
Preface

In the fall of 2010, I taught an introductory one-quarter course on graduate
real analysis, focusing in particular on the basics of measure and integration
theory, both in Euclidean spaces and in abstract measure spaces. This text
is based on my lecture notes of that course, which are also available online
on my blog terrytao.wordpress.com, together with some supplementary
material, such as a section on problem solving strategies in real analysis
(Section 2.1) which evolved from discussions with my students.

This text is intended to form a prequel to my graduate text [Ta2010]
(henceforth referred to as An epsilon of room, Vol. I ), which is an introduc-
tion to the analysis of Hilbert and Banach spaces (such as Lp and Sobolev
spaces), point-set topology, and related topics such as Fourier analysis and
the theory of distributions; together, they serve as a text for a complete
first-year graduate course in real analysis.

The approach to measure theory here is inspired by the text [StSk2005],
which was used as a secondary text in my course. In particular, the first half
of the course is devoted almost exclusively to measure theory on Euclidean
spaces Rd (starting with the more elementary Jordan-Riemann-Darboux
theory, and only then moving on to the more sophisticated Lebesgue theory),
deferring the abstract aspects of measure theory to the second half of the
course. I found that this approach strengthened the student’s intuition in the
early stages of the course, and helped provide motivation for more abstract
constructions, such as Carathéodory’s general construction of a measure
from an outer measure.

Most of the material here is self-contained, assuming only an undergrad-
uate knowledge in real analysis (and in particular, on the Heine-Borel the-
orem, which we will use as the foundation for our construction of Lebesgue
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measure); a secondary real analysis text can be used in conjunction with
this one, but it is not strictly necessary. A small number of exercises, how-
ever, will require some knowledge of point-set topology or of set-theoretic
concepts such as cardinals and ordinals.

A large number of exercises are interspersed throughout the text, and it
is intended that the reader perform a significant fraction of these exercises
while going through the text. Indeed, many of the key results and examples
in the subject will in fact be presented through the exercises. In my own
course, I used the exercises as the basis for the examination questions, and
indicated this well in advance, to encourage the students to attempt as many
of the exercises as they could as preparation for the exams.

The core material is contained in Chapter 1, and already comprises a
full quarter’s worth of material. Section 2.1 is a much more informal section
than the rest of the book, focusing on describing problem solving strategies,
either specific to real analysis exercises, or more generally, applicable to a
wider set of mathematical problems; this section evolved from various dis-
cussions with students throughout the course. The remaining three sections
in Chapter 2 are optional topics, which require understanding most of the
material in Chapter 1 as a prerequisite (although Section 2.3 can be read
after completing Section 1.4).

Notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other than
emphasis or for definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.
(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other on-line reference pages.)

Given a subset E of a space X, the indicator function 1E : X → R is
defined by setting 1E(x) equal to 1 for x ∈ E and equal to 0 for x �∈ E.

For any natural number d, we refer to the vector space

Rd := {(x1, . . . , xd) : x1, . . . , xd ∈ R}

as (d-dimensional) Euclidean space. A vector (x1, . . . , xd) in Rd has length

|(x1, . . . , xd)| := (x21 + . . .+ x2d)
1/2

and two vectors (x1, . . . , xd), (y1, . . . , yd) have dot product

(x1, . . . , xd) · (y1, . . . , yd) := x1y1 + . . .+ xdyd.
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The extended non-negative real axis [0,+∞] is the non-negative real
axis [0,+∞) := {x ∈ R : x ≥ 0} with an additional element adjointed to it,
which we label +∞; we will need to work with this system because many sets
(e.g. Rd) will have infinite measure. Of course, +∞ is not a real number,
but we think of it as an extended real number. We extend the addition,
multiplication, and order structures on [0,+∞) to [0,+∞] by declaring

+∞+ x = x++∞ = +∞

for all x ∈ [0,+∞],

+∞ · x = x ·+∞ = +∞
for all non-zero x ∈ (0,+∞],

+∞ · 0 = 0 ·+∞ = 0,

and

x < +∞ for all x ∈ [0,+∞).

Most of the laws of algebra for addition, multiplication, and order continue
to hold in this extended number system; for instance, addition and multi-
plication are commutative and associative, with the latter distributing over
the former, and an order relation x ≤ y is preserved under addition or mul-
tiplication of both sides of that relation by the same quantity. However, we
caution that the laws of cancellation do not apply once some of the vari-
ables are allowed to be infinite; for instance, we cannot deduce x = y from
+∞+x = +∞+y or from +∞·x = +∞·y. This is related to the fact that
the forms +∞− +∞ and +∞/ +∞ are indeterminate (one cannot assign
a value to them without breaking many of the rules of algebra). A general
rule of thumb is that if one wishes to use cancellation (or proxies for cancel-
lation, such as subtraction or division), this is only safe if one can guarantee
that all quantities involved are finite (and in the case of multiplicative can-
cellation, the quantity being cancelled also needs to be non-zero, of course).
However, as long as one avoids using cancellation and works exclusively with
non-negative quantities, there is little danger in working in the extended real
number system.

We note also that once one adopts the convention +∞· 0 = 0 ·+∞ = 0,
then multiplication becomes upward continuous (in the sense that when-
ever xn ∈ [0,+∞] increases to x ∈ [0,+∞], and yn ∈ [0,+∞] increases to
y ∈ [0,+∞], then xnyn increases to xy) but not downward continuous (e.g.
1/n → 0 but 1/n · +∞ �→ 0 · +∞). This asymmetry will ultimately cause
us to define integration from below rather than from above, which leads
to other asymmetries (e.g. the monotone convergence theorem (Theorem
1.4.43) applies for monotone increasing functions, but not necessarily for
monotone decreasing ones).
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Remark 0.0.1. Note that there is a tradeoff here: if one wants to keep as
many useful laws of algebra as one can, then one can add in infinity, or have
negative numbers, but it is difficult to have both at the same time. Because
of this tradeoff, we will see two overlapping types of measure and integration
theory: the non-negative theory, which involves quantities taking values in
[0,+∞], and the absolutely integrable theory, which involves quantities tak-
ing values in (−∞,+∞) or C. For instance, the fundamental convergence
theorem for the former theory is the monotone convergence theorem (The-
orem 1.4.43), while the fundamental convergence theorem for the latter is
the dominated convergence theorem (Theorem 1.4.48). Both branches of
the theory are important, and both will be covered in later notes.

One important feature of the extended non-negative real axis is that
all sums are convergent: given any sequence x1, x2, . . . ∈ [0,+∞], we can
always form the sum

∞∑
n=1

xn ∈ [0,+∞]

as the limit of the partial sums
∑N

n=1 xn, which may be either finite or
infinite. An equivalent definition of this infinite sum is as the supremum of
all finite subsums:

∞∑
n=1

xn = sup
F⊂N,F finite

∑
n∈F

xn.

Motivated by this, given any collection (xα)α∈A of numbers xα ∈ [0,+∞]
indexed by an arbitrary set A (finite or infinite, countable or uncountable),
we can define the sum

∑
α∈A xα by the formula

(0.1)
∑
α∈A

xα = sup
F⊂A,F finite

∑
α∈F

xα.

Note from this definition that one can relabel the collection in an arbitrary
fashion without affecting the sum; more precisely, given any bijection φ :
B → A, one has the change of variables formula

(0.2)
∑
α∈A

xα =
∑
β∈B

xφ(β).

Note that when dealing with signed sums, the above rearrangement iden-
tity can fail when the series is not absolutely convergent (cf. the Riemann
rearrangement theorem).

Exercise 0.0.1. If (xα)α∈A is a collection of numbers xα ∈ [0,+∞] such
that

∑
α∈A xα < ∞, show that xα = 0 for all but at most countably many

α ∈ A, even if A itself is uncountable.
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We will rely frequently on the following basic fact (a special case of the
Fubini-Tonelli theorem, Corollary 1.7.23):

Theorem 0.0.2 (Tonelli’s theorem for series). Let (xn,m)n,m∈N be a doubly
infinite sequence of extended non-negative reals xn,m ∈ [0,+∞]. Then

∑
(n,m)∈N2

xn,m =

∞∑
n=1

∞∑
m=1

xn,m =

∞∑
m=1

∞∑
n=1

xn,m.

Informally, Tonelli’s theorem asserts that we may rearrange infinite series
with impunity as long as all summands are non-negative.

Proof. We shall just show the equality of the first and second expressions;
the equality of the first and third is proven similarly.

We first show that ∑
(n,m)∈N2

xn,m ≤
∞∑
n=1

∞∑
m=1

xn,m.

Let F be any finite subset of N2. Then F ⊂ {1, . . . , N} × {1, . . . , N} for
some finite N , and thus (by the non-negativity of the xn,m)∑

(n,m)∈F
xn,m ≤

∑
(n,m)∈{1,...,N}×{1,...,N}

xn,m.

The right-hand side can be rearranged as

N∑
n=1

N∑
m=1

xn,m,

which is clearly at most
∑∞

n=1

∑∞
m=1 xn,m (again by non-negativity of xn,m).

This gives ∑
(n,m)∈F

xn,m ≤
∞∑
n=1

∞∑
m=1

xn,m,

for any finite subset F of N2, and the claim then follows from (0.1).

It remains to show the reverse inequality
∞∑
n=1

∞∑
m=1

xn,m ≤
∑

(n,m)∈N2

xn,m.

It suffices to show that
N∑

n=1

∞∑
m=1

xn,m ≤
∑

(n,m)∈N2

xn,m

for each finite N .
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Fix N . As each
∑∞

m=1 xn,m is the limit of
∑M

m=1 xn,m, the left-hand side

is the limit of
∑N

n=1

∑M
m=1 xn,m as M → ∞. Thus it suffices to show that

N∑
n=1

M∑
m=1

xn,m ≤
∑

(n,m)∈N2

xn,m

for each finite M . But the left-hand side is
∑

(n,m)∈{1,...,N}×{1,...,M} xn,m,

and the claim follows. �

Remark 0.0.3. Note how important it was that the xn,m were non-negative
in the above argument. In the signed case, one needs an additional assump-
tion of absolute summability of xn,m on N2 before one is permitted to in-
terchange sums; this is Fubini’s theorem for series, which we will encounter
later in this text. Without absolute summability or non-negativity hypothe-
ses, the theorem can fail (consider, for instance, the case when xn,m equals
+1 when n = m, −1 when n = m+ 1, and 0 otherwise).

Exercise 0.0.2 (Tonelli’s theorem for series over arbitrary sets). Let A,B
be sets (possibly infinite or uncountable), and (xn,m)n∈A,m∈B be a doubly
infinite sequence of extended non-negative reals xn,m ∈ [0,+∞] indexed by
A and B. Show that∑

(n,m)∈A×B

xn,m =
∑
n∈A

∑
m∈B

xn,m =
∑
m∈B

∑
n∈A

xn,m.

(Hint: Although not strictly necessary, you may find it convenient to first
establish the fact that if

∑
n∈A xn is finite, then xn is non-zero for at most

countably many n.)

Next, we recall the axiom of choice, which we shall be assuming through-
out the text:

Axiom 0.0.4 (Axiom of choice). Let (Eα)α∈A be a family of non-empty
sets Eα, indexed by an index set A. Then we can find a family (xα)α∈A of
elements xα of Eα, indexed by the same set A.

This axiom is trivial when A is a singleton set, and from mathematical
induction one can also prove it without difficulty when A is finite. However,
when A is infinite, one cannot deduce this axiom from the other axioms of
set theory, but must explicitly add it to the list of axioms. We isolate the
countable case as a particularly useful corollary (though one which is strictly
weaker than the full axiom of choice):

Corollary 0.0.5 (Axiom of countable choice). Let E1, E2, E3, . . . be a se-
quence of non-empty sets. Then one can find a sequence x1, x2, . . . such that
xn ∈ En for all n = 1, 2, 3, . . ..
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Remark 0.0.6. The question of how much of real analysis still survives
when one is not permitted to use the axiom of choice is a delicate one,
involving a fair amount of logic and descriptive set theory to answer. We
will not discuss these matters in this text. We will, however, note a theorem
of Gödel [Go1938] that states that any statement that can be phrased in
the first-order language of Peano arithmetic, and which is proven with the
axiom of choice, can also be proven without the axiom of choice. So, roughly
speaking, Gödel’s theorem tells us that for any “finitary” application of real
analysis (which includes most of the “practical” applications of the subject),
it is safe to use the axiom of choice; it is only when asking questions about
“infinitary” objects that are beyond the scope of Peano arithmetic that one
can encounter statements that are provable using the axiom of choice, but
are not provable without it.
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