Preface

The primary focus of this book is the mathematical theory of persistence.
The theory is designed to provide an answer to such questions as which
species, in a mathematical model of interacting species, will survive over
the long term. In a mathematical model of an epidemic, will the disease
drive a host population to extinction or will the host persist? Can a disease
remain endemic in a population? Persistence theory can give a mathe-
matically rigorous answer to the question of persistence by establishing an
initial-condition-independent positive lower bound for the long-term value
of a component of a dynamical system such as population size or disease
prevalence.

Mathematically speaking, in its simplest formulation for systems of or-
dinary or delay differential equations, and for a suitably prescribed subset
I of components of the system, persistence ensures the existence of ¢ > 0
such that liminf, o x;(t) > €, ¢ € I provided z;(0) > 0, ¢« € I. We say
that these components persist uniformly strongly, or, more precisely, that
the system is uniformly strongly p-persistent for the persistence function
p(x) = min;er x;. This persistence function p(x) may be viewed as the dis-
tance of state z to a portion of the boundary of the state-space R}, namely
the states where one or more of species i € I are extinct.

The adjective “strong” is often omitted; uniform weak p-persistence is
defined similarly but with limit superior in place of limit inferior. The
adjective “uniform” emphasizes that the lower bound ¢ is independent of
initial data satisfying the restriction z;(0) > 0, i € I. Similarly, as in the
definition of Lyapunov stability, the precise value of € is unspecified and
usually difficult to estimate. Uniform persistence is a qualitative notion,
not a quantitative one. However, in rare cases, € can be related to system
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parameters; this ideal situation is referred to as “practical persistence” [24,
25, 26, 28, 27, 35].

Weaker notions of weak and strong persistence drop the “uniformity
with respect to initial data” (i.e., €), requiring merely positivity of the limit
superior, respectively, the limit inferior.

The definition of persistence and the related concept of permanence (uni-
form persistence plus an upper bound on limit superior of all components)
evolved in the late 1970s from the work of Freedman and Waltman [75],
Gard [80, 81] Gard and Hallam [82], Hallam [96], and Schuster, Sigmund,
Wolff [196]. Most of these early papers show weak persistence, but Schus-
ter, Sigmund, and Wolff [196] prove uniform strong p-persistence for the
hypercycle equation in the n-simplex with p(x) = z1---x, as persistence
function.

The notion of a persistence function seems to have been introduced by
Gard and Hallam [82, 80], though with a more technical intention than here.
It was later superseded by a more general concept which combines the usual
Lyapunov function methods with time averages [104] and became known
as average Lyapunov function [109]. “Persistence function” (together with
the p-symbol [80, 82]) is revived here as a means to make precise which
parts of a system persist; in applications p has a very concrete and intuitive
interpretation like the number of infected individuals to describe disease
persistence in an epidemic model. Such a “hands on” interpretation would
be lacking for a typical average Lyapunov function like z{* - - - z}" [81, 82].
Zhao [238] uses the notion generalized distance function to stress the idea
that p measures the distance to the brink of extinction.

Persistence theory developed rapidly in the 1980s because the necessary
machinery from dynamical systems, a theory of attractors and repellers, was
already in place. Early work focused on persistence of components of systems
of ordinary differential equations. Later, this was extended to discrete time
or difference equations, and then to infinite dimensional dynamical systems
generated by delay differential equations and partial differential equations.
Application of the theory was initially slow to catch on in the applied lit-
erature on population biology and epidemiology, but it has more recently
become an accepted tool in theoretical population dynamics.

Although the theory is now quite “user friendly” in the sense that a user
does not need to be an expert to use it, it is a mathematically sophisticated
theory. Our motivation for writing this monograph grew out of the problem
of teaching the theory to our graduate students. There are very few sources
where one can find self-contained treatments that are accessible to graduate
students. The survey articles by Waltman [231] and by Hutson and Schmitt
[110] remain useful, although they do not contain more recent refinements
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of the theory which are scattered in the literature. Recent monographs by
Cantrell and Cosner [25], Hofbauer and Sigmund [106], Thieme [217], and
Zhao [238] are good sources, but their focus is broader than persistence
theory.

This monograph began as a set of lecture notes for graduate students in a
team-taught course on Dynamical Systems in Biology offered by the authors
in fall 2005, spring 2007, and spring 2009 at Arizona State University. It
contains a large number of homework exercises. A description of the contents
of the chapters follows.

Chapters 1 through 8 contain our main results on persistence theory for
autonomous dynamical systems.

Chapter 1 begins with a review of metric spaces, the natural abstract
setting or “state space” for finite and infinite dimensional dynamics. The
notion of a semiflow on a metric space is developed; it gives the dynamics.
We distinguish discrete and continuous time semiflows simply by the time
set: nonnegative integers in the former case, the nonnegative reals in the
latter case. The basic properties of a semiflow are independent of the time
set. This unified treatment of discrete time and continuous time semiflows
allows us to unify the later treatment of persistence theory for discrete time
and continuous time dynamics. In the literature, the theory developed sep-
arately for discrete and continuous time systems, but we have been largely
successful in our attempt to present a unified treatment, avoiding as much
as possible separate approaches. Persistence theory often requires that the
underlying dynamics are dissipative in some sense. The strongest sense is
that there is a compact attractor of bounded subsets. Although the trend
of recent work, and one of our goals here, is to weaken these compactness
requirements where possible, we present the theory of attractors in Chapter
2.

Chapter 3 begins with the definitions of persistence, both uniform weak
and uniform strong persistence relative to a persistence function. However,
its main focus is on uniform weak persistence and on elementary methods for
establishing it. Several examples illustrating such methods are introduced.
These include the continuous time model of an SEIRS infectious disease
in a meta-population with host travel between patches, the classical May-
Leonard system of three competing populations, and discrete time nonlinear
matrix models of population dynamics. The latter include the LPA model of
flour beetle dynamics and nonlinear versions of the well-studied Leslie-type
demographic models.

Uniform strong persistence is the desired conclusion; uniform weak per-
sistence is more easily obtainable. It has long been known that uniform
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weak persistence plus suitable compactness properties of the dynamical sys-
tem give uniform strong persistence. See Freedman and Moson [72] for flows
on locally compact metric spaces, Freedman, Ruan, and Tang [73] for flows,
and Thieme [215] for semiflows on general metric spaces. In Chapter 4,
we present a number of such results. Some of these have relatively weak
compactness assumptions at the expense of lengthy and seemingly technical
hypotheses. Others require more compactness assumptions but are more
easily and concisely formulated. A number of applications are treated in
detail, including those introduced in the previous chapter.

The choice of a persistence function may be not obvious; several differ-
ent choices may be appropriate. The question then naturally arises as to
whether, and how to prove that, persistence with respect to one such func-
tion implies persistence with respect to another persistence function. This
issue is treated in Chapter 4.6.

For semiflows that are dissipative in a suitable strong sense and that are
uniformly p-persistent, there is an elegant decomposition of the attractor
into an extinction attractor, a persistence attractor, and a family of total
trajectories whose « limit sets are contained in the extinction attractor and
whose w limit sets are contained in the persistence attractor. This result,
versions of which were first proved by Hale and Waltman [95] and later by
Zhao [238] and Magal and Zhao [158], is proved in Chapter 5.

The brief Chapter 6 explores various scenarios whereby one may estab-
lish that persistence implies the existence of a “persistence equilibrium”,
that is, an equilibrium z* for which p(z*) > 0 where p denotes the persis-
tence function. This provides an extra incentive for taking the trouble to
establish persistence. The monograph by X.-Q. Zhao [238] contains a nice
summary of the history of results in this direction. See the notes to Chapter
1 of [238]. Newer results also appear in the recent paper by Magal and Zhao
[158].

Nonlinear matrix models, such as those introduced in Chapter 3, are
increasingly being used in population modeling as indicated by the recent
monographs [29, 44, 39|. Therefore, we devote Chapter 7 to applying the
results of the previous chapters to them.

Chapter 8 treats the mathematically more sophisticated topological ap-
proach to persistence and its consequences. As Josef Hofbauer [79, 104] has
repeatedly pointed out, the theory of attractors and repellers, formulated
by several mathematicians including Zubov, Ura, Kimura, and Conley, lead
directly to proofs of many of the results of persistence theory. See [79] for
many historical references to the work of Zubov and Ura and Kimura; the
monograph of Bhatia and Szeg6 [16] contains some of this work. The notion
of chain recurrence and chain transitivity of Conley [33] has also proved to
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be very useful. These notions were originally established for flows on locally
compact spaces but are needed for semiflows on potentially infinite dimen-
sional Banach spaces for persistence theory. We give here a self-contained
treatment of these ideas and how they are used in the theory. Most notable
among the results implied by these ideas are the Butler-McGehee Theorem
and the acyclicity theorem establishing uniform weak persistence.

These were first formulated by Butler, Freedman and Waltman [22,
23] for flows on locally compact spaces, extended to discrete time systems
by Freedman and So [74] and Hofbauer and So [107]. They were later
generalized to semiflows on infinite dimensional spaces by Hale and Waltman
[95] assuming the existence of a compact attracting set, an assumption that
was relaxed in [215].

Several more or less straightforward applications of the acyclicity ap-
proach to persistence are included. These include the classical three-level
(ODE) food chain model considered by Hastings and collaborators, nonlin-
ear matrix models for biennial species, and a metered epidemic model — a
hybrid of both discrete and continuous time.

Finally, we show how classical Lyapunov exponents may be used to es-
tablish one of the key hypotheses in the acyclicity theorem, namely, that a
compact invariant set, belonging to the “extinction set”, is uniformly weakly
repelling in directions normal to the extinction set. The use of Lyapunov
exponents in the study of biological models was pioneered by Metz et al.
[168], who proposed that the dominant Lyapunov exponent gives the best
measure of invasion fitness, and by Rand et al. [180] who used it to charac-
terize the invasion “speed” of a rare species. Roughly, a positive dominant
Lyapunov exponent corresponding to a potential invading species in the en-
vironment set by a resident species attractor implies that the invader can
successfully invade. Our treatment is patterned after the approach taken by
Paul Salceanu in his thesis [186] and [187, 188, 189, 190].

Chapter 9 focuses on an SI epidemic model where infectives are struc-
tured by age since infection and where the force of infection depends on an
age-since-infection weighted average of current infectives. The model can
be reduced to a system of integral equations; existence and uniqueness of
solutions, and boundedness of solutions are proved. The host is shown to
(uniformly) persist, the basic replacement number Ry is identified, disease
extinction is shown to occur if Rg < 1, and uniform weak persistence of
the disease is shown if Ry > 1. In order to obtain uniform persistence of
the disease, it is useful to reformulate the dynamics as a semiflow on a suit-
able Banach space. This is done by showing that solutions satisfy a weakly
formulated semilinear Cauchy problem. One can then show the existence
of a compact attractor of bounded sets under suitable restrictions. This in
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turn facilitates the argument for uniform persistence of the disease when
Ry > 1. The existence of an endemic equilibrium is also established, and
rather unrestrictive conditions for its global stability are derived. It should
be noted that persistence is indispensable for doing the latter because the
Lyapunov function that is used is not defined on the whole state space but
only on the persistence attractor (see also [155]).

Chapter 10 is devoted to a brief treatment of the semilinear Cauchy
problem v’ = Au + F(u), u(0) = ug in a Banach space setting. Here A
is a closed linear operator and F' is a nonlinear map. Notions of classical,
integral, and mild solutions are defined, and the equivalence of mild and
integral formulation is shown. Globally defined integral solutions are shown
to define a semiflow, and local existence is established by the contraction
mapping principle when F' satisfies a Lipschitz condition. If F' is suitably
bounded, global in time existence is also shown. Conditions for the induced
semiflow to be asymptotically smooth, a key requirement for showing the
existence of a compact global attractor, are identified. As we have biological
examples in mind, positivity of solutions must be satisfied. Conditions which
ensure positivity of solutions are formulated.

Chapter 11 treats microbial growth on a growth-limiting nutrient in a
tubular bioreactor. Fresh nutrient enters the left side of the tube, and un-
used nutrient and microbes leak out the right side of the tube in proportion
to their concentration. Both nutrient and microbes are assumed to diffuse
throughout the tube. The issue is whether or not the influx of nutrient is suf-
ficient to allow the microbes to persist in the bioreactor. Relying heavily on
the machinery of Chapter 10, we show that the system of reaction-diffusion
equations generates a dissipative semiflow. Linearized stability analysis of
the so-called washout equilibrium solution (no microbes) leads to a basic
reproduction number Ry. If Ry < 1, the microbes are “washed out” of the
bioreactor, and, if Ry > 1, they uniformly persist and there is a unique
colonization equilibrium.

Chapter 12 considers a model of microbial growth in a chemostat where
microbial cells of different age take up nutrient at differing rates and divide
at an age-dependent rate. Ignoring growth and uptake, focusing only on
demographics of cell division, we begin by obtaining a renewal equation for
cell population division rate and showing that it has a unique solution. This
leads to the definition of a semigroup of operators and ultimately to a formu-
lation of the full model, including growth and uptake, as an abstract ODE in
a Banach space setting. Its mild solutions are shown to generate a semiflow.
Consideration of the “washout state”, absent microbes, allows identification
of the basic “biomass production number” for the model. When it is less
than one, and an additional condition satisfied, the microbes are washed out;
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when it exceeds one, the cell population persists uniformly weakly. Proofs of
these results make use of the Laplace transform. In fact, uniform persistence
of the cell population holds when the basic production number exceeds one
under additional assumptions, but the proof is deferred to a later chapter.
The problem is in establishing sufficient compactness of the semiflow. A
different approach provides another route from uniform weak to uniform
strong persistence, which succeeds for this model.

Chapter 13 is devoted to persistence for nonautonomous systems. Prac-
tical persistence is established, under suitable conditions, for a population of
micro-organisms growing in a chemostat with time-dependent dilution rate
using elementary arguments. It is also established that all positive solutions
are asymptotic to each other. The abstract notion of a nonautonomous
semiflow is introduced, corresponding definitions of persistence are given,
and several results giving conditions under which uniform weak persistence
implies uniform strong persistence are proved. Special attention is devoted
to the case of periodic nonautonomous semiflows and nonautonomous semi-
flows that are asymptotic to such semiflows. The implication that uniform
weak persistence implies uniform persistence for these cases is specialized.
Finally, uniform persistence is established for the (autonomous) cell division
model treated in Chapter 12 by using the methods developed for nonau-
tonomous semiflows.

As noted in our description of Chapter 3 above, persistence functions
were introduced early on in the history of persistence theory as a means to
obtain uniform persistence (permanence) in much the same way that they
are used in Lyapunov stability theory to obtain stability results for equilibria
of dynamical systems [82], and there is now a well-developed approach to
establishing persistence using so-called average Lyapunov functions (a gen-
eralization of persistence functions in the sense of Gard and Hallam [82]).
The works of Fonda [71], Gard [80], Hofbauer [103], Hutson [109], and
Schuster, Sigmund and Wolff [196] have been very influential. Some of their
ideas, as well as later work, have been reviewed in the paper of Hutson and
Schmitt [110] and the monograph of Sigmund and Hofbauer [106]. How-
ever, so far in this work, we have used persistence functions primarily as a
means to precisely define what is meant by persistence, not as a tool with
which to establish it.

In Chapter 15, taking inspiration from this large literature, we formu-
late some general results which yield persistence using the average Lyapunov
function approach. The adjective “average” in the terminology signifies that
a time-average of the function over a sufficiently large interval should be pos-
itive. We formulate an approach which works for nonautonomous semiflows
and, as usual, seeks to minimize compactness requirements. These goals
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force rather technical statements, but the main results are simple: The exis-
tence of a weak average Lyapunov function p implies weak p-persistence;
the existence of a strong average Lyapunov function implies uniform p-
persistence. As an application, the hypercycle equation, treated in Chapter
12 of [106] in the autonomous case, is extended to the case where replication
rates may be time-dependent.

The book ends with two appendices. The first, Appendix A, covers some
useful techniques in differential equations which are not usually covered
in a basic course. Chief among these are differential inequalities, a key
tool in applied dynamics. Here, we mean Kamke’s comparison theorem for
ODEs and the strong maximum principle for PDEs. The former result is
proved, the latter is merely stated and references are given. Dynamical
systems in biology typically deal with nonnegative quantities, and therefore
one needs to establish that solutions that begin nonnegative, remain so in
the future. Another essential tool for dealing with positivity and stability is
the Perron-Frobenius theory which we state but do not prove. Finally, an
elementary but powerful method which can sometimes establish persistence
is the method of fluctuation. It provides the means to explicitly estimate
the limit inferior and limit superior of bounded components of solutions of
systems of ordinary and delay differential equations.

Appendix B introduces selected useful tools from functional analysis.
Among them are compactness criteria in LP spaces, inequalities for Volterra
integral equations, proof of the equivalence of integral and mild solutions of
linear differential equations in Banach spaces, and Fourier transform meth-
ods for integro-differential equations. The latter leads to conditions imply-
ing that any bounded solution of a class of integro-differential inequalities
or equations vanishes identically, and this result may be used to establish
global stability results. These tools are used in Chapter 9 and Chapter 12.

One should also disclose what is not in this book that a reader might
expect given the title. One such omission is the notion of robust persistence,
more precisely, the reasonable expectation that the notion of uniform per-
sistence should be structurally stable to small changes in system dynamics
in some topology. For example, if the dissipative system takes the Kol-
mogorov form z = x;f;(x) on RY, then small perturbations should mean
small changes in the per capita growth rates f;, say in the C"-topology.
Robust (C") p-persistence with p(z) = min; x; for this system would mean
the existence of €¢,6 > 0 such that liminf; ,o x;(t) > €, Vi provided z(t)
satisfies x} = x;g;(z) where ||f — g|lcr < § and x;(0) > 0, Vi. Such results
were first established by Schreiber [193]. See also Hirsch et al. [101]. We
do not include these results since they are partly covered in the monograph
of Zhao [238].
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Finally, we have not included recent work on persistence for stochastic
systems [11, 105, 194] or for skew-product semiflows [169, 238].

There is a huge body of literature on persistence theory, and this book
does not span nearly all of it. We ask the forgiveness of our valued fellow
scholars whose works we have failed to reference.

We would like to acknowledge the many students, especially Thanate
Dhirasakdanon, who have contributed to this work through their questions,
suggestions, and their homework solutions.

We thank our wives, Kathryn Smith and Adelheid Thieme, for their un-
wavering support, though this endeavor must have been shrouded in mystery
for them.

As much as any other science, mathematics takes place in a tapestry of
teachers, peers, and students; we gratefully dedicate this monograph to our
Ph.D. advisors Willi Jager (HRT) and Paul Waltman (HLS).
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