
Introduction

The temporal development of a natural or artificial system can conveniently
be modeled by a semiflow. A semiflow consists of a state space, X, a time-
set, J , and a map, Φ.

The state space X comprehends all possible states of the system: the
amounts or densities of the system parts and, if there are one or several
system structures, their structural distributions.

According to the interests of the authors, this book concentrates on
biological, ecological, and epidemiological systems. For the last, for example,
the state space typically contains the amounts or densities of susceptible and
infective and possibly exposed and removed individuals. For spatial spread,
spatial distributions are included in the state space. If age-structure is
thought to be important, age-distributions are included as well.

Time can be considered as a continuum or in discrete units; the most
common choices for the time set J are the nonnegative reals or the nonneg-
ative integers, R+ = [0,∞) and Z+ = N ∪ {0} = {0, 1, . . .}. Depending on
the model, the time unit can be a year, month, or day.

The most important ingredient of a semiflow is the semiflow map Φ :
J × X → X. Often Φ itself is called the semiflow. If x ∈ X is the initial
state of the system (at time 0), then Φ(t, x) is the state at time t. This
interpretation immediately leads to the identity

Φ(0, x) = x, x ∈ X.

Further, semiflows are characterized by the semiflow property:

Φ(t+ r, x) = Φ(t,Φ(r, x)), r, t ∈ J, x ∈ X.
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This property has the following interpretation: If x is the initial state and
the system develops for a time r and if the state Φ(r, x) is taken as a new
initial state and the system develops for another time t, then the resulting
state is the same as if the system develops from x for the time t+ r.

It may be that a system does not last for all future times. Then the
semiflow map Φ is only defined on a subset of J × X and the semiflow
property must be appropriately supplemented. If seasonal influences are
important, nonautonomous semiflows need to be considered (Chapter 13).

Semiflows are induced by differential equations of all kind (ordinary,
partial, functional, and combinations of these): in the case of an ordinary
differential equation, Φ(t, x) is the solution at time t when x is the initial
datum (at time 0).

To be more concrete, consider the following endemic model for a fertility
reducing infectious disease caused by a viral, bacterial, or fungal parasite.
S and I denote the respective numbers of susceptible and infective hosts,

(0.1) S′ = (β − μ)S + qβI − κSI, I ′ = κSI − (μ+ α)I.

Here β > μ > 0 are the per capita birth and death rates, κ > 0 is the per
capita infection rate and α ≥ 0 the additional death rate due to the disease.
The factor q ∈ [0, 1] expresses the reduction of fertility for an infective
individual.

It follows from standard arguments in ordinary differential equations
that, for each pair S0, I0 ≥ 0, there exist unique solutions S, I : R+ → R+

with S(0) = S0, I(0) = I0, where R+ = [0,∞) is the set of nonnegative real
numbers. Then

Φ(t, (S0, I0)) = (S(t), I(t))

defines a semiflow with state space R
2
+ and time-set R+. The semiflow

property follows from the uniqueness of solutions.

It is an important question whether the dynamical system persists (re-
mains safely away from extinction) as a whole or at least in parts (which
parts?). This question can be mathematically formulated and addressed by
using a persistence function

(0.2) ρ : X → R+.

For x ∈ X, ρ(x) is the amount of the part of the system that is of particular
interest. For the model of a fertility-reducing infectious disease, if emphasis
is on whether the disease becomes endemic or can be eradicated, ρ(S, I) = I
is the number or density of infective (or infected) individuals. If emphasis is
on whether the disease threatens to drive the host population into extinction,
then ρ(S, I) = S + I is the total number of hosts.
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The semiflow Φ is called uniformly ρ-persistent if there exists some ε > 0
such that

(0.3) lim inf
t→∞

ρ(Φ(t, x)) ≥ ε whenever x ∈ X, ρ(x) > 0.

A stepping-stone to uniform persistence is uniform weak persistence: Φ is
uniformly weakly ρ-persistent if (0.3) holds with lim sup replacing lim inf.
If Φ is uniformly ρ-persistent, the amount of the system part of interest is
eventually bounded away from 0 with the bound being independent of the
initial state (as long as the interesting part is present initially). If Φ is only
uniformly weakly ρ-persistent, then the amount can come arbitrarily close
to 0 but always bounces back.

In terms of the infectious disease, we talk about uniform (weak) host
persistence if ρ(S, I) = S+ I and about uniform (weak) parasite persistence
(or disease endemicity) if ρ(S, I) = I.

This book embarks on the strategy of establishing uniform weak persis-
tence first and then deriving uniform persistence.

From uniform weak to uniform persistence. Trivially, uniform persis-
tence implies uniform weak persistence; the converse is not always true. Let
us return to the example of the fertility-reducing disease. If q = 0 (i.e., the
disease sterilizes), the host-parasite system becomes a special case of the
Lotka-Volterra prey-predator system for which the whole first quadrant is
filled with periodic orbits. This means that the system is uniformly weakly
persistent for both host and parasite, but uniformly persistent for neither.

Strangely enough, the lack of uniform persistence concurs with a lack of
the solutions to be eventually uniformly bounded: there is no c > 0 such
that lim supt→∞(S(t) + I(t)) < c for all nonnegative solutions.

To continue this line of thought in more generality, let us assume that the
state space X is a metric space (though persistence theory is also possible
without a topology on X).

The preliminary insight (which will turn out to be not completely cor-
rect) that some boundedness is needed for proceeding from uniform weak to
uniform persistence can now be formulated in various ways. The strongest
such formulation assumes the existence of a compact global attractor [91],
and it becomes a natural question under which conditions a compact global
attractor exists (Chapter 2). The presentation in this book differs from oth-
ers [91, 197, 238] as an approach is chosen that deals with continuous and
discrete time in a unified way.

Beyond that, two opposite directions are pursued: on the one hand,
harvest the full fruit of assuming a compact global attractor (persistence
à la Caesar) and, on the other hand, relax the assumption of a compact
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attractor as much as possible (persistence à la Münchhausen, persistence
via Arzela-Ascoli, and persistence via Laplace transform).

Persistence à la Caesar (Attractor est omnis divisus in partes tres, cf.
De bello gallico) divides the compact global attractor, A, in three invariant
parts: the extinction attractor on which the persistence functional ρ is zero,
the persistence attractor, A1, on which ρ is strictly positive, and a set of
orbits connecting the extinction attractor to the persistence attractor. Every
compact set on which ρ is strictly positive has a neighborhood U that is
attracted by A1:

d(Φ(t, x), A1)→ 0, t→∞, uniformly for x ∈ U.

Here d(y,A1) is the distance from the point y to the set A1. This convergence
result implies that A1 is stable.

In several examples (Chapter 8.7 and Chapter 9), we will find conditions
under which the persistence attractor is a singleton set and thus, automat-
ically, a locally asymptotically stable equilibrium. The techniques used for
this involve Lyapunov type functionals [163] and Fourier transforms [151].

Persistence à la Münchhausen (Chapter 4.5) tries to get away with as
few compactness assumptions as possible. It is called that way as it has
some resemblance to the feat of Lügenbaron (lying baron) Karl Friedrich
Hieronymus Freiherr von Münchhausen (1720-1797) who, in one of the tales
told about him, escapes from a swamp lifting himself and his horse up pulling
at his own hair [17] (see the drawing by Theodor Hosemann (1807-1875),
Figure 4.1). While compactifying properties of the semiflow cannot be com-
pletely eliminated as assumptions (recall the Volterra predator-prey model),
one can get quite far in this direction, though, at the expense of a consid-
erable increase in technicality. For illustration, let us return to the model
(0.1) for a fertility-reducing infectious disease.

Recall that, for q = 0 (sterilizing disease), this is a Lotka-Volterra
predator-prey model which is known to be uniformly weakly persistent, but
not uniformly persistent.

If q ∈ (0, 1], one can show that both the susceptible and the infective
part of the population persist uniformly, i.e., both the host and the parasite
persist uniformly, though their numbers can grow without bound for certain
parameter values (if qβ > μ+ α).

The reason for the different persistence scenarios becomes a little clearer
when we reformulate the equations in terms of the total host population size
N = S + I and the fraction of infective hosts y = I/N ,

N ′ = N
(
β(1− y)− μ+ (qβ − α)y

)
,

y′ = y
(
(κN − α− β)(1− y)− qβy

)
.

(0.4)
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Note the change in state space that becomes X = R+ × [0, 1]. Whatever q,
as long as 0 ≤ q ≤ 1, this system has the invariant set {(N, 0);N > 0} on
which host population grows exponentially. This lack of boundedness does
not necessarily impede uniform host or parasite persistence. Notice that

N ′ ≥ N(qβ − μ− α).

Assume that qβ − μ − α > 0. Then N(t) grows exponentially if N(0) > 0.
This has the consequence that y(t) → 1 as t → ∞ if 0 < y(0) ≤ 1, i.e., the
disease pervades the host population, and both host and disease persistence
are uniform in the strongest possible way.

For q = 0, the case of a sterilizing disease, the state space has another
invariant set, {(N, 1);N ≥ 0}, on which N(t) → 0 as t → ∞. This set has
an attracting part where N is large and a repelling part where N is small.

Uniform weak host persistence can be shown whether or not q = 0.
However, if q > 0, it can be shown on the state space

X = {(N, y);N > 0, 0 ≤ y ≤ 1},

while for q = 0 it can only be shown on the state space

X̃ = {(N, y);N > 0, 0 ≤ y < 1}.

See Theorem 3.3 for details. For q = 0, it is not the lack of boundedness
in the host component that is an impediment for showing uniform host per-
sistence, but the loss of completeness of the state space by the necessary
exclusion of y = 1. So uniform host persistence only holds for q > 0 (Theo-
rem 4.14).

Using uniform host persistence, uniform persistence of the disease can
now be established, but it requires the full Baron von Münchhausen hair-
pulling stunt which we cannot explain here (see Theorem 4.17 and the sub-
sequent application).

Interestingly enough, if 0 < qβ < μ+α, the ideas of ρ-persistence can be
used to show that the host population size is eventually uniformly bounded:
there is some c > 0 such that lim supt→∞N(t) < c for all solutions N
and y with y(0) > 0. Simply use ρ(N, y) = 1

1+N as persistence function.
But uniform disease persistence must be established first before it can be
established that the disease imposes a bound on the host population size
that is eventually uniform (Exercise 4.9).

Since our ODE model is two-dimensional, one can alternatively use
phase-plane methods. This way, for 0 < qβ < μ+α, one can directly (with-
out using persistence theory) obtain a compact host and disease persistence
attractor that attracts all compact sets in {(N, y);N > 0, 0 < y ≤ 1}.
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The use of persistence theory becomes unavoidable, however, if one
considers several competing parasite strains which provide complete cross-
protection [218] or several stages of infection (Section 4.7).

The existence of an attractor with host and disease persistence concurs
with the existence of an equilibrium in (0,∞)× (0, 1) which is called either
an endemic equilibrium or a host-parasite-coexistence equilibrium depending
on whether the view point is mainly epidemiological or ecologic. By the
Poincaré-Bendixson limit set trichotomy, any solution in the host and dis-
ease persistence attractor is either this equilibrium or a periodic orbit or a
homoclinic orbit connecting the equilibrium to itself. The Bendixson-Dulac
criterion (use the Dulac function 1

Ny(1−y)) rules the second and third possi-

bility out, and the host and parasite persistence attractor is the singleton set
consisting of the endemic equilibrium. Notice that the stability of the en-
demic equilibrium follows without a linearized stability analysis. Of course,
the latter would be easy for a small system like this, but could be quite
harrowing for a large system.

If the state space is infinite dimensional, a compact attractor can be
elusive for other reasons than the lack of eventual uniform boundedness or
completeness as in the case of a model for cells with age-dependent divi-
sion growing in a chemostat (Chapters 12 and 13.13.4). In this case, the
Arzela-Ascoli theorem can come to the rescue and imply that, for certain
sequences (xj) that may have no convergent subsequences, ρ(Φ(t, xj)) has a
subsequence that converges as j →∞ uniformly for t in compact subsets of
R+. Notice that this remedy relies on the persistence function ρ and even
works without a topology on the state space. It extends to persistence for
nonautonomous semiflows (nonlinear evolutionary systems) (Chapter 13).

Another line of keeping assumptions at minimum concerns the continu-
ity of the semiflow if time is a continuous variable. In certain models of
physiologically structured populations, it is either necessary or convenient
to choose the space of measures as a state space: either the solutions be-
come measure-valued even for smooth-initial data by some mild form of
shock-formation [3, 213], or there are equilibria to be taken care of that are
measures [2, 227]. For a state space of measures, the semiflow is typically
continuous in the space variable but sometimes not in the time variable (at
least not in the same, the strong, topology). To illustrate this phenomenon
and various ways of overcoming the associated difficulties, we consider the
endemic model with variable infectivity also for infection-age distributions
that are measures (Section 9.9.10).

How to get uniform weak persistence. Historically, there have been
two main approaches to persistence theory. The first considers the semiflow
on the “extinction boundary” of the state space, which can be facilitated by
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Morse decompositions or acyclic decompositions of its point attractor (Chap-
ter 8). This approach again relies on compactness assumptions and has a
topological character (repeller-attractor pairs, chain-recurrence). The sec-
ond uses so-called average Lyapunov functions. The concept of ρ-persistence
can reconcile both approaches by either letting ρ(x) be the distance from x
to the boundary of extinction or by identifying ρ with the average Lyapunov
function (Chapter 15). It also applies to the persistence of nonautonomous
semiflows [216] (Chapters 13 to 15).

By example, we also present various ad hoc methods for proving uni-
form weak persistence. Typically, they work by contradiction. One is the
method of fluctuations [102], together with differential inequalities and the
Perron-Frobenius theory of quasipositive matrices (Appendix A and Chap-
ter 3); another is the use of the Laplace transform. The resurgence of this
classical tool is not so surprising as many semiflows are generated by non-
linear perturbations of linear semiflows (alias operator semigroups, Chapter
10) for which the Laplace transform is a major tool of investigation [5].
The Laplace transform can be quite effective (Chapter 5.7, Chapter 9) and
also works in cases where the existence of a compact attractor cannot be
established (Chapter 12).


