Chapter 1

INTRODUCTION

1.1 Basic themes

1.2 Classical and quantum mechanics
1.3 Overview

1.4 Notes

1.1. BASIC THEMES

A major goal of this book is understanding the relationships between dy-
namical systems and the behavior of solutions to various linear partial differ-
ential equations (PDE) and pseudodifferential equations containing a small
positive parameter h. We outline in this opening section some of the math-
ematical issues and challenges.

1.1.1. PDE with small parameters. The principal realm of motivation
is quantum mechanics, in which case we informally understand h as related
to Planck’s constant. With this interpretation in mind, we break down our
basic task into these two subquestions:

(i) How and to what extent do classical dynamics determine the behavior
as h — 0 of solutions to Schridinger’s equation

ihOu = —h*Au+ Vu
and the related Schrédinger eigenvalue equation
—h2Au+ Vu = Eu?

The name “semiclassical” comes from this interpretation.
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2 1. INTRODUCTION

(ii) Conversely, given various mathematical objects associated with clas-
sical mechanics, for instance symplectic transformations, how can we prof-
itably “quantize” them?

In fact the techniques of semiclassical analysis apply in many other set-
tings and for many other sorts of PDE. For example we will later study the
damped wave equation

(1.1.1) Otu+ adu — Au =0

for large times. A rescaling in time will introduce the requisite small pa-
rameter h.

1.1.2. Basic techniques. We will construct, mostly in Chapters 2—4, 89,
and 14, a wide variety of mathematical tools to address these issues, among
them:

e the apparatus of symplectic geometry (to record succinctly the behav-
ior of classical dynamical systems);

e the Fourier transform (to display dependence upon both the position
variables z and the momentum variables &);

e stationary phase (to describe asymptotics as h — 0 of various expres-
sions involving rescaled Fourier transforms); and

e pseudodifferential operators (to localize or, as is said in the trade, to
microlocalize functional behavior in phase space).

1.1.3. Microlocal analysis. There is a close relation between asymptotic
properties of PDE with a small parameter and regularity of solutions to
PDE. Asymptotic properties of 4(§) as 1/|¢| =: h — 0 are related to C'°
regularity of u. For instance, we will see in Chapter 12 how to obtain
results about propagation of singularities for general classes of equations.
Answering questions about propagation of singularities has been one of the
motivations of microlocal analysis, and most of the techniques presented
in this book, such as pseudodifferential operators, come from that subject.
Roughly speaking, in standard microlocal analysis 1/|0;| plays the role of
h. These ideas are behind the study of the damped wave equation (1.1.1).

Some techniques developed for pure PDE questions, such as local solv-
ability, have acquired a new life when translated to the semiclassical setting.
An example is the study of pseudospectra of nonselfadjoint operators; see
Chapter 12. Another example is the connection between tunneling and
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unique continuation. These were developed independently in physics and in
mathematics and are unified nicely by semiclassical Carleman estimates; see
Chapter 7.

1.1.4. Other directions. This book is devoted to semiclassical analysis as
a branch of linear PDE theory. The ideas explored here are useful in other
areas. One is the study of quantum maps where symplectic transformations
on compact manifolds are quantized to give matrices. The semiclassical
parameter is then related to the size of the matrix. These are popular
models in physics partly due to the relative ease of numerical computations;
see Haake [Hak| and references in Chapter 13 of this text. Many other
large N limit problems enjoy semiclassical interpretation, in the sense of
connecting analysis to geometry. In this book we present one example: a
semiclassical proof of Quillen’s Theorem (Theorem 13.18) which is related
to Hilbert’s 17th problem.

Semiclassical concepts also appear in the study of nonlinear PDE. One
direction is provided by nonlinear equations with an asymptotic parameter
which in some physically motivated problems plays a role similar to A in
Section 1.1.1 above. One natural equation is the Gross-Pitaevskii nonlin-
ear Schrodinger equation; see for instance the book by Carles [Car]. An
example of a numerical study is given in Potter [Po] where a semiclassical
approximation is used to describe solitons in an external field.

Another set of microlocal methods useful in nonlinear PDE is provided
by the paradifferential calculus of Bony, Coifman, and Meyer; see for instance
Métivier [Me], and for a brief introduction see Bényi-Maldonado—Naibo
[B-M-N]. The semiclassical parameter appears in the Littlewood-Paley
decomposition just as it does in Chapter 7, while the pseudodifferential
classes are more exotic than the ones considered in Chapter 4.

1.2. CLASSICAL AND QUANTUM MECHANICS

We introduce and foreshadow a bit about quantum and classical correspon-
dences.

1.2.1. Observables. We can think of a given function a : R" x R” — C,
a = a(z,§), as a classical observable on phase space, where as above z
denotes position and £ denotes momentum. We usually call a a symbol.

Let h > 0 be given. We will associate with the observable a a correspond-
ing quantum observable a (a: hD), an operator defined by the formula

i

a" (z, hD)u(x) en Y8 g (ZEL &) u(y) dedy
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for appropriate smooth functions u. This is Weyl’s quantization formula,
and a%(x, hD) is a pseudodifferential operator.

One major task will be to understand how the analytic properties of
the symbol a dictate the functional analytic properties of its quantization
a“ (z,hD). We will in fact build up a symbol calculus, meaning systematic
rules for manipulating pseudodifferential operators.

1.2.2. Dynamics. We will be concerned as well with the evolution in time
of classical particles and quantum states.

Classical evolution. Our most important example will concern the symbol

P, €) = [¢* + V(2),

corresponding to the phase space flow

i = 2¢
gz_ava

where " = 0;. We generalize by introducing the arbitrary Hamiltonian p :
R - R, p = p(x,£), and the corresponding Hamiltonian dynamics

(1.2.1) {i. = 9ep(,¢)
5 = - wp(xvf)'

It is instructive to change our viewpoint somewhat, by writing
¢ = exp(tHp)
for the solution of (1.2.1), where
Hyq :=A{p, q} = (9¢p, 02q) — (02p, Ocq)

is the Poisson bracket. Select a symbol a and define

(1.2.2) at(z,§) = a(pr(z,€)).
Then
(1.2.3) ar = {p, ar},

and this equation tells us how the symbol evolves in time, as dictated by
the classical dynamics (1.2.1).
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Quantum evolution. We can quantize the foregoing by putting
P =p“(x,hD), A=a"(z,hD)
and defining

(1.2.4) A(t) := F7L1(t)AF (1)

for F(t) := e~‘i . The operator A(t) represents, according to the so-called
Heisenberg picture of quantum mechanics, the evolution of the quantum
observable A under the flow (1.2.1). Then we have the evolution equation

i

(1.2.5) DA(t) = +

[P, A(t)];

an obvious analogue of (1.2.3). Here then is a basic principle we will later
work out in some detail: an assertion about Hamiltonian dynamics, and so
the Poisson bracket {-,-}, will involve at the quantum level the commutator

[7]

REMARK: h and h. In this book h denotes a dimensionless parameter
and is consequently not immediately to be identified with the dimensional
physical quantity

fi = Planck’s constant /27 = 1.05457 x 10~3%joule-sec.

As the example of the damped wave equation (1.1.1) shows, the use of h — 0
asymptotics is not restricted to problems motivated by quantum mechanics.

O

1.3. OVERVIEW

Chapters 2—4 develop the basic machinery, followed by applications to partial
differential equations in Chapters 5-7. We develop more advanced theory
and applications in Chapters 813, and in Chapters 14 and 15 we discuss
semiclassical analysis on manifolds.

The following diagram indicates the dependencies of the chapters and
may help in selective reading of the book:
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Chapter 4

Chapter 9

Here is a quick overview of the book, with some of the highlights:

Chapter 2: We start with a quick introduction to symplectic analysis and
geometry and their implications for classical Hamiltonian dynamical sys-
tems.

Chapter 3: This chapter provides the basics of the Fourier transform and
derives also important stationary phase asymptotic estimates for the oscil-

latory integral
I, = / et adr
of the sort
ip(zg)

I = (22| det 9% p(ag) /2 00 elen) 2 o) 10 (78

as h — 0, provided the gradient of the phase ¢ vanishes only at the point
Zo.

Chapter 4: Next we introduce the Weyl quantization a“(x,hD) of the
symbol a(z, &) and work out various properties, chief among them the com-
position formula

av(x, hD)b" (x,hD) = " (x, hD),
where the symbol ¢ := a#b is computed explicitly in terms of a and b. We
will prove as well the sharp Garding inequality, learn when aV is a bounded
operator on L?, etc.
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Chapter 5: This part of the book introduces semiclassical defect measures
and uses them to derive decay estimates for the damped wave equation
(1.1.1), where a > 0 on the flat torus T". A theorem of Rauch and Tay-
lor provides a beautiful example of classical/quantum correspondence: the
waves decay exponentially if all classical trajectories within a certain fixed
time intersect the region where positive damping occurs.

Chapter 6: In Chapter 6 we begin our study of the eigenvalue problem
P(h)u(h) = E(h)u(h),

for the operator

P(h) := —h*A 4+ V().
We prove Weyl’s Law for the asymptotic distributions of eigenvalues as
h — 0, stating for all a < b that

#{E(h) [ a < E(h) <b} = ﬁ(l{a < € + V() < b} +o(1))

as h — 0. Our proof is a semiclassical analogue of the classical Dirichlet—
Neumann bracketing argument of Courant.

Chapter 7: Chapter 7 deepens our study of eigenfunctions, first establish-
ing an exponential vanishing theorem in the “classically forbidden” region.
We derive as well a Carleman-type estimate: if u(h) is an eigenfunction of a
Schrodinger operator, then for any open set U CC R",

—c/h
lu(h) | 2y = e [u(h)l| L2 g@n)-
This provides a quantitative estimate for quantum mechanical tunneling.

We also present a self-contained “semiclassical” derivation of interior
Schauder estimates for the Laplacian.

Chapter 8: We return in Chapter 8 to the symbol calculus, first proving the
semiclassical version of Beals’s Theorem, characterizing pseudodifferential
operators. As an application we show how quantization commutes with
exponentiation at the level of order functions and then use these insights
to define useful generalized Sobolev spaces. This chapter also introduces
wavefront sets and the notion of microlocality.

Chapter 9: We next introduce the useful formalism of half-densities and
use them to see how changing variables in a symbol affects the Weyl quan-
tization. This motivates our introducing the new class of Kohn—Nirenberg
symbols, which behave well under coordinate changes and are consequently
useful later when we investigate the semiclassical calculus on manifolds.

Chapter 10: Chapter 10 discusses the local construction of propagators, us-
ing solutions of Hamilton—Jacobi PDE to build phase functions for Fourier
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integral operators. Applications include the semiclassical Strichartz esti-
mates and LP bounds on eigenfunction clusters.

Chapter 11: This chapter proves Egorov’s Theorem, characterizing propa-
gators for bounded time intervals in terms of the classical dynamics applied
to symbols, up to O(h) error terms. We then employ Egorov’s Theorem to
quantize linear and nonlinear symplectic mappings and conclude the chap-
ter by showing that Egorov’s Theorem is in fact valid until times of order
log(h™1), the so-called Ehrenfest time.

Chapter 12: Chapter 12 illustrates how methods from Chapter 11 provide
elegant and useful normal forms of differential and pseudodifferential oper-
ators. Among the applications, we build quasimodes for certain nonnormal
operators and discuss the implications for pseudospectra.

Chapter 13: We consider the question of how close semiclassical quantiza-
tion can get to multiplication. This leads to an alternative presentation of
the semiclassicall calculus based on Toeplitz quantization acting on spaces
of holomorphic functions. The FBI-Bargmann transform intertwines the
quantization of Chapter 4 with the quantization by operators acting on
holomorphic functions.

Chapter 14: Chapter 14 briefly discusses general manifolds and modifica-
tions to the symbol calculus to cover pseudodifferential operators on mani-
folds. Chapter 9 provides the change of variables formulas we need to work
with coordinate patches.

Chapter 15: This chapter concerns the quantum implications of ergodicity
for underlying dynamical systems on manifolds. A key assertion is that if
the underlying dynamical system satisfies an appropriate ergodic condition,
then

2

Y -0

a<E;<b

(Auj,uj) — ][ o(A)dxd
{a<p<b}

as h — 0, for a wide class of pseudodifferential operators A. In this expres-
sion the classical observable o(A) is the symbol of A.

Appendices: Appendix A records our notation in one convenient location,
and Appendix B is a very quick review of differential forms. Appendix C
collects various useful functional analysis theorems (with selected proofs).
Appendix D discusses Fredholm operators within the framework of Grushin
problems.
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1.4. NOTES

The book by Griffiths [G] provides a nice elementary introduction to quan-
tum mechanics, and Hannabuss [Ha| is a good mathematical text. For
a modern physical perspective, consult Gutzwiller [Gut], Haake [Hak],
Heller-Tomsovic [H-T], Miller [Mi], or Stéckmann [Sto].



Chapter 6

EIGENVALUES AND
EIGENFUNCTIONS

6.1 The harmonic oscillator

6.2 Symbols and eigenfunctions
6.3 Spectrum and resolvents
6.4 Weyl’s Law

6.5 Notes

In this chapter we are given the potential V' : R™ — R and investigate
how the symbol

(6.0.1) p(z,€) = €[> + V(x)
provides interesting information about the corresponding operator
(6.0.2) P(h) := P(z,hD) = —h*A + V.

We will focus mostly upon learning how p controls the asymptotic distribu-
tion of the eigenvalues of P(h) in the semiclassical limit h — 0.

6.1. THE HARMONIC OSCILLATOR

We investigate first the simplest case of a quadratic potential and, to simplify
even more, begin in one dimension. So suppose that n = 1, h = 1, and
V(z) = 2%. Thus we start with the one-dimensional quantum harmonic
oscillator, meaning the operator

(6.1.1) Py:=—0°+ 2%, where 0 = di

Xz

119



120 6. EIGENVALUES AND EIGENFUNCTIONS

6.1.1. Eigenvalues and eigenfunctions of Py. We can as follows employ
certain auxiliary first-order differential operators to compute explicitly the
eigenvalues and eigenfunctions for Fj.

NOTATION. Let us write
(6.1.2) Ay =Dy + iz, A_ =Dy — iz,
where D, = %8, and call A4 the creation operator and A_ the annihilation

operator. (This terminology is from particle physics.)

LEMMA 6.1 (Properties of A4). The creation and annihilation opera-
tors satisfy these identities:

(6.1.3) AL =A_, AT = Ay,

(6.1.4) Po=A A +1=A_A, — 1.

Proof. Tt is easy to check that D = D, and (iz)* = —iz. Furthermore,
AyA_u = (Dy+ix)(Dy —iz)u

= (1890 + ’LSL’) <1ux — z:nu)
1 7

= —Upy — (2U)y + UL + 22u
= —Ugy — U — TUp + TUL + z*u
= Pyu— u;

and similarly,

A_Asu = (Dy—ix)(Dy +ix)u

= <18x — zx) (1% + zwu)
i i

—Ugy + (TU)y — TUL + 22u
= Pou =+ u. O

We can use AL to find all the eigenvalues and eigenfunctions of Py:

THEOREM 6.2 (Eigenvalues and eigenfunctions for the harmonic
oscillator).

(i) We have

for all u € C(R™). That is,
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(ii) The function

N

T

v =:€ 2

is an eigenfunction corresponding to the smallest eigenvalue 1.

(iii) Set
v 1= Al vg
forn=1,2,.... Then
(6.1.5) Pyv, = (2n+ 1)vy,.

(iv) Define the normalized eigenfunctions

Un
Uy 1= .
[on| 2
Then
22
(6.1.6) up(x) = Hp(z)e™ 2

where Hp(z) = cpa™ + -+ co (cn #0) is a polynomial of degree n.
(v) We have
(Uny Upn) = Opm, (nym € N);

and furthermore, the collection of eigenfunctions {un}o>, is complete in
L2(R™).

REMARKS. (i) The functions H, mentioned in assertion (iv) are the
Hermite polynomials.

(ii) The completeness in assertion (v) shows that we have found all the
eigevalues of the harmonic oscillator.

Proof. 1. Note that

x u
[Dy, x]u = ;(wu)w — U =

and consequently i[D,, x| = 1. Therefore

lullje = (i[Da,a]u,u) < 2||zul| 2| Dyul| 2

zull7s + || Daull72 = (Pou, ).

1/ a2 .2
A_vg=~— e 2 —xe 2
¢ x

so that Pyvg = (A+A_ + 1)’()() = 9.

IN

Next, observe that

0,
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2. We can further calculate that

Py, = (AfA_4+1)A v,
Ac(A_Ay — Dvpot + 245001
= A Pyn_1+2A1v,1
(2n —1)Ajv,—1 4+ 2A1v,—1  (by induction)
= (2n+1)v,.

The form (6.1.6) of v, u, follows by induction.

3. Also note that

[A_,A.] = A_A, —A A
(Py+1)— (Py—1) =2.

Hence if m > n,

(Un,vm) = (A%wo, ATvo)
= (ATA%wo,vp) (since A_ =A%)
= (A" HALA_ +2) A Mg, v).

After finitely many steps, the foregoing equals
((...)A_vg,vg) =0,

since A_vg = 0. Alternatively, we can simply note that (Pyv,,v,) =
(Un, Povm), Povg = (2k + 1)vg, k = m, n.

4. Finally, we demonstrate that the collection of eigenfunctions that we

have found spans L2. Suppose (uy,g) =0 for n =0,1,2,...; we must show
that g = 0.
Now since Hy,(z) = cpa™ + ..., with ¢, # 0, we have

for each polynomial p. Hence

/OO Q(x)e_z;e_mg dx = /oo 9(95)6_%2 i (_i]jg)k dx;

¥

T

2
and so F (ge‘T) = 0. This implies ge™ 2 = 0 and consequently g =0. U
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6.1.2. Higher dimensions, rescaling. Suppose now that n > 1, and
write

(6.1.7) Py := —A + |z]?

this is the n-dimensional quantum harmonic oscillator. We also define

n n

ua(x) - H ua] (x]) = H Ha] (x])e_T
7j=1 7j=1
for each multiindex o = (aq,...,ay,). Then

Pyug = (A + |x|2)ua = (2|al + n)uq,

for |a| = a1 + -+ + ay,. Hence u, is an eigenfunction of Py corresponding
to the eigenvalue 2|a| + n.

We next restore the parameter h > 0 by setting
(6.1.8) Py(h) := —h*A + |z)?,

(6.1.9) ua(h)(z) = h" 4 ﬁ H,, <x_3> e 5

and
(6.1.10) E.(h) == (2|a] + n)h.

Then
Py(h)ua(h) = Eo(h)ua(h);

and upon reindexing, we can write these eigenfunction equations as

(6.1.11) Po(hyuj(h) = E;(hyuj(h) (G =1,...).

6.1.3. Asymptotic distribution of eigenvalues. With these explicit
formulas in hand, we can study the behavior in the semiclassical limit of
the eigenvalues E(h) of the harmonic oscillator:

THEOREM 6.3 (Weyl’s Law for the harmonic oscillator). Assume
that 0 < a < b < oco. Then

(6.1.12) #{E(h) | a < B(h) < b}

= e (o < €+ 1af < b} + o(1)

as h — 0.
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Proof. 1. We may assume that a = 0. Since E(h) = (2|a| + n)h for some
multiindex « according to (6.1.10), we have

#E0 (0B <0h = #{alo<zal+ns ]
= #{a|laxs+- -+ a, <R},
for R := (b — nh)/2h. Therefore

#{E(h) | 0 < E(h) < b}
=Nz|2; 20, 21+ -+ 2, < R} +o(R")

1
= ERH +o(R") as R— o0

1 /b\" .
—E(%> —|—O(h ) as h — 0.

Note that the volume of {x | x; >0, z1 + -+ +x, < 1} is (n!)~L.

2. Next we observe that |{|£]? + |z|> < b}| = a(2n)b", where a(k) =
ﬂ'g(r(% +1))7! is the volume of the unit ball in R¥. Setting k = 2n, we
compute that a(2n) = 7"(n!)~!. Hence

#{E(h)| 0 < B(h) <b} = 1<%) Co(h ™

n!

= G IR+l <B4 o(r). O

6.2. SYMBOLS AND EIGENFUNCTIONS

For this section, we return to the general symbol (6.0.1) and the quantized
operator (6.0.2). We assume that the potential V' : R™ — R is smooth and
satisfies the growth conditions:

(6.2.1) {\8°‘V(x)] < Ca<x>k for each multiindex o

V(z) > c{z)* for |x| > R,
for appropriate constants k, c, Cy, R > 0.

Our plan in the next section is to employ our detailed knowledge about
the eigenvalues of the harmonic oscillator (6.1.8) to estimate the asymptotics
of the eigenvalues of P(h).
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6.2.1. Concentration in phase space. First, we make the important
observation that in the semiclassical limit the eigenfunctions u(h) “are con-
centrated in phase space” on the energy surface {|¢|? + V(z) = E}. (This
assertion is somewhat related to the earlier Theorem 5.3.)

THEOREM 6.4 (h*™° estimates). Suppose that u(h) € L?>(R") solves
(6.2.2) P(h)u(h) = E(h)u(h).
Assume as well that a € S is a symbol satisfying

{1¢1* + V(z) = E} Nspt(a) = 0.

Then if
|[E(h) —E| < ¢
for some sufficiently small § > 0, we have the estimate
(6.2.3) la™ (z, hD)u(h)| 2 = O(h>)[lu(h)|| 2.

Proof. 1. The set K := {|¢|> + V(z) = E} C R?" is compact. Hence there
exists xy € C°(R?*") such that

0<x<1l, x=1lonK, x=0onspt(a).
Define the symbol
b:= ¢+ V(z) — E(h) +ix =p— E(h) +ix

and the order function
m = (£)* + (z)".

Therefore if |E(h) — E| is small enough,
b| >~ym  on R*"
for some constant v > 0. Consequently b € S(m), with b= € S(m™1).
2. Thus there exist ¢ € S(m™1), r1,r9 € S such that
{bw(x, hD)c¥(x,hD) = I + ¥ (z, hD)
M (x, hD)bY (z,hD) = I 4+ r¥ (x, hD),
where rY¥(z, hD), rY (x, hD) are O(h*). Then

(6.2.4) a“(x,hD)c" (z, hD)bY (x,hD) = a“ (z, hD) + O(h™),

and

(6.2.5) bV (x,hD) = P(h) — E(h) + ix"(z, hD).
Furthermore

a(z,hD)c" (z,hD)x" (z,hD) = O(h*),
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since spt(a) Nspt(x) = 0. Since P(h)u(h) = E(h)u(h), (6.2.4) and (6.2.5)
imply that
a“(x,hD)u = a" (z,hD)c¥(x,hD)(P(h) — E(h) +ix")u + O(h™)
= O(h™). 0

For the next result, we temporarily return to the case of the quantum
harmonic oscillator, developing some sharper estimates:

THEOREM 6.5 (Improved estimates for the harmonic oscillator).
Suppose that u(h) € L*(R™) is an eigenfunction of the harmonic oscillator:

(6.2.6) Py(h)u(h) = E(h)u(h).
Assume also that a € CZ°.

Then there exists Eg > 0, depending only on the support of a, such that
for E(h) > Ej,

©627) @ hDyuh) e =0 ((ghy) ) It

The precise form of the right-hand side of (6.2.7) will later let us handle
eigenvalues E(h) — oo.

Proof. 1. We rescale the harmonic oscillator so that we can work near a
fixed energy level E. Set
x = h = E(h)
=—0 h:=— Eh) = ——=
Yy El’ E, ( ) E )

2

where we choose E so that |E(h) — E| < E/4. Then put

Py(h) = =h*Dg +[x*, Py(h) = —R*A, + |yl

whence

We next introduce the unitary transformation
Ui(y) == Eia(E2y).
Then .
UPy(R)U ™! = EPy(h);
and more generally
UbY (z, hD)U™' =5 (y,hD),  b(y,n) := b(E2y, E2y).
We will denote the symbol classes defined using h by the symbol §5.

2. We now apply Theorem 6.4. If

(Po(h) = E(R))u(h) =0,  |E(h) —1] <3,
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and b(y,n) € S has its support contained in {|y[2 + 7|2 < 1/2}, then
16" (y, RDYa(R) || 2 = O(R)|[u(R)]| 2.

Translated to the original A and = as above, this assertion provides us
with the bound

(6.2.8) 16" (2, hD)u(h)|| 2 = O((h/E)>)[[u(h)] 12,
for

b(z, &) = b(E~ Y2z, E7Y2%¢) € S.
Note that spt(b) C {|z|? + [£]* < E/2}.

3. We now assume that b = 1 in {|y|? 4 |5|> < 1/4}. That corresponds
to b= 11in {|z|> + |£]*} < E/4}. In view of (6.2.8), we only need to show
that for

a € OX([R™), spt(a) C {|z* +[¢* < R?},
we have

1(a™ (2, hD)(1 = b™ (2, hD))| 2 12 = O((h/ E)™),
for E large enough, where b is as in (6.2.8). That is the same as showing
(6.2.9) 1a% (y, hD)(1 = 0" (y, hD))|| L2 12 = O(B),
for
a(y,m) = a(Ezy, B2n).

We first observe that E = h/h < 1/h and hence

6651.
2

Since the support of @ is contained in {|y|? + |n|*> < R?/E}, we see that for
FE large enough,

dist(spt(a),spt(1 —b)) > 1/C > 0,

uniformly in h. The estimate (6.2.9) is now a consequence of Theorem
4.25. (I

6.2.2. Projections. We next study how projections onto the span of vari-
ous eigenfunctions of the harmonic oscillator Py(h) are related to our symbol
calculus.

THEOREM 6.6 (Projections and symbols). Suppose for the symbol
a € S that
spt(a) C {[¢* + |2* < R}.
Let
I := projection in L? onto
span{u(h) | Po()u(h) = E(h)u(k), E(h) < R}.
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Then
(6.2.10) " (z, hD)(I —10) = Op2_, 12(h*)
and

(6.2.11) (I —M)a" (2, hD) = Ops_, 12 (h™).

Proof. First of all, observe that

Z u;(h) @ u;(h),

E;j(h)>R

meaning that

> (ug(h), wuy(h).

E;(h)>R
Therefore
a” (x, hD)( = Y (a"(z,hD)u;(h)) @ u;(h);
E;j(h)>R
and so
la¥ (2, RDY(I =) Fasy2 < Y [la™ (2, hD)uy(h)17
E;(h)>R
(6.2.12) w
< (ZR<Ej(h)§E1 +ZE1<Ej(h)) a (l’ahD)Uj(h)HQm

= A+ B,

where E; = max(Fy, R) with Ey given in Theorem 6.5. We recall that Fy
depends only on spt(a).
For the term A we can use Theorems 6.3 and 6.4:
A< #{E;(h): R < Ej(h) < E, Y (x, hD)u;(h)|?
< #{E;(h) : R < Ej;(h) < °}R<é?(%}f<Eo |a® (z, hD)u;(h)||
< Ch™O(h™) = O(h™).

(Here we noted that the assumptions of Theorem 6.4 are satisfied for any F
in R < E < Ejy, and hence ||a¥(z, hD)u;(h)|| = O(h*>) holds for |E;(h) —
E| < ég, with any of these E’s. A finite covering of [R, Ey| provides a
uniform estimate.)

Next, observe that Weyl’s Law for the harmonic oscillator, Theorem 6.3,
implies that

s
Ej(h) > ~yj»h



6.3. SPECTRUM AND RESOLVENTS 129

for some constant v > 0. Then according to Theorem 6.5, for each M < N
and for Ej(h) > Ey, we have

N
la (&, hD)u (B3 < O ()

SCNhM( h

Ej(h))NiM

N-—M

<ChMj="=

Consequently, if we fix N — M > 2n, we obtain
B= Y |a“(x,hD)yu;(h)|7a
Ej(h)>Eo

<ChMy <o,
Jj=1

Since M is arbitrary, we obtain B = O(h®°). This proves (6.2.10), and the
proof of (6.2.11) is similar. O

6.3. SPECTRUM AND RESOLVENTS

We next show that the spectrum of P(h) consists entirely of eigenvalues.

THEOREM 6.7 (Resolvents and spectrum).

(i) There exists a constant hg > 0 such that if 0 < h < hg, then the
resolvent

(P(h) —4)~': L*(R") — L*(R™)
18 a compact operator.

(ii) The mapping z — (P(h)—z)~! is meromorphic, with real and simple
poles.

(iii) The spectrum of P(h) is discrete.

(iv) Furthermore, there exists an orthonormal basis of L*>(R™) comprised
of eigenfunctions {u;(h)}72,:

(6.3.1) P(hyuj(h) = E;(hyui(h)  (j=1,2,...).

Proof. 1. Let
m(z,€) =1+ [¢* + |af"
Then p € S(m), C|lp—i| > m, and P(h) = p“(x, hD).
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For h small enough, m™(z, hD) has a right inverse,
m™ (xz, hD)™' := (1/m)"(x, hD)(I + hr™ (x, hD)) "},

r=(m#(1/m)—1)/h € S.

We can therefore define the Hilbert space:
6.3.2) H:={ueS|(I-hA+ (x))ue L?*} =m"(z,hD) L2
For small h, the inverse

(P(h)—i) L L2 > H

is bounded. Theorem 4.28 shows that m(x,hD)~! : L? — L? is compact
and hence {u € H : ||ullp < 1} is compact in L2. That means that the
inclusion of H in L? is compact and consequently (P(h) —i)~1: L? — L? is
a compact operator.

2. We now write

P(h) —z = (I = K(z,h))(P(h) — 1),
for
K(z,h) = (z —i)(P(h) —4)" L.

Since I — K(—i,h) = I and K(z,h) is compact, Theorem D.4 shows that

z — (I — K(z,h))~! is a meromorphic family of operators, with poles of
finite rank. Consequently,

(P(h) = 2)7" = (P(h) = i)' (I = K(2,h))™"
is a meromorphic family of compact operators from L? to L?.
3. Since the poles of (P(h) — z)~! are discrete, there exists A € R for

which P(h) — A : H — L? is invertible. Hence for any v; € L?, there exists
uj € H such that (P(h) — A\)u; = v; and

((P(h) = X)"or,ve) = (P(h) = N)TH(P(h) = Nua, (P(h) — Nu)
= (u1, (P(h) = Auz).
We integrate by parts, to find
(P(R) = \) o1, v2) = ((P(h) — N, ug) = (o1, (P(h) = X)"va).
Hence (P(h) — A)~! is selfadjoint.

4. We now apply part (v) of Theorem C.7 to obtain an orthonormal set

{uj(h)}}]:l and a sequence of real numbers {Ej(h)}}]:1 such that

(6.3.3) (P(h) =N o =Y (Bj(h) = X) " uy(h) (v, uj(h)),
j=1

for all v € L?, where either J € N or else J = cc.
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5. Taking v = u; and applying P(h) — A to both sides of (6.3.3), we
deduce that P(h)uj(h) = E;(h)u;. Applying P(h) — X to both sides of
(6.3.3) for an arbitrary v € L?, we discover that

J
v="> u;(h)(v,u;(h)).
j=1

Consequently the eigenfunctions {uj(h)}jz1 form a complete orthonormal
set, and in particular J = oo. O

REMARK: Eigenfunctions in ..  Using (6.3.1) and the fact that
V € C°°, we can apply Theorem 7.1 iteratively to conclude that v € H ;L(R”)
for all I and in particular that w € C°°(R™). Similarly we can use V(x) >
c(z)® — C to obtain (z)Nu € H} (R™). Putting this together, we deduce that

(6.3.4) ui(h) € .7,

with seminorms depending on h. ]

REMARK: An alternative proof of meromorphy. To illustrate fur-
ther the semiclassical calculus, we provide a different proof of the meromor-
phy of z + (P — z)~! for h small.

1. Let |z| < E, where E is fixed; and as before let Py(h) = —h?A + |z|?
be the harmonic oscillator. As in Theorem 6.6 define

II := projection in L? onto
span{u | Po(h)u = E(h)u for E(h) < R+ 1}.

Now suppose that spt(a) C {|z|> + [£|> < R}. Owing to Theorem 6.6, we
have

a“(x,hD) — a"(x,hD)II = Or2_,12(h*)
and
a“(x,hD) —la™ (x, hD) = Op2_,12(h*).

2. Fix R > 0 so large that
{I€ +V(2) < B}  {Jz] + [¢]” < R}.
Select x € C*(R?") with spt(x) C {|z|? + |£|? < R} so that
€+ V(@) =2+ x> m

for m = (£)2 + (z)* and all |z| < E. Then y = IIxII + O(h*>®). Recall that
the symbolic calculus guarantees that P(h) — z + x is invertible if h is small
enough. Consequently, so is P(h) — z + IIxIl, since the two operators differ
by an O(h*) term.
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3. Now write
P(h) —z= P(h) — z + IIxII — IIxIL.
Consequently
P(h) — z = (P(h) — z + TIXII)(I — (P(h) — z + IxII) " I II).
Note that IIxII is an operator of finite rank. So Theorem D.4 asserts that
the family of operators
(I — (P(h) — 2 + IIXIT) " IxID) !

1

is meromorphic in z. It follows that (P(h) — 2z)~! is meromorphic on LZ.

The poles are the eigenvalues, and the symmetry of P(h) implies that these
eigenvalues are real. (I

6.4. WEYL’S LAW

Here is the main result of this chapter:

THEOREM 6.8 (Weyl’s Law). Suppose that V' satisfies the conditions
of (6.2.1) and that the E(h) are the eigenvalues of P(h) = —h?A + V (z).

Then for each a < b, we have

(6.4.1) #{E(h) | a < E(h) < b}
1
2h)"

as h — 0. Here |{a < |£]?> + V(x) < b}| denotes the volume of the set of
(x,€) such that a < |€|? +V(z) <b.

({a < € + V(2) < b} +o(1))

—~

INTERPRETATION: Density of states. The uncertainty principle
proved in Theorem 3.9 tells us the eigenfunctions cannot be arbitrarily lo-
calized in phase space. Roughly speaking, their “tightest localization” is to
balls of radius O(h%), so that Az;AE; ~ h for j = 1,...,n in compliance
with the uncertainty principle. Such a localized state “takes up a volume of
at least order O(h™)”; and since the eigenfunctions are orthogonal, they also
“take up different volumes in any region of phase space.” Therefore their
total number is at most approximately the volume of the region times A™".

Consequently in a region of volume |{a < |£]2 4+ V(z) < b}| in R?" we
could plausibly expect to find at most O(h™") states, and Weyl’s Law tells us
that the eigenfunctions in fact pack the region at this maximum density. [

These heuristics in fact motivate the following proof.



6.4. WEYL’S LAW 133

Proof. 1. Let
N(A) = #{E(h) | E(h) < A}.
Select x € C°(R?") so that
xX=1lon{p<A+e}, X=0on {p> X+ 2¢}.
Then for M large enough
a:=p+Myxy—X>~ym,

for m = (£)? + (z)™ and some constant v, > 0. Hence a is elliptic; and so
for small h > 0, a¥(x, hD) is invertible.

2. Claim #1: We have
(6.4.2) (P(R) + M (2, hD) — Ny u) = vllullZ, e H,

for some 4 > 0. Here H is given in (6.3.2). Theorem C.14 shows that H is
the domain of P(h).

To prove (6.4.2), take b € S(m!/?) so that b*> = a. Then b? = b#b + 7o,
where rg € hS(m). We also recall from the proof of Theorem 4.29 that the
right inverse b% (z, hD)~! exists and

bY (2, hD) "1y (2, AD)OY (2, hD) ™' = Op2_,12(h).
Thus
a¥(x,hD) = b"(x,hD)b" (x,hD) + r§ (x,hD)
= b (x, hD)(1 + b (x, hD) " vy (x, hD)b™ (x, hD)~ 1o (x, hD)
=b"(x,hD)(1 4 Op2_,12(h))b" (x, hD).
Hence for sufficiently small i > 0,
((P(h) + Mx"™ = XNu,u) = (a" (x, hD)u, u)
> (16" (a, hD)ul[2(1 — O(h))
> |ull?s,
for some v > 0, in view of (4.7.2). This proves (6.4.2).

3. Claim #2: For each § > 0, there exists a bounded linear operator ()
such that

(6.4.3) XV (z,hD) = Q + Op2_,12(h™)
and
(6.4.4) rank(Q) < m(y{p < X+ 2e)] +6).

To prove this, cover the set {p < A+ 2¢} with balls
Bj = B((Jlj,fj)ﬂ"?) (.]:177N)
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such that

N 5
SOIBI < p < A+26} + 5.
j=1

We then define the “shifted” harmonic oscillator
Pi(h) = [hDy — &° + & —
and set
II := orthogonal projection in L? onto V, the span of
{u]| Pj(h)u = E;j(h)u, Ej(h) <rj, j=1,...,N}
We now claim that
(6.4.5) (I —1)x"(x,hD) = Or2_,12(h*).
To see this, let xy = Z;V:1 Xj, where spt x; C B((x},&;), r]z), and put
II; := orthogonal projection in L? onto the span of
{ul| Pj(h)u = Ej(h)u, Ej(h) <rj}.

Theorem 6.6 shows that (I —IL;)x7 (z, hD) = O(h*). We note that IIII; =
IT; and hence

NE

(I —1)xV(z,hD) = (I =ID)x7 (=, hD)

.
Il
—

I
M) =

(I = IN(I = 1L;)xj (z, hD)

.
I
-

- OL2_)L2(hOO).
This proves (6.4.5).

It now follows that
XV (z,hD) =x"(x,hD) + (I — I)xV(z,hD) = Q + O(h™)
for
Q = 1Ix"(z,hD).
Clearly @ has finite rank, since
rank Q = dim(image of Q) < dim(image of II)

IN

N
> #E;(h) | Ei(h) <13}
j=1

1 N
= o |Bj| +0o(1) | ,
(27h) ; J
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according to Weyl’s Law for the harmonic oscillator, Theorem 6.3. Conse-
quently

(6.4.6) rank Q < W (’{p <A+ 26} + g + 0(1)> .
This proves Claim #2.
4. We next employ Claims #1 and #2 and Theorem C.15. We have
(P(hyu,u) = (A +)llullze — M{(Qu,u) — O(h™)|ullZ:
= Aullzz = M{Qu,u),
where the rank of @ is bound by (6.4.6). Theorem C.15(i) implies then that

N € G l{p < A+ 26 46+ 0(1)).
This holds for all €, > 0, and so
(6:4.7) N € e < A+ o(1)

as h — 0.

5. We must prove the opposite inequality.

Claim #3: Suppose B; = B(($j,£j),7°]2-) C {p < A} and put

V; = span{u | Pj(h)u = E;(h)u, Ej(h) <r;}.

We claim that for u € Vj,
(6.4.8) (P(h)u,u) < (A + e+ O(h%))||ul 72

To prove this claim, select a symbol a € C>°(R?"), with

a=lon{p<A}, sptla) C{p<A+5}

Let ¢ :=1—a. Then u — a%(z,hD)u = c¥(x,hD)u = O(h*>) according to
Theorem 6.6, since spt(1 —a) N B; = 0.

Define bV := P(h)a™(z,hD). Now p € S(m) and a € S(m~!). Thus
b=pa+O(h) € S and so b™ is bounded in L?. Observe also that b < A+ §,

and so

bV (z,hD) < X+ %

Therefore

(P(h)a™ (x,hD)u,uy = (b (z, hD)u,u) < ()\ + %) HuH%g
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Since % (z, hD)u = u + O(h*>), we deduce that
(P(h)u,u) < (A + e+ O(h))|ul7..

This proves Claim #3.

6. Now find disjoint balls B; C {p < A} such that

N
{p <M <D IBj|+6

j=1
and denote
V=Vi+Vat-+Vy.

The spaces V; and V}, ¢ # j, are not orthogonal; but because B; and B; are
disjoint, we see, as in Theorem 6.6, that

(6.4.9) (u, v) = O(h)||ull[lv]]

if w € Vi,v €V, and @ # j. Since each V; has an orthonormal basis
of eigenvectors, (6.4.8) holds for u € V;. The approximate orthogonality
(6.4.9) then gives

(Pu,u) < (A+6)]ul7:
for all u € V. Also, (6.4.9) and Theorem 6.3 imply that for h small enough

N
dimV = ) dimV,
j=1

N
= S #Em <)

1 N
(27h) z} /

J]=

> e < M= 3+ o(D).

Then according to Theorem C.15(ii),

1

N(A) = k)

({p <A} =d+0(1)).
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6.5. NOTES

The proof of Weyl asymptotics is a semiclassical version of the classical
Dirichlet—-Neumann bracketing proof for the bounded domains.

In Chapter 12 we will present a more general form of Weyl’s Law, proved
using a functional calculus of pseudodifferential operators. That proof leads
to many further improvements, as discussed in Dimassi-Sjostrand [D-S].
The proof using min-max principle comparisons with the harmonic oscillator
has the advantage of providing upper bounds for the number of eigenvalues
of nonselfadjoint operators.
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