.

This is a composition series, for every factor module is isomorphic to Δ
and, hence, is simple, by Exercise 7.1 on page 532. By the Jordan–Hölder
Theorem, the composition series arising from any other basis of V must have
the same length. •

1This finiteness hypothesis will be removed on page 543.
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Another proof of this proposition is sketched in Exercise 7.2 on page 532.

It now follows that every finitely generated left vector space V over a division
ring Δ has a left dimension; it will be denoted by dim(V ).

If an abelian group V is a left vector space and a right vector space over a
division ring Δ, must its left dimension equal its right dimension? There is an
example (Jacobson, Structure of Rings, p. 158) of a division ring Δ and an abelian
group V , which is a vector space over Δ on both sides, with left dimension 2 and
right dimension 3.

We have just seen that dimension is well-defined for left vector spaces over
division rings. On the other hand, recall our discussion of IBN: there are noncom-
mutative rings R with R ∼= R⊕R as left R-modules; that is, bases of free modules
may not have the same size.

Here is a surprising result.

Theorem 7.13 (Wedderburn). Every finite division ring Δ is a field; that is,
multiplication in Δ is commutative.

Proof. (Witt)2 If Z denotes the center of Δ, then Z is a finite field, and so it has
q elements (where q is a power of some prime). It follows that Δ is a vector space
over Z, and so |Δ| = qn for some n ≥ 1; that is, if we define

[Δ : Z] = dimZ(Δ),

then [Δ : Z] = n. The proof will be complete if we can show that n > 1 leads to a
contradiction.

If a ∈ Δ, define C(a) = {u ∈ Δ : ua = au}. It is routine to check that C(a)
is a subdivision ring of Δ that contains Z: if u, v ∈ Δ commute with a, then so
do u+ v, uv, and u−1 (when u �= 0). Consequently, |C(a)| = qd(a) for some integer
d(a); that is, [C(a) : Z] = d(a). We do not know whether C(a) is commutative,
but Exercise 7.5 on page 533 gives

[Δ : Z] = [Δ : C(a)][C(a) : Z],

where [Δ : C(a)] denotes the dimension of Δ as a left vector space over C(a). That
is, n = [Δ : C(a)]d(a), and so d(a) is a divisor of n.

Since Δ is a division ring, its nonzero elements Δ× form a multiplicative group
of order qn − 1. By Exercise 7.4 on page 532, the center of the group Δ× is Z×

and, if a ∈ Δ×, then its centralizer CΔ×(a) = C(a)×. Hence, |Z(Δ×)| = q − 1 and
|CΔ×(a)| = qd(a) − 1, where d(a) | n.

The class equation for Δ× is

|Δ×| = |Z×|+
∑
i

[Δ× : CΔ×(ai)],

where one ai is chosen from each noncentral conjugacy class. But

[Δ× : CΔ×(ai)] = |Δ×|/|CΔ×(ai)| = (qn − 1)/(qd(ai) − 1),

2We shall give another proof of this in Theorem 7.127.
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so that the class equation becomes

qn − 1 = q − 1 +
∑
i

qn − 1

qd(ai) − 1
.(1)

We have already noted that each d(ai) is a divisor of n, while the condition that ai
is not central says that d(ai) < n.

Recall that the nth cyclotomic polynomial is Φn(x) =
∏
(x−ζ), where ζ ranges

over all the primitive nth roots of unity. In Corollary 2.72, we proved that Φn(q) is
a common divisor of qn − 1 and (qn − 1)/(qd(ai) − 1) for all i, and so Equation (1)
gives

Φn(q) | (q − 1).

If n > 1 and ζ is a primitive nth root of unity, then ζ �= 1, and hence ζ is a point
on the unit circle to the left of the vertical line through (1, 0). Since q is a prime
power, it is a point on the x-axis with q ≥ 2, and so the distance |q − ζ| > q − 1.
Therefore,

|Φn(q)| =
∏
|q − ζ| > q − 1,

and this contradicts Φn(q) | (q − 1). We conclude that n = 1; that is, Δ = Z, and
so Δ is commutative. •

Exercises

∗ 7.1. Prove that a division ring Δ is a simple left Δ-module.

∗ 7.2. Let Δ be a division ring.

(i) Generalize the proof of Lemma 5.68 to prove that α � S, defined by α ∈
〈
S
〉
, is a

dependency relation from Δ to P(Δ) (dependency relation is defined on page 337).

(ii) Use Theorem 5.70 to prove that every left vector space over Δ has a basis.

(iii) Use Theorem 5.72 to prove that any two bases of a left vector space over Δ have
the same cardinality.

∗ 7.3. If k is a field and A is a finite-dimensional k-algebra, define

L = {λa ∈ Endk(A) : λa : x �→ ax} and R = {ρa ∈ Endk(A) : ρa : x �→ xa}.

Prove that L and R are k-algebras, and that there are k-algebra isomorphisms

L ∼= A and R ∼= Aop.

Hint. Show that the function A → L, defined by a �→ λa, is an injective k-algebra map
which is surjective because A is finite-dimensional.

∗ 7.4. Let Δ be a division ring.

(i) Prove that the center Z(Δ) is a field.

(ii) If Δ× is the multiplicative group of nonzero elements of Δ, prove that Z(Δ×) =
Z(Δ)×; that is, the center of the multiplicative group Δ× consists of the nonzero
elements of Z(Δ).
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∗ 7.5. (i) Let C be a subdivision ring of a division ring Δ. Prove that Δ is a left vector
space over C, and conclude that [Δ : C] = dimC(Δ) is defined (if Δ is an infinite-
dimensional vector space over C, we merely say dimC(Δ) = ∞).

(ii) If Z ⊆ C ⊆ D is a tower of division rings with [Δ : C] and [C : Z] finite, prove that
[Δ : Z] is finite and

[Δ : Z] = [Δ : C][C : Z].

Hint. If u1, . . . , um is a basis of Δ as a left vector space over C and c1, . . . , cd is a
basis of C as a left vector space over Z, show that the set of all ciuj (in this order)
is a basis of Δ over Z.

∗ 7.6. (Modular Law) Let A, B, and A′ be submodules of a module M . If A′ ⊆ A, prove
that A ∩ (B +A′) = (A ∩B) +A′.

∗ 7.7. Recall that a ring R has zero-divisors if there exist nonzero a, b ∈ R with ab = 0.
More precisely, an element a in a ring R is called a left zero-divisor if a �= 0 and there
exists a nonzero b ∈ R with ab = 0; the element b is called a right zero-divisor. Prove
that a left artinian ring R having no left zero-divisors must be a division ring.

∗ 7.8. Let 0 → A → B → C → 0 be an exact sequence of left R-modules over a ring R.

(i) Prove that if both A and C have DCC, then B has DCC. Conclude, in this case,
that A⊕B has DCC.

(ii) Prove that if both A and C have ACC, then B has ACC. Conclude, in this case,
that A⊕B has ACC.

(iii) Prove that every ring R that is a direct sum of minimal left ideals is left artinian.

7.9. If R is a (not necessarily commutative) ring, define the polynomial ring R[x] as
usual but with the indeterminate x commuting with coefficients in R; thus, x ∈ Z(R[x]).
Generalize the Hilbert Basis Theorem to such polynomial rings: if R is left noetherian,
then R[x] is left noetherian.

∗ 7.10. Let R be the ring of all 2 × 2 upper triangular matrices [ a b
0 c ] , where a ∈ Q and

b, c ∈ R. Prove that R is right artinian but not left artinian.

Hint. The ring R is not left artinian because, for every V ⊆ R that is a vector space
over Q, [

0 V
0 0

]
=

{[
0 v
0 0

]
: v ∈ V

}
is a left ideal.

∗ 7.11. If k is a field of characteristic 0, then Endk(k[t]) contains the operators

x : f(t) �→ d
dt
f(t) and y : f(t) �→ tf(t).

(i) If A1(k) is the subalgebra of Endk(k[t]) generated by x and y, prove that

yx = xy + 1.

(ii) Prove that A1(k) is a left noetherian ring that satisfies the left and right cancellation
laws (if a �= 0, then either equation ab = ac or ba = ca implies b = c).

(iii) Prove that A1(k) has no proper nontrivial two-sided ideals.

Remark. This exercise can be generalized by replacing k[t] with k[t1, . . . , tn] and the
operators x and y with

xi : f(t1, . . . , tn) �→ d
dti

f(t1, . . . , tn) and yi : f(t1, . . . , tn) �→ tif(t1, . . . , tn).
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The subalgebra An(k) of Endk(k[t1, . . . , tn]) generated by x1, . . . , xn, y1, . . . , yn is called
the nth Weyl algebra over k. Weyl introduced this algebra to model momentum and
position operators in Quantum Mechanics. It can be shown that An(k) is a left noetherian
simple domain for all n ≥ 1 ( McConnell–Robson, Noncommutative Noetherian Rings,
p. 19). �

7.12. Recall that an idempotent in a ring A is an element e ∈ A with e �= 0 and e2 = e.
If M is a left R-module over a ring R, prove that every direct summand S ⊆ M determines
an idempotent in EndR(M).

Hint. See Corollary 6.28.

∗ 7.13. (i) (Peirce Decomposition) Prove that if e is an idempotent in a ring R, then

R = Re⊕R(1− e).

(ii) Let R be a ring having left ideals I and J such that R = I ⊕ J . Prove that there
are idempotents e ∈ I and f ∈ J with 1 = e+ f ; moreover, I = Ie and J = Jf .
Hint. Decompose 1 = e+ f , and show that ef = 0 = fe.

Section 7.2. Jacobson Radical

The Jacobson radical, J(R), of a ring R is the analog of the Frattini subgroup in
Group Theory; it is a two-sided ideal whose behavior has an impact on R. For
example, semisimple rings (introduced in the next section) are rings generalizing
the group algebra CG of a finite group G, and they will be characterized in terms
of their Jacobson radical and chain conditions.

Definition. If R is a ring, then its Jacobson radical J(R) is defined to be the
intersection of all the maximal left ideals in R. A ring R is called Jacobson
semisimple if J(R) = (0).

Clearly, we can define another Jacobson radical: the intersection of all the
maximal right ideals. In Proposition 7.20, we shall see that these coincide.

Example 7.14.

(i) The ring Z is Jacobson semisimple. The maximal ideals in Z are the nonzero
prime ideals (p), and so J(Z) =

⋂
p prime(p) = (0).

(ii) If R is a local ring with unique maximal left ideal P , then J(R) = P . For
example, R = {a/b ∈ Q : b is odd} is such a ring; its unique maximal ideal is

R2 = (2) = {2a/b : b is odd}.

(iii) In Example 7.9, we saw that if R = Matn(k), where k is a field, then col(�)
is a minimal left ideal, where 1 ≤ � ≤ n and

col(�) =
{
A = [aij ] ∈ Matn(k) : aij = 0 for all j �= �

}
.

We use these minimal left ideals to construct some maximal left ideals. The
reader can show that that example generalizes to R = Matn(Δ), where Δ is
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a division ring. Define

col
∗(�) =

⊕
j �=�

col(j);

col
∗(�) is a left ideal with

R/col∗(�) ∼= col(�)

as left R-modules. Since col(�) is a minimal left ideal, it is a simple left
R-module, and hence col

∗(�) is a maximal left ideal. Therefore,

J(R) ⊆
⋂
�

col
∗(�) = (0),

so that R = Matn(Δ) is Jacobson semisimple. �

Proposition 7.15. Given a ring R, the following conditions are equivalent for
x ∈ R:

(i) x ∈ J(R);

(ii) for every r ∈ R, the element 1− rx has a left inverse; that is, there is u ∈ R
with u(1− rx) = 1;

(iii) x(R/I) = (0) for every maximal left ideal I (equivalently, xM = (0) for every
simple left R-module M).

Proof.

(i) ⇒ (ii) If there is r ∈ R with 1−rx not having a left inverse, then R(1−rx) is
a proper left ideal, for it does not contain 1. By Exercise on page 414, there
is a maximal left ideal I with 1− rx ∈ R(1− rx) ⊆ I. Now rx ∈ J(R) ⊆ I,
because J(R) is a left ideal, and so 1 = (1− rx) + rx ∈ I, a contradiction.

(ii) ⇒ (iii) As we mentioned on page 526, a left R-module M is simple if and
only if M ∼= R/I, where I is a maximal left ideal. Suppose there is a simple
module M for which xM �= (0); hence, there is m ∈ M with xm �= 0 (of
course, m �= 0). It follows that the submodule Rxm �= (0), for it contains
1xm. Since M is simple, it has only one nonzero submodule, namely, M
itself, and so Rxm = M . Therefore, there is r ∈ R with rxm = m; that is,
(1− rx)m = 0. By hypothesis, 1 − rx has a left inverse, say, u(1− rx) = 1.
Hence, 0 = u(1− rx)m = m, a contradiction.

(iii) ⇒ (i) If x(R/I) = (0), then x(1 + I) = x+ I = I; that is, x ∈ I. Therefore,
if x(R/I) = (0) for every maximal left ideal I, then x ∈

⋂
I I = J(R). •

Notice that condition (ii) in Proposition 7.15 can be restated: x ∈ J(R) if and
only if 1− z has a left inverse for every z ∈ Rx.

The following result is most frequently used in Commutative Algebra.

Corollary 7.16 (Nakayama’s Lemma). If A is a finitely generated left R-module
and JA = A, where J = J(R) is the Jacobson radical, then A = {0}.

In particular, if R is a commutative local ring with unique maximal ideal P and
A is a finitely generated R-module with PA = A, then A = {0}.
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Proof. Let a1, . . . , an be a generating set of A that is minimal in the sense that no
proper subset generates A. Since JA = A, we have a1 =

∑n
i=1 riai, where ri ∈ J .

It follows that

(1− r1)a1 =

n∑
i=2

riai.

Since r1 ∈ J , Proposition 7.15 says that 1 − r1 has a left inverse, say, u, and so
a1 =

∑n
i=2 uriai. This is a contradiction, for now A can be generated by the proper

subset {a2, . . . , an}. The second statement follows at once because J(R) = P when
R is a local ring with maximal ideal P . •

Remark. The hypothesis in Nakayama’s Lemma that the module A be finitely
generated is necessary. For example, it is easy to check that R = {a/b ∈ Q :
b is odd} is a local ring with maximal ideal P = (2), while Q is an R-module with
PQ = 2Q = Q. �

Remark. There are other characterizations of J(R). One such will be given in
Proposition 7.20, in terms of elements having two-sided inverses. Another charac-
terization is in terms of left quasi-regular elements: those x ∈ R for which there
exist y ∈ R with y ◦ x = 0 (here, y ◦ x = x+ y − yx is the circle operation); a left
ideal is called left quasi-regular if each of its elements is left quasi-regular. It can
be proved that J(R) is the unique maximal left quasi-regular ideal in R (Lam, A
First Course in Noncommutative Rings, pp. 67–68). �

Recall that an element a in a ring R is nilpotent if am = 0 for some m ≥ 1.

Definition. A left ideal A in a ring R is nilpotent if there is some integer m ≥ 1
with Am = (0).

The left ideal Am is the set of all sums of products of the form a1 · · · am,
where aj ∈ A for all j; that is, Am = {

∑
i ai1 · · · aim : aij ∈ A}. It follows that

if A is nilpotent, then every element a ∈ A is nilpotent; that is, am = 0. On
the other hand, if a ∈ R is a nilpotent element, it does not follow that Ra, the
left ideal generated by a, is a nilpotent ideal. For example, let R = Mat2(k), for
some commutative ring k, and let a = [ 0 1

0 0 ]. Now a2 = [ 0 0
0 0 ], but Ra contains

e = [ 0 0
1 0 ] [

0 1
0 0 ] = [ 0 0

0 1 ], which is idempotent: e2 = e. Hence, em = e �= 0 for all m,
and so (Re)m �= (0).

Corollary 7.17. If R is a ring, then I ⊆ J(R) for every nilpotent left ideal I in R.

Proof. Let In = (0), and let x ∈ I. For every r ∈ R, we have rx ∈ I, and so
(rx)n = 0. The equation

(1 + rx+ (rx)2 + · · ·+ (rx)n−1)(1− rx) = 1

shows that 1− rx is left invertible, and so x ∈ J(R), by Proposition 7.15. •

Proposition 7.18. If R is a left artinian ring, then J(R) is a nilpotent ideal.

Proof. Denote J(R) by J in this proof. The descending chain of left ideals,

J ⊇ J2 ⊇ J3 ⊇ · · · ,
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stops, because R is left artinian; say, Jm = Jm+1 = · · · . Define I = Jm; it follows
that I2 = I. We will assume that I �= (0) and reach a contradiction.

Let F be the family of all nonzero left ideals B with IB �= (0); note that F �= ∅
because I ∈ F . By Proposition 7.8, there is a minimal element B0 ∈ F . Choose
b ∈ B0 with Ib �= (0). Now

I(Ib) = I2b = Ib �= (0),

so that Ib ⊆ B0 ∈ F , and minimality gives B0 = Ib. Since b ∈ B0, there is
x ∈ I ⊆ J = J(R) with b = xb. Hence, 0 = (1− x)b. But 1− x has a left inverse,
say, u, by Proposition 7.15, so that 0 = u(1− x)b = b, a contradiction. •

The Jacobson radical is obviously a left ideal (for it is an intersection of left
ideals), but it turns out to be a right ideal as well; that is, J(R) is a two-sided
ideal. We begin by giving another source of two-sided ideals (aside from kernels of
ring maps).

Definition. If R is a ring and M is a left R-module, the annihilator of M is

ann(M) = {a ∈ R : am = 0 for all m ∈M}.

Let us show that ann(M) is a two-sided ideal in R. Now ann(M) is a left ideal,
for if am = 0, then (ra)m = r(am) = 0; let us prove that it is a right ideal. Let
a ∈ ann(M), r ∈ R, and m ∈ M . Since M is a left R-module, we have rm ∈ M ;
since a annihilates every element of M , we have a(rm) = 0. Finally, associativity
gives (ar)m = 0 for all m, and so ar ∈ ann(M).

Corollary 7.19.

(i) J(R) =
⋂

I =maximal
left ideal

ann(R/I), and so J(R) is a two-sided ideal in R.

(ii) R/J(R) is a Jacobson semisimple ring.

Proof.

(i) If x ∈ J(R), then xM = {0} for every simple left R-module M , by Propo-
sition 7.15(iii). But M ∼= R/I for some maximal left ideal I; that is,
x ∈ ann(R/I). Thus, x ∈

⋂
I =maximal

left ideal

ann(R/I).

For the reverse inclusion, if x ∈
⋂

I =maximal
left ideal

ann(R/I), then xM = {0} for

every left R-module M of the form M ∼= R/I for some maximal left ideal I.
But every simple left R-module has this form. Therefore, x ∈ J(R).

(ii) First, R/J(R) is a ring, because J(R) is a two-sided ideal. The Correspon-
dence Theorem for rings shows that if I is any two-sided ideal of R contained
in J(R), then J(R/I) = J(R)/I; the result follows if I = J(R). •

Let us now show that we could have defined the Jacobson radical using right
ideals instead of left ideals.
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Definition. A unit in a ring R is an element u ∈ R having a two-sided inverse;
that is, there is v ∈ R with

uv = 1 = vu.

Proposition 7.20.

(i) If R is a ring, then

J(R) = {x ∈ R : 1 + rxs is a unit in R for all r, s ∈ R}.

(ii) If R is a ring and J ′(R) is the intersection of all the maximal right ideals of
R, then J ′(R) = J(R).

Proof.

(i) Let W be the set of all x ∈ R such that 1 + rxs is a unit for all r, s ∈ R.
If x ∈ W , then setting s = −1 gives 1 − rx a unit for all r ∈ R. Hence,
1 − rx has a left inverse, and so x ∈ J(R), by Proposition 7.15. Therefore,
W ⊆ J(R). For the reverse inclusion, let x ∈ J(R). Since J(R) is a two-sided
ideal, by Corollary 7.19, we have xs ∈ J(R) for all s ∈ R. Proposition 7.15
says that 1 − rxs is left invertible for all r ∈ R; that is, there is u ∈ R with
u(1 − rxs) = 1. Thus, u = 1 + urxs. Now (−ur)xs ∈ J(R), since J(R) is a
two-sided ideal, and so u has a left inverse (Proposition 7.15 once again). On
the other hand, u also has a right inverse, namely, 1− rxs. By Exercise 6.13,
u is a unit in R. Therefore, 1 − rxs is a unit in R for all r, s ∈ R. Finally,
replacing r by −r, we have 1 + rxs a unit, and so J(R) ⊆W .

(ii) The description of J(R) in part (i) is left-right symmetric. After proving
right-sided versions of Proposition 7.15 and Corollary 7.19, one can see that
J ′(R) is also described as in part (i). We conclude that J ′(R) = J(R). •

Exercises

7.14. (i) If R is a commutative ring with J(R) = (0), prove that R has no nilpotent
elements.

(ii) Give an example of a commutative ring R having no nilpotent elements and for
which J(R) �= (0).

7.15. Let k be a field and R = Mat2(k). Prove that a = [ 0 1
0 0 ] is left quasi-regular, but

that the principal left ideal Ra is not a left quasi-regular ideal.

7.16. Prove that R is Jacobson semisimple if and only if Rop is.

7.17. Let I be a two-sided ideal in a ring R. Prove that if I ⊆ J(R), then

J(R/I) = J(R)/I.
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Section 7.3. Semisimple Rings

A group is an abstract object; it is a “cloud,” a capital letter G. Of course, there
are familiar concrete groups, such as the symmetric group Sn and the general linear
group GL(V ) of all nonsingular linear transformations on a vector space V over a
field k. The idea underlying Representation Theory is that comparing an abstract
group G with familiar groups via homomorphisms can yield concrete information
about G.

We begin by showing the connection between group representations and group
algebras.

Definition. A k-representation of a group G is a homomorphism

σ : G→ GL(V ),

where V is a vector space over a field k.

Note that if dim(V ) = n, then GL(V ) contains an isomorphic copy of Sn [if
v1, . . . , vn is a basis of V and α ∈ Sn, then there is a nonsingular linear transforma-
tion T : V → V with T (vi) = vα(i) for all i]; therefore, permutation representations
(homomorphisms into Sn) are special cases of k-representations. Representations
of groups can be translated into the language of kG-modules (compare the next
proof with that of Proposition 6.14).

Proposition 7.21. Every k-representation σ : G→ GL(V ) equips V with the struc-
ture of a left kG-module; denote this module by

V σ.

Conversely, every left kG-module V determines a k-representation σ : G→ GL(V ).

Proof. Given a homomorphism σ : G → GL(V ), denote σ(g) : V → V by σg, and
define an action kG× V → V by(∑

g∈G

agg
)
v =

∑
g∈G

agσg(v).

A routine calculation shows that V , equipped with this scalar multiplication, is a
left kG-module.

Conversely, assume that V is a left kG-module. If g ∈ G, then v �→ gv defines
a linear transformation Tg : V → V ; moreover, Tg is nonsingular, for its inverse is
Tg−1 . It is easily checked that the function σ : G→ GL(V ), given by σ : g �→ Tg, is
a k-representation. •

If σ, τ : G → GL(V ) are k-representations, and V σ, V τ are the kG-modules
determined by σ, τ in Proposition 7.21, when is V τ ∼= V σ? Recall that if T : V → V
is a linear transformation, then we made V into a k[x]-module V T by defining
xiv = T i(v), and we saw, in Proposition 6.11, that if S : V → V is another linear
transformation, then V S ∼= V T if and only if there is a nonsingular ϕ : V → V with
S = ϕTϕ−1.
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Proposition 7.22. Let G be a group and let σ, τ : G→ GL(V ) be k-representations,
where k is a field. If V σ and V τ are the corresponding kG-modules defined in Propo-
sition 7.21, then V σ ∼= V τ as kG-modules if and only if there exists a nonsingular
k-linear transformation ϕ : V → V with

ϕτ (g) = σ(g)ϕ

for every g ∈ G.

Remark. We often say that ϕ intertwines σ and τ . �

Proof. If ϕ : V τ → V σ is a kG-isomorphism, then ϕ : V → V is an isomorphism
of vector spaces with

ϕ
(∑

aggv
)
=

(∑
agg

)
ϕ(v)

for all v ∈ V and all g ∈ G. But the definition of scalar multiplication in V τ is
gv = τ (g)(v), while the definition of scalar multiplication in V σ is gv = σ(g)(v).
Hence, for all g ∈ G and v ∈ V , we have ϕ(τ (g)(v)) = σ(g)(ϕ(v)). Therefore,

ϕτ (g) = σ(g)ϕ

for all g ∈ G.

Conversely, the hypothesis gives ϕτ (g) = σ(g)ϕ for all g ∈ G, where ϕ is a
nonsingular k-linear transformation, and so ϕ(τ (g)v) = σ(g)ϕ(v) for all g ∈ G and
v ∈ V . It now follows easily that ϕ is a kG-isomorphism; that is, ϕ preserves scalar
multiplication by

∑
g∈G agg. •

We restate the last proposition in terms of matrices.

Corollary 7.23. Let G be a group and let σ, τ : G→ Matn(k) be k-representations.
Then (kn)σ ∼= (kn)τ as kG-modules if and only if there is a nonsingular n×n matrix
P with

Pτ (x)P−1 = σ(x)

for every x ∈ G.

Example 7.24. If G is a finite group and V is a vector space over a field k, then
the trivial homomorphism σ : G→ GL(V ) is defined by σ(x) = 1V for all x ∈ G.
The corresponding kG-module V σ is called the trivial kG-module: if v ∈ V , then
xv = v for all x ∈ G. The trivial module k (also called the principal kG-module)
is denoted by

V0(k). �

We are going to study an important class of rings, semisimple rings, which
contains most group algebras kG, but we first consider semisimple modules over
any ring.

Definition. A left R-module is semisimple if it is a direct sum of (possibly
infinitely many) simple modules.

We now characterize semisimple modules.
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Proposition 7.25. A left R-module M over a ring R is semisimple if and only if
every submodule of M is a direct summand.

Proof. Suppose that M is semisimple; hence, M =
⊕

j∈J Sj , where each Sj is
simple. For any subset I ⊆ J , define

SI =
⊕
j∈I

Sj .

If B is a submodule of M , Zorn’s Lemma provides a subset K ⊆ J maximal
with the property that SK ∩B = {0}. We claim that M = B⊕SK . We must show
that M = B + SK , for their intersection is {0} by hypothesis; it suffices to prove
that Sj ⊆ B + SK for all j ∈ J . If j ∈ K, then Sj ⊆ SK ⊆ B + SK . If j /∈ K, then
maximality gives (SK + Sj) ∩B �= {0}. Thus,

sK + sj = b �= 0,

where sK ∈ SK , sj ∈ Sj , and b ∈ B. Note that sj �= 0, lest sK = b ∈ SK ∩B = {0}.
Hence,

sj = b− sK ∈ Sj ∩ (B + SK),

and so Sj ∩ (B + SK) �= {0}. But Sj is simple, so that Sj = Sj ∩ (B + SK), and so
Sj ⊆ B + SK , as desired. Therefore, M = B ⊕ SK .

Conversely, assume that every submodule of M is a direct summand.

(i) Every nonzero submodule B contains a simple summand.

Let b ∈ B be nonzero. By Zorn’s Lemma, there exists a submodule C of
B maximal with b /∈ C. By Corollary 6.29, C is a direct summand of B: there
is some submodule D with B = C ⊕D. We claim that D is simple. If D is
not simple, we may repeat the argument just given to show that D = D′⊕D′′

for nonzero submodules D′ and D′′. Thus,

B = C ⊕D = C ⊕D′ ⊕D′′.

We claim that at least one of C⊕D′ or C⊕D′′ does not contain the original
element b. Otherwise, b = c′ + d′ = c′′ + d′′, where c′, c′′ ∈ C, d′ ∈ D′, and
d′′ ∈ D′′. But c′−c′′ = d′′−d′ ∈ C∩D = {0} gives d′ = d′′ ∈ D′∩D′′ = {0}.
Hence, d′ = d′′ = 0, and so b = c′ ∈ C, contradicting the definition of C. If,
say, b /∈ C ⊕D′, then this contradicts the maximality of C.

(ii) M is semisimple.

By Zorn’s Lemma, there is a family (Sj)j∈I of simple submodules of
M maximal such that the submodule U they generate is their direct sum:
U =

⊕
j∈I Sj . By hypothesis, U is a direct summand: M = U ⊕ V for some

submodule V of M . If V = {0}, we are done. Otherwise, by part (i), there is
some simple submodule S contained in V that is a summand: V = S⊕V ′ for
some V ′ ⊆ V . The family {S} ∪ (Sj)j∈I violates the maximality of the first
family of simple submodules, for this larger family also generates its direct
sum. Therefore, V = {0} and M is left semisimple. •

Corollary 7.26. Every submodule and every quotient module of a semisimple left
module M is itself semisimple.
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Proof. Let B be a submodule of M . Every submodule C of B is, clearly, a sub-
module of M . Since M is semisimple, C is a direct summand of M and so, by
Corollary 6.29, C is a direct summand of B. Hence, B is semisimple, by Proposi-
tion 7.25.

Let M/H be a quotient of M . Now H is a direct summand of M , so that
M = H ⊕ H ′ for some submodule H ′ of M . But H ′ is semisimple, by the first
paragraph, and M/H ∼= H ′. •

Recall that if a ring R is viewed as a left R-module, then its submodules are
its left ideals; moreover, a left ideal is minimal if and only if it is a simple left
R-module.

Definition. A ring R is left semisimple3 if it is a direct sum of minimal left
ideals.

The next proposition generalizes Example 7.14(iii).

Proposition 7.27. Let R be a left semisimple ring.

(i) R is a direct sum of finitely many minimal left ideals.

(ii) R has both chain conditions on left ideals.

Proof.

(i) Since R is left semisimple, it is a direct sum of minimal left ideals: R =
⊕

i Li.
Let 1 =

∑
i ei, where ei ∈ Li. If r =

∑
i ri ∈

⊕
i Li, then r = 1r and so

ri = eiri. Hence, if ei = 0, then Li = 0. We conclude that there are only
finitely many nonzero Li; that is, R = L1 ⊕ · · · ⊕ Ln.

(ii) The series

R = L1 ⊕ · · · ⊕ Ln ⊇ L2 ⊕ · · · ⊕ Ln ⊇ · · · ⊇ Ln ⊇ (0)

is a composition series, for the factor modules are L1, . . . , Ln, which are
simple. It follows from Proposition 7.11 that R (as a left R-module over
itself) has both chain conditions. •

Corollary 7.28. The direct product R = R1 × · · · × Rm of left semisimple rings
R1, . . . , Rm is also a left semisimple ring.

Proof. Since each Ri is left semisimple, it is a direct sum of minimal left ideals,
say, Ri = Ji1 ⊕ · · · ⊕ Ji t(i). Each Jik is a left ideal in R, not merely in Ri, as we
saw in Example 6.5. It follows that Jik is a minimal left ideal in R. Hence, R is a
direct sum of minimal left ideals, and so it is a left semisimple ring. •

Corollary 7.29.

(i) If R is a left semisimple ring, then every left R-module M is a semisimple
module.

3We can define a ring to be right semisimple if it is a direct sum of minimal right ideals,
but we shall see, in Corollary 7.45, that a ring is a left semisimple ring if and only if it is right
semisimple.
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(ii) If I is a two-sided ideal in a left semisimple ring R, then the quotient ring
R/I is also a semisimple ring.

Proof.

(i) There is a free left R-module F and a surjective R-map ϕ : F →M . Now R
is a semisimple module over itself (this is the definition of semisimple ring),
and so F is a semisimple module (for F is a direct sum of copies of R). Thus,
M is a quotient of the semisimple module F , and so it is itself semisimple,
by Corollary 7.26.

(ii) First, R/I is a ring, because I is a two-sided ideal. The left R-module R/I
is semisimple, by (i), and so it is a direct sum R/I ∼=

⊕
Sj , where the Sj are

simple left R-modules. But each Sj is also simple as a left (R/I)-module, for
any (R/I)-submodule of Sj is also an R-submodule of Sj . Therefore, R/I is
semisimple. •

It follows that a finite direct product of fields is a commutative semisimple ring
(we will prove the converse later). For example, if n = p1 · · · pt is a squarefree
integer, then In ∼= Ip1

× · · · × Ipt
is a semisimple ring. Similarly, if k is a field and

f(x) ∈ k[x] is a product of distinct irreducible polynomials, then k[x]/(f(x)) is a
semisimple ring.

We can now generalize Proposition 7.12: every (not necessarily finitely gener-
ated) left vector space over a division ring Δ has a basis. Every division ring is a
left semisimple ring, and Δ itself is the only minimal left ideal. Therefore, every
left Δ-module M is a direct sum of copies of Δ; say, M =

⊕
i∈I Δi. If xi ∈ Δi is

nonzero, then X = (xi)i∈I is a basis of M . This observation explains the presence
of Zorn’s Lemma in the proof of Proposition 7.25.

The next result shows that left semisimple rings can be characterized in terms
of the Jacobson radical.

Theorem 7.30. A ring R is left semisimple if and only if it is left artinian and
Jacobson semisimple; that is, J(R) = (0).

Proof. If R is left semisimple, then there is a left ideal I with R = J(R) ⊕ I,
by Proposition 7.25. It follows from Exercise 7.13 on page 534 that there are
idempotents e ∈ J(R) and f ∈ I with 1 = e+ f . Since e ∈ J(R), Proposition 7.15
says that f = 1 − e has a left inverse; there is u ∈ R with uf = 1. But f is
an idempotent, so that f = f2. Hence, 1 = uf = uf2 = (uf)f = f , so that
e = 1 − f = 0. Since J(R)e = J(R), by Exercise 7.13 on page 534, we have
J(R) = (0). Finally, Proposition 7.27(ii) shows that R is left artinian.

Conversely, assume that R is left artinian and J(R) = (0). We show first that
if I is a minimal left ideal of R, then I is a direct summand of R. Now I �= (0),
and so I �⊆ J(R); therefore, there is a maximal left ideal A not containing I. Since
I is minimal, it is simple, so that I ∩ A is either I or (0). But I ∩ A = I implies
I ⊆ A, a contradiction, and so I ∩A = (0). Maximality of A gives I +A = R, and
so R = I ⊕A.
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Choose a minimal left ideal I1, which exists because R is left artinian. As we
have just seen, R = I1⊕B1 for some left ideal B1. Now B1 contains a minimal left
ideal, say, I2, by Proposition 7.10, and so there is a left ideal B2 with B1 = I2⊕B2.
This construction can be iterated to produce a strictly decreasing chain of left ideals
B1 � B2 � · · · � Br as long as Br �= (0). If Br �= (0) for all r, then DCC is violated.
Therefore, Br = (0) for some r, so that R = I1 ⊕ · · · ⊕ Ir and R is semisimple. •

Note that the chain condition is needed. For example, Z is Jacobson semisimple,
but Z is not a semisimple ring.

We can now prove the following remarkable result.

Theorem 7.31 (Hopkins–Levitzki). If a ring R is left artinian, then it is left
noetherian.

Proof. It suffices to prove that R, regarded as a left module over itself, has a
composition series, for then Proposition 7.11 applies at once to show that R has
the ACC on left ideals (its submodules).

If J = J(R) denotes the Jacobson radical, then Jm = (0) for some m ≥ 1, by
Proposition 7.18, and so there is a descending chain

R = J0 ⊇ J ⊇ J2 ⊇ J3 ⊇ · · · ⊇ Jm = (0).

Since each Jq is an ideal in R, it has DCC, as does its quotient Jq/Jq+1. Now R/J
is a semisimple ring, by Theorem 7.30 [it is left artinian, being a quotient of a left
artinian ring, and Jacobson semisimple, by Corollary 7.19(ii)]. The factor module
Jq/Jq+1 is an (R/J)-module; hence, by Corollary 7.26, Jq/Jq+1 is a semisimple
module, and so it can be decomposed into a direct sum of (perhaps infinitely many)
simple (R/J)-modules. But there can be only finitely many summands, for every
(R/J)-submodule of Jq/Jq+1 is necessarily anR-submodule, and Jq/Jq+1 has DCC
on R-submodules. Hence, there are simple (R/J)-modules Si with

Jq/Jq+1 = S1 ⊕ S2 ⊕ · · · ⊕ Sp.

Throwing away one simple summand at a time yields a series of Jq/Jq+1 whose ith
factor module is

(Si ⊕ Si+1 ⊕ · · · ⊕ Sp)/(Si+1 ⊕ · · · ⊕ Sp) ∼= Si.

Now the simple (R/J)-module Si is also a simple R-module, for it is an R-module
annihilated by J , so that we have constructed a composition series for Jq/Jq+1 as
a left R-module. Finally, refine the original series for R in this way, for every q, to
obtain a composition series for R. •

The converse of Theorem 7.31 is false: Z is noetherian but not artinian.

The next result is fundamental.

Theorem 7.32 (Maschke’s Theorem). If G is a finite group and k is a field
whose characteristic does not divide |G|, then kG is a left semisimple ring.

Remark. The hypothesis holds if k has characteristic 0. �
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Proof. By Proposition 7.25, it suffices to prove that every left ideal I of kG is a
direct summand. Since k is a field, kG is a vector space over k and I is a subspace.
By Corollary 5.48, I is a (vector space) direct summand: there is a subspace V
(which may not be a left ideal in kG) with kG = I ⊕ V . There is a k-linear
transformation d : kG → I with d(b) = b for all b ∈ I and with ker d = V [each
u ∈ kG has a unique expression of the form u = b + v, where b ∈ I and v ∈ V ,
and d(u) = b]. Were d a kG-map, not merely a k-map, then we would be done, by
the criterion of Corollary 6.28 [I is a summand of kG if and only if it is a retract:
there is a kG-map D : kG→ I with D(u) = u for all u ∈ I]. We now force d to be
a kG-map by an “averaging process.”

Define D : kG→ kG by

D(u) =
1

|G|
∑
x∈G

xd(x−1u)

for all u ∈ kG. Note that |G| �= 0 in k, by the hypothesis on the characteristic of
k, and so 1/|G| is defined. It is obvious that D is a k-map.

(i) imD ⊆ I.
If u ∈ kG and x ∈ G, then d(x−1u) ∈ I (because im d ⊆ I), and

xd(x−1u) ∈ I because I is a left ideal. Therefore, D(u) ∈ I, for each term in
the sum defining D(u) lies in I.

(ii) If b ∈ I, then D(b) = b.
Since b ∈ I, so is x−1b, and so d(x−1b) = x−1b. Hence, xd(x−1b) =

xx−1b = b. Therefore,
∑

x∈G xd(x−1b) = |G|b, and so D(b) = b.

(iii) D is a kG-map.
It suffices to prove that D(gu) = gD(u) for all g ∈ G and all u ∈ kG:

gD(u) =
1

|G|
∑
x∈G

gxd(x−1u) =
1

|G|
∑
x∈G

gxd(x−1g−1gu)

=
1

|G|
∑

y=gx∈G

yd(y−1gu) = D(gu)

(as x ranges over all of G, so does y = gx). •

The converse of Maschke’s Theorem is true: if G is a finite group and k is a
field whose characteristic p divides |G|, then kG is not left semisimple; a proof is
outlined in Exercise 7.20 on page 549.

Before analyzing left semisimple rings further, let us give several characteriza-
tions of them.

Proposition 7.33. The following conditions on a ring R are equivalent.

(i) R is left semisimple.

(ii) Every left R-module is a semisimple module.

(iii) Every left R-module is injective.

(iv) Every short exact sequence of left R-modules splits.

(v) Every left R-module is projective.
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Proof.

(i) ⇒ (ii). This follows at once from Corollary 7.26, which says that if R is a
semisimple ring, then every left R-module is a semisimple module.

(ii) ⇒ (iii). Let E be a left R-module; Proposition 6.84 says that E is injective
if every exact sequence 0 → E → B → C → 0 splits. By hypothesis, B is a
semisimple module, and so Proposition 7.25 implies that the sequence splits;
thus, E is injective.

(iii) ⇒ (iv). If 0 → A → B → C → 0 is an exact sequence, then it must split
because, as every module, A is injective, by Proposition 6.84.

(iv) ⇒ (v). Given a module M , there is an exact sequence

0→ F ′ → F →M → 0,

where F is free. This sequence splits, by hypothesis, and so F ∼= M ⊕ F ′.
Therefore, M is a direct summand of a free module, and hence it is projective,
by Theorem 6.76.

(v) ⇒ (i). If I is a left ideal of R, then

0→ I → R→ R/I → 0

is an exact sequence. By hypothesis, R/I is projective, and so this sequence
splits, by Proposition 6.73; thus, I is a direct summand of R. By Proposi-
tion 7.25, R is a semisimple left R-module; that is, R is a left semisimple
ring. •

Modules over semisimple rings are so nice that there is a notion of global di-
mension of a ring R that measures how far removed R is from being semisimple.
We will discuss global dimension in Chapter 10.

In order to give more examples of left semisimple rings, we look at endomor-
phism rings of direct sums. Consider HomR(A,B), where both A and B are left
R-modules that are finite direct sums: say, A =

⊕n
i=1 Ai and B =

⊕m
j=1 Bj . Since

a direct product of a finite family of modules is their direct sum, Theorem 6.45
gives

HomR(A,B) ∼=
⊕
i,j

HomR(Ai, Bj).

More precisely, if αi : Ai → A is the ith injection and pj : B → Bj is the jth
projection, then each f ∈ HomR(A,B) gives maps

fji = pjfαi ∈ HomR(Ai, Bj).

Thus, f defines a generalized m×n matrix [fji] (we call [fji] a generalized matrix
because entries in different positions need not lie in the same algebraic system). The
map f �→ [fji] is an isomorphism HomR(A,B) →

⊕
ij HomR(Ai, Bj). Similarly, if

g : B → C, where C =
⊕�

k=1 Ck, then g defines a generalized � ×m matrix [gkj ],
where gkj = qkgβj : Bj → Ck, βj : Bj → B are the injections, and qk : C → Ck are
the projections.
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The composite gf : A → C defines a generalized � × n matrix, and we claim
that it is given by matrix multiplication: (gf)ki =

∑
j gkjfji:∑

j

gkjfji =
∑
j

qkgβjpjfαi = qkg(
∑
j

βjpj)fαi = qkgfαi = (gf)ki,

because
∑

j βjpj = 1B.

By adding some hypotheses, we can pass from generalized matrices to honest
matrices.

Proposition 7.34. Let V =
⊕n

i=1 Vi be a left R-module. If there is a left R-
module L and, for each i, an isomorphism ϕi : Vi → L, then there is a ring isomor-
phism

EndR(V ) ∼= Matn(EndR(L)).

Proof. Define θ : EndR(V )→ Matn(EndR(L)) by

θ : f �→ [ϕjpjfαiϕ
−1
i ],

where αi : Vi → V and pj : V → Vj are injections and projections, respectively.
That θ is an additive isomorphism is just the identity

Hom
(⊕

i

Vi,
⊕
i

Vi

)
∼=

⊕
i,j

Hom(Vi, Vj),

which holds when the index sets are finite. In the paragraph above defining gen-
eralized matrices, the home of the ij entry is HomR(Vi, Vj), whereas the present
home of this entry is the isomorphic replica HomR(L,L) = EndR(L).

We now show that θ preserves multiplication. If g, f ∈ EndR(V ), then θ(gf) =
[ϕjpjgfαiϕ

−1
i ], while the matrix product is

θ(g)θ(f) =
[∑

k

(ϕjpjgαkϕ
−1
k )(ϕkpkfαiϕ

−1
i )

]
=

[∑
k

ϕjpjgαkpkfαiϕ
−1
i

]
=

[
ϕjpjg

(∑
k

αkpk

)
fαiϕ

−1
i

]
=

[
ϕjpjgfαiϕ

−1
i

]
. •

Corollary 7.35. If V is an n-dimensional left vector space over a division ring Δ,
then there is an isomorphism of rings

EndΔ(V ) ∼= Matn(Δ)op.

Proof. The isomorphism Endk(V ) ∼= Matn(Δ
op) is the special case of Proposi-

tion 7.34 for V = V1 ⊕ · · · ⊕ Vn, where each Vi is one-dimensional, and hence is
isomorphic to Δ. Note that EndΔ(Δ) ∼= Δop, by Proposition 6.16. Now apply
Proposition 6.17, which says that Matn(Δ

op) ∼= Matn(Δ)op. •

The next result involves a direct sum decomposition at the opposite extreme
of that in Proposition 7.34.
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Corollary 7.36. Let an R-module M be a direct sum M = B1⊕· · ·⊕Bm in which
HomR(Bi, Bj) = {0} for all i �= j. Then there is a ring isomorphism

EndR(M) ∼= EndR(B1)× · · · × EndR(Bm).

Proof. If f, g ∈ EndR(M), let [fij ] and [gij ] be their generalized matrices. It
suffices to show that [gij ][fij ] is the diagonal matrix

diag(g11f11, . . . , gmmfmm).

But if i �= j, then gikfkj ∈ HomR(Bi, Bj) = 0; hence, (gf)ij =
∑

k gikfkj = 0. •

We can now give more examples of semisimple rings. The Wedderburn–Artin
Theorems will say that there are no others.

Proposition 7.37.

(i) If Δ is a division ring and V is a left vector space over Δ with dim(V ) = n,
then EndΔ(V ) ∼= Matn(Δ

op) is a left semisimple ring.

(ii) If Δ1, . . . ,Δm are division rings, then

Matn1
(Δ1)× · · · ×Matnm

(Δm)

is a left semisimple ring.

Proof.

(i) By Proposition 7.34, we have

EndΔ(V ) ∼= Matn(EndΔ(Δ));

by Proposition 6.16, EndΔ(Δ) ∼= Δop. Therefore, EndΔ(V ) ∼= Matn(Δ
op).

Let us now show that EndΔ(V ) is semisimple. If v1, . . . , vn is a basis
of V , define

col(j) = {T ∈ EndΔ(V ) : T (vi) = 0 for all i �= j}.
It is easy to see that col(j) is a left ideal in EndΔ(V ): if S ∈ EndΔ(V ), then
S(Tvi) = 0 for all i �= j. Recall Example 7.9: if we look in Matn(Δ

op) ∼=
EndΔ(V ), then col(j) corresponds to col(j), all those matrices whose en-
tries off the jth column are 0. It is obvious that

Matn(Δ
op) = col(1)⊕ · · · ⊕ col(n).

Hence, EndΔ(V ) is also such a direct sum. We saw, in Example 7.14(iii),
that each col(�) is a minimal left ideal, and so EndΔ(V ) is a left semisimple
ring.

(ii) This follows at once from part (i) and Corollary 7.28, for if Δ is a division
ring, then so is Δop, by Exercise 6.12 on page 416. •

Corollary 7.38. If V is an n-dimensional left vector space over a division ring Δ,
then the minimal left ideals col(�), for 1 ≤ � ≤ n, in EndΔ(V ) are all isomorphic.

Proof. Let v1, . . . , vn be a basis of V . For each �, define p� : V → V to be the
linear transformation that interchanges v� and v1 and that fixes all the other vj . It
is easy to see that T �→ Tp� is an isomorphism col(1)→ col(�). •
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There may be minimal left ideals other than col(�) for some �. However,
we will see [in Lemma 7.49(ii)] that all the minimal left ideals in EndΔ(V ) are
isomorphic to one of these.

Definition. A ring R is simple if it is not the zero ring and it has no proper
nonzero two-sided ideals.

Our language is a little deceptive. It is true that left artinian simple rings are
semisimple (Proposition 7.47), but there are simple rings that are not semisimple.

Proposition 7.39. If Δ is a division ring, then R = Matn(Δ) is a simple ring.

Proof. A matrix unit Epq is the n × n matrix whose p, q entry is 1 and all of
whose other entries are 0. The matrix units form a basis for Matn(Δ) viewed as a
left vector space over Δ, for each matrix A = [aij ] has a unique expression

A =
∑
i,j

aijEij .

[Of course, this says that dimΔ(Matn(Δ)) = n2.] A routine calculation shows that
matrix units multiply according to the following rule:

EijEk� =

{
0 if j �= k

Ei� if j = k.

Suppose that N is a nonzero two-sided ideal in Matn(Δ). If A is a nonzero
matrix in N , it has a nonzero entry; say, aij �= 0. Since N is a two-sided ideal, N
contains EpiAEjq for all p, q. But

EpiAEjq = Epi

∑
k,�

ak�Ek�Ejq = Epi

∑
k

akjEkq =
∑
k

akjEpiEkq = aijEpq.

Since aij �= 0 and Δ is a division ring, a−1
ij ∈ Δ, and so Epq ∈ N for all p, q.

But the collection of all Epq span the left vector space Matn(Δ) over Δ, and so
N = Matn(Δ). •

Exercises

7.18. Prove that a finitely generated left semisimple R-module M over a ring R is a direct
sum of a finite number of simple left modules.

7.19. Let A be an n-dimensional k-algebra over a field k. Prove that A can be imbedded
as a k-subalgebra of Matn(k).

Hint. If a ∈ A, define La : A → A by La : x �→ ax.

∗ 7.20. Let G be a finite group, and let k be a commutative ring. Define ε : kG → k by

ε
(∑
g∈G

agg
)
=

∑
g∈G

ag

(this map is called the augmentation , and its kernel, denoted by G, is called the aug-
mentation ideal).
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(i) Prove that ε is a kG-map and that kG/G ∼= k as k-algebras. Conclude that G is a
two-sided ideal in kG.

(ii) Prove that kG/G ∼= V0(k), where V0(k) is k viewed as a trivial kG-module.
Hint. G is a two-sided ideal containing xu− u = (x− 1)u.

(iii) Use part (ii) to prove that if kG = G ⊕ V , then V =
〈
v
〉
, where v =

∑
g∈G g.

Hint. Argue as in Example 7.43.

(iv) Assume that k is a field whose characteristic p does divide |G|. Prove that kG is
not left semisimple.
Hint. First show that ε(v) = 0, and then show that the short exact sequence

0 → G → kG
ε−→ k → 0

does not split. (If G is a finite p-group and k is a field of characteristic p, then
the Jacobson radical J(kG) is the augmentation ideal; see Lam, A First Course in
Noncommutative Rings, p. 131).

∗ 7.21. LetM be a leftR-module over a semisimple ring R. Prove thatM is indecomposable
if and only if M is simple.

7.22. If Δ is a division ring, prove that every two minimal left ideals in Matn(Δ) are
isomorphic. (Compare Corollary 7.38.)

7.23. Let T : V → V be a linear transformation, where V is a vector space over a field k,
and let k[T ] be defined by

k[T ] = k[x]/(m(x)),

where m(x) is the minimum polynomial of T .

(i) If m(x) =
∏

p p(x)
ep , where the p(x) ∈ k[x] are distinct irreducible polynomials

and ep ≥ 1, prove that k[T ] ∼=
∏

p k[x]/(p(x)
ep).

(ii) Prove that k[T ] is a semisimple ring if and only if m(x) is a product of distinct
linear factors. (In Linear Algebra, we show that this last condition is equivalent to
T being diagonalizable; that is, any matrix of T [arising from some choice of basis
of T ] is similar to a diagonal matrix.)

7.24. (i) If H is the division ring of real quaternions, prove that its multiplicative group
H× has a finite subgroup that is not cyclic. Compare with Theorem 2.46.

(ii) If Δ is a division ring whose center is a field of characteristic p > 0, prove that
every finite subgroup G of Δ× is cyclic.
Hint. Consider FpG, and use Theorem 7.13.

Section 7.4. Wedderburn–Artin Theorems

We are now going to prove the converse of Proposition 7.37(ii): every left semisimple
ring is isomorphic to a direct product of matrix rings over division rings. The first
step shows how division rings arise.

Theorem 7.40 (Schur’s Lemma). Let M and M ′ be simple left R-modules over
a ring R.

(i) Every nonzero R-map f : M →M ′ is an isomorphism.
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(ii) EndR(M) is a division ring. In particular, if L is a minimal left ideal in a
ring R, then EndR(L) is a division ring.

Proof.

(i) Since M is simple, it has only two submodules: M itself and {0}. Now
the submodule ker f �= M because f �= 0, so that ker f = {0} and f is an
injection. Similarly, the submodule im f �= {0}, so that im f = M ′ and f is
a surjection.

(ii) If f : M →M and f �= 0, then f is an isomorphism, by part (i), and hence it
has an inverse f−1 ∈ EndR(M). Thus, EndR(M) is a division ring. •

The second step investigates minimal left ideals.

Lemma 7.41. If L and L′ are minimal left ideals in a ring R, then each of the
following statements implies the one below it:

(i) LL′ �= (0).

(ii) HomR(L,L
′) �= {0} and there exists b′ ∈ L′ with L′ = Lb′.

(iii) L ∼= L′ as left R-modules.

If also L2 �= (0), then (iii) implies (i) and the three statements are equivalent.

Proof.

(i) ⇒ (ii) If LL′ �= (0), then there exists b ∈ L and b′ ∈ L′ with bb′ �= 0. Thus,
the function f : L → L′, defined by x �→ xb′, is a nonzero R-map, and so
HomR(L,L

′) �= {0}. Moreover, Lb′ = L′, for it is a nonzero submodule of the
minimal left ideal L′.

(ii) ⇒ (iii) If HomR(L,L
′) �= {0}, then there is a nonzero f : L→ L′, and f is an

isomorphism, by Schur’s Lemma; that is, L ∼= L′.

(iii) and L2 �= (0) ⇒ (i) Assume now that L2 �= (0), so there are x, y ∈ L with
xy �= 0. If g : L→ L′ is an isomorphism, then 0 �= g(xy) = xg(y) ∈ LL′, and
so LL′ �= (0). •

Note that if J(R) = (0), then L2 �= (0); otherwise, L is a nilpotent left ideal
and Corollary 7.17 gives L ⊆ J(R) = (0), a contradiction.

Proposition 7.42. If R =
⊕

j Lj is a left semisimple ring, where the Lj are
minimal left ideals, then every simple R-module S is isomorphic to some Lj.

Proof. Now S∼=HomR(R,S) �={0}, by Corollary 6.64. But, if HomR(Lj , S) = {0}
for all j, then HomR(R,S) = {0} (for R = L1 ⊕ · · · ⊕ Lm). Hence, HomR(Lj , S) �=
{0} for some j. Since both Lj and S are simple, Theorem 7.40(i) gives Lj

∼= S. •

Here is a fancier proof of Proposition 7.42.

Proof. By Corollary 6.25, there is a left ideal I with S ∼= R/I, and so there is a
series

R ⊇ I ⊇ (0).
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In Proposition 7.27, we saw that

R = L1 ⊕ · · · ⊕ Ln ⊇ L2 ⊕ · · · ⊕ Ln ⊇ · · · ⊇ Ln ⊇ (0)

is a composition series with factor modules L1, . . . , Ln. The Schreier Refinement
Theorem (Theorem 7.2) now says that these two series have equivalent refinements.
Since a composition series admits only refinements that repeat a term, the factor
module S occurring in the refinement of the first series must be isomorphic to one
of the factor modules in the second series; that is, S ∼= Li for some i. •

Example 7.43. The trivial kG-module V0(k) (Example 7.24) is a simple kG-
module (for it is one-dimensional, hence has no subspaces other than {0} and
itself). By Proposition 7.42, V0(k) is isomorphic to some minimal left ideal L of
kG. We shall find L by searching for elements u =

∑
g∈G agg in kG with hu = u

for all h ∈ G. For such elements u,

hu =
∑
g∈G

aghg =
∑
g∈G

agg = u.

Since the elements in G form a basis for the vector space kG, we may equate
coefficients, and so ag = ahg for all g ∈ G; in particular, a1 = ah. As this holds for
every h ∈ G, all the coefficients ag are equal. Therefore, if we define γ ∈ kG by

γ =
∑
g∈G

g,

then u is a scalar multiple of γ. It follows that L =
〈
γ
〉
is a left ideal isomorphic

to the trivial module V0(k); moreover,
〈
γ
〉
is the unique such left ideal. �

An abstract left semisimple ring R is a direct sum of finitely many minimal left
ideals: R =

⊕
j Lj , and we now know that EndR(Lj) is a division ring for every j.

The next step is to find the direct summands of R that will ultimately turn out to
be matrix rings; they arise from a decomposition of R into minimal left ideals by
collecting isomorphic terms.

Definition. Let R be a left semisimple ring, and let

R = L1 ⊕ · · · ⊕ Ln,

where the Lj are minimal left ideals. Reindex the summands so that no two of the
first m ideals L1, . . . , Lm are isomorphic, while every Lj in the given decomposition
is isomorphic to some Li for 1 ≤ i ≤ m. The left ideals

Bi =
⊕

Lj
∼=Li

Lj

are called the simple components of R relative to the decomposition R =
⊕

j Lj .

We shall see, in Corollary 7.50, that the simple components do not depend on
the particular decomposition of R as a direct sum of minimal left ideals.

We divide Theorem 7.44, the Wedderburn–Artin4 Theorem, into two parts: an
existence theorem and a uniqueness theorem.

4Wedderburn proved Theorem 7.44 for semisimple k-algebras, where k is a field; E. Artin
generalized the theorem as it is stated here. This theorem is why artinian rings are so called.
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Theorem 7.44 (Wedderburn–Artin I). A ring R is left semisimple if and only
if R is isomorphic to a direct product of matrix rings over division rings.

Proof. Sufficiency is Proposition 7.37(ii).

For necessity, if R is left semisimple, then it is the direct sum of its simple
components:

R = B1 ⊕ · · · ⊕Bm,

where each Bi is a direct sum of isomorphic minimal left ideals. Proposition 6.16
says that there is a ring isomorphism

Rop ∼= EndR(R),

where R is regarded as a left module over itself. Now HomR(Bi, Bj) = {0} for all
i �= j, by Lemma 7.41, so that Corollary 7.36 applies to give a ring isomorphism

Rop ∼= EndR(R) ∼= EndR(B1)× · · · × EndR(Bm).

By Proposition 7.34, there are isomorphisms of rings

EndR(Bi) ∼= Matni
(EndR(Li)),

because Bi is a direct sum of isomorphic copies of Li. By Schur’s Lemma, EndR(Li)
is a division ring, say, Δi, and so

Rop ∼= Matn1
(Δ1)× · · · ×Matnm

(Δm).

Hence,

R ∼= [Matn1
(Δ1)]

op × · · · × [Matnm
(Δm)]op.

Finally, Proposition 6.17 gives

R ∼= Matn1
(Δop

1 )× · · · ×Matnm
(Δop

m ).

This completes the proof, for Δop
i is also a division ring for all i, by Exercise 6.12

on page 416. •

Corollary 7.45. A ring R is left semisimple if and only if it is right semisimple.

Proof. It is easy to see that a ring R is right semisimple if and only if its opposite
ring Rop is left semisimple. But we saw, in the middle of the proof of Theorem 7.44,
that

Rop ∼= Matn1
(Δ1)× · · · ×Matnm

(Δm),

where Δi = EndR(Li). •

As a consequence of this corollary, we say that a ring is semisimple without
the adjectives left or right.

Corollary 7.46. A commutative ring R is semisimple if and only if it is isomorphic
to a direct product of finitely many fields.

Proof. A field is a semisimple ring, and so a direct product of finitely many fields
is also semisimple, by Corollary 7.28. Conversely, if R is semisimple, it is a direct
product of matrix rings over division rings. Since R is commutative, all the matrix
rings must be of size 1× 1 and all the division rings must be fields. •
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Even though the name suggests it, it is not clear that simple rings are semisim-
ple. Indeed, we must assume a chain condition: if V is an infinite-dimensional vector
space over a field k, then R = Endk(V ) is a simple ring which is not semisimple
(Lam, A First Course in Noncommutative Rings, pp. 43–44).

Proposition 7.47. A simple left artinian ring R is semisimple.

Proof. (Janusz) Since R is left artinian, it contains a minimal left ideal, say, L;
of course, L is a simple left R-module. For each a ∈ R, the function fa : L → R,
defined by fa(x) = xa, is a map of left R-modules: if r ∈ R, then

fa(rx) = (rx)a = r(xa) = rfa(x).

Now im fa = La, while L being a simple module forces ker fa = L or ker fa = (0).
In the first case, we have La = (0); in the second case, we have L ∼= La. Thus, La
is either (0) or a minimal left ideal.

Consider the sum I =
〈⋃

a∈R La
〉
⊆ R. Plainly, I is a left ideal; it is a right

ideal as well, for if b ∈ R and La ⊆ I, then (La)b = L(ab) ⊆ I. Since R is a simple
ring, the nonzero two-sided ideal I must equal R. We claim that R is a sum of only
finitely many La’s. As any element of R, the unit 1 lies in some finite sum of La’s;
say, 1 ∈ Le1+ · · ·+Len. If b ∈ R, then b = b1 ∈ b(Le1+ · · ·+Len) ⊆ Le1+ · · ·+Len
(because Le1 + · · ·+ Len is a left ideal). Hence, R = Le1 + · · ·+ Len.

To prove that R is semisimple, it remains to show that it is a direct sum of
simple submodules. Choose n minimal such that R = Le1 + · · · + Len; we claim
that R = Le1 ⊕ · · · ⊕ Len. By Proposition 6.30, it suffices to show, for all i, that

Lei ∩
(⊕

j �=i

Lej

)
= (0).

If this intersection is not (0), then simplicity of Lei says that Lei∩(
⊕

j �=i Lej) = Lei;

that is, Lei ⊆
⊕

j �=i Lej , and this contradicts the minimal choice of n. Therefore,
R is a semisimple ring. •

The following corollary follows at once from Proposition 7.47 and Theorem 7.44,
the Wedderburn–Artin Theorem.

Corollary 7.48. If A is a simple left artinian ring, then A ∼= Matn(Δ) for some
n ≥ 1 and some division ring Δ.

The next lemma gives some interesting properties enjoyed by semi-simple rings;
it will be used to complete the Wedderburn–Artin Theorem by proving uniqueness
of the constituent parts. In particular, it will say that the integer n and the division
ring Δ in Corollary 7.48 are uniquely determined by A.

Lemma 7.49. Let R be a semisimple ring, and let

R = L1 ⊕ · · · ⊕ Ln = B1 ⊕ · · · ⊕Bm,

where the Lj are minimal left ideals and the Bi are the corresponding simple com-
ponents of R.

(i) Each Bi is a ring that is also a two-sided ideal in R, and BiBj = (0) if j �= i.
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(ii) If L is any minimal left ideal in R, not necessarily occurring in the given
decomposition of R, then L ∼= Li for some i and L ⊆ Bi.

(iii) Every two-sided ideal D in R is a direct sum of simple components.

(iv) Each Bi is a simple ring.

Proof.

(i) Each Bi is a left ideal. To see that it is also a right ideal, consider

BiR = Bi(B1 ⊕ · · · ⊕Bm) ⊆ BiB1 + · · ·+BiBm.

Recall, for each i, that Bi is a direct sum of left ideals L isomorphic to Li.
If L ∼= Li and L′ ∼= Lj , then the contrapositive, ‘not (iii)’ ⇒ ‘not (i)’ in
Lemma 7.41, applies to give LL′ = (0) if j �= i. Hence, if j �= i,

BiBj =
( ⊕
L∼=Li

L
)( ⊕

L′∼=Lj

L′
)
⊆

⊕
LL′ = (0).

Thus, BiB1+ · · ·+BiBm ⊆ BiBi. Since Bi is a left ideal, BiBi ⊆ RBi ⊆ Bi.
Therefore, BiR ⊆ Bi, so that Bi is a right ideal and, hence, is a two-sided
ideal.

In the last step, proving that Bi is a right ideal, we saw that BiBi ⊆ Bi;
that is, Bi is closed under multiplication. Therefore, to prove that Bi is a
ring, it now suffices to prove that it contains a unit element. If 1 is the unit
element in R, then 1 = e1 + · · ·+ em, where ei ∈ Bi for all i. If bi ∈ Bi, then

bi = 1bi = (e1 + · · ·+ em)bi = eibi,

for BjBi = (0) whenever j �= i, by part (i). Similarly, the equation bi = bi1
gives biei = bi, and so ei is a unit in Bi. Thus, Bi is a ring.5

(ii) By Proposition 7.42, a minimal left ideal L is isomorphic to Li for some i.
Now

L = RL = (B1 ⊕ · · · ⊕Bm)L ⊆ B1L+ · · ·+BmL.

If j �= i, then BjL = (0), by Lemma 7.41, so that

L ⊆ BiL ⊆ Bi,

because Bi is a right ideal.

(iii) A nonzero two-sided ideal D in R is a left ideal, and so it contains some
minimal left ideal L, by Proposition 7.10. Now L ∼= Li for some i, by Propo-
sition 7.42; we claim that Bi ⊆ D. By Lemma 7.41, if L′ is any minimal left
ideal in Bi, then L′ = Lb′ for some b′ ∈ L′. Since L ⊆ D and D is a right
ideal, we have L′ = Lb′ ⊆ LL′ ⊆ DR ⊆ D. We have shown that D contains
every left ideal isomorphic to Li; as Bi is generated by such ideals, Bi ⊆ D.
Write R = BI ⊕BJ , where BI =

⊕
i Bi with Bi ⊆ D and BJ =

⊕
j Bj with

Bj �⊆ D. By Corollary 6.29 (which holds for modules over noncommutative
rings), D = BI ⊕ (D ∩ BJ ). But D ∩ BJ = (0); otherwise, it would contain
a minimal left ideal L ∼= Lj for some j ∈ J and, as above, this would force
Bj ⊆ D. Therefore, D = BI .

5Bi is not a subring of R because its unit ei is not the unit 1 in R.
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(iv) A left ideal in Bi is also a left ideal in R: if a ∈ R, then a =
∑

j aj , where
aj ∈ Bj ; if bi ∈ Bi, then

abi = (a1 + · · ·+ am)bi = aibi ∈ Bi,

because BjBi = (0) for j �= i. Similarly, a right ideal in Bi is a right ideal in
R, and so a two-sided ideal D in Bi is a two-sided ideal in R. By part (iii),
the only two-sided ideals in R are direct sums of simple components, and so
D ⊆ Bi implies D = (0) or D = Bi. Therefore, Bi is a simple ring. •

Corollary 7.50. If R is a semisimple ring, then the simple component Bi con-
taining a minimal left ideal Li is the left ideal generated by all the minimal left
ideals that are isomorphic to Li. Therefore, the simple components B1, . . . , Bm

of a semisimple ring do not depend on a decomposition of R as a direct sum of
minimal left ideals.

Proof. This follows from Lemma 7.49(ii). •

Corollary 7.51. Let A be a simple artinian ring.

(i) A ∼= Matn(Δ) for some division ring Δ. If L is a minimal left ideal in A, then
every simple left A-module is isomorphic to L; moreover, Δop ∼= EndA(L).

(ii) Two finitely generated left A-modules M and N are isomorphic if and only
if dimΔ(M) = dimΔ(N).

Proof.

(i) Since A is a semisimple ring, by Proposition 7.47, every left module M is
isomorphic to a direct sum of minimal left ideals. By Lemma 7.49(ii), all
minimal left ideals are isomorphic, say, to L.

We now prove that Δop ∼= EndA(L). We may assume that A = Matn(Δ)
and that L = col(1), the minimal left ideal consisting of all the n×nmatrices
whose last n− 1 columns are 0 (Proposition 7.37). Define ϕ : Δ→ EndA(L)
as follows: if d ∈ Δ and � ∈ L, then ϕd : � �→ �d. Note that ϕd is an A-
map: it is additive and, if a ∈ A and � ∈ L, then ϕd(a�) = (a�)d = a(�d) =
aϕd(�). Next, ϕ is a ring antihomomorphism: ϕ1 = 1L, it is additive, and
ϕdd′ = ϕd′ϕd: if � ∈ L, then ϕd′ϕd(�) = ϕd(�d

′) = �d′d = ϕdd′(�); that is, ϕ
is a ring homomorphism Δop → EndA(L). To see that ϕ is injective, note
that each � ∈ L ⊆ Matn(Δ) is a matrix with entries in Δ; hence, �d = 0
implies � = 0. Finally, we show that ϕ is surjective. Let f ∈ EndA(L). Now
L = AE11, where E11 is the matrix unit (every simple module is generated
by any nonzero element in it). If ui ∈ Δ, let [u1, . . . , un] denote the n × n
matrix in L whose first column is (u1, . . . , un)

� and whose other entries are
all 0. Write f(E11) = [d1, . . . , dn]. If � ∈ L, then � has the form [u1, . . . , un],
and using only the definition of matrix multiplication, it is easy to see that
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[u1, . . . , un] = [u1, . . . , un]E11. Since f is an A-map,

f([u1, . . . , un]) = f([u1, . . . , un]E11)

= [u1, . . . , un]f(E11)

= [u1, . . . , un][d1, . . . , dn]

= [u1, . . . , un]d1 = ϕd1
([u1, . . . , un]).

Therefore, f = ϕd1
∈ imϕ, as desired.

(ii) All minimal left ideals in A are isomorphic to L, and so M is a direct sum of
dimΔ(M)/n copies of L. If M ∼= N as left Matn(Δ)-modules, then M ∼= N
as left Δ-modules, and so dimΔ(M) = dimΔ(N). Conversely, if dimΔ(M) =
nd = dimΔ(N), then both M and N are direct sums of d copies of L, and
hence M ∼= N as left A-modules. •

The number m of simple components of R is an invariant, for it is the number
of nonisomorphic simple left R-modules (even better, we will see, in Theorem 7.58,
that if R = CG, then m is the number of conjugacy classes in G). However, there
is a much stronger uniqueness result.

Theorem 7.52 (Wedderburn–Artin II). Every semisimple ring R is a direct
product,

R ∼= Matn1
(Δ1)× · · · ×Matnm

(Δm),

where ni ≥ 1 and Δi is a division ring, and the numbers m and ni, as well as the
division rings Δi, are uniquely determined by R.

Proof. Let R be a semisimple ring, and let R = B1⊕· · ·⊕Bm be a decomposition
into simple components arising from some decomposition of R as a direct sum of
minimal left ideals. Suppose that R = B′

1 × · · · ×B′
t, where each B′

� is a two-sided
ideal that is also a simple ring. By Lemma 7.49, each two-sided ideal B′

� is a direct
sum of Bi’s. But B′

� cannot have more than one summand Bi, lest the simple
ring B′

� contain a proper nonzero two-sided ideal. Therefore, t = m and, after
reindexing, B′

i = Bi for all i.

Dropping subscripts, it remains to prove that if B = Matn(Δ) ∼= Matn′(Δ′) =
B′, then n = n′ and Δ ∼= Δ′. In Proposition 7.37, we proved that col(�), consisting
of the matrices with jth columns 0 for all j �= �, is a minimal left ideal in B, so
that col(�) is a simple B-module. Therefore,

(0) ⊆ col(1) ⊆ [col(1)⊕ col(2)] ⊆ · · · ⊆ [col(1)⊕ · · · ⊕ col(n)] = B

is a composition series of B as a module over itself. By the Jordan–Hölder Theo-
rem (Theorem 7.3), n and the factor modules col(�) are invariants of B. Now
col(�) ∼= col(1) for all �, by Corollary 7.51, and so it suffices to prove that
Δ can be recaptured from col(1). But this has been done in Corollary 7.51(i):
Δ ∼= EndB(col(1))

op. •

The description of the group algebra kG simplifies when the field k is alge-
braically closed. Here is the most useful version of Maschke’s Theorem.



558 Chapter 7. Representation Theory

Corollary 7.53 (Molien). If G is a finite group and k is an algebraically closed
field whose characteristic does not divide |G|, then

kG ∼= Matn1
(k)× · · · ×Matnm

(k).

Proof. By Maschke’s Theorem, kG is a semisimple ring, and its simple compo-
nents are isomorphic to matrix rings of the form Matn(Δ), where Δ arises as
EndkG(L)

op for some minimal left ideal L in kG. Therefore, it suffices to show
that EndkG(L)

op = Δ = k.

Now EndkG(L)
op ⊆ Endk(L)

op, which is finite-dimensional over k because L is;
hence, Δ = EndkG(L)

op is finite-dimensional over k. Each f ∈ EndkG(L) is a kG-
map, hence is a k-map; that is, f(au) = af(u) for all a ∈ k and u ∈ L. Therefore,
the map ϕa : L→ L, given by u �→ au, commutes with f ; that is, k (identified with
all ϕa) is contained in Z(Δ), the center of Δ. If δ ∈ Δ, then δ commutes with
every element in k, and so k(δ), the subdivision ring generated by k and δ, is a
(commutative) field. As Δ is finite-dimensional over k, so is k(δ); that is, k(δ) is
a finite extension of the field k, and so δ is algebraic over k, by Proposition 2.141.
But k is algebraically closed, so that δ ∈ k and Δ = k. •

The next corollary makes explicit a detail from the Wedderburn–Artin II, using
Molien’s simplification.

Corollary 7.54. If G is a finite group and Li is a minimal left ideal in CG, then
CG = B1 ⊕ · · · ⊕Bm, where Bi is the ideal generated by all the minimal left ideals
isomorphic to Li. If dimC(Li) = ni, then

Bi = Matni
(C).

Example 7.55. There are nonisomorphic finite groups G and H having isomorphic
complex group algebras. If G is an abelian group of order d, then CG is a direct
product of matrix rings over C, because C is algebraically closed. But G abelian
implies CG commutative. Hence, CG is the direct product of d copies of C (for
Matn(C) is commutative only when n = 1). It follows that if H is any abelian
group of order d, then CG ∼= CH. In particular, I4 and I2 ⊕ I2 are nonisomorphic
groups having isomorphic complex group algebras. It follows from this example
that certain properties of a group G get lost in the group algebra CG. �

Corollary 7.56. If G is a finite group and k is an algebraically closed field whose
characteristic does not divide |G|, then |G| = n2

1 + n2
2 + · · · + n2

m, where the ith
simple component Bi of kG consists of ni×ni matrices. Moreover, we may assume
that n1 = 1.6

Remark. Theorem 7.98 says that all the ni are divisors of |G|. �

Proof. As vector spaces over k, both kG and Matn1
(k)× · · ·×Matnm

(k) have the
same dimension, for they are isomorphic, by Corollary 7.53. But dim(kG) = |G|,
and the dimension of the right side is

∑
i dim(Matni

(k)) =
∑

i n
2
i .

6By Example 7.43, the group algebra kG always has a unique minimal left ideal isomorphic
to V0(k), even when k is not algebraically closed.
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Finally, Example 7.43 shows that there is a unique minimal left ideal isomorphic
to the trivial module V0(k); the corresponding simple component, say, B1, is one-
dimensional, and so n1 = 1. •

The number m of simple components in CG has a group-theoretic interpreta-
tion; we begin by finding the center of the group algebra.

Definition. Let C1, . . . , Cr be the conjugacy classes in a finite group G. For each
Cj , define the class sum to be the element zj ∈ CG given by

zj =
∑
g∈Cj

g.

Here is a ring-theoretic interpretation of the number r of conjugacy classes.

Lemma 7.57. If r is the number of conjugacy classes in a finite group G, then

r = dimC(Z(CG)),

where Z(CG)) is the center of the group algebra. In fact, a basis of Z(CG) consists
of all the class sums.

Proof. If zj =
∑

g∈Cj
g is a class sum, then we claim that zj ∈ Z(CG). If h ∈ G,

then hzjh
−1 = zj , because conjugation by any element of G merely permutes the

elements in a conjugacy class. Note that if j �= �, then zj and z� have no nonzero
components in common, and so z1, . . . , zr is a linearly independent list. It remains
to prove that the zj span the center.

Let u =
∑

g∈G agg ∈ Z(CG). If h ∈ G, then huh−1 = u, and so ahgh−1 = ag
for all g ∈ G. Thus, if g and g′ lie in the same conjugacy class of G, then their
coefficients in u are the same. But this says that u is a linear combination of the
class sums zj . •

Theorem 7.58. If G is a finite group, then the number m of simple components
in CG is equal to the number r of conjugacy classes in G.

Proof. We have just seen, in Lemma 7.57, that r = dimC(Z(CG)). On the other
hand, Z(Matni

(C)), the center of a matrix ring, is the subspace of all scalar matri-
ces, so that m = dimC(Z(CG)), by Lemma 7.57. •

We began this section by seeing that k-representations of a group G correspond
to kG-modules. Let us now return to representations.

Definition. A k-representation of a group G is irreducible if the corresponding
kG-module is simple.

For example, a one-dimensional (necessarily irreducible) k-representation is a
group homomorphism λ : G→ k×, where k× is the multiplicative group of nonzero
elements of k. The trivial kG-module V0(k) corresponds to the representation
λg = 1 for all g ∈ G.

The next result is basic to the construction of the character table of a finite
group.



560 Chapter 7. Representation Theory

Theorem 7.59. If G is a finite group, then the number of its irreducible complex
representations is equal to the number r of its conjugacy classes.

Proof. By Proposition 7.42, every simple CG-module is isomorphic to a minimal
left ideal. Since the number of minimal left ideals is m [the number of simple
components of CG], we see that m is the number of irreducible C-representations
of G. But Theorem 7.58 equates m with the number r of conjugacy classes in G.

•

Example 7.60.

(i) If G = S3, then CG is six-dimensional. There are three simple components,
for S3 has three conjugacy classes (by Theorem 1.9, the number of conju-
gacy classes in Sn is equal to the number of different cycle structures) having
dimensions 1, 1, and 4, respectively. (We could have seen this without The-
orem 7.58, for this is the only way to write 6 as a sum of squares aside from
a sum of six 1’s.) Therefore,

CS3
∼= C× C×Mat2(C).

One of the one-dimensional irreducible representations is the trivial one;
the other is sgn (signum).

(ii) We now analyze kG for G = Q, the quaternion group of order 8. If k = C,
then Corollary 7.53 gives

CQ ∼= Matn1
(C)× · · · ×Matnr

(C),

while Corollary 7.56 gives

|Q| = 8 = 1 + n2
2 + · · ·+ n2

r.

It follows that either all ni = 1 or four ni = 1 and one ni = 2. The first case
cannot occur, for it would imply that CQ is a commutative ring, whereas the
group Q of quaternions is not abelian. Therefore,

CQ ∼= C× C× C× C×Mat2(C).

We could also have used Theorem 7.58, for Q has exactly five conjugacy
classes, namely, {1}, {1}, {i, i}, {j, j}, {k, k}.

The group algebra RQ is more complicated because R is not algebraically
closed. Exercise 6.14 on page 416 shows that H is a quotient of RQ, hence
H is isomorphic to a direct summand of RQ because RQ is semisimple. It
turns out that

RQ ∼= R× R× R× R×H. �

Here is an amusing application of the Wedderburn–Artin Theorems.

Proposition 7.61. Let R be a ring whose group of units U = U(R) is finite and
of odd order. Then U is abelian and there are positive integers mi with

|U | =
t∏

i=1

(2mi − 1).
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Proof. First, we note that 1 = −1 in R, lest −1 be a unit of even order. Consider
the group algebra kU , where k = F2. Since k has characteristic 2 and |U | is odd,
Maschke’s Theorem says that kU is semisimple. There is a ring map ϕ : kU → R
carrying every k-linear combination of elements of U to “itself.” Now R′ = imϕ
is a finite subring of R containing U (for kU is finite); since dropping to a subring
cannot create any new units, we have U = U(R′). By Corollary 7.29, the ring R′

is semisimple, so that Wedderburn–Artin Theorem I gives

R′ ∼=
t∏

i=1

Matni
(Δi),

where each Δi is a division ring.

Now Δi is finite, because R
′ is finite, and so Δi is a finite division ring. By the

“other” theorem of Wedderburn, Theorem 7.13, each Δi is a field. But −1 = 1 in R
implies that −1 = 1 in Δi (for Δi ⊆ R′), and so each field Δi has characteristic 2;
hence,

|Δi| = 2mi

for integers mi ≥ 1. All the matrix rings must be 1 × 1, for any matrix ring of
larger size must contain an element of order 2, namely, I+K, where K has entry 1
in the first position in the bottom row, and all other entries 0. For example,[

1 0
1 1

]2
=

[
1 0
2 1

]
= I.

Therefore, R′ is a direct product of finite fields of characteristic 2, and so U = U(R′)
is an abelian group whose order is described in the statement. •

It follows, for example, that there is no ring having exactly five units.

The Jacobson–Chevalley Density Theorem, an important generalization
of the Wedderburn–Artin Theorems for certain nonartinian rings, was proved in the
1930s. Call a ring R left primitive if there exists a faithful simple left R-module S;
that is, S is simple and, if r ∈ R and rS = {0}, then r = 0. It can be proved that
commutative primitive rings are fields, while left artinian left primitive rings are
simple. Assume now that R is a left primitive ring, that S is a faithful simple left
R-module, and that Δ denotes the division ring EndR(S). The Density Theorem
says that if R is left artinian, then R ∼= Matn(Δ), while if R is not left artinian, then
for every integer n > 0, there exists a subring Rn of R with Rn

∼= Matn(Δ). We
refer the reader to Lam, A First Course in Noncommutative Rings, pp. 191–193.

The Wedderburn–Artin Theorems led to several areas of research, two of which
are descriptions of division rings and of finite-dimensional algebras. Division rings
will be considered in the context of central simple algebras in Chapter 8 and crossed
product algebras in Chapter 9. Let us discuss finite-dimensional algebras now.

Thanks to the theorems of Maschke and Molien, the Wedderburn–Artin Theo-
rems apply to ordinary representations of a finite group G; that is, to kG-modules,
where k is a field whose characteristic does not divide |G|. We know kG is semisim-
ple in this case. However, modular representations, that is, kG-modules for which
the characteristic of k does divide |G|, arise naturally. For example, if G is a finite
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p-group, for some prime p, then a minimal normal subgroup N is a vector space
over Fp (Rotman, An Introduction to the Theory of Groups, p. 106). Now G acts on
N (by conjugation), and so N is an FpG-module. Modular representations are used
extensively in the classification of the finite simple groups. In his study of modular
representations, Brauer observed that the important modules M are indecompos-
able rather than irreducible. Recall that a module M is indecomposable if M �= {0}
and there are no nonzero modules A and B with M = A⊕B (in the ordinary case,
a module is indecomposable if and only if it is irreducible [i.e., simple], but this is
no longer true in the modular case). When kG is semisimple, Proposition 7.42 says
that there are only finitely many simple modules (corresponding to the minimal
left ideals), which implies that there are only finitely many indecomposables. This
is not true in the modular case, however. For example, if k is an algebraically
closed field of characteristic 2, kV and kA4 have infinitely many nonisomorphic
indecomposable modules.

A finite-dimensional k-algebra R over a field k is said to have finite repre-
sentation type if there are only finitely many nonisomorphic finite-dimensional
indecomposable R-modules. D. G. Higman proved, for a finite group G, that kG has
finite representation type for every field k if and only if all its Sylow subgroups G
are cyclic (Curtis–Reiner, Representation Theory of Finite Groups and Associative
Algebras, p. 431). In the 1950s, the following two problems, known as the Brauer–
Thrall conjectures, were posed. Let R be a ring not of finite representation type.

(I) Are the dimensions of the indecomposable R-modules unbounded?

(II) Is there a strictly increasing sequence n1, n2, . . . with infinitely many noniso-
morphic indecomposable R-modules of dimension ni for every i?

The positive solution of the first conjecture, by Roiter in 1968, had a great im-
pact. Shortly thereafter, Gabriel introduced graph-theoretic methods, associating
finite-dimensional algebras to certain oriented graphs, called quivers. He proved
that a connected quiver has a finite number of nonisomorphic finite-dimensional
representations if and only if the quiver is a Dynkin diagrams of type An, Dn, E6,
E7, or E8 (Dynkin diagrams are multigraphs that describe simple complex Lie alge-
bras; see the discussion on page 748). Gabriel’s result can be rephrased in terms of
left hereditary k-algebras (all left ideals are projective modules). Dlab and Ringel
extended Gabriel’s result to Dynkin diagrams of any type, and they also extended
the classification to certain left hereditary algebras.

A positive solution of Brauer–Thrall II for all finite-dimensional algebras over
an algebraically closed field follows from results of Bautista, Gabriel, Roiter, and
Salmerón. M. Auslander and Reiten created a theory involving almost split se-
quences and Auslander–Reiten quivers. As of this writing, Auslander–Reiten The-
ory is the most powerful tool in the study of representations of finite-dimensional al-
gebras. For a discussion of these ideas, we refer the reader to Artin–Nesbitt–Thrall,
Rings with Minimum Condition, Dlab–Ringel, Indecomposable Representations of
Graphs and Algebras, Drozd–Kirichenko, Finite-Dimensional Algebras, Jacobson,
Structure of Rings, and Rowen, Ring Theory.
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Exercises

7.25. Find CG if G = D8, the dihedral group of order 8.

7.26. Find CG if G = A4.

Hint. A4 has four conjugacy classes.

7.27. (i) Let k be a field, and view sgn: Sn → {±1} ⊆ k. Define Sig(k) to be k
made into a kSn-module (as in Proposition 7.21): if γ ∈ Sn and a ∈ k, then
γa = sgn(γ)a. Prove that if Sig(k) is an irreducible kSn-module and k does not
have characteristic 2, then Sig(k) �∼= V0(k).

(ii) Find CS5.
Hint. There are five conjugacy classes in S5.

7.28. Let G be a finite group, and let k and K be algebraically closed fields whose
characteristics p and q, respectively, do not divide |G|.

(i) Prove that kG and KG have the same number of simple components.

(ii) Prove that the degrees of the irreducible representations of G over k are the same
as the degrees of the irreducible representations of G over K.

Section 7.5. Characters

Characters will enable us to use the preceding results to produce numerical invari-
ants whose arithmetic properties help to prove theorems about finite groups. The
first important instance of this technique is the following theorem.

Theorem 7.62 (Burnside). Every group of order pmqn, where p and q are primes,
is a solvable group.

Notice that Burnside’s Theorem cannot be improved to groups having orders
with only three distinct prime factors, for A5 is a simple group of order 60 = 22 ·3·5.

Using representations, we will prove the following theorem.

Theorem 7.63. If G is a nonabelian finite simple group, then {1} is the only
conjugacy class whose size is a prime power.

Proposition 7.64. Theorem 7.63 implies Burnside’s Theorem.

Proof. Assume that Burnside’s Theorem is false, and let G be a “least criminal;”
that is, G is a counterexample of smallest order. If G has a proper normal subgroup
H with H �= {1}, then both H and G/H are solvable, for their orders are smaller
than |G| and are of the form piqj . By Proposition 3.25, G is solvable, and this is a
contradiction. We may assume, therefore, that G is a nonabelian simple group.

Let Q be a Sylow q-subgroup of G. If Q = {1}, then G is a p-group, contra-
dicting G being a nonabelian simple group; hence, Q �= {1}. Since the center of Q
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is nontrivial, by Theorem 1.113, there exists a nontrivial element x ∈ Z(Q). Now
Q ⊆ CG(x), for every element in Q commutes with x, and so

[G : Q] = [G : CG(x)][CG(x) : Q];

that is, [G : CG(x)] is a divisor of [G : Q] = pm. Of course, [G : CG(x)] is the
number of elements in the conjugacy class xG of x (Corollary 1.109), and so the
hypothesis says that |xG| = 1; hence, x ∈ Z(G), contradicting G being simple. •

We now specialize the definition of k-representation on page 539 from arbitrary
fields k of scalars to the complex numbers C.

Definition. A representation of a group G is a homomorphism

σ : G→ GL(V ),

where V is a vector space over C. The degree of σ is dimC(V ).

For the rest of this section, all groups are finite and all representa-
tions are finite-dimensional over C.

If σ : G → GL(V ) is a representation of degree n, then a choice of basis of V
allows each σ(g) to be regarded as an n× n nonsingular complex matrix.

Representations can be translated into the language of modules. In Propo-
sition 7.21, we proved that every representation σ : G → GL(V ) equips V with
the structure of a left CG-module (and conversely): for each g ∈ G, we have
σ(g) : V → V and, if v ∈ V , we define scalar multiplication gv by

gv = σ(g)(v).

We denote V made into a CG-module in this way by V σ, and we call it the corre-
sponding module.

Example 7.65. Let L be a left ideal in CG and let dimC(L) = d. Then σ : G →
GL(L), defined by σ(g) : u �→ gu for all u ∈ L, is a representation of degree d. The
corresponding CG-module V σ is just L itself, for the original scalar multiplication
on the left ideal L coincides with the scalar multiplication given by σ. �

Example 7.66. We now show that permutation representations, that is, G-sets,7

give a special kind of representation. A G-set X corresponds to a homomorphism
π : G→ SX , where SX is the symmetric group of all permutations of X. If V is the
complex vector space having X as a basis, then we may regard SX ⊆ GL(V ) in the
following way. Each permutation π(g) of X, where g ∈ G, is now a permutation of
a basis of V and, hence, it determines a nonsingular linear transformation on V .
With respect to the basis X, the matrix of π(g) is a permutation matrix : it arises
by permuting the columns of the identity matrix I by π(g); thus, it has exactly one
entry equal to 1 in each row and column while all its other entries are 0. �

One of the most important representations is the regular representation.

7Recall that if a group G acts on a set X, then X is called a G-set.
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Definition. If G is a group, then the representation ρ : G→ GL(CG) defined, for
all g, h ∈ G, by

ρ(g) : h �→ gh,

is called the regular representation.

By Example 7.65, the module corresponding to the regular representation is
just CG considered as a left module over itself.

Two representations σ : G→ GL(V ) and τ : G→ GL(W ) can be added.

Definition. If σ : G→ GL(V ) and τ : G→ GL(W ) are representations, then their
sum σ + τ : G→ GL(V ⊕W ) is defined by

(σ + τ )(g) : (v, w) �→ (σ(g)v, τ (g)w)

for all g ∈ G, v ∈ V , and w ∈W .

In matrix terms, if σ : G→ GL(n,C) and τ : G→ GL(m,C), then

σ + τ : G→ GL(n+m,C),

and if g ∈ G, then (σ + τ )(g) is the direct sum of blocks σ(g)⊕ τ (g); that is,

(σ + τ )(g) =

[
σ(g) 0
0 τ (g)

]
.

The following terminology is the common one used in Group Representations.

Definition. A representation σ of a group G is irreducible if the corresponding
CG-module is simple. A representation σ is completely reducible if it is a di-
rect sum of irreducible representations; that is, the corresponding CG-module is
semisimple.

Example 7.67. A representation σ is linear if degree(σ) = 1. The trivial represen-
tation of any group G is linear, for the principal module V0(C) is one-dimensional.
If G = Sn, then sgn : G→ {±1} is also a linear representation.

Every linear representation is irreducible, for the corresponding CG-module
must be simple; after all, every submodule is a subspace, and {0} and V are the
only subspaces of a one-dimensional vector space V . It follows that the trivial
representation of any group G is irreducible, as is the representation sgn of Sn. �

Recall the proof of the Wedderburn–Artin Theorem: there are pairwise non-
isomorphic minimal left ideals L1, . . . , Lr in CG and CG = B1 ⊕ · · · ⊕ Br, where
Bi is generated by all minimal left ideals isomorphic to Li. By Corollary 7.53,
Bi
∼= Matni

(C), where ni = dimC(Li). But all minimal left ideals in Matni
(C) are

isomorphic, by Lemma 7.49(ii), so that Li
∼= col(1) ∼= Cni [see Example 7.14(iii)].

Therefore,
Bi
∼= EndC(Li).

Proposition 7.68.

(i) For each minimal left ideal Li in CG, there is an irreducible representation
λi : G→ GL(Li), given by left multiplication:

λi(g) : ui �→ gui,
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where g ∈ G and ui ∈ Li; moreover, degree(λi) = ni = dimC(Li).

(ii) The representation λi extends to a C-algebra map λ̃i : CG→ EndC(Li) if we
define

λ̃i(g)uj =

{
gui if j = i

0 if j �= i

for g ∈ G and uj ∈ Bj.

Proof.

(i) Since Li is a left ideal in CG, each g ∈ G acts on Li by left multiplication, and
so the representation λi ofG is as stated. By Example 7.65, the corresponding
module Lσ

i is Li, and so λi is an irreducible representation because Li, being
a minimal left ideal, is a simple module.

(ii) If we regard CG and EndC(Li) as vector spaces over C, then λi extends to a

linear transformation λ̃i : CG → EndC(Li) (because the elements of G are a
basis of CG):

λ̃i :
∑
g∈G

cgg �→
∑
g∈G

cgλi(g)

[remember that λi(g) ∈ GL(Li) ⊆ EndC(Li)]. Let us show that λ̃i : CG →
EndC(Li) is an algebra map. Now CG = B1 ⊕ · · · ⊕ Br, where the Bj are

two-sided ideals. To prove that λ̃i is multiplicative, it suffices to check its
values on products of basis elements. If uj ∈ Bj and g, h ∈ G, then

λ̃i(gh) : uj �→ (gh)uj ,

while
λ̃i(g)λ̃i(h) : uj �→ huj �→ g(huj);

these are the same, by associativity. Thus,

λ̃i(gh) = λ̃i(g)λ̃i.

Finally, λ̃i(1) = λi(1) = 1Li
, and so λ̃i is an algebra map. •

It is natural to call two representations equivalent if their corresponding mod-
ules are isomorphic. The following definition arises from Corollary 7.23, which gives
a criterion that CG-modules (Cn)σ and (Cn)τ are isomorphic as CG-modules.

Definition. Let σ, τ : G→ GL(n,C) be representations of a group G. Then σ and
τ are equivalent , denoted by σ ∼ τ , if there is a nonsingular n× n matrix P that
intertwines them; that is, for every g ∈ G,

Pσ(g)P−1 = τ (g).

Corollary 7.69.

(i) Every irreducible representation of a finite group G is equivalent to one of the
representations λi given in Proposition 7.68(i).

(ii) Every irreducible representation of a finite abelian group is linear.

(iii) If σ : G→ GL(V ) is a representation of a finite group G, then σ(g) is similar
to a diagonal matrix for each g ∈ G.
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Proof.

(i) If σ : G → GL(V ) is an irreducible representation σ, then the corresponding
CG-module V σ is a simple module. Therefore, V σ ∼= Li, for some i, by
Proposition 7.42. But Li

∼= V λi , so that V σ ∼= V λi and σ ∼ λi.

(ii) Since G is abelian, CG =
⊕

i Bi is commutative, and so all ni = 1 [we know
that Bi

∼= Matni
(C), and the matrix ring is not commutative if ni ≥ 2]. But

degree(λi) = ni, by Proposition 7.68(i).

(iii) If τ = σ|
〈
g
〉
, then τ (g) = σ(g). Now τ is a representation of the abelian

group
〈
g
〉
, and so part (ii) implies that the module V τ is a direct sum of

one-dimensional submodules. If V τ =
〈
v1
〉
⊕ · · · ⊕

〈
vm

〉
, then the matrix of

σ(g) with respect to the basis v1, . . . , vm is diagonal. •

Example 7.70.

(i) The Wedderburn–Artin Theorems can be restated to say that every represen-
tation τ : G→ GL(V ) is completely reducible: τ = σ1 + · · ·+ σk, where each
σj is irreducible; moreover, the multiplicity of each σj is uniquely determined
by τ . Since each σj is equivalent to the irreducible representation λi arising
from a minimal left ideal Li, we usually collect terms and write τ ∼

∑
i miλi,

where the multiplicities mi are nonnegative integers.

(ii) The regular representation ρ : G→ GL(CG) is important because every irre-
ducible representation is a summand of it. Now ρ is equivalent to the sum

ρ ∼ n1λ1 + · · ·+ nrλr,

where ni is the degree of λi [recall that CG =
⊕

i Bi, where Bi
∼= EndC(Li) ∼=

Matni
(C); as a CG-module, the simple module Li can be viewed as the first

columns of ni×ni matrices, and so Bi is a direct sum of ni copies of Li]. �

Recall that the trace of an n×n matrix A = [aij ] with entries in a commutative
ring k is the sum of the diagonal entries: tr(A) =

∑n
i=1 aii.

When k is a field, then tr(A) turns out to be the sum of the eigenvalues of A
(we will assume this result now, but it is more convenient for us to prove it in the
next chapter). Here are several other elementary facts about the trace that we will
prove now.

Proposition 7.71.

(i) If I is the n × n identity matrix and k is a field of characteristic 0, then
tr(I) = n.

(ii) If A = [aij ] and B = [bij ] are n × n matrices with entries in a commutative
ring k, then

tr(A+B) = tr(A) + tr(B) and tr(AB) = tr(BA).

(iii) If B = PAP−1, then tr(B) = tr(A).
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Proof.

(i) The sum of the diagonal entries is n, which in not 0 because k has character-
istic 0.

(ii) The additivity of trace follows from the diagonal entries of A + B being
aii + bii. If (AB)ii denotes the ii entry of AB, then

(AB)ii =
∑
j

aijbji,

and so

tr(AB) =
∑
i

(AB)ii =
∑
i,j

aijbji.

Similarly,

tr(BA) =
∑
j,i

bjiaij .

The entries commute because they lie in the commutative ring k, and so
aijbji = bjiaij for all i, j. It follows that tr(AB) = tr(BA), as desired.

(iii)

tr(B) = tr
(
(PA)P−1

)
= tr

(
P−1(PA)

)
= tr(A). •

It follows from Proposition 7.71(iii) that we can define the trace of a linear
transformation T : V → V , where V is a vector space over a field k, as the trace
of any matrix arising from it: if A and B are matrices of T , determined by two
choices of bases of V , then B = PAP−1 for some nonsingular matrix P , and so
tr(B) = tr(A).

Definition. If σ : G→ GL(V ) is a representation, then its character is the func-
tion χσ : G→ C defined by

χσ(g) = tr(σ(g)).

We call χσ the character afforded by σ. An irreducible character is a character

afforded by an irreducible representation. The degree of χσ is defined to be the
degree of σ; that is,

degree(χσ) = degree(σ) = dim(V ).

Example 7.72.

(i) The character θ afforded by a linear representation (Example 7.67) is called a
linear character ; that is, θ = χσ, where degree(σ) = 1. Since every linear
representation is simple, every linear character is irreducible.

(ii) The representation λi : G → GL(Li), given by λi : ui �→ gui if ui ∈ Li, is
irreducible [see Proposition 7.68(i)]. Thus, the character χi afforded by λi,
defined by

χi = χλi
,

is irreducible.

(iii) In light of Proposition 7.68(ii), it makes sense to speak of χi(u) for every
u ∈ CG. If we write u = u1 + · · ·+ur ∈ B1⊕ · · · ⊕Br, where uj ∈ Bj , define

χi(u) = λ̃i(ui). In particular, χi(ui) = tr(λ̃i(ui)) and χi(uj) = 0 if j �= i.
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(iv) If σ : G→ GL(V ) is a representation, then σ(1) is the identity matrix. Hence,
Proposition 7.71(i) gives χσ(1) = n, where n is the degree of σ.

(v) Let σ : G→ SX be a homomorphism; as in Example 7.66, we may regard σ as
a representation on V , where V is the vector space over C with basis X. For
every g ∈ G, the matrix σ(g) is a permutation matrix, and its xth diagonal
entry is 1 if σ(g)x = x; otherwise, it is 0. Thus,

χσ(g) = tr(σ(g)) = Fix(σ(g)),

the number of x ∈ X fixed by σ(g). In other words, if X is a G-set, then
each g ∈ G acts on X, and the number of fixed points of the action of g is
a character value (see Example 7.92 for a related discussion). �

Characters are compatible with addition of representations. If σ : G→ GL(V )
and τ : G→ GL(W ), then σ + τ : G→ GL(V ⊕W ), and

tr((σ + τ )(g)) = tr

([
σ(g) 0
0 τ (g)

])
= tr(σ(g)) + tr(τ (g)).

Therefore,

χσ+τ = χσ + χτ .

If σ and τ are equivalent representations, then

tr(σ(g)) = tr(Pσ(g)P−1) = tr(τ (g))

for all g ∈ G; that is, they have the same characters: χσ = χτ . It follows that if
σ : G→ GL(V ) is a representation, then its character χσ can be computed relative
to any convenient basis of V .

Proposition 7.73.

(i) Every character χσ is a linear combination χσ =
∑

i miχi, where mi ≥ 0 are
nonnegative integers and

χi = χλi

is the irreducible character afforded by the irreducible representation λi arising
from the minimal left ideal Li.

(ii) Equivalent representations have the same character.

(iii) The only irreducible characters of G are χ1, . . . , χr, the characters afforded
by the irreducible representations λi.

Proof.

(i) The character χσ arises from a representation σ of G, which, in turn, arises
from a CG-module V . But V is a semisimple module (because CG is a
semisimple ring), and so V is a direct sum of simple modules: V =

⊕
j Sj .

By Proposition 7.42, each Sj
∼= Li for some minimal left ideal Li. If, for each i,

we let mi ≥ 0 be the number of Sj isomorphic to Li, then χσ =
∑

i miχi.

(ii) This follows from part (ii) of Proposition 7.71 and Corollary 7.69(i).

(iii) This follows from part (ii) and Corollary 7.69(i). •
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As a consequence of the proposition, we call χ1, . . . , χr the irreducible char-
acters of G.

Example 7.74.

(i) The (linear) character χ1 afforded by the trivial representation σ : G → C
with σ(g) = 1 for all g ∈ G is called the trivial character . Thus, χ1(g) = 1
for all g ∈ G.

(ii) Let us compute the regular character ψ = χρ afforded by the regular
representation ρ : G → GL(CG), where ρ(g) : u �→ gu for all g ∈ G and
u ∈ CG. Any basis of CG can be used for this computation; we choose the
usual basis comprised of the elements of G. If g = 1, then Example 7.72(iv)
shows that ψ(1) = dim(CG) = |G|. On the other hand, if g �= 1, then for all
h ∈ G, we have gh a basis element distinct from h. Therefore, the matrix of
ρ(g) has 0’s on the diagonal, and so its trace is 0. Thus,

ψ(g) =

{
0 if g �= 1

|G| if g = 1.
�

We have already proved that equivalent representations have the same charac-
ter. The coming discussion will give the converse: if two representations have the
same character, then they are equivalent.

Definition. A function ϕ : G→ C is a class function if it is constant on conju-
gacy classes; that is, if h = xgx−1, then ϕ(h) = ϕ(g).

Every character χσ afforded by a representation σ is a class function: if h =
xgx−1, then

σ(h) = σ(xgx−1) = σ(x)σ(g)σ(x)−1,

and so tr(σ(h)) = tr(σ(g)); that is,

χσ(h) = χσ(g).

Not every class function is a character. For example, if χ is a character, then
−χ is a class function; it is not a character because −χ(1) is negative, and so it
cannot be a degree.

Definition. We denote the set of all class functions G→ C by cf(G):

cf(G) = {ϕ : G→ C : ϕ(g) = ϕ(xgx−1) for all x, g ∈ G}.

It is easy to see that cf(G) is a vector space over C.

An element u =
∑

g∈G cgg ∈ CG is an n-tuple (cg) of complex numbers; that

is, u is a function u : G→ C with u(g) = cg for all g ∈ G. From this viewpoint, we
see that cf(G) is a subring of CG. Note that a class function is a scalar multiple of
a class sum; therefore, Lemma 7.57 says that cf(G) is the center Z(CG), and so

dim(cf(G)) = r,

where r is the number of conjugacy classes in G (Theorem 7.58).
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Definition. Write CG = B1 ⊕ · · · ⊕ Br, where Bi
∼= EndC(Li), and let ei denote

the identity element of Bi; hence,

1 = e1 + · · ·+ er,

where 1 is the identity element of CG. The elements ei are called the idempotents
in CG.

Not only is each ei an idempotent, that is, e2i = ei, but it is easy to see that

eiej = δijei,

where δij is the Kronecker delta.

Lemma 7.75. The irreducible characters χ1, . . . , χr form a basis of cf(G).

Proof. We have just seen that dim(cf(G)) = r, and so it suffices to prove that
χ1, . . . , χr is a linearly independent list, by Corollary 2.112(ii). We have already
noted that χi(uj) = 0 for all j �= i; in particular, χi(ej) = 0. On the other hand,
χi(ei) = ni, where ni is the degree of χi, for it is the trace of the ni × ni identity
matrix.

Suppose now that
∑

i ciχi = 0. It follows, for all j, that

0 =
(∑

i

ciχi

)
(ej) = cjχj(ej) = cjnj .

Therefore, all cj = 0, as desired. •

Since χi(1) is the trace of the ni × ni identity matrix, we have

(1) ni = χi(1) =
∑
j

χi(ej) = χi(ei),

where ei is the identity element of Bi.

Theorem 7.76. Two representations σ, τ of a finite group G are equivalent if and
only if they afford the same character: χσ = χτ .

Proof. We have already proved necessity, in Proposition 7.73(ii). For sufficiency,
Proposition 7.73(i) says that every representation is completely reducible: there are
nonnegative integers mi and �i with σ ∼

∑
i miλi and τ ∼

∑
i �iλi. By hypothesis,

the corresponding characters coincide:∑
i

miχi = χσ = χτ =
∑
i

�iχi.

As the irreducible characters χ1, . . . , χr are a basis of cf(G), mi = �i for all i, and
so σ ∼ τ . •

There are relations between the irreducible characters that facilitate their cal-
culation. We begin by finding the expression of the idempotents ei in terms of the
basis G of CG. Observe, for all y ∈ G, that

(2) χi(eiy) = χi(y),

for y =
∑

j ejy, and so χi(y) =
∑

j χi(ejy) = χi(eiy), because ejy ∈ Bj .
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Proposition 7.77. If ei =
∑

g∈G aigg, where aig ∈ C, then

aig =
niχi(g

−1)

|G| .

Proof. Let ψ be the regular character; that is, ψ is the character afforded by the
regular representation. Now eig

−1 =
∑

h aihhg
−1, so that

ψ(eig
−1) =

∑
h∈G

aihψ(hg
−1).

By Example 7.74(ii), ψ(1) = |G| when h = g and ψ(hg−1) = 0 when h �= g.
Therefore,

aig =
ψ(eig

−1)

|G| .

On the other hand, since ψ =
∑

j njχj , we have

ψ(eig
−1) =

∑
j

njχj(eig
−1) = niχi(eig

−1),

by Proposition 7.68(ii). But χi(eig
−1) = χi(g

−1), by Equation (1). Therefore,
aig = niχi(g

−1)/|G|. •

It is now convenient to equip cf(G) with an inner product.

Definition. If α, β ∈ cf(G), define

(α, β) =
1

|G|
∑
g∈G

α(g)β(g),

where c denotes the complex conjugate of a complex number c.

It is easy to see that we have defined an inner product;8 that is, for all c1, c2 ∈ C,

(i) (c1α1 + c2α2, β) = c1(α1, β) + c2(α2, β);

(ii) (β, α) = (α, β).

Note that (α, α) is real, by (ii), and the inner product is definite; that is, (α, α) > 0
if α �= 0.

Theorem 7.78. With respect to the inner product just defined, the irreducible
characters χ1, . . . , χr form an orthonormal basis ; that is,

(χi, χj) = δij .

Proof. By Proposition 7.77, we have

ej =
1

|G|
∑
g

njχj(g
−1)g.

8This inner product is not symmetric because we have (β, α) = (α, β), not (β, α) = (α, β).
Such a function is often called a Hermitian form or a sesquilinear form (sesqui means “one and
a half”).
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Hence,

χi(ej)/nj =
1

|G|
∑
g

χj(g
−1)χi(g) =

1

|G|
∑
g

χi(g)χj(g) = (χi, χj);

the next to last equation follows from Exercise 7.30 on page 588, for χj is a character

(not merely a class function), and so χj(g
−1) = χj(g). The result now follows, for

χi(ej)/nj = δij , by Equations (1) and (2). •

The inner product on cf(G) can be used to check irreducibility.

Definition. A generalized character ϕ on a finite group G is a Z-linear combi-
nation

ϕ =
∑
i

miχi,

where χ1, . . . , χr are the irreducible characters of G and all mi ∈ Z.

If θ is a character, then θ =
∑

i miχi, where all the coefficients are nonnegative
integers, by Proposition 7.73.

Corollary 7.79. A generalized character θ of a group G is an irreducible character
if and only if θ(1) > 0 and (θ, θ) = 1.

Proof. If θ is an irreducible character, then θ = χi for some i, and so (θ, θ) =
(χi, χi) = 1. Moreover, θ(1) = deg(χi) > 0.

Conversely, let θ =
∑

j mjχj , where mj ∈ Z, and suppose that (θ, θ) = 1. Then

1 =
∑

j m
2
j ; hence, some m2

i = 1 and all other mj = 0. Therefore, θ = ±χi, and so

θ(1) = ±χi(1). Since χi(1) = deg(χi) > 0, the hypothesis θ(1) > 0 gives mi = 1.
Therefore, θ = χi, and so θ is an irreducible character. •

Let us assemble the notation we will use from now on.

Notation. If G is a finite group, we denote its conjugacy classes by

C1, . . . , Cr,

a choice of elements, one from each conjugacy class, by

g1 ∈ C1, . . . , gr ∈ Cr,

its irreducible characters by

χ1, . . . , χr,

their degrees by

n1 = χ1(1), . . . , nr = χr(1),

and the sizes of the conjugacy classes by

h1 = |C1|, . . . , hr = |Cr|.

The matrix [χi(gj)] is a useful way to display information.

Definition. The character table of G is the r×r complex matrix whose ij entry
is χi(gj).
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We always assume that C1 = {1} and that χ1 is the trivial character. Thus,
the first row consists of all 1’s, while the first column consists of the degrees of the
characters: χi(1) = ni for all i, by Example 7.72(iv). The ith row of the character
table consists of the values

χi(1), χi(g2), . . . , χi(gr).

There is no obvious way of labeling the other conjugacy classes (or the other irre-
ducible characters), so that a finite group G has many character tables. Neverthe-
less, we usually speak of “the” character table of G.

Since the inner product on cf(G) is summed over all g ∈ G, not just the chosen gi
(one from each conjugacy class), it can be rewritten as a “weighted” inner product:

(χi, χj) =
1

|G|

r∑
k=1

hkχi(gk)χj(gk).

Theorem 7.78 says that the weighted inner product of distinct rows in the character
table is 0, while the weighted inner product of any row with itself is 1.

Example 7.80. A character table can have complex entries. For example, it is
easy to see that the character table for a cyclic group G =

〈
x
〉
of order 3 is given

in Table 1, where ω = e2πi/3 is a primitive cube root of unity. �

gi 1 x x2

hi 1 1 1

χ1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

Table 1. Character table of I3.

Example 7.81. Write the four-group in additive notation:

V = {0, a, b, a+ b}.
As a vector space over F2, V has basis a, b, and the “coordinate functions” on V,
which take values in {1,−1} ⊆ C, are linear; hence, they are irreducible represen-
tations. For example, the character χ2 arising from the function that is nontrivial
on a and trivial on b is

χ2(v) =

{
−1 if v = a or v = a+ b

1 if v = 0 or v = b.

Table 2 is the character table for V.

Table 3 is the character table for the symmetric group G = S3. Since two
permutations in Sn are conjugate if and only if they have the same cycle structure,
there are three conjugacy classes, and we choose elements 1, (1 2), and (1 2 3) from
each. In Example 7.60(i), we saw that there are three irreducible representations:
λ1 = the trivial representation, λ2 = sgn, and a third representation λ3 of degree
2. We now give the character table, after which we discuss its entries.
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gi 0 a b a+ b
hi 1 1 1 1

χ1 1 1 1 1
χ2 1 −1 1 −1
χ3 1 1 −1 −1
χ4 1 −1 −1 1

Table 2. Character table of V.

gi 1 (1 2) (1 2 3)
hi 1 3 2

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Table 3. Character table of S3.

We have already discussed the first row and column of any character table.
Since χ2 = sgn, the second row records the fact that 1 and (1 2 3) are even while
(1 2) is odd. The third row has entries

2 a b,

where a and b are to be found. The weighted inner products of row 3 with the
other two rows give the equations

2 + 3a+ 2b = 0

2− 3a+ 2b = 0.

It follows easily that a = 0 and b = −1. �

The following lemma will be used to describe the inner products of the columns
of the character table.

Lemma 7.82. If A is the character table of a finite group G, then A is nonsingular
and its inverse A−1 has ij entry

(A−1)ij =
hiχj(gi)

|G| .

Proof. If B is the matrix whose ij entry is displayed in the statement, then

(AB)ij =
1

|G|
∑
k

χi(gk)hkχj(gk) =
1

|G|
∑
g

χi(g)χj(g) = (χi, χj) = δij ,

because hkχj(gk) =
∑

y∈Ck
χj(y). Therefore, AB = I. •

The next result is fundamental.

Theorem 7.83 (Orthogonality Relations). Let G be a finite group of order
n with conjugacy classes C1, . . . , Cr of cardinalities h1, . . . , hr, respectively, and
choose elements gi ∈ Ci. Let the irreducible characters of G be χ1, . . . , χr, and let
χi have degree ni. Then the following relations hold:

(i)
r∑

k=1

hkχi(gk)χj(gk) =

{
0 if i �= j;

|G| if i = j.
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(ii)
r∑

i=1

χi(gk)χi(g�) =

{
0 if k �= �;

|G|/hk if k = �.

Proof.

(i) This is just a restatement of Theorem 7.78.

(ii) If A is the character table of G and B = [hiχj(gi)/|G|], we proved, in
Lemma 7.82, that AB = I. It follows that BA = I; that is, (BA)k� = δk�.
Therefore,

1

|G|
∑
i

hkχi(gk)χi(g�) = δk�,

and this is the second orthogonality relation. •

In terms of the character table, the second orthogonality relation says that
the usual (unweighted, but with complex conjugation) inner product of distinct
columns is 0 while, for every k, the usual inner product of column k with itself is
|G|/hk.

The orthogonality relations yield the following special cases.

Corollary 7.84.

(i) |G| =
∑r

i=1 n
2
i .

(ii)
∑r

i=1 niχi(gk) = 0 if k > 1.

(iii)
∑r

k=1 hkχi(gk) = 0 if i > 1.

(iv)
∑r

k=1 hk|χi(gk)|2 = |G|.

Proof.

(i) This equation records the inner product of column 1 with itself: it is Theo-
rem 7.83(ii) when k = � = 1.

(ii) This is the special case of Theorem 7.83(ii) with � = 1, for χi(1) = ni.

(iii) This is the special case of Theorem 7.83(i) in which j = 1.

(iv) This is the special case of Theorem 7.83(i) in which j = i. •

We can now give another proof of Burnside’s Lemma, Theorem 1.124, which
counts the number of orbits of a G-set.

Theorem 7.85 (Burnside’s Lemma). Let G be a finite group and let X be a
finite G-set. If N is the number of orbits of X, then

N =
1

|G|
∑
g∈G

Fix(g),

where Fix(g) is the number of x ∈ X with gx = x.
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Proof. Let V be the complex vector space havingX as a basis. As in Example 7.66,
the G-set X gives a representation σ : G → GL(V ) by σ(g)(x) = gx for all g ∈ G
and x ∈ X; moreover, if χσ is the character afforded by σ, then Example 7.72(v)
shows that χσ(g) = Fix(g).

Let O1, . . . ,ON be the orbits of X. We begin by showing that N = dim(V G),
where V G is the space of fixed points :

V G = {v ∈ V : gv = v for all g ∈ G}.
For each i, define si to be the sum of all the x in Oi; it suffices to prove that these
elements form a basis of V G. It is plain that s1, . . . , sN is a linearly independent list
in V G, and it remains to prove that they span V G. If u ∈ V G, then u =

∑
x∈X cxx,

so that gu =
∑

x∈X cx(gx). Since gu = u, however, cx = cgx. Thus, given x ∈ X
with x ∈ Oj , each coefficient of gx, where g ∈ G, is equal to cx; that is, all the
x lying in the orbit Oj have the same coefficient, say, cj , and so u =

∑
j cjsj .

Therefore,

N = dim(V G).

Now define a linear transformation T : V → V by

T =
1

|G|
∑
g∈G

σ(g).

It is routine to check that T is a CG-map, that T |(V G) = identity, and that
imT = V G. Since CG is semisimple, V = V G ⊕W for some submodule W . We
claim that T |W = 0. If w ∈ W , then σ(g)(w) ∈ W for all g ∈ G, because W is
a submodule, and so T (w) ∈ W . On the other hand, T (w) ∈ imT = V G, and so
T (w) ∈ V G ∩W = {0}, as claimed.

If w1, . . . , w� is a basis of W , then s1, . . . , sN , w1, . . . , w� is a basis of V =
V G ⊕W . Note that T fixes each si and annihilates each wj . Since trace preserves
sums,

tr(T ) =
1

|G|
∑
g∈G

tr(σ(g)) =
1

|G|
∑
g∈G

χσ(g) =
1

|G|
∑
g∈G

Fix(g).

It follows that

tr(T ) = dim(V G),

for the matrix of T with respect to the chosen basis is the direct sum of an identity
block and a zero block, and so tr(T ) is the size of the identity block, namely,
dim(V G) = N . Therefore,

N =
1

|G|
∑
g∈G

Fix(g). •

Character tables can be used to detect normal subgroups.

Definition. If χτ is the character afforded by a representation τ : G → GL(V ),
then

kerχτ = ker τ.

Proposition 7.86. Let θ = χτ be the character of a finite group G afforded by a
representation τ : G→ GL(V ).
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(i) For each g ∈ G, we have

|θ(g)| ≤ θ(1).

(ii)

ker θ = {g ∈ G : θ(g) = θ(1)}.
(iii) If θ =

∑
j mjχj, where mj are positive integers, then

ker θ =
⋂
j

kerχj .

(iv) If N is a normal subgroup of G, there are irreducible characters χi1 , . . . , χis

with N =
⋂ s

j=1 kerχij .

Proof.

(i) By Lagrange’s Theorem, g|G| = 1 for every g ∈ G; it follows that the eigen-
values ε1, . . . , εd of τ (g), where d = θ(1), are |G|th roots of unity, and so
|εj | = 1 for all j. By the triangle inequality in C,

∣∣θ(g)∣∣ = ∣∣∣ d∑
j=1

εj

∣∣∣ ≤ d = θ(1).

(ii) If g ∈ ker θ = ker τ , then τ (g) = I, the identity matrix, and θ(g) = tr(I) =

θ(1). Conversely, suppose that θ(g) = θ(1) = d; that is,
∑d

j=1 εj = d.
By Proposition 2.73, all the eigenvalues εj are equal, say, εj = ω for all j.
Therefore, τ (g) = ωI, by Corollary 7.69(iii), and so

θ(g) = θ(1)ω.

But θ(g) = θ(1), by hypothesis, and so ω = 1; that is, τ (g) = I and g ∈ ker τ .

(iii) For all g ∈ G, we have

θ(g) =
∑
j

mjχj(g);

in particular,

θ(1) =
∑
j

mjχj(1).

If g ∈ ker θ, then θ(g) = θ(1). Suppose that χj′(g) �= χj′(1) for some j′.
Since χj′(g) is a sum of roots of unity, Proposition 2.73 applies to force
|χj′(g)| < χj′(1), and so |θ(g)| ≤

∑
j mj |χj(g)| <

∑
j χj(1) = 1, which

implies that θ(g) �= θ(1), a contradiction. Therefore, g ∈
⋂

j kerχj . For the

reverse inclusion, if g ∈ kerχj , then χj(g) = χj(1), and so

θ(g) =
∑
j

mjχj(g) =
∑
j

mjχj(1) = θ(1);

hence, g ∈ ker θ.
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(iv) It suffices to find a representation of G whose kernel is N . By part (ii) and
Example 7.74(ii), the regular representation ρ of G/N is faithful (i.e., is an
injection), and so its kernel is {1}. If π : G→ G/N is the natural map, then
ρπ is a representation of G having kernel N . If θ is the character afforded by
ρπ, then θ =

∑
j mjχj , where the mj are positive integers, by Lemma 7.75,

and so part (iii) applies. •

Example 7.87. We will construct the character table of S4 in Example 7.97. We
can see there that kerχ2 = A4 and kerχ3 = V are the only two normal subgroups
of S4 (other than {1} and S4). Moreover, we can see that V ⊆ A4.

In Example 7.88, we can see that kerχ2 = {1}∪zG∪yG (where zG denotes the
conjugacy class of z in G) and kerχ3 = {1} ∪ zG ∪ xG. Another normal subgroup
occurs as kerχ2 ∩ kerχ3 = {1} ∪ zG. �

A normal subgroup described by characters is given as a union of conjugacy
classes; this viewpoint can give another proof of the simplicity of A5. In Exer-
cise 1.97 on page 74, we saw that A5 has five conjugacy classes, of sizes 1, 12, 12,
15, and 20. Since every subgroup contains the identity element, the order of a
normal subgroup of A5 is the sum of some of these numbers, including 1. But it is
easy to see that 1 and 60 are the only such sums that are divisors of 60, and so the
only normal subgroups are {1} and A5 itself.

There is a way to “lift” a representation of a quotient group to a representation
of the group.

Definition. Let H �G and let σ : G/H → GL(V ) be a representation. If π : G→
G/H is the natural map, then the representation σπ : G→ GL(V ) is called a lifting
of σ.

Scalar multiplication of G on a C(G/H)-module V is given, for v ∈ V , by

gv = (gH)v.

Thus, every C(G/H)-submodule of V is also a CG-submodule; hence, if V is a
simple C(G/H)-module, then it is also a simple CG-module. It follows that if
σ : G/H → GL(V ) is an irreducible representation of G/H, then its lifting σπ is
also an irreducible representation of G.

Example 7.88. We know that D8 and Q are nonisomorphic nonabelian groups of
order 8; we now show that they have the same character tables.

If G is a nonabelian group of order 8, then its center has order 2, say, Z(G) =〈
z
〉
. Now G/Z(G) is not cyclic, by Exercise 1.77 on page 59, and so G/Z(G) ∼= V.

Therefore, if σ : V → C is an irreducible representation of V, then its lifting σπ is
an irreducible representation of G. This gives four (necessarily irreducible) linear
characters of G, each of which takes value 1 on z. As G is not abelian, there
must be an irreducible character χ5 of degree n5 > 1 (if all ni = 1, then CG is
commutative and G is abelian). Since

∑
i n

2
i = 8, we see that n5 = 2. Thus,

there are five irreducible representations and, hence, five conjugacy classes; choose
representatives gi to be 1, z, x, y, w. Table 4 on page 580 is the character table.



580 Chapter 7. Representation Theory

gi 1 z x y w
hi 1 1 2 2 2

χ1 1 1 1 1 1
χ2 1 1 −1 1 −1
χ3 1 1 1 −1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

Table 4. Character table of D8 and of Q.

The values for χ5 are computed from the orthogonality relations of the columns.
For example, if the last row of the character table is

2 a b c d,

then the inner product of columns 1 and 2 gives the equation 4 + 2a = 0, so that
a = −2. The reader may verify that 0 = b = c = d. �

The orthogonality relations help to complete a character table but, obviously,
it would also be useful to have a supply of characters. One important class of char-
acters consists of those afforded by induced representations ; that is, representations
of a group G determined by representations of a subgroup H of G.

The original construction of induced representations, due to Frobenius, is rather
complicated. Tensor products make this construction more natural. The ring CG
is a (CG,CH)-bimodule (for CH is a subring of CG), so that if V is a left CH-
module, then the tensor product CG⊗CH V is defined; Proposition 6.106 says that
this tensor product is, in fact, a left CG-module.

Definition. Let H be a subgroup of a group G. If V is a left CH-module, then
the induced module is the left CG-module

V �G= CG⊗CH V.

The corresponding representation ρ�G : G→ V G is called the induced represen-
tation . The character of G afforded by ρ�G is called the induced character , and
it is denoted by χρ�G.

Let us recognize at the outset that the character of an induced representation
need not restrict to the original representation of the subgroup. For example,
we have seen that there is an irreducible character χ of A3

∼= I3 having complex
values, whereas every irreducible character of S3 has (real) integer values. A related
observation is that two elements may be conjugate in a group but not conjugate in
a subgroup (for example, 3-cycles are conjugate in S3, for they have the same cycle
structure, but they are not conjugate in the abelian group A3).

The next lemma will help us compute the character afforded by an induced
representation.
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Lemma 7.89.

(i) If H ⊆ G, then CG is a free right CH-module on [G : H] generators.

(ii) If a left CH-module V has a (vector space) basis e1, . . . , em, then a (vector
space) basis of the induced module V �G= CG⊗CHV is the family of all ti⊗ej,
where t1, . . . , tn is a transversal of H in G.

Proof.

(i) Since t1, . . . , tn is a transversal of H in G (of course, n = [G : H]), we see
that G is the disjoint union

G =
⋃
i

tiH;

thus, for every g ∈ G, there is a unique i and a unique h ∈ H with g = tih.
We claim that t1, . . . , tn is a basis of CG viewed as a right CH-module.

If u ∈ CG, then u =
∑

g agg, where ag ∈ C. Rewrite each term

agg = agtih = tiagh

(scalars in C commute with everything), collect terms involving the same ti,
and obtain u =

∑
i tiηi, where ηi ∈ CH.

To prove uniqueness of this expression, suppose that 0 =
∑

i tiηi, where
ηi ∈ CH. Now ηi =

∑
h∈H aihh, where aih ∈ C. Substituting,

0 =
∑
i,h

aihtih.

But tih = tjh
′ if and only if i = j and h = h′, so that 0 =

∑
i,h aihtih =∑

g∈G aihg, where g = tih. Since the elements of G form a basis of CG
(viewed as a vector space over C), we have aih = 0 for all i, h, and so ηi = 0
for all i.

(ii) By Theorem 6.110,

CG⊗CH V ∼=
⊕
i

tiCH ⊗CH V.

It follows that every u ∈ CG ⊗CH V has a unique expression as a C-linear
combination of ti ⊗ ej , and so these elements comprise a basis. •

Notation. If H ⊆ G and χ : H → C is a function, then χ̇ : G→ C is given by

χ̇(g) =

{
0 if g /∈ H

χ(g) if g ∈ H.

Theorem 7.90. If χσ is the character afforded by a representation σ : H → GL(V )
of a subgroup H of a group G, then the induced character χσ�G is given by

χσ�G(g) =
1

|H|
∑
a∈G

χ̇σ(a
−1ga).
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Proof. Let t1, . . . , tn be a transversal of H in G, so that G is the disjoint union
G =

⋃
i tiH, and let e1, . . . , em be a (vector space) basis of V . By Lemma 7.89, a

basis for the vector space V G = CG ⊗CH V consists of all ti ⊗ ej . If g ∈ G, we
compute the matrix of left multiplication by g relative to this basis. Note that

gti = tk(i)hi,

where hi ∈ H, and so

g(ti ⊗ ej) = (gti)⊗ ej = tk(i)hi ⊗ ej = tk(i) ⊗ σ(hi)ej

(the last equation holds because we can slide any element of H across the tensor
sign). Now g(ti ⊗ ej) is written as a C-linear combination of all the basis elements
of V �G, for the coefficients tp ⊗ ej for p �= k(i) are all 0. Hence, σ�G(g) gives the
nm×nm matrix whose m columns labeled by ti⊗ej , for fixed i, are all zero except
for an m×m block equal to

[apq(hi)] = [apq(t
−1
k(i)gti)].

Thus, the big matrix is partitioned into m×m blocks, most of which are 0, and a
nonzero block is on the diagonal of the big matrix if and only if k(i) = i; that is,

t−1
k(i)gti = t−1

i gti = hi ∈ H.

The induced character is the trace of the big matrix, which is the sum of the traces
of these blocks on the diagonal. Therefore,

χσ�G(g) =
∑

t−1
i gti∈H

tr([apq(t
−1
i gti)]) =

∑
i

χ̇σ(t
−1
i gti)

(remember that χ̇σ is 0 outside of H). We now rewrite the summands (to get a
formula that does not depend on the choice of the transversal): if t−1

i gti ∈ H, then

(tih)
−1g(tih) = h−1(t−1

i gti)h in H, so that, for fixed i,∑
h∈H

χ̇σ

(
(tih)

−1g(tih)
)
= |H|χ̇σ(t

−1
i gti),

because χσ is a class function on H. Therefore,

χσ�G(g) =
∑
i

χ̇σ(t
−1
i gti) =

1

|H|
∑
i,h

χ̇σ

(
(tih)

−1g(tih)
)
=

1

|H|
∑
a∈G

χ̇σ(a
−1ga). •

Remark. We have been considering induced characters, but it is easy to generalize
the discussion to induced class functions . If H ⊆ G, then a class function θ on
H has a unique expression as a C-linear combination of irreducible characters of
H, say, θ =

∑
ciχi, and so we can define

θ�G =
∑

ciχi�G.

It is plain that θ�G is a class function on G, and that the formula in Theorem 7.90
extends to induced class functions. �
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If, for h ∈ H, the matrix of σ(h) (with respect to the basis e1, . . . , em of V ) is

B(h), then define m×m matrices Ḃ(g), for all g ∈ G, by

Ḃ(g) =

{
0 if g /∈ H;

B(g) if g ∈ H.

The proof of Theorem 7.90 allows us to picture the matrix of the induced represen-
tation in block form

σ�G(g) =

⎡⎢⎢⎢⎣
Ḃ(t−1

1 gt1) Ḃ(t−1
1 gt2) · · · Ḃ(t−1

1 gtn)

Ḃ(t−1
2 gt1) Ḃ(t−1

2 gt2) · · · Ḃ(t−1
2 gtn)

...
...

...
...

Ḃ(t−1
n gt1) Ḃ(t−1

n gt2) · · · Ḃ(t−1
n gtn)

⎤⎥⎥⎥⎦ .

Corollary 7.91. Let H be a subgroup of a finite group G and let χ be a character
on H.

(i) χ�G(1) = [G : H]χ(1).

(ii) If H �G, then χ�G(g) = 0 for all g /∈ H.

Proof.

(i) For all a ∈ G, we have a−11a = 1, so that there are |G| terms in the sum
χ�G(1) = 1

|H|
∑

a∈G χ̇(a−1ga) that are equal to χ(1); hence,

χ�G(1) = |G|
|H|χ(1) = [G : H]χ(1).

(ii) If H � G, then g /∈ H implies that a−1ga /∈ H for all a ∈ G. Therefore,
χ̇(a−1ga) = 0 for all a ∈ G, and so χ�G(g) = 0. •

Example 7.92. Let H ⊆ G be a subgroup of index n, let X = {t1H, . . . , tnH} be
the family of left cosets of H, and let ϕ : G→ SX be the (permutation) representa-
tion of G on the cosets ofH. As in Example 7.72(v), we may regard ϕ : G→ GL(V ),
where V is the vector space over C having basis X; that is, ϕ is a representation
in the sense of this section.

We claim that if χϕ is the character afforded by ϕ, then χϕ = ε�G, where ε is
the trivial character on H. On the one hand, Example 7.72(v) shows that

χϕ(g) = Fix(ϕ(g))

for every g ∈ G. On the other hand, suppose ϕ(g) is the permutation (in two-rowed
notation)

ϕ(g) =

(
t1H . . . tnH
gt1H . . . gtnH

)
.

Now gtiH = tiH if and only if t−1
i gti ∈ H. Thus, ε̇(t−1

i gti) �= 0 if and only if
gtiH = tiH, and so

ε�G(g) = Fix(ϕ(g)). �
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Even though a character λ of a subgroup H is irreducible, its induced character
need not be irreducible. For example, let G = S3 and let H be the cyclic subgroup
generated by (1 2). The linear representation σ = sgn: H → C is irreducible, and
it affords the character χσ with

χσ(1) = 1 and χσ((1 2)) = −1.

Using the formula for the induced character, we find that

χσ�S3(1) = 3, χσ�S3((1 2)) = −1, and χσ�S3((1 2 3)) = 0.

Corollary 7.79 shows that χσ�S3 is not irreducible, for (χσ�S3 , χσ�S3) = 2. It is easy
to see that χσ�S3= χ2 + χ3, the latter being the nontrivial irreducible characters
of S3.

Here is an important result of Brauer (Curtis–Reiner, Representation Theory
of Finite Groups and Associative Algebras, p. 283). Call a subgroup E of a finite
group G elementary if E = Z ×P , where Z is cyclic and P is a p-group for some
prime p.

Theorem 7.93 (Brauer). Every complex character θ on a finite group G has the
form

θ =
∑
i

miμi�G,

where mi ∈ Z and the μi are linear characters on elementary subgroups of G.

Proof. See Curtis–Reiner, Representation Theory of Finite Groups and Associative
Algebras, p. 283. •

Definition. If H is a subgroup of a group G, then every representation σ : G →
GL(V ) gives, by restriction, a representation σ|H : H → GL(V ). (In terms of
modules, every left CG-module V can be viewed as a left CH-module.) We call
σ|H the restriction of σ, and we denote it by σ�H . The character of H afforded
by σ�H is denoted by χσ�H .

The next result displays an interesting relation between characters on a group
and characters on a subgroup. (Formally, it resembles the Adjoint Isomorphism.)

Theorem 7.94 (Frobenius Reciprocity). Let H be a subgroup of a group G,
let χ be a class function on G, and let θ be a class function on H. Then

(θ�G, χ)G = (θ, χ�H)H ,

where (�,�)G denotes the inner product on cf(G) and (�,�)H denotes the inner
product on cf(H).
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Proof. We have

(θ�G, χ)G =
1

|G|
∑
g∈G

θ�G (g)χ(g)

=
1

|G|
∑
g∈G

1

|H|
∑
a∈G

θ̇(a−1ga)χ(g)

=
1

|G|
1

|H|
∑

a,g∈G

θ̇(a−1ga)χ(a−1ga),

the last equation occurring because χ is a class function. For fixed a ∈ G, as g
ranges over G, then so does a−1ga. Therefore, writing x = a−1ga, the equations
continue:

=
1

|G|
1

|H|
∑

a,x∈G

θ̇(x)χ(x)

=
1

|G|
1

|H|
∑
a∈G

(∑
x∈G

θ̇(x)χ(x)
)

=
1

|G|
1

|H| |G|
∑
x∈G

θ̇(x)χ(x)

=
1

|H|
∑
x∈G

θ̇(x)χ(x)

= (θ, χ�H)H ,

the next to last equation holding because θ̇(x) vanishes off the subgroup H. •

The following elementary remark facilitates the computation of induced class
functions.

Lemma 7.95. Let H be a subgroup of a finite group G, and let χ be a class function
on H. Then

χ�G(g) = 1

|H|
∑
i

|CG(gi)|χ̇(g−1
i ggi).

Proof. Let |CG(gi)| = mi. If a−1
0 gia0 = g, we claim that there are exactly mi

elements a ∈ G with a−1gia = g. There are at least mi elements in G conjugating
gi to g; namely, all aa0 for a ∈ CG(gi). There are at most mi elements, for if
b−1gib = g, then b−1gib = a−1

0 gia0, and so a0b ∈ CG(gi). The result now follows by
collecting terms involving gis in the formula for χ�G(g). •

Example 7.96. Table 5 is the character table of A4, where ω = e2πi/3 is a primitive
cube root of unity.

The group A4 consists of the identity, eight 3-cycles, and three products of
disjoint transpositions. In S4, all the 3-cycles are conjugate; if g = (1 2 3), then
[S4 : CS4

(g)] = 8. It follows that |CS4
(g)| = 3, and so CS4

(g) =
〈
g
〉
. Therefore,

in A4, the number of conjugates of g is [A4 : CA4
(g)] = 4 [we know that CA4

(g) =
A4 ∩ CS4

(g) =
〈
g
〉
]. The reader may show that g and g−1 are not conjugate, and

so we have verified the first two rows of the character table.
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gi (1) (1 2 3) (1 3 2) (1 2)(3 4)
hi 1 4 4 3

χ1 1 1 1 1
χ2 1 ω ω2 1
χ3 1 ω2 ω 1
χ4 3 0 0 −1

Table 5. Character table of A4.

The rows for χ2 and χ3 are liftings of linear characters of A4/V ∼= I3. Note
that if h = (1 2)(3 4), then χ2(h) = χ2(1) = 1, because V is the kernel of the
lifted representation; similarly, χ3(h) = 1. Now χ4(1) = 3, because 3 + (n4)

2 = 12.
The bottom row arises from orthogonality of the columns. (We can check, using
Corollary 7.79, that the character of degree 3 is irreducible.) �

Example 7.97. Table 6 is the character table of S4.

gi (1) (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
hi 1 6 8 6 3

χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 2 0 −1 0 2
χ4 3 1 0 −1 −1
χ5 3 −1 0 1 −1

Table 6. Character table of S4.

We know, for all n, that two permutations in Sn are conjugate if and only if
they have the same cycle structure; the sizes of the conjugacy classes in S4 were
computed in Table 1 on page 10.

The rows for χ2 and χ3 are liftings of irreducible characters of S4/V ∼= S3.
The entries in the fourth column of these rows arise from (1 2)V = (1 2 3 4)V; the
entries in the last column of these rows arise from V being the kernel (in either
case), so that χj((1 2)(3 4)) = χj(1) for j = 2, 3.

We complete the first column using 24 = 1+1+4+n2
4+n2

5; thus, n4 = 3 = n5.
Let us see whether χ4 is an induced character; if it is, then Corollary 7.91(i) shows
that it arises from a linear character of a subgroup H of index 3. Such a subgroup
has order 8, and so it is a Sylow 2-subgroup; that is, H ∼= D8. Let us choose one
such subgroup:

H =
〈
V, (1 3)

〉
= V ∪ {(1 3), (2 4), (1 2 3 4), (1 4 3 2)}.
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The conjugacy classes are

C1 = {1};
C2 = {(1 3)(2 4)};
C3 = {(1 2)(3 4), (1 4)(2 3)};
C4 = {(1 3), (2 4)};
C5 = {(1 2 3 4), (1 4 3 2)}.

Let θ be the character on H defined by

C1 C2 C3 C4 C5

1 1 −1 1 −1.

Define χ4 = θ�S4 . Using the formula for induced characters, assisted by
Lemma 7.95, we obtain the fourth row of the character table. However, before
going on to row 5, we observe that Corollary 7.79 shows that χ4 is irreducible, for
(χ4, χ4) = 1. Finally, the orthogonality relations allow us to compute row 5. �

At this point in the story, we must introduce algebraic integers. Since G is
a finite group, Lagrange’s Theorem gives g|G| = 1 for all g ∈ G. It follows that
if σ : G → GL(V ) is a representation, then σ(g)|G| = I for all g; hence, all the
eigenvalues of σ(g) are |G|th roots of unity, and so all the eigenvalues are algebraic
integers. By Proposition 2.70, the trace of σ(g), being the sum of the eigenvalues,
is also an algebraic integer.

We can now prove the following interesting result.

Theorem 7.98. The degrees ni of the irreducible characters of a finite group G
are divisors of |G|.

Proof. By Theorem 2.63, the rational number α = |G|/ni is an integer if it is also
an algebraic integer. Now Corollary 6.37(ii) says that α is an algebraic integer if
there is a faithful Z[α]-module M that is a finitely generated abelian group, where
Z[α] is the smallest subring of C containing α.

By Proposition 7.77, we have

ei =
∑
g∈G

ni

|G|χi(g
−1)g =

∑
g∈G

1

α
χi(g

−1)g.

Hence, αei =
∑

g∈G χi(g
−1)g. But ei is an idempotent: e2i = ei, and so

αei =
∑
g∈G

χi(g
−1)gei.

Define M to be the abelian subgroup of CG generated by all elements of the form
ζgei, where ζ is a |G|th root of unity and g ∈ G; of course, M is a finitely generated
abelian group.



588 Chapter 7. Representation Theory

To see that M is a Z[α]-module, it suffices to show that αM ⊆M . But

αζgei = ζgαei = ζg
∑
h∈G

χi(h
−1)hei =

∑
h∈G

χi(h
−1)ζghei.

This last element lies in M , however, because χi(h
−1) is a sum of |G|th roots of

unity.

Finally, if β ∈ C and u ∈ CG, then βu = 0 if and only if β = 0 or u = 0. Since
Z[α] ⊆ C and M ⊆ CG, however, it follows that M is a faithful Z[α]-module, as
desired. •

We will present two important applications of Character Theory in the next
section; for other applications, as well as a more serious study of representations,
the interested reader should look at the books by Curtis–Reiner, Feit, Huppert,
and Isaacs.

Representation Theory is used throughout the proof of the Classification The-
orem of Finite Simple Groups. An account of this theorem, describing the infinite
families of such groups as well as the 26 sporadic simple groups, can be found in the
ATLAS, by Conway et al. This book contains the character tables of every simple
group of order under 1025 as well as the character tables of all the sporadic groups.

Exercises

7.29. Prove that if θ is a generalized character of a finite groupG, then there are characters
χ and ψ with θ = χ− ψ.

∗ 7.30. (i) Prove that if z is a complex root of unity, then z−1 = z.

(ii) Prove that if G is a finite group and σ : G → GL(V ) is a representation, then

χσ(g
−1) = χσ(g)

for all g ∈ G.
Hint. Use the fact that every eigenvalue of σ(g) is a root of unity, as well as the fact
that if A is a nonsingular matrix over a field k and if u1, . . . , un are the eigenvalues
of A (with multiplicities), then the eigenvalues of A−1 are u−1

1 , . . . , u−1
n ; that is,

u1, . . . , un.

7.31. If σ : G → GL(n,C) is a representation, its contragredient σ∗ : G → GL(n,C) is
the function given by

σ∗(g) = σ(g−1)�,

where �� denotes transpose.

(i) Prove that the contragredient of a representation σ is a representation that is
irreducible when σ is irreducible.

(ii) Prove that the character χσ∗ afforded by the contragredient σ∗ is

χσ∗(g) = χσ(g),

where χσ(g) is the complex conjugate. Conclude that if χ is a character of G, then
χ is also a character.
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∗ 7.32. Construct an irreducible representation of S3 of degree 2.

7.33. (i) Let g ∈ G, where G is a finite group. Prove that g is conjugate to g−1 if and
only if χ(g) is real for every character χ of G.

(ii) Prove that every character of Sn is real-valued. (It is a theorem of Frobenius that
every character of Sn is integer-valued.)

7.34. (i) Recall that the character group G∗ of a finite abelian group G is

G∗ = Hom(G,C×),

where C× is the multiplicative group of nonzero complex numbers (C× ∼= R/Z, by
Corollary 8.30). Prove that G∗ ∼= G.

Hint. Use the Fundamental Theorem of Finite Abelian Groups.

(ii) Prove that Hom(G,C×) ∼= Hom(G,Q/Z) when G is a finite abelian group.

∗ 7.35. Prove that the only linear character of a simple group is the trivial character.
Conclude that if χi is not the trivial character, then ni = χi(1) > 1.

∗ 7.36. Let θ = χσ be the character afforded by a representation σ of a finite group G.

(i) If g ∈ G, prove that |θ(g)| = θ(1) if and only if σ(g) is a scalar matrix.
Hint. Use Proposition 2.73 on page 121.

(ii) If θ is an irreducible character, prove that

Z(G/ ker θ) = {g ∈ G : |θ(g)| = θ(1)}.

∗ 7.37. If G is a finite group, prove that the number of its (necessarily irreducible) linear
representations is [G : G′].

7.38. Let G be a finite group.

(i) If g ∈ G, show that |CG(g)| =
∑r

i=1 |χi(g)|2. Conclude that the character table of
G gives |CG(g)|.

(ii) Show how to use the character table of G to see whether G is abelian.

(iii) Show how to use the character table of G to find the lattice of normal subgroups
of G and their orders.

(iv) If G is a finite group, show how to use its character table to find the commutator
subgroup G′.
Hint. If K �G, then the character table of G/K is a submatrix of the character
table of G, and so we can find the abelian quotient of G having largest order.

(v) Show how to use the character table of a finite group G to determine whether G is
solvable.

7.39. (i) Show how to use the character table of G to find |Z(G)|.

(ii) Show how to use the character table of a finite group G to determine whether G is
nilpotent.

7.40. Recall that the group Q of quaternions has the presentation

Q = (A,B|A4 = 1, A2 = B2, BAB−1 = A−1).
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(i) Show that there is a representation σ : Q → GL(2,C) with

A �→
[
i 0
0 −i

]
and B �→

[
0 1
−1 0

]
.

(ii) Prove that σ is an irreducible representation.

7.41. (i) If σ : G → GL(V ) and τ : G → GL(W ) are representations, prove that

σ ⊗ τ : G → GL(V ⊗W ),

defined by

(σ ⊗ τ)(g) = σ(g)⊗ τ(g)

is a representation.

(ii) Prove that the character afforded by σ ⊗ τ is the pointwise product:

χσχτ : g �→ tr(σ(g)) tr(τ(g)).

(iii) Prove that cf(G) is a commutative ring (usually called the Burnside ring of G).

Section 7.6. Theorems of Burnside and of Frobenius

Character Theory will be used in this section to prove two important results in
Group Theory: Burnside’s pmqn Theorem and a theorem of Frobenius. We begin
with the following variation of Schur’s Lemma.

Proposition 7.99 (Schur’s Lemma II). If σ : G → GL(V ) is an irreducible
representation and a linear transformation ϕ : V → V satisfies

ϕσ(g) = σ(g)ϕ

for all g ∈ G, then ϕ is a scalar transformation: there exists ω ∈ C with ϕ = ω1V .

Proof. The vector space V is a CG-module with scalar multiplication gv = σ(g)(v)
for all v ∈ V , and any linear transformation θ satisfying the equation θσ(g) = σ(g)θ
for all g ∈ G is a CG-map V σ → V σ. Since σ is irreducible, the CG-module V σ

is simple. By Schur’s Lemma, End(V σ) is a division ring, and so every nonzero
element in it is nonsingular. Now ϕ−ω1V ∈ End(V σ) for every ω ∈ C; in particular,
this is so when ω is an eigenvalue of ϕ (which lies in C because C is algebraically
closed). The definition of eigenvalue says that ϕ− ω1V is singular, and so it must
be 0; that is, ϕ = ω1V , as desired. •

Recall that if Li is a minimal left ideal in CG and λi : G → EndC(Li) is the
corresponding irreducible representation, then we extended λi to a linear transfor-

mation λ̃i : CG→ EndC(Li):

λ̃i(g)uj =

{
gui if j = i

0 if j �= i

Thus, λ̃i(g) = λi(g) for all g ∈ G. In Proposition 7.68(ii), we proved that λ̃i is a
C-algebra map.



Section 7.6. Theorems of Burnside and of Frobenius 591

Corollary 7.100. Let Li be a minimal left ideal in CG, let λi : G → EndC(Li)

be the corresponding irreducible representation, and let λ̃i : CG→ EndC(Li) be the
algebra map of Proposition 7.68(ii).

(i) If z ∈ Z(CG), then there is ωi(z) ∈ C with

λ̃i(z) = ωi(z)I.

(ii) The function ωi : Z(CG)→ C, given by z �→ ωi(z), is an algebra map.

Proof.

(i) Let z ∈ Z(CG). We verify the hypothesis of Schur’s Lemma II in the special

case V = Li, σ = λi, and ϕ = λ̃i(z). For all g ∈ G, we have λ̃i(z)λi(g) =

λi(zg) (because λ̃i is a multiplicative map extending λi), while λi(g)λ̃i(z) =
λi(gz). These are equal, for zg = gz because z ∈ Z(CG). Proposition 7.99

now says that λ̃i(z) = ωi(z)I for some ωi(z) ∈ C.

(ii) This follows from the equation λ̃i(z) = ωi(z)I and Proposition 7.68, which

says that λ̃i is an algebra map. •

Recall, from Lemma 7.57, that a basis for Z(CG) consists of the class sums

zi =
∑
g∈Ci

g,

where the conjugacy classes of G are C1, . . . , Cr.

Proposition 7.101. Let z1, . . . , zr be the class sums of a finite group G.

(i) For each i, j, we have

ωi(zj) =
hjχi(gj)

ni
,

where gj ∈ Cj.

(ii) There are nonnegative integers aijν with

zizj =
∑
ν

aijνzν .

(iii) The complex numbers ωi(zj) are algebraic integers.

Proof.

(i) Computing the trace of λ̃i(zj) = ωi(zj)I gives

niωi(zj) = χi(zj) =
∑
g∈Cj

χi(g) = hjχi(gj),

for χi is constant on the conjugacy class Cj . Therefore, ωi(zj) = hjχi(gj)/ni.

(ii) Choose gν ∈ Cν . The definition of multiplication in the group algebra shows
that the coefficient of gν in zizj is

|{(gi, gj) ∈ Ci × Cj : gigj = gν}|,
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the cardinality of a finite set, and hence it is a nonnegative integer. As all the
coefficients of zν are equal [for we are in Z(CG)], it follows that this number
is aijν .

(iii) Let M be the (additive) subgroup of C generated by all ωi(zj), for j =
1, . . . , r. Since ωi is an algebra map,

ωi(zj)ωi(z�) =
∑
ν

aj�νωi(zν),

so that M is a ring that is finitely generated as an abelian group (because
aijν ∈ Z). Hence, for each j, M is a Z[ωi(zj)]-module that is a finitely
generated abelian group. If M is faithful, then Corollary 6.37(ii) will give
ωi(zj) an algebraic integer. But M ⊆ C, so that the product of nonzero
elements is nonzero, and this implies that M is a faithful Z[ωi(zj)]-module,
as desired. •

We are almost ready to complete the proof of Burnside’s Theorem.

Proposition 7.102. If (ni, hj) = 1 for some i, j, then either |χi(gj)| = ni or
χi(gj) = 0.

Proof. By hypothesis, there are integers s and t in Z with sni + thj = 1, so that,
for gj ∈ Cj , we have

χi(gj)

ni
= sχi(gj) +

thjχi(gj)

ni
.

Hence, Proposition 7.101 gives χi(gj)/ni an algebraic integer, and so |χi(gj)| ≤ ni,
by Proposition 7.86(i). Thus, it suffices to show that if |χi(gj)/ni| < 1, then
χi(gj) = 0.

Let m(x) ∈ Z[x] be the minimum polynomial of α = χi(gj)/ni; that is, m(x)
is the monic polynomial in Z[x] of least degree having α as a root. We proved,
in Corollary 2.145, that m(x) is irreducible in Q[x]. If α′ is a root of m(x), then
Proposition 3.14 shows that α′ = σ(α) for some σ ∈ Gal(E/Q), where E/Q is the
splitting field of m(x)(x|G| − 1). But

α =
1

ni
(ε1 + · · ·+ εni

) ,

where the ε’s are |G|th roots of unity, and so α′ = σ(α) is also such a sum. It
follows that |α′| ≤ 1 [as in the proof of Proposition 7.86(i)]. Therefore, if N(α) is
the norm of α [which is, by definition, the absolute value of the product of all the
roots of m(x)], then N(α) < 1 (for we are assuming that |α| < 1). But N(α) is
the absolute value of the constant term of m(x), which is an integer. Therefore,
N(α) = 0, hence α = 0, and so χi(gj) = 0, as claimed. •

At last, we can prove Theorem 7.63.

Theorem 7.103. If G is a nonabelian finite simple group, then {1} is the only
conjugacy class whose size is a prime power. Therefore, Burnside’s Theorem is
true: every group of order pmqn, where p and q are primes, is solvable.
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Proof. Assume, on the contrary, that hj = pe > 1 for some j. By Exercise 7.36
on page 589, for all i, we have

Z(G/ kerχi) = {g ∈ G : |χi(g)| = ni}.
Since G is simple, kerχi = {1} for all i, and so Z(G/ kerχi) = Z(G) = {1}. By
Proposition 7.102, if (ni, hj) = 1, then either |χi(gj)| = ni or χi(gj) = 0. Of
course, χ1(gj) = 1 for all j, where χ1 is the trivial character. If χi is not the trivial
character, then we have just seen that the first possibility cannot occur, and so
χi(gj) = 0. On the other hand, if (ni, hj) �= 1, then p | ni (for hj = pe). Thus, for
every i �= 1, either χi(gj) = 0 or p | ni.

Consider the orthogonality relation, Corollary 7.84(ii):
r∑

i=1

niχi(gj) = 0.

Now n1 = 1 = χ1(gj), while each of the other terms is either 0 or of the form pαi,
where αi is an algebraic integer. It follows that

0 = 1 + pβ,

where β is an algebraic integer. This implies that the rational number −1/p is an
algebraic integer, hence lies in Z, and we have the contradiction that −1/p is an
integer. •

Another early application of characters is a theorem of Frobenius. We begin
with a discussion of doubly transitive permutation groups. Let G be a finite group
and X a finite G-set. Recall that if x ∈ X, then its orbit is O(x) = {gx : g ∈ G} and
its stabilizer isGx = {g ∈ G : gx = x}. Theorem 1.107 shows that |O(x)||Gx| = |G|.
A G-set X is transitive if it has only one orbit: if x, y ∈ X, then there exists g ∈ G
with y = gx; in this case, O(x) = X.

If X is a G-set, then there is a homomorphism α : G → SX , namely, g �→ αg,
where αg(x) = gx. We say that X is a faithful G-set if α is an injection; that is,
if gx = x for all x ∈ X, then g = 1. In this case, we may regard G as a subgroup
of SX acting as permutations of X.

Cayley’s Theorem (Theorem 1.95) shows that every group G can be regarded
as a faithful transitive G-set.

Definition. A G-set X is doubly transitive if, for every pair of 2-tuples (x1, x2)
and (y1, y2) in X ×X with x1 �= x2 and y1 �= y2, there exists g ∈ G with y1 = gx1

and y2 = gx2.
9

We often abuse language and call a group G doubly transitive if there exists a
doubly transitive G-set.

9More generally, we call a G-set X k-transitive, where 1 ≤ k ≤ |X|, if, for every pair of
k-tuples (x1, . . . , xk) and (y1, . . . , yk) in X × · · · × X having distinct coordinates, there exists
g ∈ G with yi = gxi for all i ≤ k. Using the Classification Theorem of Finite Simple Groups, it
can be proved that if k > 5, then the only faithful k-transitive groups are the symmetric groups
and the alternating groups. The five Mathieu groups are interesting sporadic simple groups that
are also highly transitive: M22 is 3-transitive, M11 and M23 are 4-transitive, and M12 and M24

are 5-transitive.
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Note that every doubly transitive G-set X is transitive: if x �= y, then (x, y)
and (y, x) are 2-tuples as in the definition, and so there is g ∈ G with y = gx (and
x = gy).

Example 7.104.

(i) If n ≥ 2, the symmetric group Sn is doubly transitive; that is, X = {1, . . . , n}
is a doubly transitive SX -set.

(ii) The alternating group An is doubly transitive if n ≥ 4.

(iii) Let V be a finite-dimensional vector space over F2, and let X = V − {0}.
Then X is a doubly transitive GL(V )-set, for every pair of distinct nonzero
vectors x1, x2 in V must be linearly independent (Exercise 2.74 on page 144).
Since every linearly independent list can be extended to a basis, there is a
basis x1, x2, . . . , xn of V . Similarly, if y1, y2 is another pair of distinct nonzero
vectors, there is a basis y1, y2, . . . , yn. But GL(V ) acts transitively on the set
of all bases of V , by Exercise 2.86 on page 155. Therefore, there is g ∈ GL(V )
with yi = gxi for all i, and so X is a doubly transitive GL(V )-set. �

Proposition 7.105. A G-set X is doubly transitive if and only if, for each x ∈ X,
the Gx-set X − {x} is transitive.

Proof. Let X be a doubly transitive G-set. If y, z ∈ X − {x}, then (y, x) and
(z, x) are 2-tuples of distinct elements of X, and so there is g ∈ G with z = gy and
x = gx. The latter equation shows that g ∈ Gx, and so X − {x} is a transitive
Gx-set.

To prove the converse, let (x1, x2) and (y1, y2) be 2-tuples of distinct elements
of X. We must find g ∈ G with y1 = gx1 and y2 = gy2. Let us denote (gx1, gx2)
by g(x1, x2). There is h ∈ Gx2

with h(x1, x2) = (y1, x2): if x1 = y1, we may take
h = 1X ; if x1 �= y1, we use the hypothesis that X − {x2} is a transitive Gx2

-set.
Similarly, there is h′ ∈ Gy1

with h′(y1, x2) = (y1, y2). Therefore, h′h(x1, x2) =
(y1, y2), and X is a doubly transitive G-set. •

Example 7.106. Let k be a field, let f(x) ∈ k[x] have no repeated roots, let
E/k be a splitting field, and let G = Gal(E/k) be the Galois group of f(x). If
X = {α1, . . . , αn} is the set of all the roots of f(x), then X is a G-set (Theorem 3.3)
that is transitive if and only if f(x) is irreducible (Proposition 3.14). Now f(x)
factors in k(α1)[x]:

f(x) = (x− α1)f1(x).

The reader may show that G1 = Gal(E/k(α1)) ⊆ G is the stabilizer Gα1
and that

X − {α1} is a G1-set. Thus, Proposition 7.105 shows that X is a doubly transitive
G-set if and only if both f(x) and f1(x) are irreducible (over k[x] and k(α1)[x],
respectively). �

Recall Example 1.100: if H is a (not necessarily normal) subgroup of a group
G and X = G/H is the family of all left cosets of H in G, then G acts on G/H
by g : aH �→ gaH. The G-set X is transitive, and the stabilizer of aH ∈ G/H is
aHa−1; that is, gaH = aH if and only if a−1ga ∈ H if and only if g ∈ aHa−1.
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Proposition 7.107. If X is a doubly transitive G-set, then

|G| = n(n− 1)|Gx,y|,
where n = |X| and Gx,y = {g ∈ G : gx = x and gy = y}. Moreover, if X is a
faithful G-set, then |Gx,y| is a divisor of (n− 2)!.

Proof. First, Theorem 1.107 gives |G| = n|Gx|, because X is a transitive G-set.
Now X − {x} is a transitive Gx-set, by Proposition 7.105, and so

|Gx| = |X − {x}||(Gx)y| = (n− 1)|Gx,y|,
because (Gx)y = Gx,y. The last remark follows, in this case, from Gx,y being a
subgroup of SX−{x,y} ∼= Sn−2. •

It is now easy to give examples of groups that are not doubly transitive, for the
orders of doubly transitive groups are constrained.

Definition. A transitive G-set X is called regular if only the identity element of
G fixes any element of X; that is, Gx = {1} for all x ∈ X.

For example, Cayley’s Theorem shows that every group G is isomorphic to
a regular subgroup of SG. The notion of regularity extends to doubly transitive
groups.

Definition. A doubly transitive G-set X is sharply doubly transitive if only
the identity of G fixes two elements of X; that is, Gx,y = {1} for all distinct pairs
x, y ∈ X.

Proposition 7.108. The following conditions are equivalent for a faithful doubly
transitive G-set X with |X| = n.

(i) X is sharply doubly transitive.

(ii) If (x1, x2) and (y1, y2) are 2-tuples in X ×X with x1 �= x2 and y1 �= y2, then
there is a unique g ∈ G with y1 = gx1 and y2 = gy2.

(iii) |G| = n(n− 1).

(iv) Gx,y = {1} for all distinct x, y ∈ X.

(v) For every x ∈ X, the Gx-set X − {x} is regular.

Proof. All the implications are routine. •

Example 7.109.

(i) S3 and A4 are sharply doubly transitive groups.

(ii) The affine group Aff(1,R), defined in Exercise 1.53 on page 45, is

Aff(1,R) = {f : R→ R : f(x) = ax+ b with a �= 0}
under composition. It is isomorphic to the subgroup of GL(2,R) consisting
of all matrices of the form [ a b

0 1 ]. It is plain that we can define Aff(1, k) for
any field k in a similar way. In particular, if k is the finite field Fq, then the
affine group Aff(1,Fq) is finite, and of order q(q − 1). The reader may check
that Fq is a sharply doubly transitive Aff(1,Fq)-set. �
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Notation. If G is a group, then G# = {g ∈ G : g �= 1}.

By Cayley’s Theorem, every group acts regularly on itself. We now consider
transitive groups G such that each g ∈ G# has at most one fixed point. In case
every g ∈ G# has no fixed points, we say that the action of G is fixed-point-free.
Thompson proved that if a finite group H has a fixed-point-free automorphism α
of prime order (that is, the action of the group G =

〈
α
〉
on H# is fixed-point-free),

then H is nilpotent (Robinson, A Course in the Theory of Groups, pp. 306–307).
Thus, let us consider such actions in which there is some g ∈ G# that has a fixed
point; that is, the action of G is not regular.

Definition. A finite group G is a Frobenius group if there exists a transitive
G-set X such that

(i) every g ∈ G# has at most one fixed point;

(ii) there is some g ∈ G# that does have a fixed point.

If x ∈ X, we call Gx a Frobenius complement of G.

Note that condition (i) implies that the G-set X in the definition is necessarily
faithful. Let us rephrase the two conditions: (i) if every g ∈ G# has at most one
fixed point, then Gx,y = {1}; (ii) if there is some g ∈ G# that does have a fixed
point, then Gx �= {1}.

Example 7.110.

(i) The symmetric group S3 is a Frobenius group: X = {1, 2, 3} is a faithful
transitive S3-set; no α ∈ (S3)

# fixes two elements; each transposition (i j)
fixes one element. The cyclic subgroups

〈
(i j)

〉
are Frobenius complements

(so Frobenius complements need not be unique). A permutation β ∈ S3 has
no fixed points if and only if β is a 3-cycle. We are going to prove, in every
Frobenius group, that 1 together with all those elements having no fixed
points comprise a normal subgroup.

(ii) The example of S3 in part (i) can be generalized. Let X be a G-set, with at
least three elements, which is a sharply doubly transitive G-set. Then X is
transitive, Gx,y = {1}, and Gx �= {1} (for if x, y, z ∈ X are distinct, there
exists g ∈ G with x = gx and z = gy). Therefore, every sharply doubly
transitive group G is a Frobenius group. �

Proposition 7.111. A finite group G is a Frobenius group if and only if it contains
a proper nontrivial subgroup H such that H ∩ gHg−1 = {1} for all g /∈ H.

Proof. Let X be a G-set as in the definition of Frobenius group. Choose x ∈ X,
and define H = Gx. Now H is a proper subgroup of G, for transitivity does
not permit gx = x for all g ∈ G. To see that H is nontrivial, choose g ∈ G#

having a fixed point; say, gy = y. If y = x, then g ∈ Gx = H. If y �= x, then
transitivity provides h ∈ G with hy = x, and Exercise 1.109 on page 76 gives
H = Gx = hGyh

−1 �= {1}. If g /∈ H, then gx �= x. Now g(Gx)g
−1 = Ggx. Hence,

if h ∈ H ∩ gHg−1 = Gx ∩Ggx, then h fixes x and gx; that is, h ∈ Gx,y = {1}.
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For the converse, we take X to be the G-set G/H of all left cosets of H in G,
where g : aH �→ gaH for all g ∈ G. We remarked earlier that X is a transitive G-set
and that the stabilizer of aH ∈ G/H is the subgroup aHa−1 of G. Since H �= {1},
we see that GaH �= {1}. Finally, if aH �= bH, then

GaH,bH = GaH ∩GbH = aHa−1 ∩ bHb−1 = a
(
H ∩ a−1bHb−1a

)
a−1 = {1},

because a−1b /∈ H. Therefore, G is a Frobenius group. •

The significance of this last proposition is that it translates the definition of
Frobenius group from the language of G-sets into the language of abstract groups.

Definition. Let X be a G-set. The Frobenius kernel of G is the subset

N = {1} ∪ {g ∈ G : g has no fixed points}.

When X is transitive, we can describe N in terms of a stabilizer Gx. If a /∈ N#,
then there is some y ∈ X with ay = y. Since G acts transitively, there is g ∈ G
with gx = y, and a ∈ Gy = gGxg

−1. Hence, a ∈
⋃

g∈G gGxg
−1. For the reverse

inclusion, if a ∈
⋃

g∈G gGxg
−1, then a ∈ gGxg

−1 = Ggx for some g ∈ G, and so a

has a fixed point; that is, a /∈ N . We have proved that

N = {1} ∪
(
G−

(⋃
g∈G

gGxg
−1

))
.

Exercise 1.96 on page 74 shows that if Gx is a proper subgroup of G, then
G �=

⋃
g∈G gGxg

−1, and so N �= {1} in this case.

Proposition 7.112. If G is a Frobenius group with Frobenius complement H and
Frobenius kernel N , then |N | = [G : H].

Proof. By Proposition 7.111, there is a disjoint union

G = {1} ∪
(⋃
g∈G

gH#g−1
)
∪N#.

Note that NG(H) = H: if g /∈ H, then H ∩ gHg−1 = {1}, and so gHg−1 �= H.
Hence, the number of conjugates of H is [G : NG(H)] = [G : H] (Proposition 1.110).
Therefore, |

⋃
g∈G gH#g−1| = [G : H](|H| − 1), and so

|N | = |N#|+ 1 = |G| − ([G : H](|H| − 1)) = [G : H]. •

The Frobenius kernel may not be a subgroup of G. It is very easy to check that
if g ∈ N , then g−1 ∈ N and aga−1 ∈ N for every a ∈ G; the difficulty is in proving
that N is closed under multiplication. For example, if V = kn is the vector space
of all n× 1 column vectors over a field k, then V #, the set of nonzero vectors in V ,
is a faithful transitive GL(V )-set. Now A ∈ GL(V ) has a fixed point if and only if
there is some v ∈ V # with Av = v; that is, A has a fixed point if and only if 1 is
an eigenvalue of A. Thus, the Frobenius kernel now consists of the identity matrix
together with all linear transformations which do not have 1 as an eigenvalue. Let
|k| ≥ 4, and let α be a nonzero element of k with α2 �= 1. Then A = [ α 0

0 α ] and
B =

[
α−1 0
0 α

]
lie in N , but their product AB =

[
1 0
0 α2

]
does not lie in N . However,
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if G is a Frobenius group, then N is a subgroup; the only known proof of this fact
uses characters.

We have already remarked that if ψ is a character on a subgroupH of a groupG,
then the restriction (ψ�G)H need not equal ψ. The next proof shows that irreducible
characters of a Frobenius complement do extend to irreducible characters of G.

Lemma 7.113. Let G be a Frobenius group with Frobenius complement H and
Frobenius kernel N . For every irreducible character ψ on H other than the trivial
character ψ1, define the generalized character

ϕ = ψ − dψ1,

where d = ψ(1). Then ψ∗ = ϕ�G + dχ1 is an irreducible character on G, and
ψ∗
H = ψ; that is, ψ∗(h) = ψ(h) for all h ∈ H.

Proof. Note first that ϕ(1) = 0. We claim that the induced generalized character
ϕ�G satisfies the equation

(ϕ�G)H = ϕ.

If t1 = 1, . . . , tn is a transversal of H in G, then for g ∈ G, the matrix of ϕ�G(g) on
page 583 has the blocks Ḃ(t−1

i gti) on its diagonal, where Ḃ(t−1
i gti) = 0 if t−1

i gti /∈ H

(this is just the matrix version of Theorem 7.90). If h ∈ H, then t−1
i hti /∈ H for all

i �= 1, and so Ḃ(t−1
i hti) = 0. Therefore, there is only one nonzero diagonal block,

and

tr(ϕ�G(h)) = tr(B(h));

that is,

ϕ�G(h) = ϕ(h).

We have just seen that ϕ�G is a generalized character onG such that (ϕ�G)H = ϕ.
By Frobenius Reciprocity (Theorem 7.94),

(ϕ�G, ϕ�G)G = (ϕ, (ϕ�G)H)H = (ϕ, ϕ)H .

But ϕ = ψ − dψ1, so that orthogonality of ψ and ψ1 gives

(ϕ, ϕ)H = 1 + d2.

Similarly,

(ϕ�G, χ1)G = (ϕ, ψ1)H = −d,
where χ1 is the trivial character on G. Define

ψ∗ = ϕ�G + dχ1.

Now ψ∗ is a generalized character on G, and

(ψ∗, ψ∗)G = (ϕ�G, ϕ�G)G + 2d(ϕ�G, χ1)G + d2 = 1 + d2 − 2d2 + d2 = 1.

We have

(ψ∗)H = (ϕ�G)H + d(χ1)H = ϕ+ dψ1 = (ψ − dψ1) + dψ1 = ψ.

Since ψ∗(1) = ψ(1) > 0, Corollary 7.79 says that ψ∗ is an irreducible character
on G. •
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Theorem 7.114 (Frobenius). Let G be a Frobenius group with Frobenius comple-
ment H and Frobenius kernel N . Then N is a normal subgroup of G, N ∩H = {1},
and NH = G.

Remark. A group G having a subgroup Q and a normal subgroup K such that
K ∩ Q = {1} and KQ = G is called a semidirect product. We will discuss such
groups in Chapter 9. �

Proof. For every irreducible character ψ on H other than the trivial character ψ1,
define the generalized character ϕ = ψ − dψ1, where d = ψ(1). By Lemma 7.113,
ψ∗ = ϕ�G + dχ1 is an irreducible character on G. Define

N∗ =
⋂

ψ �=ψ1

kerψ∗.

Of course, N∗ is a normal subgroup of G.

By Lemma 7.113, ψ∗(h) = ψ(h) for all h ∈ H; in particular, if h = 1, we have

ψ∗(1) = ψ(1) = d.(1)

If g ∈ N#, then for all a ∈ G, we have g /∈ aHa−1 (for g has no fixed points),
and so ϕ̇(aga−1) = 0. The induced character formula, Theorem 7.90, now gives
ϕ�G(g) = 0. Hence, if g ∈ N#, then Equation (5) gives

ψ∗(g) = ϕ�G(g) + dχ1(g) = d.

We conclude that if g ∈ N , then

ψ∗(g) = d = ψ∗(1);

that is, g ∈ kerψ∗. Therefore,

N ⊆ N∗.

The reverse inclusion will arise from a counting argument.

Let h ∈ H ∩ N∗. Since h ∈ H, Lemma 7.113 gives ψ∗(h) = ψ(h). On the
other hand, since h ∈ N∗, we have ψ∗(h) = ψ∗(1) = d. Therefore, ψ(h) = ψ∗(h) =
d = ψ(1), so that h ∈ kerψ for every irreducible character ψ on H. Consider the
regular character, afforded by the regular representation ρ on H: χρ =

∑
i niψi.

Now χρ(h) =
∑

i niψi(h) �= 0, so that Example 7.74(ii) gives h = 1. Thus,

H ∩N∗ = {1}.

Next, |G| = |H|[G : H] = |H||N |, by Proposition 7.112. Note that HN∗ is a
subgroup of G, because N∗ � G. Now |HN∗||H ∩ N∗| = |H||N∗|, by the Second
Isomorphism Theorem; since H ∩ N∗ = {1}, we have |H||N | = |G| ≥ |HN∗| =
|H||N∗|. Hence, |N | ≥ |N∗|. But |N | ≤ |N∗|, because N ⊆ N∗, and so N = N∗.
Therefore, N �G, H ∩N = {1}, and HN = G. •

Much more can be said about the structure of Frobenius groups. Every Sy-
low subgroup of a Frobenius complement is either cyclic or generalized quaternion
(Huppert, Endliche Gruppen I, p. 502), and it is a consequence of Thompson’s
Theorem on fixed-point-free automorphisms that every Frobenius kernel is nilpo-
tent (Robinson, A Course in the Theory of Groups, p. 306); that is, N is the direct
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product of its Sylow subgroups. The reader is referred to Curtis–Reiner, Repre-
sentation Theory of Finite Groups and Associative Algebras, pp. 242–246, or Feit,
Characters of Finite Groups, pp. 133–139.

Exercises

7.42. Prove that the affine group Aff(1,Fq) is sharply doubly transitive.

7.43. Assume that the family of left cosets G/H of a subgroup H ⊆ G is a G-set via the
representation on cosets. Prove that G/H is a faithful G-set if and only if

⋂
a∈G aHa−1 =

{1}. Give an example in which G/H is not a faithful G-set.

7.44. Prove that every Sylow subgroup of SL(2,F5) is either cyclic or quaternion.

7.45. A subset A of a group G is a T.I. set (trivial intersection set) if A ⊆ NG(A)
and A ∩ gAg−1 ⊆ {1} for all g /∈ NG(A).

(i) Prove that a Frobenius complement H in a Frobenius group G is a T.I. set.

(ii) Let A be a T.I. set in a finite group G, and let N = NG(A). If α is a class function
vanishing on N−A and β is a class function on N vanishing on

(⋃
g∈G(A

g∩N)
)
−A,

prove, for all g ∈ N#, that α�G(g) = α(g) and β�G(g) = β(g).
Hint. See the proofs of Lemma 7.114 and Theorem 7.113.

(iii) If α(1) = 0, prove that (α, β)N = (α�G, β�G)G.
(iv) Let H be a self-normalizing subgroup of a finite group G; that is, H = NG(H). If

H is a T.I. set, prove that there is a normal subgroup K of G with K ∩H = {1}
and KH = G.
Hint. See Feit, Characters of Finite Groups, p. 124.

∗ 7.46. Prove that there are no nonabelian simple groups of order n, where 60 < n ≤ 100.

Hint. By Burnside’s Theorem, the only candidates for n in the given range are 66, 70,
78, 84, and 90; note that 90 was eliminated in Exercise 4.32 on page 251.

7.47. Prove that there are no nonabelian simple groups of order n, where 101 ≤ n < 168.
We remark that PSL(2,F7) is a simple group of order 168, and it is the unique such group
up to isomorphism. In view of Proposition 4.44, Corollary 4.71, and Exercise 7.46, we see
that A5 is the only nonabelian simple group of order strictly less than 168.

Hint. By Burnside’s Theorem, the only candidates for n in the given range are 102,
105, 110, 120, 126, 130, 132, 138, 140, 150, 154,154, 156, and 165. Use Exercise 1.108 on
page 76 and Exercise 4.33 on page 252.

Section 7.7. Division Algebras

When applying the Wedderburn–Artin Theorems to group algebras kG, where k
is algebraically closed, we used Molien’s Theorem (Corollary 7.53) to assume that
the matrix rings have entries in k. If k is not algebraically closed, then (noncom-
mutative) division rings can occur. At the moment, the only example we know of
such a ring is the quaternions H, and it is not at all obvious how to construct other
examples.
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Linear representations of a finite group over a field k are the simplest ones,
for every finite subgroup of the multiplicative group k× is cyclic (Theorem 2.46).
Herstein proved that every finite subgroup of D× is cyclic if D is a division ring
whose center is a field of characteristic p > 0, but it is false when Z(D) has char-
acteristic 0 (obviously, the group of quaternions is a subgroup of H×). All finite
subgroups of multiplicative groups of division rings were found by Amitsur, Finite
subgroups of division rings, Trans. Amer. Math. Soc. 80 (1955), 361–386.

That the tensor product of algebras is, again, an algebra, is used in the study
of division rings.

Definition. A division algebra over a field k is a division ring regarded as an
algebra over its center k.

Let us begin by considering the wider class of simple algebras.

Definition. A finite-dimensional10 k-algebra A over a field k is central simple if
it is simple (no two-sided ideals other than A and {0}) and its center Z(A) = k.

Notation. If A is an algebra over a field k, then we write

[A : k] = dimk(A).

Example 7.115.

(i) Every division algebra Δ that is finite-dimensional over its center k is a central
simple k-algebra. The ring H of quaternions is a central simple R-algebra,
and every field is a central simple algebra over itself.

(ii) If k is a field, then Matn(k) is a central simple k-algebra (it is simple, by
Proposition 7.39, and its center consists of all scalar matrices {aI : a ∈ k},
by Exercise 6.9 on page 415).

(iii) If A is a central simple k-algebra, then its opposite algebra Aop is also a
central simple k-algebra. �

Theorem 7.116. Let A be a central simple k-algebra. If B is a simple k-algebra,
then A⊗kB is a central simple Z(B)-algebra. In particular, if B is a central simple
k-algebra, then A⊗k B is a central simple k-algebra.

Proof. Each x ∈ A⊗k B has an expression of the form

x = a1 ⊗ b1 + · · ·+ an ⊗ bn,(1)

where ai ∈ A and bi ∈ B. For nonzero x, define the length of x to be n if there
is no such expression having fewer than n terms. We claim that if x has length n,
that is, if Equation (1) is a shortest such expression, then b1, . . . , bn is a linearly
independent list in B (viewed as a vector space over k). Otherwise, there is some j
and ui ∈ k, not all zero, with bj =

∑
i uibi. Substituting and collecting terms gives

x =
∑
i �=j

(ai + uiaj)⊗ bi,

which is a shorter expression for x.

10We assume that central simple algebras are finite-dimensional, but some authors do not.
Hilbert gave an example of an infinite-dimensional division algebra (Drozd–Kirichenko, Finite-
Dimensional Algebras, p. 81).
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Let I �= (0) be a two-sided ideal in A⊗kB. Choose x to be a (nonzero) element
in I of smallest length, and assume that Equation (1) is a shortest expression for
x. Now a1 �= 0. Since Aa1A is a two-sided ideal in A, simplicity gives A = Aa1A.
Hence, there are elements a′p and a′′p in A with 1 =

∑
p a

′
pa1a

′′
p . Since I is a two-sided

ideal,

x′ =
∑
p

a′pxa
′′
p = 1⊗ b1 + c2 ⊗ b2 + · · ·+ cn ⊗ bn(2)

lies in I, where, for i ≥ 2, we have ci =
∑

p a
′
paia

′′
p . At this stage, we do not know

whether x′ �= 0, but we do know, for every a ∈ A, that (a ⊗ 1)x′ − x′(a ⊗ 1) ∈ I.
Now

(a⊗ 1)x′ − x′(a⊗ 1) =
∑
i≥2

(aci − cia)⊗ bi.(3)

First, this element is 0, lest it be an element in I of length smaller than the length
of x. Since b1, . . . , bn is a linearly independent list, the k-subspace it generates is〈
b1, . . . , bn

〉
=

〈
b1
〉
⊕ · · · ⊕

〈
bn

〉
, and so

A⊗k

〈
b1, . . . , bn

〉
= A⊗k

〈
b1
〉
⊕ · · · ⊕A⊗k

〈
bn

〉
.

It follows from Equation (3) that each term (aci − cia) ⊗ bi must be 0. Hence,
aci = cia for all a ∈ A; that is, each ci ∈ Z(A) = k. Equation (2) becomes

x′ = 1⊗ b1 + c2 ⊗ b2 + · · ·+ cn ⊗ bn

= 1⊗ b1 + 1⊗ c2b2 + · · ·+ 1⊗ cnbn

= 1⊗ (b1 + c2b2 + · · ·+ cnbn).

Now b1+ c2b2+ · · ·+ cnbn �= 0, because b1, . . . , bn is a linearly independent list, and
so x′ �= 0. Therefore, I contains a nonzero element of the form 1⊗b. But simplicity
of B gives BbB = B, and so there are b′q, b

′′
q ∈ B with

∑
q b

′
qbb

′′
q = 1. Hence, I

contains
∑

q(1⊗ b′q)(1⊗ b)(1⊗ b′′q ) = 1⊗ 1, which is the unit in A⊗k B. Therefore,
I = A⊗k B and A⊗k B is simple.

We now seek the center of A⊗k B. Clearly, k ⊗k Z(B) ⊆ Z(A⊗k B). For the
reverse inequality, let z ∈ Z(A⊗k B) be nonzero, and let

z = a1 ⊗ b1 + · · ·+ an ⊗ bn

be a shortest such expression for z. As in the preceding argument, b1, . . . , bn is a
linearly independent list over k. For each a ∈ A, we have

0 = (a⊗ 1)z − z(a⊗ 1) =
∑
i

(aai − aia)⊗ bi.

It follows, as above, that (aai − aia) ⊗ bi = 0 for each i. Hence, aai − aia = 0,
so that aai = aia for all a ∈ A and each ai ∈ Z(A) = k. Thus, z = 1 ⊗ x, where
x = a1b1 + · · ·+ anbn ∈ B. But if b ∈ B, then

0 = z(1⊗ b)− (1⊗ b)z = (1⊗ x)(1⊗ b)− (1⊗ b)(1⊗ x) = 1⊗ (xb− bx).

Therefore, xb− bx = 0 and x ∈ Z(B). We conclude that z ∈ k ⊗k Z(B). •
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It is not generally true that the tensor product of simple k-algebras is again
simple; we must pay attention to the centers. In Exercise 7.52 on page 612, we
saw that if E/k is a field extension, then E ⊗k E need not be a field. The tensor
product of division algebras need not be a division algebra, as we see in the next
example.

Example 7.117. The algebra C⊗R H is an eight-dimensional R-algebra, but it is
also a four-dimensional C-algebra: a basis is

1 = 1⊗ 1, 1⊗ i, 1⊗ j, 1⊗ k.

We let the reader prove that the vector space isomorphism C⊗RH→ Mat2(C) with

1⊗ 1 �→
[
1 0
0 1

]
, 1⊗ i �→

[
i 0
0 −i

]
, 1⊗ j �→

[
0 1
−1 0

]
, 1⊗ k �→

[
0 i
i 0

]
,

is an isomorphism of C-algebras. �

Another way to see that C⊗R H ∼= Mat2(C) arises from Example 7.60(ii). We
remarked then that

RQ ∼= R× R× R× R×H;

tensoring by C gives

CQ ∼= C⊗R RQ ∼= C× C× C× C× (C⊗R H).

It follows from the uniqueness in Wedderburn–Artin Theorem II that C ⊗R H ∼=
Mat2(C) (we give yet another proof of this in the next theorem).

The next theorem puts the existence of the isomorphism in Example 7.117 into
the context of central simple algebras.

Theorem 7.118. Let k be a field and let A be a central simple k-algebra.

(i) If k is the algebraic closure of k, then there is an integer n with

k ⊗k A ∼= Matn(k).

In particular, C⊗R H ∼= Mat2(C).

(ii) If A is a central simple k-algebra, then there is an integer n with

[A : k] = n2.

Proof.

(i) By Theorem 7.116, k⊗k A is a simple k-algebra. Hence, Wedderburn’s The-
orem (actually, Corollary 7.51) gives k ⊗k A ∼= Matn(D) for some n ≥ 1 and
some division ring D. Since D is a finite-dimensional division algebra over
k, the argument in Molien’s Corollary 7.53 shows that D = k. In particular,
since C is the algebraic closure of R, we have C⊗R H ∼= Matn(C) for some n;
as dimR(C⊗R H) = 4, we have n = 2.

(ii) We claim that [A : k] = [k ⊗k A : k], for if a1, . . . , am is a basis of A over k,
then 1⊗ a1, . . . , 1⊗ am is a basis of k⊗k A over k (essentially because tensor
product commutes with direct sum). Therefore,

[A : k] = [k ⊗k A : k] = [Matn(k) : k] = n2. •
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Definition. A splitting field for a central simple k-algebra A is a field extension
E/k for which there exists an integer n such that E ⊗k A ∼= Matn(E).

Theorem 7.118 says that the algebraic closure k of a field k is a splitting field
for every central simple k-algebra A. We are going to see that there always exists
a splitting field that is a finite extension of k, but we first develop some tools in
order to prove it.

Definition. If A is a k-algebra and X ⊆ A is a subset, then its centralizer,
CA(X), is defined by

CA(X) = {a ∈ A : ax = xa for every x ∈ X}.

It is easy to check that centralizers are always subalgebras.

The key idea in the next proof is that a subalgebra B of A makes A into a
(B,A)-bimodule, and that the centralizer of B can be described in terms of an
endomorphism ring.

Theorem 7.119 (Double Centralizer). Let A be a central simple algebra over
a field k and let B be a simple subalgebra of A.

(i) CA(B) is a simple k-algebra.

(ii) B ⊗k Aop ∼= Mats(Δ) and CA(B) ∼= Matr(Δ) for some division algebra Δ,
where r | s.

(iii) [B : k][CA(B) : k] = [A : k].

(iv) CA(CA(B)) = B.

Proof. Associativity of the multiplication in A shows that A can be viewed as a
(B,A)-bimodule. As such, it is a left (B⊗kA

op)-module (Proposition 6.127), where
(b⊗a)x = bxa for all x ∈ A; we denote this module by A∗. But B⊗kA

op is a simple
k-algebra, by Theorem 7.116, so that Corollary 7.51 gives B⊗k A

op ∼= Mats(Δ) for
some integer s and some division algebra Δ over k; in fact, B ⊗k A

op has a unique
(to isomorphism) minimal left ideal L, and Δop ∼= EndB⊗kAop(L). Therefore, as
(B⊗k A

op)-modules, Corollary 7.28 gives A∗ ∼= Lr, the direct sum of r copies of L,
and so EndB⊗kAop(A∗) ∼= Matr(Δ).

We claim that

CA(B) ∼= EndB⊗kAop(A∗) ∼= Matr(Δ);

this will prove (i) and most of (ii). If ϕ ∈ EndB⊗kAop(A∗), then it is, in particular,
an endomorphism of A as a right A-module. Hence, for all a ∈ A, we have

ϕ(a) = ϕ(1a) = ϕ(1)a = ua,

where u = ϕ(1). In particular, if b ∈ B, then ϕ(b) = ub. On the other hand,
taking the left action of B into account, we have ϕ(b) = ϕ(b1) = bϕ(1) = bu.
Therefore, ub = bu for all b ∈ B, and so u ∈ CA(B). Thus, ϕ �→ ϕ(1) is a function
EndB⊗kAop(A∗) → CA(B). It is routine to check that this function is an injective
k-algebra map; it is also surjective, for if u ∈ CA(B), then the map A→ A, defined
by a �→ ua, is a (B ⊗k A

op)-map.
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We now compute dimensions. Define d = [Δ : k]. Since L is a minimal left ideal
in Mats(Δ), we have Mats(Δ) ∼= Ls [concretely, L = col(1), all the first columns of
s× s matrices over Δ]. Therefore, [Mats(Δ) : k] = s2[Δ : k] and [Ls : k] = s[L : k],
so that

[L : k] = sd.

Also,

[A : k] = [A∗ : k] = [Lr : k] = rsd.

It follows that

[A : k][B : k] = [B ⊗k Aop : k] = [Mats(Δ) : k] = s2d.

Therefore, [B : k] = s2d/rsd = s/r, and so r | s. Hence,

[B : k][CA(B) : k] = [B : k][Matr(Δ) : k] =
s

r
· r2d = rsd = [A : k],

because we have already proved that CA(B) ∼= Matr(Δ).

Finally, we prove (iv). It is easy to see that B ⊆ CA(CA(B)): after all, if b ∈ B
and u ∈ CA(B), then bu = ub, and so b commutes with every such u. But CA(B)
is a simple subalgebra, by (i), and so the equation in (iii) holds if we replace B by
CA(B):

[CA(B) : k][CA(CA(B)) : k] = [A : k].

We conclude that [B : k] = [CA(CA(B)) : k]; together with B ⊆ CA(CA(B)), this
equality gives B = CA(CA(B)). •

Here is a minor variant of the theorem.

Corollary 7.120. If B is a simple subalgebra of a central simple k-algebra A, where
k is a field, then there is a division algebra D with Bop ⊗k A ∼= Mats(D).

Proof. By Theorem 7.119(ii), we have B ⊗k Aop ∼= Mats(Δ) for some division
algebra Δ. Hence, (B ⊗k Aop)op ∼= (Mats(Δ))op. But (Mats(Δ))op ∼= Mats(Δ

op),
by Proposition 6.17, while (B⊗k A

op)op ∼= Bop⊗k A, by Exercise 7.50 on page 612.
Setting D = Δop completes the proof. •

If Δ is a division algebra over a field k and δ ∈ Δ, then the subdivision algebra
generated by k and δ is a field, because elements in the center k commute with δ.
We are interested in maximal subfields of Δ.

Lemma 7.121. If Δ is a division algebra over a field k, then a subfield E of Δ is
a maximal subfield if and only if CΔ(E) = E.

Proof. If E is a maximal subfield of Δ, then E ⊆ CΔ(E) because E is commutative.
For the reverse inclusion, it is easy to see that if δ ∈ CΔ(E), then the division
algebra E′ generated by E and δ is a field. Hence, if δ /∈ E, then E � E′, and the
maximality of E is contradicted.

Conversely, suppose that E is a subfield with CΔ(E) = E. If E is not a maximal
subfield of Δ, then there exists a subfield E′ with E � E′. Now E′ ⊆ CΔ(E), so
that if there is some a′ ∈ E′ with a′ /∈ E, then E �= CΔ(E). Therefore, E is a
maximal subfield. •
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After proving an elementary lemma about tensor products, we will extend the
next result from division algebras to central simple algebras (Theorem 7.131).

Theorem 7.122. If D is a division algebra over a field k and E is a maximal
subfield of D, then E is a splitting field for D; that is, E ⊗k D ∼= Mats(E), where
s = [D : E] = [E : k].

Proof. Let us specialize the algebras in Theorem 7.119. Here, A = D, B = E,
and CA(E) = E, by Lemma 7.121. Now the condition CA(B) ∼= Matr(Δ) becomes
E ∼= Matr(Δ); since E is commutative, r = 1 and Δ = E. Thus, Corollary 7.120
says that E ⊗k D = Eop ⊗k D ∼= Mats(E).

The equality in Theorem 7.119(iii) is now [D : k] = [E : k][E : k] = [E : k]2.
But [E ⊗k D : k] = [Mats(E) : k] = s2[E : k], so that s2 = [D : k] = [E : k]2 and
s = [E : k]. •

Corollary 7.123. If D is a division algebra over a field k, then all maximal sub-
fields have the same degree over k.

Remark. It is not true that maximal subfields in arbitrary division algebras are
isomorphic; see Exercise 7.62 on page 613. �

Proof. For every maximal subfield E, we have [E : k] = [D : E] =
√
[D : k]. •

This corollary can be illustrated by Example 7.117. The quaternions H is a
four-dimensional R-algebra, so that a maximal subfield must have degree 2 over R;
this is so, for C is a maximal subfield.

We now prove a technical theorem that will yield wonderful results. Recall that
a unit in a noncommutative ring A is an element having a two-sided inverse in A.

Theorem 7.124. Let k be a field, let B be a simple k-algebra, and let A be a
central simple k-algebra. If there are algebra maps f, g : B → A, then there exists a
unit u ∈ A with

g(b) = uf(b)u−1

for all b ∈ B.

Proof. The map f makes A into a left B-module if we define the action of b ∈ B
on an element a ∈ A as f(b)a. This action makes A into a (B,A)-bimodule, for
the associative law in A gives

(
f(b)x

)
a = f(b)(xa) for all x ∈ A. As usual, this

(B,A)-bimodule is a left (B ⊗k Aop)-module, where (b⊗ a′)a = baa′ for all a ∈ A;
denote it by fA. Similarly, g can be used to make A into a left (B ⊗k A

op)-module
we denote by gA. By Theorem 7.116, B ⊗k A

op is a simple k-algebra. Now

[fA : Δ] = [A : Δ] = [gA : Δ],

so that fA ∼= gA as (B ⊗k Aop)-modules, by Corollary 7.51. If ϕ : fA → gA is a
(B ⊗k Aop)-isomorphism, then

ϕ(f(b)aa′) = g(b)ϕ(a)a′(4)

for all b ∈ B and a, a′ ∈ A. Since ϕ is an automorphism of A as a right module over
itself, ϕ(a) = ϕ(1a) = ua, where u = ϕ(1) ∈ A. To see that u is a unit, note that
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ϕ−1(a) = u′a for all a ∈ A. Now a = ϕϕ−1(a) = ϕ(u′a) = uu′a for all a ∈ A; in
particular, when a = 1, we have 1 = uu′. The equation ϕ−1ϕ = 1A gives 1 = u′u,
as desired. Substituting into Equation (4), we have

uf(b)a = ϕ(f(b)a) = g(b)ϕ(a) = g(b)ua

for all a ∈ A. In particular, if a = 1, then uf(b) = g(b)u and g(b) = uf(b)u−1. •

Corollary 7.125 (Skolem–Noether). Let A be a central simple k-algebra over
a field k, and let B and B′ be isomorphic simple k-subalgebras of A. If ψ : B → B′

is an isomorphism, then there exists a unit u ∈ A with ψ(b) = ubu−1 for all b ∈ B.

Proof. In the theorem, take f : B → A to be the inclusion, define B′ = imψ, and
define g = iψ, where i : B′ → A is the inclusion. •

There is an analog of the Skolem–Noether Theorem in Group Theory. A the-
orem of G. Higman, B. H. Neumann, and H. Neumann says that if B and B′ are
isomorphic subgroups of a group G, say, ϕ : B → B′ is an isomorphism, then there
exists a group G∗ containing G and an element u ∈ G∗ with ϕ(b) = ubu−1 for
every b ∈ B. There is a proof in Rotman, An Introduction to the Theory of Groups,
p. 404.

Corollary 7.126. Let k be a field. If ψ is an automorphism of Matn(k), then there
exists a nonsingular matrix P ∈ Matn(k) with

ψ(T ) = PTP−1

for every matrix T in Matn(k).

Proof. The matrix ring A = Matn(k) is a central simple k-algebra. Set B=B′=A
in the Skolem–Noether Theorem. •

Here is another proof of Wedderburn’s Theorem 7.13 in the present spirit.

Theorem 7.127 (Wedderburn). Every finite division ring D is a field.

Proof. (van der Waerden) Let Z = Z(D), and let E be a maximal subfield of D.
If d ∈ D, then Z(d) is a subfield of D, and hence there is a maximal subfield Ed

containing Z(d). By Corollary 7.123, all maximal subfields have the same degree,
hence have the same order. By Corollary 2.158, all maximal subfields here are
isomorphic (this is not generally true; see Exercise 7.62). For every d ∈ D, the
Skolem–Noether Theorem says that there is xd ∈ D with Ed = xdEx−1

d . Therefore,
D =

⋃
x xEx−1, and so

D× =
⋃
x

xE×x−1.

If E is a proper subfield of D, then E× is a proper subgroup of D×, and this
equation contradicts Exercise 1.96 on page 74. Therefore, D = E is commutative.

•

Theorem 7.128 (Frobenius). If D is a noncommutative finite-dimensional real
division algebra, then D ∼= H.
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Proof. If E is a maximal subfield of D, then [D : E] = [E : R] ≤ 2. If [E : R] = 1,
then [D : R] = 12 = 1 and D = R. Hence, [E : R] = 2 and [D : R] = 4. Let
us identify E with C (we know they are isomorphic). Now complex conjugation
is an automorphism of E, so that the Skolem–Noether Theorem gives x ∈ D with
z = xzx−1 for all z ∈ E. In particular, −i = xix−1. Hence,

x2ix−2 = x(−i)x−1 = −xix−1 = i,

and so x2 commutes with i. Therefore, x2 ∈ CD(E) = E, by Lemma 7.121, and so
x2 = a+ bi for a, b ∈ R. But

a+ bi = x2 = xx2x−1 = x(a+ bi)x−1 = a− bi,

so that b = 0 and x2 ∈ R. If x2 > 0, then there is t ∈ R with x2 = t2. Now
(x + t)(x − t) = 0 gives x = ±t ∈ R, contradicting −i = xix−1. Therefore,
x2 = −r2 for some real r. The element j, defined by j = x/r, satisfies j2 = −1 and
ji = −ij. The list 1, i, j, ij is linearly independent over R: if a+bi+cj+dij = 0, then
(−di−c)j = a+ib ∈ C. Since j /∈ C (lest x ∈ C), we must have −di−c = 0 = a+bi.
Hence, a = b = 0 = c = d. Since [D : R] = 4, the list 1, i, j, ij is a basis of D. It is
now routine to see that if we define k = ij, then ki = j = −ik, jk = i = −kj, and
k2 = −1, and so D ∼= H. •

In 1929, Brauer introduced the Brauer group to study division rings. Since
construction of division rings was notoriously difficult, he considered the wider
class of central simple algebras. Brauer introduced the following relation on central
simple k-algebras.

Definition. Two central simple k-algebras A and B are similar, denoted by

A ∼ B,

if there are integers n and m with A⊗k Matn(k) ∼= B ⊗k Matm(k).

If A is a (finite-dimensional) central simple k-algebra, then Corollary 7.48 and
Wedderburn–Artin II show that A ∼= Matn(Δ) for a unique k-division algebra Δ.
We shall see that A ∼ B if and only if they determine the same division algebra.

Lemma 7.129. Let A be a finite-dimensional algebra over a field k. If S and T
are k-subalgebras of A such that

(i) st = ts for all s ∈ S and t ∈ T,

(ii) A = ST,

(iii) [A : k] = [S : k][T : k],

then A ∼= S ⊗k T .

Proof. There is a k-linear transformation f : S⊗k T → A with s⊗ t �→ st, because
(s, t) �→ st is a k-bilinear function S × T → A. Condition (i) implies that f is an
algebra map, for

f
(
(s⊗ t)(s′ ⊗ t′)

)
= f(ss′ ⊗ tt′) = ss′tt′ = sts′t′ = f(s⊗ t)f(s′ ⊗ t′).

Since A = ST , by condition (ii), the k-linear transformation f is a surjection; since
dimk(S ⊗k T ) = dimk(A), by condition (iii), f is a k-algebra isomorphism. •
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Lemma 7.130. Let k be a field.

(i) If A is a k-algebra, then

A⊗k Matn(k) ∼= Matn(A).

(ii) Matn(k)⊗k Matm(k) ∼= Matnm(k).

(iii) A ∼ B is an equivalence relation.

(iv) If A is a central simple algebra, then

A⊗k Aop ∼= Matn(k),

where n = [A : k].

Proof.

(i) Define k-subalgebras of Matn(A) by

S = Matn(k) and T = {aI : a ∈ A}.
If s ∈ S and t ∈ T , then st = ts (for the entries of matrices in S commute
with elements a ∈ A). Now S contains every matrix unit Eij (whose i, j
entry is 1 and whose other entries are 0), so that ST contains all matrices of
the form aijEij for all i, j, where aij ∈ A; hence, ST = Matn(A). Finally,
[S : k][T : k] = n2[A : k] = [Matn(A) : k]. Therefore, Lemma 7.129 gives the
desired isomorphism.

(ii) If V and W are vector spaces over k of dimensions n and m, respectively,
it suffices to prove that Endk(V ) ⊗k Endk(W ) ∼= Endk(V ⊗k W ). Define S
to be all f ⊗ 1W , where f ∈ Endk(V ), and define T to be all 1V ⊗ g, where
g ∈ Endk(W ). It is routine to check that the three conditions in Lemma 7.129
hold.

(iii) Since k = Mat1(k), we have A ∼= A ⊗k k ∼= A ⊗k Mat1(k), so that ∼ is
reflexive. Symmetry is obvious; for transitivity, suppose that A ∼ B and
B ∼ C; that is,

A⊗k Matn(k) ∼= B ⊗k Matm(k) and B ⊗k Matr(k) ∼= C ⊗k Mats(k).

Then A⊗k Matn(k)⊗k Matr(k) ∼= A⊗k Matnr(k), by part (ii). On the other
hand,

A⊗k Matn(k)⊗k Matr(k) ∼= B ⊗k Matm(k)⊗k Matr(k)

∼= C ⊗k Matm(k)⊗k Mats(k)

∼= C ⊗k Matms(k).

Therefore, A ∼ C, and so ∼ is an equivalence relation.

(iv) Define f : A × Aop → Endk(A) by f(a, c) = λa ◦ ρc, where λa : x �→ ax
and ρc : x �→ xc; it is routine to check that λa and ρc are k-maps (so their
composite is also a k-map), and that f is k-biadditive. Hence, there is a k-map

f̂ : A⊗k A
op → Endk(A) with f̂(a⊗ c) = λa ◦ρc. Associativity a(xc) = (ax)c

in A says that λa ◦ ρc = ρc ◦ λa, from which it easily follows that f̂ is a k-

algebra map. As A⊗kA
op is a simple k-algebra and ker f̂ is a proper two-sided

ideal, we have f̂ injective. Now dimk(Endk(A)) = dimk(Homk(A,A)) = n2,
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where n = [A : k]. Since dimk(im f̂) = dimk(A⊗k Aop) = n2, it follows that

f̂ is a k-algebra isomorphism: A⊗k Aop ∼= Endk(A). •

We now extend Theorem 7.122 from division algebras to central simple algebras.

Theorem 7.131. Let A be a central simple k-algebra over a field k, so that A ∼=
Matr(Δ), where Δ is a division algebra over k. If E is a maximal subfield of Δ,
then E splits A; that is, there is an integer n and an isomorphism

E ⊗k A ∼= Matn(E).

More precisely, if [Δ : E] = s, then n = rs and [A : k] = (rs)2.

Proof. By Theorem 7.122, Δ is split by a maximal subfield E (which is, of course,
a finite extension of k): E ⊗k Δ ∼= Mats(E), where s = [Δ : E] = [E : k]. Hence,

E ⊗k A ∼= E ⊗k Matr(Δ) ∼= E ⊗k (Δ⊗k Matr(k))

∼= (E ⊗k Δ)⊗k Matr(k) ∼= Mats(E)⊗k Matr(k) ∼= Matrs(E).

Therefore, A ∼= Matr(Δ) gives [A : k] = r2[Δ : k] = r2s2. •

Definition. If [A] denotes the equivalence class of a central simple k-algebra A
under similarity, define the Brauer group Br(k) to be the set

Br(k) =
{
[A] : A is a central simple k-algebra

}
with binary operation

[A][B] = [A⊗k B].

Theorem 7.132. Br(k) is an abelian group for every field k. Moreover, if A ∼=
Matn(Δ) for a division algebra Δ, then Δ is a central simple k-algebra and [A] = [Δ]
in Br(k).

Proof. We show that the operation is well-defined: if A,A′, B,B′ are k-algebras
with A ∼ A′ and B ∼ B′, then A⊗k B ∼ A′ ⊗k B′. The isomorphisms

A⊗k Matn(k) ∼= A′ ⊗k Matm(k) and B ⊗k Matr(k) ∼= B′ ⊗k Mats(k)

give A ⊗k B ⊗k Matn(k) ⊗k Matr(k) ∼= A′ ⊗k B′ ⊗k Matm(k) ⊗k Mats(k) (we are
using commutativity and associativity of tensor product), so that Lemma 7.130(ii)
gives A⊗k B⊗k Matnr(k) ∼= A′⊗k B

′⊗k Matms(k). Therefore, A⊗k B ∼ A′⊗k B
′.

That [k] is the identity follows from k ⊗k A ∼= A, associativity and com-
mutativity follow from associativity and commutativity of tensor product, and
Lemma 7.130(iv) shows that [A]−1 = [Aop]. Therefore, Br(k) is an abelian group.

If A is a central simple k-algebra, then A ∼= Matr(Δ) for some finite-dimensional
division algebra Δ over k. Hence, k = Z(A) ∼= Z(Matr(Δ)) ∼= Z(Δ), by The-
orem 7.116. Thus, Δ is a central simple k-algebra, [Δ] ∈ Br(k), and [Δ] = [A]
(because Δ⊗k Matr(k) ∼= Matr(Δ) ∼= A ∼= A⊗k k ∼= A⊗k Mat1(k)). •

The next proposition shows the significance of the Brauer group.
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Proposition 7.133. If k is a field, then there is a bijection from Br(k) to the
family D of all isomorphism classes of finite-dimensional division algebras over k,
and so |Br(k)| = |D|. Therefore, there exists a noncommutative division ring,
finite-dimensional over its center k, if and only if Br(k) �= {0}.

Proof. Define a function ϕ : Br(k) → D by setting ϕ([A]) to be the isomorphism
class of Δ if A ∼= Matn(Δ). Note that Theorem 7.132 shows that [A] = [Δ] in Br(k).
Let us see that ϕ is well-defined. If [Δ] = [Δ′], then Δ ∼ Δ′, so there are integers
n and m with Δ ⊗k Matn(k) ∼= Δ′ ⊗k Matm(k). Hence, Matn(Δ) ∼= Matm(Δ′).
By the uniqueness in the Wedderburn–Artin Theorems, Δ ∼= Δ′ (and n = m).
Therefore, ϕ([Δ]) = ϕ([Δ′]).

Clearly, ϕ is surjective, for if Δ is a finite-dimensional division algebra over k,
then the isomorphism class of Δ is equal to ϕ([Δ]). To see that ϕ is injective,
suppose that ϕ([Δ]) = ϕ([Δ′]). Then, Δ ∼= Δ′, which implies Δ ∼ Δ′. •

Example 7.134.

(i) If k is an algebraically closed field, then Br(k) = {0}, by Theorem 7.118.

(ii) If k is a finite field, then Wedderburn’s Theorem 7.127 (= Theorem 7.13)
shows that Br(k) = {0}.

(iii) If k = R, then Frobenius’s Theorem 7.128 shows that Br(R) ∼= I2.

(iv) It is proved, using Class Field Theory, that Br(Qp) ∼= Q/Z, where Qp is the
field of p-adic numbers. Moreover, there is an exact sequence

0→ Br(Q)→ Br(R)⊕
⊕
p

Br(Qp)→ Q/Z→ 0.

In a series of deep papers, Br(k) was computed for the most interesting fields k
arising in Algebraic Number Theory (local fields, one of which isQp, and global
fields) by Albert, Brauer, Hasse, and Noether. �

Proposition 7.135. If E/k is a field extension, then there is a homomorphism

fE/k : Br(k)→ Br(E)

given by [A] �→ [E ⊗k A].

Proof. If A and B are central simple k-algebras, then E ⊗k A and E ⊗k B are
central simple E-algebras, by Theorem 7.116. If A ∼ B, then E ⊗k A ∼ E ⊗k B
as E-algebras, by Exercise 7.59 on page 613. It follows that the function fE/k is
well-defined. Finally, fE/k is a homomorphism, because

(E ⊗k A)⊗E (E ⊗k B) ∼= (E ⊗E E)⊗k (A⊗k B) ∼= E ⊗k (A⊗k B),

by Proposition 6.121, associativity of tensor product. •

Definition. If E/k is a field extension, then the relative Brauer group, Br(E/k),
is the kernel of the homomorphism fE/k : Br(k)→ Br(E):

Br(E/k) = ker fE/k =
{
[A] ∈ Br(k) : A is split by E

}
.
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Corollary 7.136. For every field k, we have

Br(k) =
⋃

E/k finite Galois

Br(E/k).

Proof. This follows from Theorem 7.131 after showing that we may assume that
E/k is Galois. •

In a word, the Brauer group arose as a way to study division rings. It is an
interesting object, but we have not really used it seriously. For example, we have not
yet seen any noncommutative division rings other than the real division algebra H
(and its variants for subfields k of R). We will remedy this when we introduce
crossed product algebras in Chapter 9. For example, we will see, in Corollary 9.143,
that there exists a division ring whose center is a field of characteristic p > 0. For
further developments, we refer the reader to Jacobson, Finite-Dimensional Division
Algebras over Fields, and Reiner, Maximal Orders.

Exercises

7.48. (i) If k is a subfield of a field K, prove that the ring K ⊗k k[x] is isomorphic
to K[x].

(ii) Suppose that k is a field, p(x) ∈ k[x] is irreducible, and K = k(α), where α is a root
of p(x). Prove that, as rings, K ⊗k K ∼= K[x]/(p(x)), where (p(x)) is the principal
ideal in K[x] generated by p(x).

(iii) The polynomial p(x), though irreducible in k[x], may factor in K[x]. Give an
example showing that the ring K ⊗k K need not be semisimple.

(iv) Prove that if K/k is a finite separable extension, then K ⊗k K is semisimple. (The
converse is also true.)

7.49. If A ∼= A′ and B ∼= B′ are k-algebras, where k is a commutative ring, prove that
A⊗k B ∼= A′ ⊗k B′ as k-algebras.

∗ 7.50. If k is a commutative ring and A and B are k-algebras, prove that

(A⊗k B)op ∼= Aop ⊗k Bop.

7.51. If R is a commutative k-algebra, where k is a field and G is a group, prove that
R⊗k kG ∼= RG.

∗ 7.52. (i) If k is a subring of a commutative ring R, prove that R ⊗k k[x] ∼= R[x] as
R-algebras.

(ii) If f(x) ∈ k[x] and (f) is the principal ideal in k[x] generated by f(x), prove that
R ⊗k (f) is the principal ideal in R[x] generated by f(x). More precisely, there is
a commutative diagram

0 �� R⊗k (f) ��

��

R ⊗k k[x]

��
0 �� (f) �� R[x]
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(iii) Let k be a field and E ∼= k[x]/(f), where f(x) ∈ k[x] is irreducible. Prove that
E ⊗k E ∼= E[x]/(f)E, where (f)E is the principal ideal in E[x] generated by f(x).

(iv) Give an example of a field extension E/k with E ⊗k E not a field.
Hint. If f(x) ∈ k[x] factors into g(x)h(x) in E[x], where (g, h) = 1, then the
Chinese Remainder Theorem applies.

7.53. Let k be a field and let f(x) ∈ k[x] be irreducible. If K/k is a field extension, then
f(x) = p1(x)

e1 · · · pn(x)en ∈ K[x], where the pi(x) are distinct irreducible polynomials in
K[x] and ei ≥ 1.

(i) Prove that f(x) is separable if and only if all ei = 1.

(ii) Prove that a finite field extension K/k is separable if and only if K ⊗k K is a
semisimple ring.
Hint. First, observe that K/k is a simple extension, so there is an exact sequence
0 → (f) → k[x] → K → 0. Second, use the Chinese Remainder Theorem.

7.54. Prove that H⊗R H ∼= Mat4(R) as R-algebras.

Hint. Use Corollary 7.48 for the central simple R-algebra H⊗R H.

7.55. We have given one isomorphism C⊗R H ∼= Mat2(C) in Example 7.117. Describe all
possible isomorphisms between these two algebras.

Hint. Use the Skolem–Noether Theorem.

7.56. Prove that C⊗R C ∼= C× C as R-algebras.

7.57. (i) Let C(x) and C(y) be function fields. Prove that R = C(x)⊗CC(y) is isomorphic
to a subring of C(x, y). Conclude that R has no zero-divisors.

(ii) Prove that C(x)⊗C C(y) is not a field.
Hint. Show that R is isomorphic to the subring of C(x, y) consisting of polynomials
of the form f(x, y)/g(x)h(y).

(iii) Use Exercise 7.7 on page 533 to prove that the tensor product of artinian algebras
need not be artinian.

∗ 7.58. Let A be a central simple k-algebra. If A is split by a field E, prove that A is split
by any field extension E′ of E.

∗ 7.59. Let E/k be a field extension. If A and B are central simple k-algebras with A ∼ B,
prove that E ⊗k A ∼ E ⊗k B as central simple E-algebras.

7.60. If D is a finite-dimensional division algebra over R, prove that D is isomorphic to
either R, C, or H.

7.61. Prove that Mat2(H) ∼= H⊗R Mat2(R) as R-algebras.

∗ 7.62. (i) Let A be a four-dimensional vector space over Q, and let 1, i, j, k be a basis.
Show that A is a division algebra if we define 1 to be the identity and

i2 = −1, j2 = −2, k2 = −2,

ij = k, jk = 2i, ki = j,

ji = −k, kj = −2i, ik = −j.

Prove that A is a division algebra over Q.

(ii) Prove that Q(i) and Q(j) are nonisomorphic maximal subfields of A.

7.63. Let D be the Q-subalgebra of H having basis 1, i, j, k.
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(i) Prove that D is a division algebra over Q.
Hint. Compute the center Z(D).

(ii) For any pair of nonzero rationals p and q, prove that D has a maximal subfield

isomorphic to Q(
√

−p2 − q2).

Hint. Compute (pi+ qj)2.

7.64. (Dickson) If D is a division algebra over a field k, then each d ∈ D is algebraic
over k. Prove that d, d′ ∈ D are conjugate in D if and only if irr(d, k) = irr(d′, k).

Hint. Use the Skolem–Noether Theorem.

7.65. Prove that if A is a central simple k-algebra with A ∼ Matn(k), then A ∼= Matm(k)
for some integer m.

7.66. Prove that if A is a central simple k-algebra with [A] of finite order m in Br(k),
then there is an integer r with

A⊗k · · · ⊗k A ∼= Matr(k)

(there are m factors equal to A). In Chapter 9, we shall see that every element in Br(k)
has finite order.

Section 7.8. Abelian Categories

Since representations of a group G are just another way of considering CG-modules,
contemplating all the representations of G is the same as contemplating CG Mod.
It is natural to ask, more generally, to what extent a category R Mod determines
a ring R. We now prepare the answer to this question; the answer itself is in the
next section.

Recall that an object A in a category C is an initial object if there is a unique
morphism A → X for every X ∈ obj(C); an object Ω in C is a terminal object if
there is a unique morphism X → Ω for every X ∈ obj(C); and an object is a zero
object if it is both initial and terminal (Exercise 6.43 on page 435).

Definition. A category A is additive if

(i) HomA(A,B) is an (additive) abelian group for every A,B ∈ obj(A);
(ii) the distributive laws hold: given morphisms

X
k−→ A

f

⇒
g
B

h−→ Y,

where X and Y ∈ obj(A), then
h(f + g) = hf + hg and (f + g)k = fk + gk;

(iii) A has a zero object;

(iv) A has finite products and finite coproducts: for all objects A,B in A, both
A 
B and A �B exist in obj(A).

Let A and C be additive categories. A functor T : A → C (of either variance)
is additive if, for all A,B ∈ obj(A) and all f, g ∈ HomA(A,B), we have

T (f + g) = Tf + Tg;
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that is, the function HomA(A,B)→ HomC(TA, TB), given by f �→ Tf , is a homo-
morphism of abelian groups.

Example 7.137. It is easy to see that the Hom functors are additive. Let A be
an additive category, let X ∈ obj(A), and let T = HomA(X,�) : A → Ab. If
h : M → N , then Th = h∗ : HomA(X,M) → HomA(X,N) is given by h∗ : f �→
h∗(f) = hf . Hence, if f, g ∈ HomA(X,A), then

T (f + g) = h∗(f + g) = h(f + g) = hf + hg = h∗f + h∗g = Tf + Tg.

A similar argument shows that contravariant Hom functors are additive. �

Of course, if T is an additive functor, then T (0) = 0, where 0 is either a
zero object or a zero morphism. Lemma 6.13 shows that R Mod and ModR are
additive categories, while Exercise 7.67 on page 625 shows that neither Groups
nor ComRings is an additive category. We have just seen that if A is additive,
then the Hom functors A → Ab are additive, while Theorem 6.104 shows that the
tensor functors R Mod→ Ab and ModR → Ab are additive.

That finite coproducts and products coincide for modules is a special case of
a more general fact: finite products and finite coproducts coincide in all additive
categories.

Lemma 7.138. Let C be an additive category, and let M,A,B ∈ obj(C). Then
M ∼= A 
B if and only if there are morphisms i : A→M , j : B →M , p : M → A,
and q : M → B such that

pi = 1A, qj = 1B, pj = 0, qi = 0, and ip+ jq = 1M .

Moreover, A 
B is also a coproduct with injections i and j, and so

A 
B ∼= A �B.

Proof. The proof of the first statement, left to the reader, is a variation of the
proof of Proposition 6.26. The proof of the second statement is a variation of the
proof of Proposition 6.42, and it, too, is left to the reader. The last statement holds
because two coproducts, here A �B and A 
B, must be isomorphic. •

If A and B are objects in an additive category, then A 
 B ∼= A � B; their
common value, denoted by A⊕B, is called their direct sum (or biproduct).

Addition of homomorphisms in Ab can be described without elements. Define
the diagonal Δ: A→ A⊕A by Δ: a �→ (a, a); dually, the codiagonal ∇ : B⊕B → B
is defined by ∇ : (b, b′) �→ b+ b′. If f, g : A→ B, we claim that

∇(f ⊕ g)Δ = f + g.

If a ∈ A, then ∇(f ⊕ g)Δ: a �→ (a, a) �→ (fa, ga) �→ fa + ga = (f + g)(a). As
usual, the advantage of definitions given in terms of maps (rather than in terms of
elements) is that they can be recognized by functors. Diagonals and codiagonals
can be defined and exist in additive categories.
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Definition. Let A be an additive category. If A ∈ obj(A), then the diagonal
ΔA : A → A ⊕ A is the unique morphism with pΔA = 1A and qΔA = 1A, where
p, q are projections:

A

A⊕A

p

%%									

q
��














 A

1A

���������
ΔA��� � � � � � �

1A��,,
,,

,,
,

A

B
i′

��		
		

		
		

	
1B

���
��

��
��

B ⊕B
∇B ��������� B

B

j′

��








 1B

���������

If B ∈ obj(A), then the codiagonal ∇B : B⊕B → B is the unique morphism with
∇Bi

′ = 1B and ∇Bj
′ = 1B , where i′, j′ are injections.

The reader should check that these definitions, when specialized to Ab, give
our original diagonal and codiagonal homomorphisms.

Lemma 7.139. If A is an additive category and f, g ∈ HomA(A,B), then

∇B(f ⊕ g)ΔA = f + g.

Proof. Let p, q : A⊕A→ A be projections, and let i, j : A→ A⊕A and i′, j′ : B →
B ⊕B be injections. We compute:

∇B(f ⊕ g)ΔA = ∇B(f ⊕ g)(ip+ jq)ΔA

= ∇B(f ⊕ g)(ipΔA + jqΔA)

= ∇B(f ⊕ g)(i+ j) (because pΔA = 1A = qΔA)

= ∇B(f ⊕ g)i+∇B(f ⊕ g)j

= ∇Bi
′f +∇Bj

′g (Exercise 6.90 on page 487)

= f + g. (because ∇Bi
′ = 1B = ∇Bj

′) •

Definition. A functor T : A → B between additive categories preserves finite
direct sums if, for all A,B ∈ obj(A), whenever A ⊕ B is a direct sum with
projections p, q and injections i, j, then TA⊕ TB is a direct sum with projections
Tp, Tq and injections Ti, T j.

Recall Exercise 6.90 on page 487: if i, j : A → A ⊕ A and i′, j′ : B → B ⊕ B
are injections and f, g : A → B, then f ⊕ g : A ⊕ A → B ⊕ B is the unique map
completing the coproduct diagram

A
i

$$		
		

		
		

	
i′f

��
















A⊕A
f⊕g �� B ⊕B

A

j

��








 j′g

��									

It follows that if T preserves finite direct sums, then T (f ⊕ g) = Tf ⊕ Tg.
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Proposition 7.140. A functor T : A → B between additive categories is additive
if and only if T preserves finite direct sums.

Proof. If T is additive, then T preserves finite direct sums, by Lemma 7.138.

Conversely, let T preserve finite direct sums. If f, g : A→ B, then

T (f + g) = T
(
∇B(f ⊕ g)ΔA

)
(by Lemma 7.139)

= (T∇B)T (f ⊕ g)(TΔA)

= ∇TBT (f ⊕ g)ΔTA

= ∇TB(Tf ⊕ Tg)ΔTA (Exercise 6.90)

= Tf + Tg. •

We have been reluctant to discuss injections and surjections in categories; after
all, morphisms in a category need not be functions. On the other hand, it is often
convenient to have them.

Definition. A morphism u : B → C in a category C is a monomorphism11 (or
is monic) if u can be canceled from the left; that is, for all objects A and all
morphisms f, g : A→ B, we have uf = ug implies f = g.

A
f

⇒
g
B

u−→ C.

It is clear that u : B → C is monic if and only if, for all A, the induced map
u∗ : Hom(A,B)→ Hom(A,C) is an injection. In an additive category, Hom(A,B)
is an abelian group, and so u is monic if and only if ug = 0 implies g = 0. Exer-
cise 7.71 on page 625 shows that monomorphisms and injections coincide in Sets,

R Mod, and Groups. Even in a category whose morphisms are actually functions,
however, monomorphisms need not be injections (see Exercise 7.72 on page 625).

Here is the dual definition.

Definition. A morphism v : B → C in a category C is an epimorphism (or is
epic) if v can be canceled from the right; that is, for all objectsD and all morphisms
h, k : C → D, we have hv = kv implies h = k.

B
v−→ C

h
⇒
k
D.

It is clear that v : B → C is epic if and only if, for all D, the induced map
v∗ : Hom(C,D)→ Hom(B,D) is an injection. In an additive category, Hom(A,B)
is an abelian group, and so v is monic if and only if gv = 0 implies g = 0. Ex-
ercise 7.71 on page 625 shows that epimorphisms and surjections coincide in Sets
and in R Mod. Every surjective homomorphism in Groups is epic, but we must
be clever to show this (Exercise 6.70 on page 460). Even in a category whose
morphisms are actually functions, epimorphisms need not be surjections. For ex-
ample, if R is a domain, then the ring homomorphism ϕ : R → Frac(R), given
by r �→ r/1, is an epimorphism in ComRings. If A is a commutative ring and

11A useful notation for a monomorphism A → B is A�B, while a notation for an epimor-
phism B → C is B	C.
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h, k : Frac(R) → A are ring homomorphisms agreeing on R, then h = k; thus, the
inclusion Z→ Q is epic.

Projectives and injectives can be defined in any category, but the definitions
involve epimorphisms and monomorphisms. Recognizing these morphisms in gen-
eral categories is too difficult, and so we usually consider projective and injective
objects only in additive categories.

Definition. An object P in an additive category A is projective if, for every epic
g : B → C and every f : P → C, there exists h : P → B with f = gh:

P
h

��8
8

8
f

��
B g

�� C

E

A

f

��

g
�� B

h
��9

9
9

An object E in an additve category A is injective if, for every monic g : A→ B
and every f : A→ E, there exists h : B → E with f = hg.

We can describe kernels and cokernels categorically. Recall that we have seen,
in Example 6.46, that kernel is a pullback and, in Example 6.49, that cokernel is a
pushout. Thus, kernel and cokernel are solutions to universal mapping problems.
We promote this fact to a definition.

Definition. Let A be an additive category. If u : A → B and i : K → A in A,
then the kernel of u, denoted by i = keru, is a solution to the universal mapping
problem illustrated in the diagram below on the left: if ug = 0, then there exists a
unique θ with iθ = g:

X

θ

��'
'
'

g
���

��
��

��
0

����������������

K
i

�� A u
�� B

A

0
����������������

u �� B
π ��

h

���
��

��
��

C

θ

��'
'
'

Y

Similarly, the cokernel of u, denoted by π : C → Y , is a solution to the universal
mapping problem illustrated in the above diagram on the right: if hu = 0, then
there exists a unique θ with θπ = h.

Kernels and cokernels are now morphisms; this is not as strange as it first
appears, for domains and targets are ingredients of functions and of morphisms
(remember that Hom sets in a category are pairwise disjoint, so that each morphism
has a unique domain and target).

Let us consider uniqueness of kernels and cokernels. Suppose that i′ is another
kernel of u : A→ B; thus, i′ : K ′ → A is another solution to the universal mapping
problem:

K

θ

�� i ���
��

��
��

�
0

����������������

K ′
i′

��

θ′

��

A u
�� B
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The maps θ′ and θ are inverses, hence are isomorphisms. Thus, the domain of keru
is unique up to isomorphism.

Let us compare these definitions with the usual notions in Ab. If u : A→ B is
a homomorphism, then keru is a subgroup of A and cokeru = B/ imu is a quotient
of B. Exercise 6.88 says that the inclusion i : keru → A is the kernel in Ab and
the natural map π : B → B/ imu is the cokernel in Ab.

Proposition 7.141. Let A be an additive category.

(i) A morphism u is a monomorphism if and only if keru = 0, and u is an
epimorphism if and only if cokeru = 0.

(ii) If i = keru, then i is a monomorphism and π = cokeru, then π is an epi-
morphism.

Proof.

(i) Let u be monic. Since i = keru, we have ui = 0. But u0 = 0, so canceling u
gives i = 0. Conversely, if i = 0 and ug = u0, then g = iθ = i0 = 0; hence, u
is monic. The proof for cokernels is dual.

(ii) Suppose that X
g−→ K

i−→ A and ig = 0. Since uig = 0, there is a unique
θ : X → K with iθ = ig = 0. Obviously, θ = 0 satisfies this equation, and
so uniqueness gives g = θ = 0; therefore, i is monic. A dual argument shows
that cokernels are epimorphisms. •

The converse of Proposition 7.141(ii) is true in abelian categories, which are
additive categories in which a reasonable notion of exactness can be defined. They
are so called because of their resemblance to Ab.

Definition. A category A is an abelian category if it is an additive category
such that

(i) every morphism has a kernel and a cokernel;

(ii) every monomorphism is a kernel and every epimorphism is a cokernel.

In more detail, axiom (i) says that if u is a morphism in A, then i = keru and
π = cokeru exist and lie in A. Axiom (ii) says that if i is monic, then there is a
morphism u in A with i = keru. Similarly, if π is epic, then there is v in A with
π = coker v.

We can define image and exactness in any abelian category. If u : A → B
in Ab, we can choose cokeru to be the natural map π : B → B/ imu; therefore,
kerπ = imu. Thus, in Ab, we have ker(cokeru) = kerπ = imu. This motivates
the definition of image in abelian categories.

Definition. Let u : A→ B be a morphism in an abelian category, and let cokeru
be π : B → C for some object C. Then its image is

imu = ker(cokeru) = kerπ.

A sequence A
u−→ B

v−→ C in A is exact if there is equality

ker v = im u.
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Remark. We have been careless. If B is an object in an additive category A,
consider all monomorphisms j with target B. Call two such morphisms j : A→ B
and j′ : A′ → B equivalent if there exists an isomorphism θ : A′ → A with j′ = jθ.
Define a subobject of B to be an equivalence class [j] of such monomorphisms:

A
j �� B

A′

θ

��

j′



&&&&&&&

Our discussion of uniqueness of kernels on page 618 shows that kernels may be
viewed as subobjects. The reader can give a dual discussion describing quotient
objects.

We need not be so fussy if an abelian category has “honest” subobjects, for we
can then choose a “favorite” representative and call it the subobject. For example,
if u : B → C in Ab, this formal definition says that the kernel of u is an equivalence
class of morphisms i : K → A. We usually choose K to be the submodule of A and
i to be its inclusion. �

Remark. Mac Lane (Categories for the Working Mathematician, Chapter VIII,
Sections 1 and 3) views exactness in another way (which agrees with the definition
above). If u : A → B is a morphism in an abelian category, then u = me, where
m = ker(cokeru) is monic and e = coker(keru) is epic. Moreover, this factorization
is unique in the following sense. If u = m′e′, where m′ is monic and e′ is epic, then
there is equivalence ofm andm′ and of e and e′. In light of this, he defines exactness
of a sequence in an abelian category as follows: when u = me and v = m′e′ (where

m,m′ are monic and e, e′ are epic), then A
u−→ B

v−→ C is exact if and only if e
and m′ are equivalent. �

The next two propositions construct new abelian categories from old ones.

Definition. A category S is a subcategory of a category C if

(i) obj(S) ⊆ obj(C);

(ii) HomS(A,B) ⊆ HomC(A,B) for all A,B ∈ obj(S);

(iii) if f ∈ HomS(A,B) and g ∈ HomS(B,C), the composite gf ∈ HomS(A,C) is
equal to the composite gf ∈ HomC(A,C);

(iv) if A ∈ obj(S), then 1A ∈ HomS(A,A) is equal to 1A ∈ HomC(A,A).

A subcategory S of a category C is full if HomS(A,B) = HomC(A,B) for all
A,B ∈ obj(S).

It is easy to see that the inclusion of a subcategory is a functor. The subcategory
Ab is a full subcategory of Groups, but if we regard Top as a subcategory of Sets,
then it is not a full subcategory, for there are functions between spaces that are not
continuous.
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Example 7.142.

(i) For every ring R, both R Mod and ModR are abelian categories. In partic-
ular, Z Mod = Ab is abelian.

(ii) The full subcategory of Ab of all finitely generated abelian groups is an
abelian category, as is the full subcategory of all torsion abelian groups.

(iii) The full subcategory of Ab of all torsion-free abelian groups is not an abelian
category, for there are morphisms having no cokernel; for example, the inclu-
sion 2Z→ Z has cokernel I2 which is not torsion-free.

(iv) The category Groups is not abelian (it is not even additive). If S ⊆ G is
a nonnormal subgroup of a group G, then the inclusion i : S → G has no
cokernel. However, if K is a normal subgroup of G with inclusion j : K → G,
then coker j does exist. Thus, axiom (ii) in the definition of abelian category
essentially says that every subobject in an abelian category is normal. �

Remark. Abelian categories are self-dual in the sense that the dual of every
axiom in its definition is itself an axiom; it follows that if A is an abelian category,
then so is its opposite Aop. A theorem using only these axioms in its proof is true
in every abelian category; moreover, its dual is also a theorem in every abelian
category, and its proof is dual to the original proof. The categories R Mod and
ModR are abelian categories having extra properties; for example, R is a special
type of object. Module categories are not self-dual, and this explains why a theorem
and its dual, both of which are true in every module category, may have very
different proofs. For example, the statements “every module is a quotient of a
projective module” and “every module can be imbedded in an injective module”
are dual and are always true. The proofs are not dual because these statements are
not true in every abelian category. Exercise 7.79 on page 626 shows that the abelian
category of all torsion abelian groups has no nonzero projectives, and Exercise 7.80
shows that the abelian category of all finitely generated abelian groups has no
nonzero injectives. �

Here are more examples of abelian categories.

Proposition 7.143. Let S be a full subcategory of an abelian category A. If

(i) a zero object in A lies in S,
(ii) for all A,B ∈ obj(S), the direct sum A⊕B in A lies in S,
(iii) for all A,B ∈ obj(S) and all f : A→ B, both ker f and coker f lie in S,

then S is an abelian category.

Remark. When we say that a morphism i : K → A in A lies in a subcategory S,
we assume that its domain K and target A lie in obj(S). �

Proof. That S is a full subcategory of A satisfying (i) and (ii) gives S additive,
by Exercise 7.70 on page 625.

If f : A → B is a morphism in S ⊆ A, then ker f and coker f lie in A, and
hence they lie in S, by (iii). Thus, axiom (i) in the definition of abelian category
holds; it remains to verify axiom (ii).
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Let u be a monomorphism in S; we have just seen that keru lies in S. Since
u is monic, Proposition 7.141 gives keru = 0 in S. By hypothesis, keru is the
same in A as in S, so that keru = 0 in A; hence, Proposition 7.141 says that u is
a monomorphism in A. As A is abelian, we have u = ker v for some v : A → B.
By hypothesis, ker v lies in S; that is, u = ker v. The dual argument shows that
epimorphisms in S are cokernels. Therefore, A is abelian. •

Proposition 7.144. If A is an abelian category and C is a small category, then
the functor category AC is an abelian category.

Proof. We assume that C is small to guarantee that AC is a category (Exam-
ple 6.133). The zero object in AC is the constant functor with value 0, where 0
is a zero object in A. If τ, σ ∈ Hom(F,G) = Nat(F,G), where F,G : C → A are
functors, define τ+σ : F → G by (τ+σ)C = τC+σC : FC → GC for all C ∈ obj(C).
Finally, define F ⊕G by (F ⊕G)C = FC⊕GC. It is straightforward to check that
AC, with these definitions, is an additive category.

If τ : F → G, define K : C → A on objects by

KC = ker(τC).

In the following commutative diagram with exact rows, where f : C → C ′ in C,
there is a unique Kf : KC → KC ′ making the augmented diagram commute:

0 �� KC
ιC ��

Kf

��'
'
' FC ��

Ff

��

GC

Gf

��
0 �� KC ′

ιC′
�� FC ′ �� GC ′

The reader may check that K is a functor, ι : K → F is a natural transforma-
tion, and ker τ = ι; dually, cokernels exist in AC . Verification of the axioms for an
abelian category is routine. •

The following construction is of fundamental importance in Algebraic Topology
and in Homological Algebra.

Definition. A complex 12 in an abelian category A is a sequence of objects and
morphisms in A (called differentials),

→ An+1
dn+1−→ An

dn−→ An−1 →,

such that the composite of adjacent morphisms is 0:

dndn+1 = 0 for all n ∈ Z.

We usually denote this complex by (C, d) or by C.

If (C, d) and (C′, d′) are complexes, then a chain map

f : (C, d)→ (C′, d′)

12These are also called chain complexes in the literature.
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is a sequence of morphisms (fn : Cn → C ′
n)n∈Z making the following diagram com-

mute:

· · · �� Cn+1
dn+1 ��

fn+1 ��

Cn
dn ��

fn ��

Cn−1

fn−1��

�� · · ·

· · · �� C ′
n+1

d′
n+1

�� C ′
n

d′
n

�� C ′
n−1

�� · · ·

In Example 6.133(iii), we viewed a complex as a functor PO(Z) → A and a
chain map as a natural transformation.

Definition. If A is an abelian category, then Comp(A), the abelian category of
complexes over A, is the full subcategory of APO(Z) generated by all complexes. If
A = Ab, then we write Comp instead of Comp(Ab).

In Algebraic Topology, the simplicial homology groups Hn(K) of a simplicial
complex K, for n ≥ 0, are constructed in two steps. The first step is geometric,
constructing simplicial chain groups Cn(K) and boundary maps, giving a sequence

S(K) =→ Cn+1(K)
∂n+1−→ Cn(K)

∂n−→ Cn−1(K)→ .

The second step is algebraic: define Hn(K) = ker ∂n/ im ∂n+1; the second step is
the basic idea underlying Homological Algebra, as we shall see in Chapter 9.

Theorem 7.145. If A is an abelian category, then Comp(A) is also an abelian
category.

Proof. Since PO(Z) is a small category, Proposition 7.144 says that the functor
category APO(Z) is abelian. Proposition 7.143 now says that the full subcategory
Comp(A) is abelian if it satisfies several conditions.

(i) The zero complex is the complex each of whose terms is 0.

(ii) The direct sum (C, d) ⊕ (C′, d′) is the complex whose nth term is Cn ⊕ C ′
n

and whose nth differential is dn ⊕ d′n.

(iii) If f = (fn) : (C, d)→ (C′, d′) is a chain map, define

kerf =→ ker fn+1
δn+1−→ ker fn

δn−→ ker fn−1 →,

where δn = dn| ker fn, and

imf =→ im fn+1
Δn+1−→ im fn

Δn−→ im fn−1 →,

where Δn = d′n| im fn.

Since these complexes lie in the full subcategory Comp(A), Proposition 7.143
applies to prove the theorem. •

We end this section by describing the Full Imbedding Theorem, which says, for
all intents and purposes, that working in abelian categories is the same as working
in Ab.
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Definition. Let C,D be categories, and let F : C → D be a functor. Then F is
faithful if, for all A,B ∈ obj(C), the functions HomC(A,B) → HomD(FA,FB),
given by f �→ Ff , are injections; F is full if these functions are surjective.

IfA is an abelian category, then a functor F : A → Ab is exact ifA′ → A→ A′′

exact in A implies FA′ → FA→ FA′′ exact in Ab.

Theorem 7.146 (Freyd–Heron–Lubkin).13 If A is a small abelian category,
then there is a covariant faithful exact functor F : A → Ab.

Proof. See Mitchell, Theory of Categories, p. 101. •

This imbedding theorem can be improved so that its image is a full subcategory
of Ab.

Theorem 7.147 (Mitchell). If A is a small abelian category, then there is a
covariant full faithful exact functor F : A → Ab.

Proof. Mitchell, Theory of Categories, p. 151. •

In his Theory of Categories, Mitchell writes, “Let us say that a statement about
a diagram in an abelian category is categorical if it states that certain parts of the
diagram are or are not commutative, that certain sequences in the diagram are or
are not exact, and that certain parts of the diagram are or are not (inverse) limits
or (direct) limits. Then we have the following metatheorem.”

Metatheorem. Let A be a (not necessarily small) abelian category.

(i) Let Σ be a statement of the form p implies q, where p and q are categorical
statements about a diagram in A. If Σ is true in Ab, then Σ is true in A.

(ii) Let Σ′ be a statement of the form p implies q, where p is a categorical state-
ment concerning a diagram in A, while q states that additional morphisms
exist between certain objects in the diagram and that some categorical state-
ment is true of the extended diagram. If the statement can be proved in Ab
by constructing the additional morphisms through diagram chasing, then the
statement is true in A.

Proof. See Mitchell, Theory of Categories, p. 97. •

Part (i) follows from the Freyd–Heron–Lubkin Imbedding Theorem. To illus-
trate, the Five Lemma is true in Ab, as is the 3 × 3 Lemma (Exercise 6.87 on
page 486), and so they are true in every abelian category.

13I have been unable to find any data about Heron other than that he was a student at
Oxford around 1960.
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Part (ii) follows from Mitchell’s Full Imbedding Theorem. To illustrate, recall
Proposition 6.116: given a commutative diagram of abelian groups with exact rows,

A′ i ��

f

��

A
p ��

g

��

A′′ ��

h

��'
'
' 0

B′
j

�� B q
�� B′′ �� 0

there exists a unique map h : A′′ → B′′ making the augmented diagram commute.
Suppose now that the diagram lies in an abelian category A. Applying the imbed-
ding functor F : A → Ab of the Full Imbedding Theorem, we have a diagram in
Ab as above, and so there is a homomorphism in Ab, say, h : FA′′ → FB′′, mak-
ing the diagram commute: F (q)F (g) = hF (p). Since F is a full imbedding, there
exists η ∈ HomA(A

′′, B′′) with h = F (η); hence, F (qg) = F (q)F (g) = hF (p) =
F (η)F (p) = F (ηp). But F is faithful, so that qg = ηp.

Exercises

∗ 7.67. Prove that neither Groups nor ComRings is an additive category.

Hint. Use Lemma 7.138.

7.68. Let A be an additive category with zero object 0. If A ∈ obj(A), prove that the
unique morphism A → 0 and the unique morphism 0 → A are the identity elements of
the abelian groups HomA(A, 0) and HomA(0, A).

∗ 7.69. If A is an additive category and A ∈ obj(A), prove that EndA(A) = HomA(A,A)
is a ring with composition as product.

∗ 7.70. Let S be a subcategory of an additive category A. Prove that S is an additive
category if S is full, S contains a zero object of A, and S contains the direct sum A⊕B
(in A) of all A,B ∈ obj(S).

∗ 7.71. (i) Prove that a function is epic in Sets if and only if it is surjective, and that a
function is monic in Sets if and only if it is injective.

(ii) Prove that an R-map is epic in R Mod if and only if it is surjective, and that an
R-map is monic in R Mod if and only if it is injective.

∗ 7.72. (i) Let C be the category of all divisible abelian groups. Prove that the natural
map Q → Q/Z is monic in C. Conclude that C is a category whose morphisms are
functions and in which monomorphisms and injections do not coincide.

(ii) Let Top2 be the category of all Hausdorff spaces. If D � X is a dense subspace of
a space X, prove that the inclusion i : D → X is an epimorphism. Conclude that
Top2 is a category whose morphisms are functions and in which epimorphisms and
surjections do not coincide.
Hint. Two continuous functions agreeing on a dense subspace of a Hausdorff space
must be equal.

7.73. Prove, in every abelian category, that the injections of a coproduct are monic and
the projections of a product are epic.
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∗ 7.74. (i) Prove that every isomorphism in an additive category is both monic and epic.

(ii) Prove that a morphism in an abelian category is an isomorphism if and only if it
is both monic and epic.

(iii) Let R be a domain that is not a field, and let ϕ : R → Frac(R) be given by
r �→ r/1. In ComRings, prove that ϕ is both monic and epic, but that ϕ is
not an isomorphism.

∗ 7.75. Let G be a (possibly nonabelian) group. If A and G are groups, prove that a
homomorphism ϕ : A → G is surjective if and only if it is an epimorphism in Groups.

Hint. Use Exercise 6.70 on page 460.

7.76. State and prove the First Isomorphism Theorem in an abelian category A.

∗ 7.77. (i) Let S be a full subcategory of an abelian category A which satisfies the hy-

potheses of Proposition 7.143. Prove that if A
f−→ B

g−→ C is an exact sequence
in S, then it is an exact sequence in A.

(ii) If A is an abelian category and C is a small category, prove that if A
f−→ B

g−→ C
is an exact sequence in A, then it is an exact sequence in AC.

7.78. Prove that every object in Sets is projective and injective (where we use injections
and surjections in the definitions of projective and injective).

∗ 7.79. Let T be the category of all torsion abelian groups.

(i) Prove that T is an abelian category having infinite coproducts.

(ii) Prove that T has infinite products.
Hint. If (Ai)i∈I is a family of groups in T , prove that t

(∏
i∈I Ai

)
is a categorical

product.

(iii) Prove that T has enough injectives.

(iv) Prove that T has no nonzero projective objects. Conclude that T is not isomorphic
to a category of modules.

∗ 7.80. Prove that T ′, the abelian category of all finitely generated abelian groups, is an
abelian category that has no nonzero injectives.

7.81. A direct limit lim−→I
F or an inverse limit lim←−I

F is called finite if the index set I is

finite.

Prove that if A is an additive category having kernels and cokernels, then A has all
finite inverse limits and direct limits. Conclude that A has pullbacks and pushouts.

Section 7.9. Module Categories

When is a category isomorphic to a module category ModR?

Definition. A functor F : C → D is an isomorphism if there exists a functor
G : D → C with both composites GF and FG being identity functors.

Every category is isomorphic to itself; Exercise 7.85 on page 634 shows that if
R is a ring with opposite ring Rop, then ModR is isomorphic to Rop Mod.
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Empirically, isomorphism of functors turns out to be uninteresting, for it does
not arise very often. The following example suggests another reason for modifying
this notion of isomorphism. Consider the category V of all finite-dimensional vector
spaces over a field k and its full subcategoryW generated by all vector spaces equal
to kn for n ∈ N. Since functors take identity morphisms to identity morphisms,
an isomorphism F : V → W would give a bijection obj(V) → obj(W). But W is a
small category (| obj(W)| = ℵ0) while V is not small, and so these categories are not
isomorphic. Carefully distinguishing between two such categories does not seem to
be a worthy enterprise.

Here is a weaker but more useful definition.

Definition. A functor F : C → D is an equivalence if there is a functor G : D → C
such that GF and FG are naturally isomorphic to the identity functors 1C and 1D,
respectively. When C and D are abelian categories, we will further assume that an
equivalence F : C → D is an additive functor.

It is easy to see that the two nonisomorphic categories V and W of finite-
dimensional vector spaces are equivalent.

Proposition 7.148. A functor F : C → D is an equivalence if and only if

(i) F is full and faithful: the function HomC(C,C
′) → HomD(FC, FC ′), given

by f �→ Ff , is a bijection for all C,C ′ ∈ obj(C);
(ii) every D ∈ obj(D) is isomorphic to FC for some C ∈ obj(C).

Proof. If F is an equivalence, then there exists a functor G : D → C with GF ∼= 1C
and FG ∼= 1D; let τ : GF → 1C and σ : FG → 1D be natural isomorphisms. For
each D ∈ obj(D), there is an isomorphism σD : FGD → D. Thus, if we define
C = GD, then FC ∼= D, which proves (ii).

Given a morphism f : C → C ′ in C, there is a commutative diagram

GFC
τC ��

GFf

��

C

f

��
GFC ′

τC′
�� C ′

Since τ is a natural isomorphism, each τC is an isomorphism; hence,

f = τC′(GFf)τ−1
C .(1)

F is faithful: if f, f ′ ∈ HomC(C,C
′) and Ff ′ = Ff in HomD(FC, FC ′), then

f ′ = τC′(GFf ′)τ−1
C = τC′(GFf)τ−1

C = f.

Similarly, FG ∼= 1D implies that G is faithful.

Finally, F is full: if g : FC → FC ′, define a morphism f = τC′(Gg)τ−1
C . Now

f = τC′(GFf)τ−1
C , by Equation (1), so that GFf = Gg. Since G is faithful, we

have Ff = g.

Conversely, assume that F : C → D satisfies (i) and (ii). For each D ∈ obj(D),
(ii) gives a unique C = CD ∈ obj(C) with D ∼= FCD; choose an isomorphism
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hD : D → FCD. Define a functor G : D → C on objects by GD = CD. If g : D → D′

is a morphism in D, (i) gives a unique morphism f : CD → CD′ with Ff = hD′gh−1
D .

It is routine to check that G is a functor, GF ∼= 1C , and FG ∼= 1D. •

Example 7.149.

(i) If R is a ring with opposite ring Rop, then ModR is equivalent to Rop Mod,
for we have already observed that these categories are isomorphic.

(ii) If R is a ring, then ModR and R Mod need not be equivalent (Exercise 7.87
on page 634).

(iii) If V is the category of all finite-dimensional vector spaces over a field k, then
double dual F : V → V , sending V �→ V ∗∗, is an equivalence (V ∗ is the dual
space), for F satisfies the conditions in Proposition 7.148.

(iv) If C is a category, let S ⊆ obj(C) consist of one object from each isomorphism
class of objects. The full subcategory generated by S (also denoted by S)
is called a skeletal subcategory of C. The inclusion functor S → C is an
equivalence, by Proposition 7.148; thus, every category C is equivalent to a
skeletal subcategory. For example, if V is the category of all finite-dimensional
vector spaces over a field k, then the full category W of V generated by all
kn for n ∈ N is a skeletal subcategory. Hence, V and W are equivalent. �

We rephrase our original question. When is a category equivalent to a mod-
ule category ModR? The answer will place the Wedderburn–Artin Theorems in
perspective.

We know that ModR, for any ring R, is an abelian category; it also has arbi-
trary direct sums.

Definition. An abelian category A is cocomplete if it contains
⊕

i∈I Ai for every
family (Ai)i∈I of objects, where the index set I may be infinite.

We now describe some categorical properties of the object R in ModR.

Definition. An object P in a cocomplete abelian category A is small if the
covariant Hom functor HomA(P,�) : A → Ab preserves all coproducts; that is,
if (Bi)i∈I is an indexed family of objects and (ji)i∈I , (pi)i∈I are the injections,
projections of

⊕
i∈I Bi, then there is an isomorphism θ : HomA(A,

⊕
i∈I Bi) →⊕

i∈I HomA(A,Bi) whose injections and projections are (jiθ)i∈I and (θpi)i∈I .

Example 7.150.

(i) Proposition 6.64 shows that the ring R is a small R-module.

(ii) Every finite direct sum of small modules is small, and every direct summand
of a small module is small.

(iii) Since a ring R is a small R-module, it follows from (i) and (ii) that every
finitely generated projective R-module is small. �

The object R in ModR is not only small; it is projective. If P is a small
projective object, then HomA(P,�) is a right exact functor (in fact, it is an exact
functor).
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Definition. An object P in a cocomplete abelian category A is a generator of A
if every M ∈ obj(A) is a quotient of a direct sum of copies of P .

It is clear that R is a generator of ModR, as is any free right R-module.
However, a projective right R-module may not be a generator. For example, if
R = I6, then R = P ⊕ Q, where P = {[0], [2], [4]} ∼= I3, and the (small) projective
module P is not a generator (for Q ∼= I2 is not a quotient of a direct sum of copies
of P ). You will prove, in Exercise 7.86 on page 634, that small projective generators
of ModR are finitely generated.

Recall that a functor F : A → B is faithful if, for all A,A′ ∈ obj(A), the function
HomA(A,A′)→ HomB(FA,FA′), given by ϕ �→ Fϕ, is injective.

Proposition 7.151. A right R-module P is a generator of ModR if and only if
HomR(P,�) is a faithful functor.

Proof. Assume that HomR(P,�) is faithful. Given a right R-module A and a
map f : P → A, let Pf be an isomorphic copy of P , and let Y =

⊕
f∈HomR(P,A) Pf .

Define ϕ : Y → A by (gf ) �→
∑

f f(gf ). If ϕ is not surjective, then the natural map

ν : A → A/ imϕ is nonzero. Since HomR(P,�) is faithful, ν∗ : HomR(P,A) →
HomR(P,A/ imϕ) is also nonzero. Thus, there is f ∈ HomR(P,A) such that
ν∗(f) = νf �= 0. But f(A) ⊆ imϕ so that νf(A) = {0}; that is, ν∗f = νf = 0, a
contradiction. Therefore, P is a generator.

Conversely, assume that every module A is a quotient of a direct sum Y =⊕
i∈I Pi, where Pi

∼= P for all i; say, there is a surjective ϕ : Y → A. Now ϕ =∑
i ϕλi, where (λi : Pi → Y )i∈I are the injections. If α : A → A′ is nonzero,

then αϕ = α
∑

i ϕλi =
∑

i(αϕλi). Now αϕ �= 0, because ϕ is surjective. Hence,
αϕλi �= 0 for some i. But Pi

∼= P , so that 0 �= αϕλi = α∗(ϕλi); that is, α∗ �= 0,
and so HomR(P,�) is faithful. •

Here is the characterization of module categories.

Theorem 7.152 (Gabriel–Mitchell). A category A is equivalent to a module
category ModR if and only if A is a cocomplete abelian category having a small
projective generator14 P . Moreover, R ∼= EndA(P ) in this case.

Proof. The proof of necessity is easy: ModR is a cocomplete abelian category and
R is a small projective generator.

For the converse, define F = HomA(P,�) : A → Ab. Note that F is additive,
by Example 7.137, and that R = EndA(P ) is a ring, by Exercise 7.85 on page 634.
For each A ∈ obj(A), we claim that FA is a right R-module. If f ∈ FA =
HomA(P,A) and ϕ : P → P lies in R = End(P ), define scalar multiplication fϕ to

be the composite P
ϕ→ P

f→ A. It is routine to check that F actually takes values
in ModR.

Let us prove that F is an equivalence. Now F = HomA(P,�) : A → ModR

[where R = End(P )] is faithful, by Proposition 7.151. It remains to prove, by
Proposition 7.148, that F is full [the maps HomA(Y,X)→ HomR(FY, FX), given

14A small projective generator is often called a progenerator.
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by ϕ �→ Fϕ, are all surjective] and that every M ∈ obj(ModR) is isomorphic to
FA for some A ∈ obj(A).

For fixed Y ∈ obj(A), define the class

E = EY = {X ∈ obj(A) : HomA(X,Y )→ HomR(FX,FY ) is surjective}.
We will prove three properties of E .

(i) P ∈ E .
(ii) If (Xi)i∈I is a family of objects in E , then

⊕
i∈I Xi ∈ E .

(iii) If X,Z ∈ E and f : X → Z is any morphism, then coker f ∈ E .
These properties imply E = obj(A). By (i) and (ii), every direct sum of copies
of P lies in E ; since P is a generator of A, every Z ∈ obj(A) is a cokernel of⊕

i∈I Pi →
⊕

j∈J Pj , where all Pi, Pj are isomorphic to P . Thus, Z ∈ EY , which
says that HomA(Z, Y )→ HomFP (FZ, FY ) is surjective; that is, F is full. We now
verify these three properties.

To see that P ∈ EY , we must show that HomA(P, Y ) → HomR(FP, FY ) is
surjective. Since P is a generator of A, there is an exact sequence⊕

i∈I

Pi →
⊕
j∈J

Pj → Y → 0(2)

which gives the commutative diagram (details below)

F (
⊕

i∈I Pi) ��

=

��

F (
⊕

j∈J Pj) ��

=

��

FY ��

=

��

0

HomA(P,
⊕

i∈I Pi) ��

α

��

HomA(P,
⊕

j∈J Pj) ��

β

��

HomA(P, Y ) ��

γ

��

0

HomR(FP, F (
⊕

i∈I Pi)) ��

��

HomR(FP, F (
⊕

j∈J Pj)) ��

��

HomR(FP, FY ) ��

��

0

⊕
i∈I FPi ��

⊕
j∈J FPj �� FY �� 0

Now F = HomA(P,�) is an exact functor (because P is projective), and so the
top two rows arise by applying F to (2); the vertical maps between these rows are
identities. The third row arises from applying HomR(FP,�) to the top row; the
vertical maps are the maps Hom(X,Y ) → Hom(FX,FY ) given by ϕ �→ Fϕ. The
bottom row arises from the third row, for F preserves direct sums (because P is
small), and HomR(FP, FY ) = HomR(R,FY ) = FY . Finally, since α and β are
surjections, so is γ (use the Five Lemma, by adding → 0 at the ends of the middle
two rows).

For (ii), let (Xi)i∈I be a family for which all Hom(Xi, Y ) → Hom(FXi, FY )
are surjections. To see that Hom(

⊕
Xi, Y ) → Hom(F (

⊕
Xi), FY ) is surjective,

use the facts that Hom(
⊕

Xi, Y ) ∼=
∏

Hom(Xi, Y ) and Hom(F (
⊕

Xi), FY ) ∼=
Hom(

⊕
FXi, FY ) ∼=

∏
Hom(FXi, FY ) (because F preserves direct sums).
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For (iii), use the Five Lemma on a variant of the commutative diagram above.
We conclude that F is full.

Lastly, for every right R-module M , we show that there is A ∈ obj(A) with

M ∼= FA. There is an exact sequence
⊕

i∈I Ri
f→

⊕
j∈J Rj → M → 0 in ModR,

where Ri, Rj are isomorphic to R. If we view each Ri, Rj as FPi, FPj , where all
Pi, Pj are isomorphic to P , then

f ∈ Hom(
⊕
i∈I

Ri,
⊕
j∈J

Rj) = Hom(
⊕
i∈I

FPi,
⊕
j∈J

FPj)

= Hom(F (
⊕
i∈I

Pi), F (
⊕
j∈J

Pj)).

Since F is full, there is ϕ ∈ Hom(
⊕

i∈I Pi,
⊕

j∈J Pj) with Fϕ = f . Using the Five

Lemma again, the reader may show that M ∼= F (cokerϕ). •

Corollary 7.153. If R is a ring and n ≥ 1, there is an equivalence of categories

ModR
∼= ModMatn(R).

Proof. For any integer n ≥ 1, the free module P =
⊕n

i=1 Ri, where Ri
∼= R,

is a small projective generator of ModR. Theorem 7.152 gives an equivalence
ModR

∼= ModS , where S = EndR(P ) ∼= Matn(R). •

We can now understand Proposition 7.37: Matn(Δ) is semisimple when Δ is
a division ring. By Proposition 7.33, a ring R is semisimple if and only if every
R-module is projective; that is, every object in ModR is projective. But every
Δ-module is projective (even free), so that equivalence of the categories shows that
every object in ModMatn(Δ) is also projective. Therefore, Matn(Δ) is semisimple.
We have just seen why matrix rings arise in the study of semisimple rings.

Given rings R and S, Corollary 7.153 raises the question when ModR and
ModS are equivalent. The answer is provided by Morita Theory, which arose
by analyzing the proof of Theorem 7.152. We merely report the main results; for
details, see Jacobson, Basic Algebra II, pp. 177–184, Lam, Lectures on Modules and
Rings, Chapters 18 and 19, McConnell–Robson, Noncommutative Noetherian Rings,
Chapter 3, §5, Reiner, Maximal Orders, Chapter 4, and Rowen, Ring Theory I,
Chapter 4.

Definition. Call rings R and S Morita equivalent if their module categories
ModR and ModS are equivalent.

For example, Corollary 7.153 says that every ring R is Morita equivalent to the
matrix ring Matn(R), where n ≥ 1.

Given a ring R, every right R-module P determines a Morita context

(P,R,Q, S, α, β).

Here, Q = HomR(P,R) and S = EndR(P ). Both P andQ turn out to be bimodules:
P = SPR and Q = RQS , and there is an (R,R)-map α : Q⊗SP → R and an (R,R)-
map β : P ⊗R Q→ S. When PR is a small projective generator, both α and β are
isomorphisms; in this case, QS is also a small projective generator.



632 Chapter 7. Representation Theory

Theorem 7.154 (Morita I). Let PR be a small projective generator with Morita
context (P,R,Q, S, α, β).

(i) HomR(P,�) : ModR →ModS is an equivalence, and its inverse is
HomS(Q,�) : ModS →ModR.

(ii) HomR(Q,�) : R Mod→ S Mod is an equivalence and its inverse is
HomS(P,�) : S Mod→ R Mod.

Proof. Lam, Lectures on Modules and Rings, states and proves this with tensor
products, using HomR(P,�) ∼= �⊗R Q and HomS(Q,�) ∼= �⊗S P in part (i) and
HomS(P,�) ∼= Q⊗S � and HomR(Q,�) ∼= P ⊗R � in part (ii). •

Theorem 7.155 (Morita II). Let R and S be rings, and let F : ModR →ModS

be an equivalence with inverse G : ModS → ModR. Then F and G arise as in
Morita I; that is, F ∼= HomR(P,�) and G ∼= HomS(Q,�), where P = G(S) and
Q = F (R).

Corollary 7.156. ModR and ModS are equivalent if and only if R Mod and

S Mod are equivalent.

Exercise 7.85 on page 634 shows that ModR and Rop Mod are equivalent, but
Exercise 7.87 shows that ModR and R Mod may not be equivalent.

Corollary. Two rings R and S are Morita equivalent if and only if S ∼= EndR(P )
for some small projective generator P of ModR.

If A is a category, then an endomorphism of the identity functor 1A is a
natural transformation τ : 1A → 1A; that is, for every pair of objects A and B and
every morphism f : A→ B, there is a commutative diagram

A
τA ��

f

��

A

f

��
B τB

�� B

Definition. If R is a ring, define

End(ModR) = {τ : 1ModR → 1ModR | τ is an endomorphism}.

It is easy to see that the pointwise sum of two endomorphisms is another
such; that is, define τ + σ as the family (τA + σA)A∈ModR

. It should follow that
End(ModR) is a ring with composition as multiplication, but it is not obvious
whether End(ModR) is a set.

Proposition 7.157. For any ring R, there is a ring isomorphism

Z(R) ∼= End(ModR).

Proof. If c ∈ Z(R) and A is a right R-module, define τ cA : A → A to be multipli-
cation by c:

τ cA : a �→ ac.
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Since c ∈ Z(R), the function τ cA is an R-map. It is easily checked that τ c =
(τ cA)A∈ModR

is an endomorphism of 1ModR
. Define ϕ : Z(R)→ End(ModR) by

ϕ : c �→ τ c = (τ cA)A∈ModR
.

We claim that ϕ is a bijection [so that End(ModR) is a set] and a ring isomor-
phism. The only point which is not obvious is whether ϕ is surjective. Let σ be an
endomorphism of 1A and let A be a right R-module. If a ∈ A, define f : R→ A by
f(1) = a. There is a commutative diagram

R
σR ��

f

��

R

f

��
A σA

�� A

Define c = σR(1). Now fσR(1) = f(c) = f(1 · c) = f(1)c = ac. On the other hand,
σAf(1) = σA(a). Commutativity gives σA(a) = ac; that is, σA = τ cA. •

Corollary 7.158. Let R and S be rings.

(i) If R and S are Morita equivalent, then Z(R) ∼= Z(S).

(ii) If R and S are commutative, then ModR and ModS are equivalent if and
only if R ∼= S.

Proof.

(i) If A and B are equivalent abelian categories, then End(1A) ∼= End(1B). If
A = ModR and B = ModS , then Z(R) ∼= Z(S), by Proposition 7.157.

(ii) Sufficiency is obvious. For necessity, part (i) gives Z(R) ∼= Z(S). Since R
and S are commutative, R = Z(R) ∼= Z(S) = S. •

Exercises

7.82. Let F : C → D be an isomorphism of categories with inverse G : D → C; that is,
GF = 1C and FG = 1D. Prove that both (F,G) and (G,F ) are adjoint pairs.

7.83. If F : A → B is an equivalence of abelian categories, prove the following statements.

(i) If f is monic in A, then Ff is monic in B.
(ii) If f is epic in A, then Ff is epic in B.
(iii) If A ∈ obj(A), then f �→ Ff is a ring isomorphism End(A) → End(FA).

(iv) If 0 → A′ → A → A′′ → 0 is exact in A, then 0 → FA′ → FA → FA′′ → 0 is
exact in B. Moreover, the first sequence is split if and only if the second sequence
is split.

(v) If (Ai)i∈I is a family of objects in A, then

F
(⊕

i∈I

Ai

)
∼=

⊕
i∈I

FAi and F
(∏
i∈I

Ai

)
∼=

∏
i∈I

FAi.

(vi) If P is projective in A, then FP is projective in B.
(vii) If P is injective in A, then FP is injective in B.
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7.84. Let F : ModR → ModS be an equivalence. Prove that a right R-module A has
any of the following properties if and only if FA does: simple; semisimple; ACC; DCC;
indecomposable. Moreover, A has a composition series if and only if FA does; both have
the same length, and S1, . . . , Sn are composition factors of A if and only if FS1, . . . , FSn

are composition factors of FA.

∗ 7.85. If R is a ring with opposite ring Rop, prove that ModR is equivalent to Rop Mod.

Hint. For each right R-module M , show that there is an isomorphism τ with τ(M) = M ′,
where M ′ is M made into a left R-module as in Proposition 6.15.

∗ 7.86. Prove that every small projective generator P of ModR is finitely generated.

∗ 7.87. (i) Let R and S be rings, and let F : ModR → ModS (or F : ModR → S Mod)
be an equivalence. Prove that a right R-module M is finitely generated if and only
if FM is a finitely generated right (or left) S-module.

Hint. Use Exercise 6.17 on page 416.

(ii) Call a category ModR (or R Mod) noetherian if every submodule of a finitely
generated right (or left) R-module M is finitely generated.

Let A and B be equivalent categories of modules; that is, A is equivalent to
ModR or R Mod for some ring R, and B is equivalent to ModS or S Mod for
some ring S. Prove that A is noetherian if and only if B is noetherian.

(iii) Prove that ModR is a noetherian category if and only if R is a right noetherian
ring, and that R Mod is a noetherian category if and only if R is a left noetherian
ring.

(iv) Give an example of a ring R such that R Mod and ModR are not equivalent.
Hint. Let R be the ring in Exercise 6.16 on page 416 which is left noetherian but
not right noetherian.


