
Section 1.3

Lp spaces

Now that we have reviewed the foundations of measure theory, let us now
put it to work to set up the basic theory of one of the fundamental families
of function spaces in analysis, namely the Lp spaces (also known as Lebesgue
spaces). These spaces serve as important model examples for the general
theory of topological and normed vector spaces, which we will discuss a little
bit in this lecture and then in much greater detail in later lectures.

Just as scalar quantities live in the space of real or complex numbers, and
vector quantities live in vector spaces, functions f : X → C (or other objects
closely related to functions, such as measures) live in function spaces. Like
other spaces in mathematics (e.g., vector spaces, metric spaces, topological
spaces, etc.) a function space V is not just mere sets of objects (in this
case, the objects are functions), but they also come with various important
structures that allow one to do some useful operations inside these spaces
and from one space to another. For example, function spaces tend to have
several (though usually not all) of the following types of structures, which
are usually related to each other by various compatibility conditions:

• Vector space structure. One can often add two functions f, g in
a function space V and expect to get another function f + g in that
space V ; similarly, one can multiply a function f in V by a scalar c
and get another function cf in V . Usually, these operations obey the
axioms of a vector space, though it is important to caution that the
dimension of a function space is typically infinite. (In some cases, the
space of scalars is a more complicated ring than the real or complex
field, in which case we need the notion of a module rather than a
vector space, but we will not use this more general notion in this
course.) Virtually all of the function spaces we shall encounter in
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28 1. Real analysis

this course will be vector spaces. Because the field of scalars is real
or complex, vector spaces also come with the notion of convexity,
which turns out to be crucial in many aspects of analysis. As a
consequence (and in marked contrast to algebra or number theory),
much of the theory in real analysis does not seem to extend to other
fields of scalars (in particular, real analysis fails spectacularly in the
finite characteristic setting).

• Algebra structure. Sometimes (though not always) we also wish
to multiply two functions f , g in V and get another function fg in V ;
when combined with the vector space structure and assuming some
compatibility conditions (e.g., the distributive law), this makes V an
algebra. This multiplication operation is often just pointwise multi-
plication, but there are other important multiplication operations on
function spaces too, such as2 convolution.

• Norm structure. We often want to distinguish large functions in
V from small ones, especially in analysis, in which small terms in an
expression are routinely discarded or deemed to be acceptable errors.
One way to do this is to assign a magnitude or norm ‖f‖V to each
function that measures its size. Unlike the situation with scalars,
where there is basically a single notion of magnitude, functions have
a wide variety of useful notions of size, each measuring a different
aspect (or combination of aspects) of the function, such as height,
width, oscillation, regularity, decay, and so forth. Typically, each
such norm gives rise to a separate function space (although sometimes
it is useful to consider a single function space with multiple norms
on it). We usually require the norm to be compatible with the vector
space structure (and algebra structure, if present), for instance by
demanding that the triangle inequality hold.

• Metric structure. We also want to tell whether two functions f ,
g in a function space V are near together or far apart. A typical
way to do this is to impose a metric d : V × V → R+ on the space
V . If both a norm ‖‖V and a vector space structure are available,
there is an obvious way to do this: define the distance between two
functions f, g in V to be3 d(f, g) := ‖f − g‖V . It is often important

2One sometimes sees other algebraic structures than multiplication appear in function spaces,
such as commutators and derivations, but again we will not encounter those in this course. An-
other common algebraic operation for function spaces is conjugation or adjoint, leading to the
notion of a *-algebra.

3This will be the only type of metric on function spaces encountered in this course. But there
are some non-linear function spaces of importance in non-linear analysis (e.g., spaces of maps from
one manifold to another) which have no vector space structure or norm, but still have a metric.
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to know if the vector space is complete4 with respect to the given
metric; this allows one to take limits of Cauchy sequences, and (with
a norm and vector space structure) sum absolutely convergent series,
as well as use some useful results from point set topology such as the
Baire category theorem; see Section 1.7. All of these operations are
of course vital in analysis.

• Topological structure. It is often important to know when a
sequence (or, occasionally, nets) of functions fn in V converges in
some sense to a limit f (which, hopefully, is still in V ); there are of-
ten many distinct modes of convergence (e.g., pointwise convergence,
uniform convergence, etc.) that one wishes to carefully distinguish
from each other. Also, in order to apply various powerful topologi-
cal theorems (or to justify various formal operations involving limits,
suprema, etc.), it is important to know when certain subsets of V
enjoy key topological properties (most notably compactness and con-
nectedness), and to know which operations on V are continuous. For
all of this, one needs a topology on V . If one already has a metric,
then one of course has a topology generated by the open balls of that
metric. But there are many important topologies on function spaces
in analysis that do not arise from metrics. We also often require the
topology to be compatible with the other structures on the function
space; for instance, we usually require the vector space operations of
addition and scalar multiplication to be continuous. In some cases,
the topology on V extends to some natural superspace W of more
general functions that contain V . In such cases, it is often important
to know whether V is closed in W , so that limits of sequences in V
stay in V .

• Functional structures. Since numbers are easier to understand
and deal with than functions, it is not surprising that we often study
functions f in a function space V by first applying some functional
λ : V → C to V to identify some key numerical quantity λ(f) associ-
ated to f . Norms f 
→ ‖f‖V are of course one important example of
a functional, integration f 
→

∫
X f dμ provides another, and evalua-

tion f 
→ f(x) at a point x provides a third important class. (Note,
though, that while evaluation is the fundamental feature of a function
in set theory, it is often a quite minor operation in analysis; indeed,
in many function spaces, evaluation is not even defined at all, for
instance because the functions in the space are only defined almost

4Compactness would be an even better property than completeness to have, but function
spaces unfortunately tend be non-compact in various rather nasty ways, although there are useful
partial substitutes for compactness that are available; see, e.g., Section 1.6 of Poincaré’s Legacies,
Vol. I.
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everywhere!) An inner product 〈, 〉 on V (see below) also provides a
large family f 
→ 〈f, g〉 of useful functionals. It is of particular in-
terest to study functionals that are compatible with the vector space
structure (i.e., are linear) and with the topological structure (i.e., are
continuous); this will give rise to the important notion of duality on
function spaces.

• Inner product structure. One often would like to pair a func-
tion f in a function space V with another object g (which is often,
though not always, another function in the same function space V )
and obtain a number 〈f, g〉, that typically measures the amount of
interaction or correlation between f and g. Typical examples include
inner products arising from integration, such as 〈f, g〉 :=

∫
X fg dμ;

integration itself can also be viewed as a pairing, 〈f, μ〉 :=
∫
X f dμ.

Of course, we usually require such inner products to be compatible
with the other structures present on the space (e.g., to be compatible
with the vector space structure, we usually require the inner product
to be bilinear or sesquilinear). Inner products, when available, are
incredibly useful in understanding the metric and norm geometry of a
space, due to such fundamental facts as the Cauchy-Schwarz inequal-
ity and the parallelogram law. They also give rise to the important
notion of orthogonality between functions.

• Group actions. We often expect our function spaces to enjoy vari-
ous symmetries; we might wish to rotate, reflect, translate, modulate,
or dilate our functions and expect to preserve most of the structure
of the space when doing so. In modern mathematics, symmetries
are usually encoded by group actions (or actions of other group-like
objects, such as semigroups or groupoids; one also often upgrades
groups to more structured objects such as Lie groups). As usual,
we typically require the group action to preserve the other struc-
tures present on the space, e.g., one often restricts attention to group
actions that are linear (to preserve the vector space structure), con-
tinuous (to preserve topological structure), unitary (to preserve inner
product structure), isometric (to preserve metric structure), and so
forth. Besides giving us useful symmetries to spend, the presence
of such group actions allows one to apply the powerful techniques of
representation theory, Fourier analysis, and ergodic theory. However,
as this is a foundational real analysis class, we will not discuss these
important topics much here (and in fact will not deal with group
actions much at all).

• Order structure. In some cases, we want to utilise the notion
of a function f being non-negative, or dominating another function
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g. One might also want to take the max or supremum of two or
more functions in a function space V , or split a function into positive
and negative components. Such order structures interact with the
other structures on a space in many useful ways (e.g., via the Stone-
Weierstrass theorem, Theorem 1.10.18). Much like convexity, order
structure is specific to the real line and is another reason why much of
real analysis breaks down over other fields. (The complex plane is of
course an extension of the real line and so is able to exploit the order
structure of that line, usually by treating the real and imaginary
components separately.)

There are of course many ways to combine various flavours of these struc-
tures together, and there are entire subfields of mathematics that are devoted
to studying particularly common and useful categories of such combinations
(e.g., topological vector spaces, normed vector spaces, Banach spaces, Ba-
nach algebras, von Neumann algebras, C∗ algebras, Frechet spaces, Hilbert
spaces, group algebras, etc.) The study of these sorts of spaces is known
collectively as functional analysis. We will study some (but certainly not
all) of these combinations in an abstract and general setting later in this
course, but to begin with we will focus on the Lp spaces, which are very
good model examples for many of the above general classes of spaces, and
also of importance in many applications of analysis (such as probability or
PDE).

1.3.1. Lp spaces. In this section, (X,X , μ) will be a fixed measure space;
notions such as “measurable”, “measure”, “almost everywhere”, etc., will
always be with respect to this space, unless otherwise specified. Similarly,
unless otherwise specified, all subsets of X mentioned are restricted to be
measurable, as are all scalar functions on X.

For the sake of concreteness, we shall select the field of scalars to be
the complex numbers C. The theory of real Lebesgue spaces is virtually
identical to that of complex Lebesgue spaces, and the former can largely be
deduced from the latter as a special case.

We already have the notion of an absolutely integrable function on X,
which is a function f : X → C such that

∫
X |f | dμ is finite. More generally,

given any5 exponent 0 < p < ∞, we can define a pth-power integrable
function to be a function f : X → C such that

∫
X |f |p dμ is finite.

Remark 1.3.1. One can also extend these notions to functions that take
values in the extended complex plane C∪{∞}, but one easily observes that
pth power integrable functions must be finite almost everywhere, and so

5Besides p = 1, the case of most interest is the case of square-integrable functions, when
p = 2. We will also extend this notion later to p = ∞, which is also an important special case.
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there is essentially no increase in generality afforded by extending the range
in this manner.

Following the Lebesgue philosophy (that one should ignore whatever is
going on on a set of measure zero), let us declare two measurable functions
to be equivalent if they agree almost everywhere. This is easily checked to
be an equivalence relation, which does not affect the property of being pth-
power integrable. Thus, we can define the Lebesgue space Lp(X,X , μ) to be
the space of pth-power integrable functions, quotiented out by this equiva-
lence relation. Thus, strictly speaking, a typical element of Lp(X,X , μ) is
not actually a specific function f , but is instead an equivalence class [f ], con-
sisting of all functions equivalent to a single function f . However, we shall
abuse notation and speak loosely of a function f “belonging” to Lp(X,X , μ),
where it is understood that f is only defined up to equivalence, or more im-
precisely is “defined almost everywhere”. For the purposes of integration,
this equivalence is quite harmless, but this convention does mean that we
can no longer evaluate a function f in Lp(X,X , μ) at a single point x if that
point x has zero measure. It takes a little bit of getting used to the idea of
a function that cannot actually be evaluated at any specific point, but with
some practice you will find that it will not cause6 any significant conceptual
difficulty.

Exercise 1.3.1. If (X,X , μ) is a measure space and X is the completion of
X , show that the spaces Lp(X,X , μ) and Lp(X,X , μ) are isomorphic using
the obvious candidate for the isomorphism. Because of this, when dealing
with Lp spaces, we will usually not be too concerned with whether the
underlying measure space is complete.

Remark 1.3.2. Depending on which of the three structures X,X , μ of the
measure space one wishes to emphasise, the space Lp(X,X , μ) is often ab-
breviated Lp(X), Lp(X ), Lp(X,μ), or even just Lp. Since for this discussion
the measure space (X,X , μ) will be fixed, we shall usually use the Lp ab-
breviation in this section. When the space X is discrete (i.e., X = 2X) and
μ is a counting measure, then Lp(X,X , μ) is usually abbreviated �p(X) or
just �p (and the almost everywhere equivalence relation trivialises and can
thus be completely ignored).

At present, the Lebesgue spaces Lp are just sets. We now begin to place
several of the structures mentioned in the introduction to upgrade these sets
to richer spaces.

6One could also take a more abstract view, dispensing with the set X altogether and defining
the Lebesgue space Lp(X , μ) on abstract measure spaces (X , μ), but we will not do so here.
Another way to think about elements of Lp is that they are functions which are unreliable on an
unknown set of measure zero, but remain reliable almost everywhere.
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We begin with vector space structure. Fix 0 < p <∞, and let f, g ∈ Lp

be two pth-power integrable functions. From the crude pointwise (or more
precisely, pointwise almost everywhere) inequality

|f(x) + g(x)|p ≤ (2max(|f(x)|, |g(x)|))p

= 2pmax(|f(x)|p, |g(x)|p)
≤ 2p(|f(x)|p + |g(x)|p),

(1.16)

we see that the sum of two pth-power integrable functions is also pth-power
integrable. It is also easy to see that any scalar multiple of a pth-power
integrable function is also pth-power integrable. These operations respect
almost everywhere equivalence, and so Lp becomes a (complex) vector space.

Next, we set up the norm structure. If f ∈ Lp, we define the Lp norm
‖f‖Lp of f to be the number

(1.17) ‖f‖Lp := (

∫

X
|f |p dμ)1/p.

This is a finite non-negative number by definition of Lp; in particular, we
have the identity

(1.18) ‖f r‖Lp = ‖f‖rLpr

for all 0 < p, r <∞.

The Lp norm has the following three basic properties:

Lemma 1.3.3. Let 0 < p <∞ and f, g ∈ Lp.

(i) Non-degeneracy. ‖f‖Lp = 0 if and only if f = 0.

(ii) Homogeneity. ‖cf‖Lp = |c|‖f‖Lp for all complex numbers c.

(iii) (Quasi-)triangle inequality. We have ‖f + g‖Lp ≤ C(‖f‖Lp + ‖g‖Lp)
for some constant C depending on p. If p ≥ 1, then we can take
C = 1 (this fact is also known as Minkowski’s inequality).

Proof. The claims (i) and (ii) are obvious. (Note how important it is that
we equate functions that vanish almost everywhere in order to get (i).) The
quasi-triangle inequality follows from a variant of the estimates in (1.16)
and is left as an exercise. For the triangle inequality, we have to be more
efficient than the crude estimate (1.16). By the non-degeneracy property
we may take ‖f‖Lp and ‖g‖Lp to be non-zero. Using homogeneity, we can
normalise ‖f‖Lp + ‖g‖Lp to equal 1, thus (by homogeneity again) we can
write f = (1 − θ)F and g = θG for some 0 < θ < 1 and F,G ∈ Lp with
‖F‖Lp = ‖G‖Lp = 1. Our task is now to show that

(1.19)

∫

X
|(1− θ)F (x) + θG(x)|p dμ ≤ 1.



34 1. Real analysis

But observe that for 1 ≤ p <∞, the function x 
→ |x|p is convex on C, and
in particular that

(1.20) |(1− θ)F (x) + θG(x)|p ≤ (1− θ)|F (x)|p + θ|G(x)|p.
(If one wishes, one can use the complex triangle inequality to first reduce to
the case when F , G are non-negative, in which case one only needs convexity
on [0,+∞) rather than all of C.) The claim (1.19) then follows from (1.20)
and the normalisations of F , G. �

Exercise 1.3.2. Let 0 < p ≤ 1 and f, g ∈ Lp.

(i) Establish the variant ‖f + g‖pLp ≤ ‖f‖pLp + ‖g‖pLp of the triangle
inequality.

(ii) If furthermore f and g are non-negative (almost everywhere), estab-
lish also the reverse triangle inequality ‖f + g‖Lp ≥ ‖f‖Lp + ‖g‖Lp .

(iii) Show that the best constant C in the quasi-triangle inequality is

2
1
p
−1

. In particular, the triangle inequality is false for p < 1.

(iv) Now suppose instead that 1 < p < ∞ or 0 < p < 1. If f, g ∈ Lp are
such that ‖f + g‖Lp = ‖f‖Lp + ‖g‖Lp , show that one of the functions
f , g is a non-negative scalar multiple of the other (up to equivalence,
of course). What happens when p = 1?

A vector space V with a function ‖‖ : V → [0,+∞) obeying the
non-degeneracy, homogeneity, and (quasi-)triangle inequality is known as
a (quasi-)normed vector space, and the function f 
→ ‖f‖ is then known as
a (quasi-)norm; thus Lp is a normed vector space for 1 ≤ p < ∞ but only
a quasi-normed vector space for 0 < p < 1. A function ‖‖ : V → [0,+∞)
obeying the homogeneity and triangle inequality, but not necessarily the
non-degeneracy property, is known as a seminorm; thus for instance the Lp

norms for 1 ≤ p < ∞ would have been seminorms if we did not equate
functions that agreed almost everywhere. (Conversely, given a seminormed
vector space (V, ‖‖), one can convert it into a normed vector space by quo-
tienting out the subspace {f ∈ V : ‖f‖ = 0}. We leave the details as an
exercise for the reader.)

Exercise 1.3.3. Let ‖‖ : V → [0,+∞) be a function on a vector space
which obeys the non-degeneracy and homogeneity properties. Show that
‖‖ is a norm if and only if the closed unit ball {x : ‖x‖ ≤ 1} is convex.
Show that the same equivalence also holds for the open unit ball. This fact
emphasises the geometric nature of the triangle inequality.

Exercise 1.3.4. If f ∈ Lp for some 0 < p < ∞, show that the support
{x ∈ X : f(x) �= 0} of f (which is defined only up to sets of measure zero)
is a σ-finite set. (Because of this, we can often reduce from the non-σ-finite
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case to the σ-finite case in many, though not all, questions concerning Lp

spaces.)

We now are able to define Lp norms and spaces in the limit p = ∞.
We say that a function f : X → C is essentially bounded if there exists an
M such that |f(x)| ≤ M for almost every x ∈ X, and define ‖f‖L∞ to be
the least M that serves as such a bound. We let L∞ denote the space of
essentially bounded functions, quotiented out by equivalence, and given the
norm ‖ · ‖L∞ . It is not hard to see that this is also a normed vector space.
Observe that a sequence fn ∈ L∞ converges to a limit f ∈ L∞ if and only
if fn converges essentially uniformly to f , i.e., it converges uniformly to f
outside of a set of measure zero. (Compare with Egorov’s theorem (Theo-
rem 1.1.21), which equates pointwise convergence with uniform convergence
outside of a set of arbitrarily small measure.)

Now we explain why we call this norm the L∞ norm:

Example 1.3.4. Let f be a (generalised) step function, thus f = A1E
for some amplitude A > 0 and some set E. Let us assume that E has
positive finite measure. Then ‖f‖Lp = Aμ(E)1/p for all 0 < p < ∞, and
also ‖f‖L∞ = A. Thus in this case, at least, the L∞ norm is the limit of
the Lp norms. This example illustrates also that the Lp norms behave like
combinations of the height A of a function, and the width μ(E) of such a
function, though of course the concepts of height and width are not formally
defined for functions that are not step functions.

Exercise 1.3.5. • If f ∈ L∞ ∩ Lp0 for some 0 < p0 < ∞, show that
‖f‖Lp → ‖f‖L∞ as p → ∞. (Hint : Use the monotone convergence
theorem, Theorem 1.1.21.)

• If f �∈ L∞, show that ‖f‖Lp →∞ as p→∞.

Once one has a vector space structure and a (quasi-)norm structure, we
immediately get a (quasi-)metric structure:

Exercise 1.3.6. Let (V, ‖‖) be a normed vector space. Show that the func-
tion d : V × V → [0,+∞) defined by d(f, g) := ‖f − g‖ is a metric on V
which is translation invariant (thus d(f +h, g+h) = d(f, g) for all f, g ∈ V )
and homogeneous (thus d(cf, cg) = |c|d(f, g) for all f, g ∈ V and scalars c).
Conversely, show that every translation-invariant homogeneous metric on V
arises from precisely one norm in this manner. Establish a similar claim
relating quasi-norms with quasi-metrics (which are defined as metrics, but
with the triangle inequality replaced by a quasi-triangle inequality), or be-
tween seminorms and semimetrics (which are defined as metrics, but where
distinct points are allowed to have a zero separation; these are also known
as pseudometrics).
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The (quasi-)metric structure in turn generates a topological structure in
the usual manner using the (quasi-)metric balls as a base for the topology.
In particular, a sequence of functions fn ∈ Lp converges to a limit f ∈ Lp

if ‖fn − f‖Lp → 0 as n → ∞. We refer to this type of convergence as
a convergence in Lp norm or a strong convergence in Lp (we will discuss
other modes of convergence in later lectures). As is usual in (quasi-)metric
spaces (or more generally for Hausdorff spaces), the limit, if it exists, is
unique. (This is however not the case for topological structures induced by
seminorms or semimetrics, though we can solve this problem by quotienting
out the degenerate elements as discussed earlier.)

Recall that any series
∑∞

n=1 an of scalars is convergent if it is absolutely
convergent (i.e., if

∑∞
n=1 |an| <∞). This fact turns out to be closely related

to the fact that the field of scalars C is complete. This can be seen from
the following result:

Exercise 1.3.7. Let (V, ‖‖) be a normed vector space (and hence also a
metric space and a topological space). Show that the following are equiva-
lent:

• V is a complete metric space (i.e., every Cauchy sequence converges).

• Every sequence fn ∈ V which is absolutely convergent (i.e.,
∑∞

n=1 ‖fn‖ <∞) is also conditionally convergent (i.e.,
∑N

n=1 fn con-
verges to a limit as N →∞).

Remark 1.3.5. The situation is more complicated for complete quasi-
normed vector spaces; not every absolutely convergent series is conditionally
convergent. On the other hand, if ‖fn‖ decays faster than a sufficiently large
negative power of n, one recovers conditional convergence; see [Ta].

Remark 1.3.6. LetX be a topological space, and letBC(X) be the space of
bounded continuous functions on X; this is a vector space. We can place the
uniform norm ‖f‖u := supx∈X |f(x)| on this space; this makes BC(X) into a
normed vector space. It is not hard to verify that this space is complete, and
so every absolutely convergent series in BC(X) is conditionally convergent.
This fact is better known as the Weierstrass M -test.

A space obeying the properties in Exercise 1.3.5 (i.e., a complete normed
vector space) is known as a Banach space. We will study Banach spaces in
more detail later in this course. For now, we give one of the fundamental
examples of Banach spaces.

Proposition 1.3.7. Lp is a Banach space for every 1 ≤ p ≤ ∞.

Proof. By Exercise 1.3.7, it suffices to show that any series
∑∞

n=1 fn of
functions in Lp which is absolutely convergent is also conditionally conver-
gent. This is easy in the case p = ∞ and is left as an exercise. In the case
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1 ≤ p < ∞, we write M :=
∑∞

n=1 ‖fn‖Lp , which is a finite quantity by hy-

pothesis. By the triangle inequality, we have ‖
∑N

n=1 |fn|‖Lp ≤M for all N .
By monotone convergence (Theorem 1.1.21), we conclude ‖

∑∞
n=1 |fn|‖Lp ≤

M . In particular,
∑∞

n=1 fn(x) is absolutely convergent for almost every x.
Write the limit of this series as F (x). By dominated convergence (Theorem

1.1.21), we see that
∑N

n=1 fn(x) converges in Lp norm to F , and we are
done. �

An important fact is that functions in Lp can be approximated by simple
functions:

Proposition 1.3.8. If 0 < p < ∞, then the space of simple functions with
finite measure support is a dense subspace of Lp.

Remark 1.3.9. The concept of a non-trivial dense subspace is one which
only comes up in infinite dimensions, and it is hard to visualise directly. Very
roughly speaking, the infinite number of degrees of freedom in an infinite
dimensional space gives a subspace an infinite number of “opportunities” to
come as close as one desires to any given point in that space, which is what
allows such spaces to be dense.

Proof. The only non-trivial thing to show is the density. An application of
the monotone convergence theorem (Theorem 1.1.21) shows that the space
of bounded Lp functions are dense in Lp. Another application of monotone
convergence (and Exercise 1.3.4) then shows that the space of bounded Lp

functions of finite measure support are dense in the space of bounded Lp

functions. Finally, by discretising the range of bounded Lp functions, we see
that the space of simple functions with finite measure support is dense in
the space of bounded Lp functions with finite support. �

Remark 1.3.10. Since not every function in Lp is a simple function with
finite measure support, we thus see that the space of simple functions with
finite measure support with the Lp norm is an example of a normed vector
space which is not complete.

Exercise 1.3.8. Show that the space of simple functions (not necessarily
with finite measure support) is a dense subspace of L∞. Is the same true if
one reinstates the finite measure support restriction?

Exercise 1.3.9. Suppose that μ is σ-finite and X is separable (i.e., count-
ably generated). Show that Lp is separable (i.e., has a countable dense
subset) for all 1 ≤ p <∞. Give a counterexample that shows that L∞ need
not be separable. (Hint : Try using a counting measure.)

Next, we turn to algebra properties of Lp spaces. The key fact here is
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Proposition 1.3.11 (Hölder’s inequality). Let f ∈ Lp and g ∈ Lq for some
0 < p, q ≤ ∞. Then fg ∈ Lr and ‖fg‖Lr ≤ ‖f‖Lp‖g‖Lq , where the exponent
r is defined by the formula 1

r = 1
p + 1

q .

Proof. This will be a variant of the proof of the triangle inequality in
Lemma 1.3.3, again relying ultimately on convexity. The claim is easy when
p = ∞ or q = ∞ and is left as an exercise for the reader in this case,
so we assume p, q < ∞. Raising f and g to the power r using (1.17), we
may assume r = 1, which makes 1 < p, q < ∞ dual exponents in the sense
that 1

p + 1
q = 1. The claim is obvious if either ‖f‖Lp or ‖g‖Lq are zero, so

we may assume they are non-zero; by homogeneity we may then normalise
‖f‖Lp = ‖g‖Lq = 1. Our task is now to show that

(1.21)

∫

X
|fg| dμ ≤ 1.

Here, we use the convexity of the exponential function t 
→ et on [0,+∞),

which implies the convexity of the function t 
→ |f(x)|p(1−t)|g(x)|qt for t ∈
[0, 1] for any x. In particular we have

(1.22) |f(x)g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q,

and the claim (1.21) follows from the normalisations on p, q, f , g. �

Remark 1.3.12. For a different proof of this inequality (based on the tensor
power trick), see Section 1.9 of Structure and Randomness.

Remark 1.3.13. One can also use Hölder’s inequality to prove the triangle
inequality for Lp, 1 ≤ p < ∞ (i.e., Minkowski’s inequality). From the
complex triangle inequality |f + g| ≤ |f | + |g|, it suffices to check the case
when f , g are non-negative. In this case we have the identity

(1.23) ‖f + g‖pLp = ‖f |f + g|p−1‖L1 + ‖g|f + g|p−1‖L1 ,

while Hölder’s inequality gives ‖f |f + g|p−1‖L1 ≤ ‖f‖Lp‖f + g‖p−1
Lp and

‖g|f+g|p−1‖L1 ≤ ‖g‖Lp‖f+g‖p−1
Lp . The claim then follows from some algebra

(and checking the degenerate cases separately, e.g., when ‖f + g‖Lp = 0).

Remark 1.3.14. The proofs of Hölder’s inequality and Minkowski’s in-
equality both relied on convexity of various functions in C or [0,+∞). One
way to emphasise this is to deduce both inequalities from Jensen’s inequality,
which is an inequality that manifestly exploits this convexity. We will not
take this approach here, but see for instance [LiLo2000] for a discussion.

Example 1.3.15. It is instructive to test Hölder’s inequality (and also Ex-
ercises 1.3.10–1.3.14 below) in the special case when f , g are generalised step
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functions, say f = A1E and g = B1F with A, B non-zero. The inequality
then simplifies to

(1.24) μ(E ∩ F )1/r ≤ μ(E)1/pμ(F )1/q,

which can be easily deduced from the hypothesis 1
p + 1

q = 1
r and the trivial

inequalities μ(E ∩ F ) ≤ μ(E) and μ(E ∩ F ) ≤ μ(F ). One then easily sees
(when p, q are finite) that equality in (1.24) only holds if μ(E∩F ) = μ(E) =
μ(F ), or in other words if E and F agree almost everywhere. Note the above
computations also explain why the condition 1

p + 1
q = 1

r is necessary.

Exercise 1.3.10. Let 0 < p, q < ∞, and let f ∈ Lp, g ∈ Lq be such
that Hölder’s inequality is obeyed with equality. Show that of the functions
fp, gq, one of them is a scalar multiple of the other (up to equivalence, of
course). What happens if p or q is infinite?

An important corollary of Hölder’s inequality is the Cauchy-Schwarz
inequality

(1.25) |
∫

X
f(x)g(x) dμ| ≤ ‖f‖L2‖g‖L2 ,

which can of course be proven by many other means.

Exercise 1.3.11. If f ∈ Lp for some 0 < p ≤ ∞ and is also supported
on a set E of finite measure, show that f ∈ Lq for all 0 < q ≤ p, with

‖f‖Lq ≤ μ(E)
1
q
− 1

p ‖f‖Lp . When does equality occur?

Exercise 1.3.12. If f ∈ Lp for some 0 < p < ∞ and every set of positive
measure in X has measure at least m, show that f ∈ Lq for all p < q ≤ ∞,

with ‖f‖Lq ≤ m
1
q
− 1

p ‖f‖Lp . When does equality occur? (This result is
especially useful for the �p spaces, in which μ is a counting measure and m
can be taken to be 1.)

Exercise 1.3.13. If f ∈ Lp0 ∩ Lp1 for some 0 < p0 < p1 ≤ ∞, show that
f ∈ Lp for all p0 ≤ p ≤ p1 and that ‖f‖Lp ≤ ‖f‖1−θ

Lp0 ‖f‖θLp1 , where 0 < θ < 1

is such that 1
p = 1−θ

p0
+ θ

p1
. Another way of saying this is that the function

1
p 
→ log ‖f‖Lp is convex. When does equality occur? This convexity is

a prototypical example of interpolation, about which we shall say more in
Section 1.11.

Exercise 1.3.14. If f ∈ Lp0 for some 0 < p0 ≤ ∞ and its support E :=
{x ∈ X : f(x) �= 0} has finite measure, show that f ∈ Lp for all 0 < p < p0
and that ‖f‖pLp → μ(E) as p → 0. (Because of this, the measure of the
support of f is sometimes known as the L0 norm of f , or more precisely the
L0 norm raised to the power 0.)
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1.3.2. Linear functionals on Lp. Given an exponent 1 ≤ p ≤ ∞, define
the dual exponent 1 ≤ p′ ≤ ∞ by the formula 1

p +
1
p′ = 1 (thus p′ = p/(p−1)

for 1 < p < ∞, while 1 and ∞ are duals of each other). From Hölder’s

inequality, we see that for any g ∈ Lp′ , the functional λg : Lp → C defined
by

(1.26) λg(f) :=

∫

X
fg dμ

is well defined on Lp; the functional is also clearly linear. Furthermore,
Hölder’s inequality also tells us that this functional is continuous.

A deep and important fact about Lp spaces is that, in most cases, the
converse is true: the recipe (1.26) is the only way to create continuous linear
functionals on Lp.

Theorem 1.3.16 (Dual of Lp). Let 1 ≤ p < ∞, and assume μ is σ-finite.
Let λ : Lp → C be a continuous linear functional. Then there exists a unique
g ∈ Lp′ such that λ = λg.

This result should be compared with the Radon-Nikodym theorem
(Corollary 1.2.5). Both theorems start with an abstract function μ : X → R
or λ : Lp → C, and create a function out of it. Indeed, we shall see shortly
that the two theorems are essentially equivalent to each other. We will de-
velop Theorem 1.3.16 further in Section 1.5, once we introduce the notion
of a dual space.

To prove Theorem 1.3.16, we first need a simple and useful lemma:

Lemma 1.3.17 (Continuity is equivalent to boundedness for linear opera-
tors). Let T : X → Y be a linear transformation from one normed vector
space (X, ‖‖X) to another (Y, ‖‖Y ). Then the following are equivalent:

(i) T is continuous.

(ii) T is continuous at 0.

(iii) There exists a constant C such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X.

Proof. It is clear that (i) implies (ii), and that (iii) implies (ii). Next, from
linearity we have Tx = Tx0 + T (x− x0) for any x, x0 ∈ X, which (together
with the continuity of addition, which follows from the triangle inequality)
shows that continuity of T at 0 implies continuity of T at any x0, so that
(ii) implies (i). The only remaining task is to show that (i) implies (iii).
By continuity, the inverse image of the unit ball in Y must be an open
neighbourhood of 0 in X, thus there exists some radius r > 0 such that
‖Tx‖Y < 1 whenever ‖x‖X < r. The claim then follows (with C := 1/r) by
homogeneity. (Alternatively, one can deduce (iii) from (ii) by contradiction.
If (iii) failed, then there exists a sequence xn of non-zero elements of X
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such that ‖Txn‖Y /‖xn‖X goes to infinity. By homogeneity, we can arrange
matters so that ‖xn‖X goes to zero, but ‖Txn‖Y stays away from zero, thus
contradicting continuity at 0.) �

Proof of Theorem 1.3.16. The uniqueness claim is similar to the unique-
ness claim in the Radon-Nikodym theorem (Exercise 1.2.2) and is left as an
exercise to the reader; the hard part is establishing existence.

Let us first consider the case when μ is finite. The linear functional
λ : Lp → C induces a functional ν : X → C on sets E by the formula

(1.27) ν(E) := λ(1E).

Since λ is linear, ν is finitely additive (and sends the empty set to zero).
Also, if E1, E2, . . . are a sequence of disjoint sets, then 1⋃N

n=1 En
converges

in Lp to 1⋃∞
n=1 En

as n → ∞ (by the dominated convergence theorem and

the finiteness of μ), and thus (by continuity of λ and finite additivity of
ν), ν is countably additive as well. Finally, from (1.27) we also see that
ν(E) = 0 whenever μ(E) = 0, thus ν is absolutely continuous with respect
to μ. Applying the Radon-Nikodym theorem (Corollary 1.2.5) to both the
real and imaginary components of ν, we conclude that ν = μg for some
g ∈ L1. Thus by (1.27) we have

(1.28) λ(1E) = λg(1E)

for all measurable E. By linearity, this implies that λ and λg agree on
simple functions. Taking uniform limits (using Exercise 1.3.8) and using
continuity (and the finite measure of μ), we conclude that λ and λg agree
on all bounded functions. Taking monotone limits (working on the positive
and negative supports of the real and imaginary parts of g separately), we
conclude that λ and λg agree on all functions in Lp, and in particular that∫
X fg dμ is absolutely convergent for all f ∈ Lp.

To finish the theorem in this case, we need to establish that g lies in
Lp′ . By taking real and imaginary parts, we may assume without loss of
generality that g is real; by splitting into the regions where g is positive and
negative, we may assume that g is non-negative.

We already know that λg = λ is a continuous functional from Lp to C.
By Lemma 1.3.17, this implies a bound of the form |λg(f)| ≤ C‖f‖Lp for
some C > 0.

Suppose first that p > 1. Heuristically, we would like to test this

inequality with f := gp
′−1, since we formally have λg(f) = ‖g‖p

′

Lp′ and

‖f‖Lp = ‖g‖p
′−1

Lp′ . (Not coincidentally, this is also the choice that would

make Hölder’s inequality an equality; see Exercise 1.3.10.) Cancelling the
‖g‖Lp′ factors would then give the desired finiteness of ‖g‖Lp′ .



42 1. Real analysis

We cannot quite make that argument work, because it is circular: it
assumes ‖g‖Lp′ is finite in order to show that ‖g‖Lp′ is finite! But this can be

easily remedied. We test the inequality with fN := min(g,N)p
′−1 for some

large N ; this lies in Lp. We have λg(fN ) ≥ ‖min(g,N)‖p
′

Lp′ and ‖fN‖Lp =

‖min(g,N)‖p
′−1

Lp′ , and hence ‖min(g,N)‖Lp′ ≤ C for all N . Letting N go to

infinity and using monotone convergence (Theorem 1.1.21), we obtain the
claim.

In the p = 1 case, we instead use f := 1g>N as the test functions, to
conclude that g is bounded almost everywhere by N . We leave the details
to the reader.

This handles the case when μ is finite. When μ is σ-finite, we can writeX
as the union of an increasing sequence En of sets of finite measure. On each
such set, the above arguments let us write λ = λgn for some gn ∈ Lp′(En).
The uniqueness arguments tell us that the gn are all compatible with each
other, in particular if n < m, then gn and gm agree on En. Thus all the gn are
in fact restrictions of a single function g to En. The previous arguments also
tell us that the Lp′ norm of gn is bounded by the same constant C uniformly
in n, so by monotone convergence (Theorem 1.1.21), g has bounded Lp′ norm
also, and we are done. �

Remark 1.3.18. When 1 < p < ∞, the hypothesis that μ is σ-finite can
be dropped, but not when p = 1; see, e.g., [Fo2000, Section 6.2] for further
discussion. In these lectures, though, we will be content with working in
the σ-finite setting. On the other hand, the claim fails when p =∞ (except
when X is finite); we will see this in Section 1.5, when we discuss the Hahn-
Banach theorem.

Remark 1.3.19. We have seen how the Lebesgue-Radon-Nikodym theorem
can be used to establish Theorem 1.3.16. The converse is also true: Theorem
1.3.16 can be used to deduce the Lebesgue-Radon-Nikodym theorem (a fact
essentially observed by von Neumann). For simplicity, let us restrict our
attention to the unsigned finite case, thus μ and m are unsigned and finite.
This implies that the sum μ+m is also unsigned and finite. We observe that
the linear functional λ : f 
→

∫
X f dμ is continuous on L1(μ+m), hence by

Theorem 1.3.16, there must exist a function g ∈ L∞(μ+m) such that

(1.29)

∫

X
f dμ =

∫

X
fg d(μ+m)

for all f ∈ L1(μ+m). It is easy to see that g must be real and non-negative,
and also at most 1 almost everywhere. If E is the set where m = 1, we
see by setting f = 1E in (1.29) that E has m-measure zero, and so μ �E is
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singular. Outside of E, we see from (1.29) and some rearrangement that

(1.30)

∫

X\E
(1− g)f dμ =

∫

X
fg dm

and one then easily verifies that μ agrees withm g
1−g

outside of E′. This gives

the desired Lebesgue-Radon-Nikodym decomposition μ = m g
1−g

+ μ �E .

Remark 1.3.20. The argument used in Remark 1.3.19 also shows that the
Radon-Nikodym theorem implies the Lebesgue-Radon-Nikodym theorem.

Remark 1.3.21. One can give an alternate proof of Theorem 1.3.16, which
relies on the geometry (and in particular, the uniform convexity) of Lp spaces
rather than on the Radon-Nikodym theorem, and can thus be viewed as
giving an independent proof of that theorem; see Exercise 1.4.14.

Notes. This lecture first appeared at

terrytao.wordpress.com/2009/01/09.

Thanks to Xiaochuan Li for corrections.





Section 1.4

Hilbert spaces

In the next few lectures, we will be studying four major classes of function
spaces. In decreasing order of generality, these classes are the topological
vector spaces, the normed vector spaces, the Banach spaces, and the Hilbert
spaces. In order to motivate the discussion of the more general classes of
spaces, we will first focus on the most special class—that of (real and com-
plex) Hilbert spaces. These spaces can be viewed as generalisations of (real
and complex) Euclidean spaces such as Rn and Cn to infinite-dimensional
settings, and indeed much of one’s Euclidean geometry intuition concerning
lengths, angles, orthogonality, subspaces, etc., will transfer readily to arbi-
trary Hilbert spaces. In contrast, this intuition is not always accurate in
the more general vector spaces mentioned above. In addition to Euclidean
spaces, another fundamental example7 of Hilbert spaces comes from the
Lebesgue spaces L2(X,X , μ) of a measure space (X,X , μ).

Hilbert spaces are the natural abstract framework in which to study two
important (and closely related) concepts, orthogonality and unitarity, al-
lowing us to generalise familiar concepts and facts from Euclidean geometry
such as the Cartesian coordinate system, rotations and reflections, and the
Pythagorean theorem to Hilbert spaces. (For instance, the Fourier trans-
form (Section 1.12) is a unitary transformation and can thus be viewed as a
kind of generalised rotation.) Furthermore, the Hodge duality on Euclidean

7There are of course many other Hilbert spaces of importance in complex analysis, harmonic
analysis, and PDE, such as Hardy spaces H2, Sobolev spaces Hs = W s,2, and the space HS of
Hilbert-Schmidt operators; see for instance Section 1.14 for a discussion of Sobolev spaces. Com-
plex Hilbert spaces also play a fundamental role in the foundations of quantum mechanics, being
the natural space to hold all the possible states of a quantum system (possibly after projectivising
the Hilbert space), but we will not discuss this subject here.

45



46 1. Real analysis

spaces has a partial analogue for Hilbert spaces, namely the Riesz represen-
tation theorem for Hilbert spaces, which makes the theory of duality and
adjoints for Hilbert spaces especially simple (when compared with the more
subtle theory of duality for, say, Banach spaces; see Section 1.5).

These notes are only the most basic introduction to the theory of Hilbert
spaces. In particular, the theory of linear transformations between two
Hilbert spaces, which is perhaps the most important aspect of the subject,
is not covered much at all here.

1.4.1. Inner product spaces. The Euclidean norm

(1.31) |(x1, . . . , xn)| :=
√

x21 + · · ·+ x2n

in real Euclidean space Rn can be expressed in terms of the dot product
· : Rn ×Rn → R, defined as

(1.32) (x1, . . . , xn) · (y1, . . . , yn) := x1y1 + · · ·+ xnyn

by the well-known formula

(1.33) |x| = (x · x)1/2.
In particular, we have the positivity property

(1.34) x · x ≥ 0

with equality if and only if x = 0. One reason why it is more advantageous
to work with the dot product than the norm is that while the norm function
is only sublinear, the dot product is bilinear, thus

(1.35) (cx+ dy) · z = c(x · z) + d(y · z); z · (cx+ dy) = c(z · x) + d(z · y)
for all vectors x, y and scalars c, d, and also symmetric,

(1.36) x · y = y · x.
These properties make the inner product easier to manipulate algebraically
than the norm.

The above discussion was for the real vector space Rn, but one can
develop analogous statements for the complex vector space Cn, in which
the norm

(1.37) ‖(z1, . . . , zn)‖ :=
√
|z1|2 + · · ·+ |zn|2

can be represented in terms of the complex inner product 〈, 〉 : Cn×Cn → C
defined by the formula

(1.38) (z1, . . . , zn) · (w1, . . . , wn) := z1w1 + · · ·+ znwn

by the analogue of (1.33), namely

(1.39) ‖x‖ = (〈x, x〉)1/2.
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In particular, as before with (1.34), we have the positivity property

(1.40) 〈x, x〉 ≥ 0

with equality if and only if x = 0. The bilinearity property (1.35) is modified
to the sesquilinearity property

(1.41) 〈cx+ dy, z〉 = c〈x, z〉+ d〈y, z〉, 〈z, cx+ dy〉 = c〈z, x〉+ d〈z, y〉

while the symmetry property (1.36) needs to be replaced with

(1.42) 〈x, y〉 = 〈y, x〉

in order to be compatible with sesquilinearity.

We can formalise all these properties axiomatically as follows.

Definition 1.4.1 (Inner product space). A complex inner product space
(V, 〈, 〉) is a complex vector space V , together with an inner product 〈, 〉 :
V × V → C which is sesquilinear (i.e., (1.41) holds for all x, y ∈ V and
c, d ∈ C) and symmetric in the sesquilinear sense (i.e., (1.42) holds for all
x, y ∈ V ), and obeys the positivity property (1.40) for all x ∈ V , with
equality if and only if x = 0. We will usually abbreviate (V, 〈, 〉) as V .

A real inner product space is defined similarly, but with all references to
C replaced by R (and all references to complex conjugation dropped).

Example 1.4.2. Rn with the standard dot product (1.32) is a real inner
product space, and Cn with the complex inner product (1.38) is a complex
inner product space.

Example 1.4.3. If (X,X , μ) is a measure space, then the complex L2 space
L2(X,X , μ) = L2(X,X , μ;C) with the complex inner product

(1.43) 〈f, g〉 :=
∫

X
fg dμ

(which is well defined by the Cauchy-Schwarz inequality) is easily verified
to be a complex inner product space, and similarly for the real L2 space
(with the complex conjugate signs dropped, of course). Note that the finite
dimensional examples Rn,Cn can be viewed as the special case of the L2

examples in which X is {1, . . . , n} with the discrete σ-algebra and counting
measure.

Example 1.4.4. Any subspace of a (real or complex) inner product space
is again a (real or complex) inner product space, simply by restricting the
inner product to the subspace.

Example 1.4.5. Also, any real inner product space V can be complexified
into the complex inner product space VC, defined as the space of formal
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combinations x + iy of vectors x, y ∈ V (with the obvious complex vector
space structure), and with inner product

(1.44) 〈a+ ib, c+ id〉 := 〈a, c〉+ i〈b, c〉 − i〈a, d〉+ 〈b, d〉.

Example 1.4.6. Fix a probability space (X,X , μ). The space of square-
integrable real-valued random variables of mean zero is an inner product
space if one uses covariance as the inner product. (What goes wrong if one
drops the mean zero assumption?)

Given a (real or complex) inner product space V , we can define the norm
‖x‖ of any vector x ∈ V by the formula (1.39), which is well defined thanks
to the positivity property; in the case of the L2 spaces, this norm of course
corresponds to the usual L2 norm. We have the following basic facts:

Lemma 1.4.7. Let V be a real or complex inner product space.

(i) Cauchy-Schwarz inequality. For any x, y ∈ V , we have |〈x, y〉| ≤
‖x‖‖y‖.

(ii) The function x 
→ ‖x‖ is a norm on V . (Thus every inner product
space is a normed vector space.)

Proof. We shall just verify the complex case, as the real case is similar
(and slightly easier). The positivity property tells us that the quadratic
form 〈ax+ by, ax+ by〉 is non-negative for all complex numbers a, b. Using
sesquilinearity and symmetry, we can expand this form as

(1.45) |a|2‖x‖2 + 2Re(ab〈x, y〉) + |b|2‖y‖2.

Optimising in a, b (see also Section 1.10 of Structure and Randomness), we
obtain the Cauchy-Schwarz inequality. To verify the norm property, the only
non-trivial verification is that of the triangle inequality ‖x+y‖ ≤ ‖x‖+‖y‖.
But on expanding ‖x+ y‖2 = 〈x+ y, x+ y〉, we see that

(1.46) ‖x+ y‖2 = ‖x‖2 + 2Re(〈x, y〉) + ‖y‖2,

and the claim then follows from the Cauchy-Schwarz inequality. �

Observe from the Cauchy-Schwarz inequality that the inner product 〈, 〉 :
H ×H → C is continuous.

Exercise 1.4.1. Let T : V →W be a linear map from one (real or complex)
inner product space to another. Show that T preserves the inner product
structure (i.e., 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ V ) if and only if T is an
isometry (i.e., ‖Tx‖ = ‖x‖ for all x ∈ V ). (Hint : In the real case, express
〈x, y〉 in terms of ‖x+ y‖2 and ‖x− y‖2. In the complex case, use x+ y, x−
y, x+ iy, x− iy instead of x+ y, x− y.)
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Inspired by the above exercise, we say that two inner product spaces
are isomorphic if there exists an invertible isometry from one space to the
other; such invertible isometries are known as isomorphisms.

Exercise 1.4.2. Let V be a real or complex inner product space. If x1, . . .,
xn are a finite collection of vectors in V , show that the Gram matrix
(〈xi, xj〉)1≤i,j≤n is Hermitian and positive semidefinite, and it is positive
definite if and only if the x1, . . . , xn are linearly independent. Conversely,
given a Hermitian positive semidefinite matrix (aij)1≤i,j≤n with real (resp.,
complex) entries, show that there exists a real (resp., complex) inner product
space V and vectors x1, . . . , xn such that 〈xi, xj〉 = aij for all 1 ≤ i, j ≤ n.

In analogy with the Euclidean case, we say that two vectors x, y in
a (real or complex) vector space are orthogonal if 〈x, y〉 = 0. (With this
convention, we see in particular that 0 is orthogonal to every vector, and is
the only vector with this property.)

Exercise 1.4.3 (Pythagorean theorem). Let V be a real or complex inner
product space. If x1, . . . , xn are a finite set of pairwise orthogonal vectors,
then ‖x1 + · · · + xn‖2 = ‖x1‖2 + · · · + ‖xn‖2. In particular, we see that
‖x1 + x2‖ ≥ ‖x1‖ whenever x2 is orthogonal to x1.

A (possibly infinite) collection (eα)α∈A of vectors in a (real or complex)
inner product space is said to be orthonormal if they are pairwise orthogonal
and all of unit length.

Exercise 1.4.4. Let (eα)α∈A be an orthonormal system of vectors in a real
or complex inner product space. Show that this system is (algebraically)
linearly independent (thus any non-trivial finite linear combination of vec-
tors in this system is non-zero). If x lies in the algebraic span of this system
(i.e., it is a finite linear combination of vectors in the system), establish the
inversion formula

(1.47) x =
∑

α∈A
〈x, eα〉eα

(with only finitely many of the terms non-zero) and the (finite) Plancherel
formula

(1.48) ‖x‖2 =
∑

α∈A
|〈x, eα〉|2.

Exercise 1.4.5 (Gram-Schmidt theorem). Let e1, . . . , en be a finite or-
thonormal system in a real or complex inner product space, and let v be a
vector not in the span of e1, . . . , en. Show that there exists a vector en+1

with span(e1, . . . , en, en+1) = span(e1, . . . , en, v) such that e1, . . . , en+1 is an
orthonormal system. Conclude that an n-dimensional real or complex inner
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product space is isomorphic to Rn or Cn, respectively. Thus, any statement
about inner product spaces which only involves a finite-dimensional subspace
of that space can be verified just by checking it on Euclidean spaces.

Exercise 1.4.6 (Parallelogram law). For any inner product space V , estab-
lish the parallelogram law

(1.49) ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.
Show that this inequality fails for Lp(X,X , μ) for p �= 2 as soon asX contains
at least two disjoint sets of non-empty finite measure. On the other hand,
establish the Hanner inequalities

(1.50) ‖f + g‖pp + ‖f − g‖pp ≥ (‖f‖p + ‖g‖p)p + |‖f‖p − ‖g‖p|p

and

(1.51) (‖f + g‖p + ‖f − g‖p)p + |‖f + g‖p − ‖f − g‖p|p ≤ 2p(‖f‖pp + ‖g‖pp)
for 1 ≤ p ≤ 2, with the inequalities being reversed for 2 ≤ p < ∞. (Hint :
(1.51) can be deduced from (1.50) by a simple substitution. For (1.50), re-
duce to the case when f , g are non-negative, and then exploit the inequality

|x+ y|p + |x− y|p ≥ ((1 + r)p−1 + (1− r)p−1)xp

+ ((1 + r)p−1 − (1− r)p−1)r1−pyp
(1.52)

for all non-negative x, y, 0 < r < 1, and 1 ≤ p ≤ 2, with the inequality
being reversed for 2 ≤ p <∞, and with equality being attained when y < x
and r = y/x.)

1.4.2. Hilbert spaces. Thus far, our discussion of inner product spaces
has been largely algebraic in nature; this is because we have not been able
to take limits inside these spaces and do some actual analysis. This can be
rectified by adding an additional axiom:

Definition 1.4.8 (Hilbert spaces). A (real or complex) Hilbert space is a
(real or complex) inner product space which is complete (or equivalently, an
inner product space which is also a Banach space).

Example 1.4.9. From Proposition 1.3.7, (real or complex) L2(X,X , μ) is
a Hilbert space for any measure space (X,X , μ). In particular, Rn and Cn

are Hilbert spaces.

Exercise 1.4.7. Show that a subspace of a Hilbert space H will itself be a
Hilbert space if and only if it is closed. (In particular, proper dense subspaces
of Hilbert spaces are not Hilbert spaces.)

Example 1.4.10. By Example 1.4.9, the space l2(Z) of doubly infinite
square-summable sequences is a Hilbert space. Inside this space, the space
cc(Z) of sequences of finite support is a proper dense subspace (as can be
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seen for instance by Proposition 1.3.8, though this can also be seen much
more directly), and so cannot be a Hilbert space.

Exercise 1.4.8. Let V be an inner product space. Show that there exists a
Hilbert space V which contains a dense subspace isomorphic to V ; we refer
to V as a completion of V . Furthermore, this space is essentially unique

in the sense that if V , V
′
are two such completions, then there exists an

isomorphism from V to V
′
which is the identity on V (if one identifies V with

the dense subspaces of V and V ′. Because of this fact, inner product spaces
are sometimes known as pre-Hilbert spaces, and can always be identified with
dense subspaces of actual Hilbert spaces.

Exercise 1.4.9. Let H, H ′ be two Hilbert spaces. Define the direct sum
H ⊕H ′ of the two spaces to be the vector space H ×H ′ with inner product
〈(x, x′), (y, y′)〉H⊕H′ := 〈x, y〉H + 〈x′, y′〉H′ . Show that H ⊕ H ′ is also a
Hilbert space.

Example 1.4.11. If H is a complex Hilbert space, one can define the com-
plex conjugate H of that space to be the set of formal conjugates {x : x ∈ H}
of vectors in H, with complex vector space structure x + y := x+ y and
cx := cx, and inner product 〈x, y〉H := 〈y, x〉H . One easily checks that H is
again a complex Hilbert space. Note the map x 
→ x is not a complex linear
isometry; instead, it is a complex antilinear isometry.

A key application of the completeness axiom is to be able to define the
nearest point from a vector to a closed convex body.

Proposition 1.4.12 (Existence of minimisers). Let H be a Hilbert space,
let K be a non-empty closed convex subset of H, and let x be a point in H.
Then there exists a unique y in K that minimises the distance ‖y−x‖ to x.
Furthermore, for any other z in K, we have Re〈z − y, y − x〉 ≥ 0.

Recall that a subset K of a real or complex vector space is convex if
(1− t)v + tw ∈ K whenever v, w ∈ K and 0 ≤ t ≤ 1.

Proof. Observe from the parallelogram law (1.49) that we have the (geo-
metrically obvious) fact that if y and y′ are distinct and equidistant from
x, then their midpoint (y + y′)/2 is strictly closer to x than either of y or
y′. This (and convexity) ensures that the distance minimiser, if it exists, is
unique. Also, if y is the distance minimiser and z is in K, then (1− θ)y+ θz
is at least as distant from x as y is for any 0 < θ < 1, by convexity. Squaring
this and rearranging, we conclude that

(1.53) 2Re〈z − y, y − x〉+ θ‖z − y‖2 ≥ 0.

Letting θ → 0 we obtain the final claim in the proposition.
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It remains to show existence. Write D := infy∈K ‖x − y‖. It is clear
that D is finite and non-negative. If the infimum is attained, then we would
be done. We cannot conclude immediately that this is the case, but we can
certainly find a sequence yn ∈ K such that ‖x−yn‖ → D. On the other hand,
the midpoints yn+ym

2 lie in K by convexity and so ‖x− yn+ym
2 ‖ ≥ D. Using

the parallelogram law (1.49) we deduce that ‖yn − ym‖ → 0 as n,m → ∞,
and so yn is a Cauchy sequence; by completeness, it converges to a limit
y, which lies in K since K is closed. From the triangle inequality we see
that ‖x − yn‖ → ‖x − y‖, and thus ‖x − y‖ = D, and so y is a distance
minimiser. �
Exercise 1.4.10. Show by constructing counterexamples that the existence
of the distance minimiser y can fail if either the closure or convexity hypoth-
esis on K is dropped, or if H is merely an inner product space rather than
a Hilbert space. (Hint : For the last case, let H be the inner product space
C([0, 1]) ⊂ L2([0, 1]), and let K be the subspace of continuous functions
supported on [0, 1/2].) On the other hand, show that existence (but not
uniqueness) can be recovered if K is assumed to be compact rather than
convex.

Exercise 1.4.11. Using the Hanner inequalities (Exercise 1.4.6), show that
Proposition 1.4.12 also holds for the Lp spaces as long as 1 < p <∞. (The
specific feature of the Lp spaces that is allowing this is known as uniform
convexity.) Give counterexamples to show that the proposition can fail for
L1 and for L∞.

Proposition 1.4.12 has some importance in calculus of variations, but we
will not pursue those applications here.

Since every subspace is necessarily convex, we have a corollary:

Exercise 1.4.12 (Orthogonal projections). Let V be a closed subspace of a
Hilbert space H. Then for every x ∈ H there exists a unique decomposition
x = xV + xV ⊥ , where xV ∈ V and xV ⊥ is orthogonal to every element of V .
Furthermore, xV is the closest element of V to x.

Let πV : H → V be the map πV : x 
→ xV , where xV is given by the
above exercise; we refer to πV as the orthogonal projection from H onto V .
It is not hard to see that πV is linear, and from the Pythagorean theorem we
see that πV is a contraction (thus ‖πV x‖ ≤ ‖x‖ for all x ∈ V ). In particular,
πV is continuous.

Exercise 1.4.13 (Orthogonal complement). Given a subspace V of a Hil-
bert space H, define the orthogonal complement V ⊥ of V to be the set of
all vectors in H that are orthogonal to every element of V . Establish the
following claims:
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• V ⊥ is a closed subspace of H, and that (V ⊥)⊥ is the closure of V .

• V ⊥ is the trivial subspace {0} if and only if V is dense.

• If V is closed, then H is isomorphic to the direct sum of V and V ⊥.

• If V , W are two closed subspaces of H, then (V +W )⊥ = V ⊥ ∩W⊥

and (V ∩W )⊥ = V ⊥ +W⊥.

Every vector v in a Hilbert space gives rise to a continuous linear func-
tional λv : H → C, defined by the formula λv(w) := 〈w, v〉 (the continuity
follows from the Cauchy-Schwarz inequality). The Riesz representation the-
orem for Hilbert spaces gives a converse:

Theorem 1.4.13 (Riesz representation theorem for Hilbert spaces). Let
H be a complex Hilbert space, and let λ : H → C be a continuous linear
functional on H. Then there exists a unique v in H such that λ = λv. A
similar claim holds for real Hilbert spaces (replacing C by R throughout).

Proof. We just show the claim for complex Hilbert spaces, since the claim
for real Hilbert spaces is very similar. First, we show uniqueness: if λv = λv′ ,
then λv−v′ = 0, and in particular 〈v − v′, v − v′〉 = 0, and so v = v′.

Now we show existence. We may assume that λ is not identically zero,
since the claim is obvious otherwise. Observe that the kernel V := {x ∈
H : λ(x) = 0} is then a proper subspace of H, which is closed since λ
is continuous. By Exercise 1.4.13, the orthogonal complement V ⊥ must
contain at least one non-trivial vector w, which we can normalise to have
unit magnitude. Since w does not lie in V , λ(w) is non-zero. Now observe

that for any x in H, x− λ(x)
λ(w)w lies in the kernel of λ, i.e., it lies in V . Taking

inner products with w, we conclude that

(1.54) 〈x,w〉 − λ(x)

λ(w)
= 0,

and thus

(1.55) λ(x) = 〈x, λ(w)w〉.

Thus we have λ = λλ(w)w, and the claim follows. �

Remark 1.4.14. This result gives an alternate proof of the p = 2 case of
Theorem 1.3.16, and by modifying Remark 1.26, it can be used to give an
alternate proof of the Lebesgue-Radon-Nikodym theorem; this proof is due
to von Neumann.

Remark 1.4.15. In the next set of notes, when we define the notion of a
dual space, we can reinterpret the Riesz representation theorem as providing
a canonical isomorphism H∗ ≡ H.
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Exercise 1.4.14. Using Exercise 1.4.11, give an alternate proof of the 1 <
p <∞ case of Theorem 1.3.16.

One important consequence of the Riesz representation theorem is the
existence of adjoints:

Exercise 1.4.15 (Existence of adjoints). Let T : H → H ′ be a continuous
linear transformation. Show that that there exists a unique continuous linear
transformation T † : H ′ → H with the property that 〈Tx, y〉 = 〈x, T †y〉 for
all x ∈ H and y ∈ H ′. The transformation T † is called the (Hilbert space)
adjoint of T ; it is of course compatible with the notion of an adjoint matrix
from linear algebra.

Exercise 1.4.16. Let T : H → H ′ be a continuous linear transformation.

• Show that (T †)† = T .

• Show that T is an isometry if and only if T †T= idH .

• Show that T is an isomorphism if and only if T †T= idH and TT † =
idH′ .

• If S : H ′ → H ′′ is another continuous linear transformation, show
that (ST )† = T †S†.

Remark 1.4.16. An isomorphism of complex Hilbert spaces is also known
as a unitary transformation. (For real Hilbert spaces, the term orthogonal
transformation is used instead.) Note that unitary and orthogonal n × n
matrices generate unitary and orthogonal transformations on Cn and Rn,
respectively.

Exercise 1.4.17. Show that the projection map πV : H → V from a Hilbert
space to a closed subspace is the adjoint of the inclusion map ιV : V → H.

1.4.3. Orthonormal bases. In the section on inner product spaces, we
studied finite linear combinations of orthonormal systems. Now that we
have completeness, we turn to infinite linear combinations.

We begin with countable linear combinations:

Exercise 1.4.18. Suppose that e1, e2, e3, . . . is a countable orthonormal
system in a complex Hilbert space H, and c1, c2, . . . is a sequence of complex
numbers. (As usual, similar statements will hold here for real Hilbert spaces
and real numbers.)

(i) Show that the series
∑∞

n=1 cnen is conditionally convergent in H if
and only if cn is square-summable.

(ii) If cn is square-summable, show that
∑∞

n=1 cnen is unconditionally
convergent in H, i.e., every permutation of the cnen sums to the
same value.
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(iii) Show that the map (cn)
∞
n=1 
→

∑∞
n=1 cnen is an isometry from the

Hilbert space �2(N) to H. The image V of this isometry is the
smallest closed subspace of H that contains e1, e2, . . ., and which we
shall therefore call the (Hilbert space) span of e1, e2, . . ..

(iv) Take adjoints of (ii) and conclude that for any x ∈ H, we have

πV (x) =
∑∞

n=1〈x, en〉en and ‖πV (x)‖ = (
∑∞

n=1 |〈x, en〉|2)1/2. Con-
clude in particular the Bessel inequality

∑∞
n=1 |〈x, en〉|2 ≤ ‖x‖2.

Remark 1.4.17. Note the contrast here between conditional and uncondi-
tional summability (which needs only square-summability of the coefficients
cn) and absolute summability (which requires the stronger condition that
the cn are absolutely summable). In particular there exist non-absolutely
summable series that are still unconditionally summable, in contrast to the
situation for scalars, in which one has the Riemann rearrangement theorem.

Now we can handle arbitrary orthonormal systems (eα)α∈A. If (cα)α∈A
is square-summable, then at most countably many of the cα are non-zero (by
Exercise 1.3.4). Using parts (i), (ii) of Exercise 1.4.18, we can then form the
sum

∑
α∈A cαeα in an unambiguous manner. It is not hard to use Exercise

1.4.18 to then conclude that this gives an isometric embedding of �2(A) into
H. The image of this isometry is the smallest closed subspace of H that
contains the orthonormal system, which we call the (Hilbert space) span of
that system. (It is the closure of the algebraic span of the system.)

Exercise 1.4.19. Let (eα)α∈A be an orthonormal system in H. Show that
the following statements are equivalent:

(i) The Hilbert space span of (eα)α∈A is all of H.

(ii) The algebraic span of (eα)α∈A (i.e., the finite linear combinations of
the eα) is dense in H.

(iii) One has the Parseval identity ‖x‖2 =
∑

α∈A |〈x, eα〉|2 for all x ∈ H.

(iv) One has the inversion formula x =
∑

α∈A〈x, eα〉eα for all x ∈ H (in
particular, the coefficients 〈x, eα〉 are square-summable).

(v) The only vector that is orthogonal to all the eα is the zero vector.

(vi) There is an isomorphism from �2(A) to H that maps δα to eα for all
α ∈ A (where δα is the Kronecker delta at α).

A system (eα)α∈A obeying any (and hence all) of the properties in Ex-
ercise 1.4.19 is known as an orthonormal basis of the Hilbert space H. All
Hilbert spaces have such a basis:

Proposition 1.4.18. Every Hilbert space has at least one orthonormal ba-
sis.
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Proof. We use the standard Zorn’s lemma argument (see Section 2.4). Ev-
ery Hilbert space has at least one orthonormal system, namely the empty
system. We order the orthonormal systems by inclusion, and observe that
the union of any totally ordered set of orthonormal systems is again an
orthonormal system. By Zorn’s lemma, there must exist a maximal or-
thonormal system (eα)α∈A. There cannot be any unit vector orthogonal to
all the elements of this system, since otherwise one could add that vector
to the system and contradict orthogonality. Applying Exercise 1.4.19 in the
contrapositive, we obtain an orthonormal basis as claimed. �

Exercise 1.4.20. Show that every vector space V has at least one algebraic
basis, i.e., a set of basis vectors such that every vector in V can be expressed
uniquely as a finite linear combination of basis vectors. (Such bases are also
known as Hamel bases.)

Corollary 1.4.19. Every Hilbert space is isomorphic to �2(A) for some set
A.

Exercise 1.4.21. Let A, B be sets. Show that �2(A) and �2(B) are isomor-
phic iff A and B have the same cardinality. (Hint : The case when A or B
is finite is easy, so suppose A and B are both infinite. If �2(A) and �2(B)
are isomorphic, show that B can be covered by a family of at most count-
able sets indexed by A, and vice versa. Then apply the Schröder-Bernstein
theorem (Section 1.13 of Volume II ).

We can now classify Hilbert spaces up to isomorphism by a single car-
dinal, the dimension of that space:

Exercise 1.4.22. Show that all orthonormal bases of a given Hilbert space
H have the same cardinality. This cardinality is called the (Hilbert space)
dimension of the Hilbert space.

Exercise 1.4.23. Show that a Hilbert space is separable (i.e., has a count-
able dense subset) if and only if its dimension is at most countable. Conclude
in particular that up to isomorphism, there is exactly one separable infinite-
dimensional Hilbert space.

Exercise 1.4.24. Let H, H ′ be complex Hilbert spaces. Show that there
exists another Hilbert space H ⊗ H ′, together with a map ⊗ : H × H ′ →
H ⊗H ′ with the following properties:

(i) The map ⊗ is bilinear, thus (cx + dy) ⊗ x′ = c(x ⊗ x′) + d(y ⊗ x′)
and x ⊗ (cx′ + dy′) = c(x ⊗ x′) + d(x ⊗ y′) for all x, y ∈ H,x′, y′ ∈
H ′, c, d ∈ C.

(ii) We have 〈x⊗x′, y⊗y′〉H⊗H′ = 〈x, y〉H〈x′, y′〉H′ for all x, y ∈ H,x′, y′ ∈
H ′.
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(iii) The (algebraic) span of {x⊗ x′ : x ∈ H,x′ ∈ H ′} is dense in H ⊗H ′.

Furthermore, show that H ⊗ H ′ and ⊗ are unique up to isomorphism in
the sense that if H⊗̃H ′ and ⊗̃ : H × H ′ → H⊗̃H ′ are another pair of
objects obeying the above properties, then there exists an isomorphism Φ :
H ⊗H ′ → H⊗̃H ′ such that x⊗̃x′ = Φ(x⊗ x′) for all x ∈ H,x′ ∈ H ′. (Hint :
To prove existence, create orthonormal bases for H and H ′ and take formal
tensor products of these bases.) The space H ⊗ H ′ is called the (Hilbert
space) tensor product of H and H ′, and x ⊗ x′ is the tensor product of x
and x′.

Exercise 1.4.25. Let (X,X , μ) and (Y,Y , ν) be measure spaces. Show that
L2(X×Y,X ×Y , μ×ν) is the tensor product of L2(X,X , μ) and L2(Y,Y , μ),
if one defines the tensor product f⊗g of f ∈ L2(X,X , μ) and g ∈ L2(Y,Y , μ)
as f ⊗ g(x, y) := f(x)g(y).

We do not yet have enough theory in other areas to give the really
useful applications of Hilbert space theory yet, but let us just illustrate a
simple one, namely the development of Fourier series on the unit circle
R/Z. We can give this space the usual Lebesgue measure (identifying the
unit circle with [0, 1), if one wishes), giving rise to the complex Hilbert space
L2(R/Z). On this space we can form the characters en(x) := e2πinx for all
integers n; one easily verifies that (en)n∈Z is an orthonormal system. We
claim that it is in fact an orthonormal basis. By Exercise 1.4.19, it suffices
to show that the algebraic span of the en, i.e., the space of trigonometric
polynomials, is dense in L2(R/Z). But8 from an explicit computation (e.g.,
using Fejér kernels) one can show that the indicator function of any interval
can be approximated to arbitrary accuracy in the L2 norm by trigonometric
polynomials, and is thus in the closure of the trigonometric polynomials. By
linearity, the same is then true of an indicator function of a finite union of
intervals; since Lebesgue measurable sets in R/Z can be approximated to
arbitrary accuracy by finite unions of intervals, the same is true for indicators
of measurable sets. By linearity, the same is true for simple functions, and
by density (Proposition 1.3.8) the same is true for arbitrary L2 functions,
and the claim follows.

The Fourier transform f̂ : Z→ C of a function f ∈ L2(R/Z) is defined
as

(1.56) f̂(n) := 〈f, en〉 =
∫ 1

0
f(x)e−2πinx dx.

8One can also use the Stone-Weierstrass theorem here; see Theorem 1.10.18.
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From Exercise 1.4.19, we obtain the Parseval identity
∑

n∈Z
|f̂(n)|2 =

∫

R/Z
|f(x)|2 dx

(in particular, f̂ ∈ �2(Z)) and the inversion formula

f =
∑

n∈Z
f̂(n)en,

where the right-hand side is unconditionally convergent. Indeed, the Fourier
transform f 
→ f̂ is a unitary transformation between L2(R/Z) and �2(Z).
(These facts are collectively referred to as Plancherel’s theorem for the unit
circle.) We will develop Fourier analysis on other spaces than the unit circle
in Section 1.12.

Remark 1.4.20. Of course, much of the theory here generalises the corre-
sponding theory in finite-dimensional linear algebra; we will continue this
theme much later in the course when we turn to the spectral theorem. How-
ever, not every aspect of finite-dimensional linear algebra will carry over so
easily. For instance, it turns out to be quite difficult to take the determinant
or trace of a linear transformation from a Hilbert space to itself in general
(unless the transformation is particularly well behaved, e.g., of trace class).
The Jordan normal form also does not translate to the infinite-dimensional
setting, leading to the notorious invariant subspace problem in the subject.
It is also worth cautioning that while the theory of orthonormal bases in
finite-dimensional Euclidean spaces generalises very nicely to the Hilbert
space setting, the more general theory of bases in finite dimensions becomes
much more subtle in infinite-dimensional Hilbert spaces, unless the basis is
“almost orthonormal” in some sense (e.g., if it forms a frame).

Notes. This lecture first appeared at

terrytao.wordpress.com/2009/01/17.

Thanks to Américo Tavares, S, and Xiaochuan Liu for corrections.

Uhlrich Groh and Dmitriy raised the interesting open problem of whether
any closed subset K of H for which distance minimisers to every point x
existed and are unique were necessarily convex, thus providing a converse to
Proposition 1.4.12. (Sets with this property are known as Chebyshev sets.)


