
2 1. Higher order Fourier analysis

1.1. Equidistribution of polynomial sequences in tori

(Linear) Fourier analysis can be viewed as a tool to study an arbitrary func-
tion f on (say) the integers Z, by looking at how such a function correlates
with linear phases such as n �→ e(ξn), where e(x) := e2πix is the funda-
mental character, and ξ ∈ R is a frequency. These correlations control a
number of expressions relating to f , such as the expected behaviour of f on
arithmetic progressions n, n+ r, n+ 2r of length three.

In this text we will be studying higher-order correlations, such as the
correlation of f with quadratic phases such as n �→ e(ξn2), as these will
control the expected behaviour of f on more complex patterns, such as
arithmetic progressions n, n+ r, n+2r, n+3r of length four. In order to do
this, we must first understand the behaviour of exponential sums such as

N∑
n=1

e(αn2).

Such sums are closely related to the distribution of expressions such as
αn2 mod 1 in the unit circle T := R/Z, as n varies from 1 to N . More
generally, one is interested in the distribution of polynomials P : Zd → T
of one or more variables taking values in a torus T; for instance, one might
be interested in the distribution of the quadruplet (αn2, α(n + r)2, α(n +
2r)2, α(n+3r)2) as n, r both vary from 1 to N . Roughly speaking, once we
understand these types of distributions, then the general machinery of qua-
dratic Fourier analysis will then allow us to understand the distribution of
the quadruplet (f(n), f(n+ r), f(n+2r), f(n+3r)) for more general classes
of functions f ; this can lead for instance to an understanding of the distri-
bution of arithmetic progressions of length 4 in the primes, if f is somehow
related to the primes.

More generally, to find arithmetic progressions such as n, n + r, n +
2r, n+ 3r in a set A, it would suffice to understand the equidistribution of
the quadruplet1 (1A(n), 1A(n+r), 1A(n+2r), 1A(n+3r)) in {0, 1}4 as n and
r vary. This is the starting point for the fundamental connection between
combinatorics (and more specifically, the task of finding patterns inside sets)
and dynamics (and more specifically, the theory of equidistribution and
recurrence in measure-preserving dynamical systems, which is a subfield of
ergodic theory). This connection was explored in the previous monograph
[Ta2009]; it will also be important in this text (particularly as a source of
motivation), but the primary focus will be on finitary, and Fourier-based,
methods.

1Here 1A is the indicator function of A, defined by setting 1A(n) equal to 1 when n ∈ A and
equal to zero otherwise.
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The theory of equidistribution of polynomial orbits was developed in
the linear case by Dirichlet and Kronecker, and in the polynomial case by
Weyl. There are two regimes of interest; the (qualitative) asymptotic regime
in which the scale parameter N is sent to infinity, and the (quantitative)
single-scale regime in which N is kept fixed (but large). Traditionally, it is
the asymptotic regime which is studied, which connects the subject to other
asymptotic fields of mathematics, such as dynamical systems and ergodic
theory. However, for many applications (such as the study of the primes), it
is the single-scale regime which is of greater importance. The two regimes
are not directly equivalent, but are closely related: the single-scale theory
can be usually used to derive analogous results in the asymptotic regime,
and conversely the arguments in the asymptotic regime can serve as a sim-
plified model to show the way to proceed in the single-scale regime. The
analogy between the two can be made tighter by introducing the (qualita-
tive) ultralimit regime, which is formally equivalent to the single-scale regime
(except for the fact that explicitly quantitative bounds are abandoned in the
ultralimit), but resembles the asymptotic regime quite closely.

For the finitary portion of the text, we will be using asymptotic notation:
X � Y , Y � X, or X = O(Y ) denotes the bound |X| ≤ CY for some
absolute constant C, and if we need C to depend on additional parameters,
then we will indicate this by subscripts, e.g.,X �d Y means that |X| ≤ CdY
for some Cd depending only on d. In the ultralimit theory we will use an
analogue of asymptotic notation, which we will review later in this section.

1.1.1. Asymptotic equidistribution theory. Before we look at the
single-scale equidistribution theory (both in its finitary form, and its ultra-
limit form), we will first study the slightly simpler, and much more classical,
asymptotic equidistribution theory.

Suppose we have a sequence of points x(1), x(2), x(3), . . . in a compact
metric space X. For any finite N > 0, we can define the probability measure

μN := En∈[N ]δx(n)

which is the average of the Dirac point masses on each of the points x(1), . . . ,

x(N), where we use En∈[N ] as shorthand for 1
N

∑N
n=1 (with [N ] :=

{1, . . . , N}). Asymptotic equidistribution theory is concerned with the lim-
iting behaviour of these probability measures μN in the limit N → ∞, for
various sequences x(1), x(2), . . . of interest. In particular, we say that the
sequence x : N → X is asymptotically equidistributed on N with respect to a
reference Borel probability measure μ on X if the μN converge in the vague
topology to μ or, in other words, that

(1.1) En∈[N ]f(x(n)) =

∫
X
f dμN →

∫
X
f dμ
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for all continuous scalar-valued functions f ∈ C(X). Note (from the Riesz
representation theorem) that any sequence is asymptotically equidistributed
with respect to at most one Borel probability measure μ.

It is also useful to have a slightly stronger notion of equidistribution: we
say that a sequence x : N → X is totally asymptotically equidistributed if
it is asymptotically equidistributed on every infinite arithmetic progression,
i.e. that the sequence n �→ x(qn + r) is asymptotically equidistributed for
all integers q ≥ 1 and r ≥ 0.

A doubly infinite sequence (x(n))n∈Z, indexed by the integers rather
than the natural numbers, is said to be asymptotically equidistributed rel-
ative to μ if both halves2 of the sequence x(1), x(2), x(3), . . . and x(−1),
x(−2), x(−3), . . . are asymptotically equidistributed relative to μ. Simi-
larly, one can define the notion of a doubly infinite sequence being totally
asymptotically equidistributed relative to μ.

Example 1.1.1. If X = {0, 1}, and x(n) := 1 whenever 22j ≤ n < 22j+1

for some natural number j and x(n) := 0 otherwise, show that the sequence
x is not asymptotically equidistributed with respect to any measure. Thus
we see that asymptotic equidistribution requires all scales to behave “the
same” in the limit.

Exercise 1.1.1. If x : N → X is a sequence into a compact metric space
X, and μ is a probability measure on X, show that x is asymptotically
equidistributed with respect to μ if and only if one has

lim
N→∞

1

N
|{1 ≤ n ≤ N : x(n) ∈ U}| = μ(U)

for all open sets U in X whose boundary ∂U has measure zero. (Hint: For
the “only if” part, use Urysohn’s lemma. For the “if” part, reduce (1.1) to
functions f taking values between 0 and 1, and observe that almost all of
the level sets {y ∈ X : f(y) < t} have a boundary of measure zero.) What
happens if the requirement that ∂U have measure zero is omitted?

Exercise 1.1.2. Let x be a sequence in a compact metric space X which is
equidistributed relative to some probability measure μ. Show that for any
open set U in X with μ(U) > 0, the set {n ∈ N : x(n) ∈ U} is infinite, and
furthermore has positive lower density in the sense that

lim inf
N→∞

1

N
|{1 ≤ n ≤ N : x(n) ∈ U}| > 0.

In particular, if the support of μ is equal to X, show that the set {x(n) :
n ∈ N} is dense in X.

2This omits x(0) entirely, but it is easy to see that any individual element of the sequence
has no impact on the asymptotic equidistribution.



1.1. Equidistribution in tori 5

Exercise 1.1.3. Let x : N → X be a sequence into a compact metric space
X which is equidistributed relative to some probability measure μ. Let
ϕ : R → R be a compactly supported, piecewise continuous function with
only finitely many pieces. Show that for any f ∈ C(X) one has

lim
N→∞

1

N

∑
n∈N

ϕ(n/N)f(x(n)) =

(∫
X
f dμ

)(∫ ∞

0
ϕ(t) dt

)
and for any open U whose boundary has measure zero, one has

lim
N→∞

1

N

∑
n∈N:x(n)∈U

ϕ(n/N) = μ(U)

(∫ ∞

0
ϕ(t) dt

)
.

In this section, X will be a torus (i.e., a compact connected abelian Lie
group), which from the theory of Lie groups is isomorphic to the standard
torus Td, where d is the dimension of the torus. This torus is then equipped
with Haar measure, which is the unique Borel probability measure on the
torus which is translation-invariant. One can identify the standard torus Td

with the standard fundamental domain [0, 1)d, in which case the Haar mea-
sure is equated with the usual Lebesgue measure. We shall call a sequence
x1, x2, . . . in Td (asymptotically) equidistributed if it is (asymptotically)
equidistributed with respect to Haar measure.

We have a simple criterion for when a sequence is asymptotically equidis-
tributed, that reduces the problem to that of estimating exponential sums:

Proposition 1.1.2 (Weyl equidistribution criterion). Let x : N → Td.
Then x is asymptotically equidistributed if and only if

(1.2) lim
N→∞

En∈[N ]e(k · x(n)) = 0

for all k ∈ Zd\{0}, where e(y) := e2πiy. Here we use the dot product

(k1, . . . , kd) · (x1, . . . , xd) := k1x1 + · · ·+ kdxd

which maps Zd ×Td to T.

Proof. The “only if” part is immediate from (1.1). For the “if” part, we
see from (1.2) that (1.1) holds whenever f is a plane wave f(y) := e(k · y)
for some k ∈ Zd (checking the k = 0 case separately), and thus by linearity
whenever f is a trigonometric polynomial. But by Fourier analysis (or from
the Stone-Weierstrass theorem), the trigonometric polynomials are dense
in C(Td) in the uniform topology. The claim now follows from a standard
limiting argument. �

As one consequence of this proposition, one can reduce multidimensional
equidistribution to single-dimensional equidistribution:



6 1. Higher order Fourier analysis

Corollary 1.1.3. Let x : N → Td. Then x is asymptotically equidistributed
in Td if and only if, for each k ∈ Zd\{0}, the sequence n �→ k · x(n) is
asymptotically equidistributed in T.

Exercise 1.1.4. Show that a sequence x : N → Td is totally asymptotically
equidistributed if and only if one has

(1.3) lim
N→∞

En∈[N ]e(k · x(n))e(αn) = 0

for all k ∈ Zd\{0} and all rational α.

This quickly gives a test for equidistribution for linear sequences, some-
times known as the equidistribution theorem:

Exercise 1.1.5. Let α, β ∈ Td. By using the geometric series formula, show
that the following are equivalent:

(i) The sequence n �→ nα+ β is asymptotically equidistributed on N.

(ii) The sequence n �→ nα+β is totally asymptotically equidistributed
on N.

(iii) The sequence n �→ nα+β is totally asymptotically equidistributed
on Z.

(iv) α is irrational, in the sense that k · α 
= 0 for any non-zero k ∈ Zd.

Remark 1.1.4. One can view Exercise 1.1.5 as an assertion that a linear
sequence xn will equidistribute itself unless there is an “obvious” algebraic
obstruction to it doing so, such as k · xn being constant for some non-zero
k. This theme of algebraic obstructions being the “only” obstructions to
uniform distribution will be present throughout the text.

Exercise 1.1.5 shows that linear sequences with irrational shift α are
equidistributed. At the other extreme, if α is rational in the sense that
mα = 0 for some positive integer m, then the sequence n �→ nα + β is
clearly periodic of period m, and definitely not equidistributed.

In the one-dimensional case d = 1, these are the only two possibili-
ties. But in higher dimensions, one can have a mixture of the two ex-
tremes, that exhibits irrational behaviour in some directions and periodic
behaviour in others. Consider for instance the two-dimensional sequence
n �→ (

√
2n, 12n) mod Z2. The first coordinate is totally asymptotically

equidistributed in T, while the second coordinate is periodic; the shift
(
√
2, 12) is neither irrational nor rational, but is a mixture of both. As such,

we see that the two-dimensional sequence is equidistributed with respect to
Haar measure on the group T× (12Z/Z).

This phenomenon generalises:
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Proposition 1.1.5 (Equidistribution for abelian linear sequences). Let T
be a torus, and let x(n) := nα + β for some α, β ∈ T . Then there exists
a decomposition x = x′ + x′′, where x′(n) := nα′ is totally asymptotically
equidistributed on Z in a subtorus T ′ of T (with α′ ∈ T ′, of course), and
x′′(n) = nα′′ + β is periodic (or equivalently, that α′′ ∈ T is rational).

Proof. We induct on the dimension d of the torus T . The claim is vacuous
for d = 0, so suppose that d ≥ 1 and that the claim has already been proven
for tori of smaller dimension. Without loss of generality we may identify T
with Td.

If α is irrational, then we are done by Exercise 1.1.5, so we may assume
that α is not irrational; thus k · α = 0 for some non-zero k ∈ Zd. We then
write k = mk′, where m is a positive integer and k′ ∈ Zd is irreducible (i.e.,
k′ is not a proper multiple of any other element of Zd); thus k′ ·α is rational.
We may thus write α = α1+α2, where α2 is rational, and k′ ·α1 = 0. Thus,
we can split x = x1+x2, where x1(n) := nα1 and x2(n) := nα2+β. Clearly
x2 is periodic, while x1 takes values in the subtorus T1 := {y ∈ T : k′ ·y = 0}
of T . The claim now follows by applying the induction hypothesis to T1

(and noting that the sum of two periodic sequences is again periodic). �

As a corollary of the above proposition, we see that any linear sequence
n �→ nα + β in a torus T is equidistributed in some union of finite cosets
of a subtorus T ′. It is easy to see that this torus T is uniquely determined
by α, although there is a slight ambiguity in the decomposition x = x′ + x′′

because one can add or subtract a periodic linear sequence taking values in
T from x′ and add it to x′′ (or vice versa).

Having discussed the linear case, we now consider the more general sit-
uation of polynomial sequences in tori. To get from the linear case to the
polynomial case, the fundamental tool is

Lemma 1.1.6 (van der Corput inequality). Let a1, a2, . . . be a sequence of
complex numbers of magnitude at most 1. Then for every 1 ≤ H ≤ N , we
have

|En∈[N ]an| �
(
Eh∈[H]|En∈[N ]an+han|

)1/2
+

1

H1/2
+

H1/2

N1/2
.

Proof. For each h ∈ [H], we have

En∈[N ]an = En∈[N ]an+h +O

(
H

N

)
and hence, on averaging,

En∈[N ]an = En∈[N ]Eh∈[H]an+h +O

(
H

N

)
.
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Applying Cauchy-Schwarz, we conclude

En∈[N ]an � (En∈[N ]|Eh∈[H]an+h|2)1/2 +
H

N
.

We expand out the left-hand side as

En∈[N ]an � (Eh,h′∈[H]En∈[N ]an+han+h′)1/2 +
H

N
.

The diagonal contribution h = h′ is O(1/H). By symmetry, the off-diagonal
contribution can be dominated by the contribution when h > h′. Making
the change of variables n �→ n− h′, h �→ h+ h′ (accepting a further error of
O(H1/2/N1/2)), we obtain the claim. �

Corollary 1.1.7 (van der Corput lemma). Let x : N → Td be such that the
derivative sequence ∂hx : n �→ x(n+h)−x(n) is asymptotically equidistributed
on N for all positive integers h. Then xn is asymptotically equidistributed
on N. Similarly with N replaced by Z.

Proof. We just prove the claim for N, as the claim for Z is analogous (and
can in any case be deduced from the N case).

By Proposition 1.1.2, we need to show that for each non-zero k ∈ Zd,
the exponential sum

|En∈[N ]e(k · x(n))|
goes to zero as N → ∞. Fix an H > 0. By Lemma 1.1.6, this expression is
bounded by

� (Eh∈[H]|En∈[N ]e(k · (x(n+ h)− x(n)))|)1/2 + 1

H1/2
+

H1/2

N1/2
.

On the other hand, for each fixed positive integer h, we have from hypothesis
and Proposition 1.1.2 that |En∈[N ]e(k · (x(n + h) − x(n)))| goes to zero as
N → ∞. Taking limit superior as N → ∞, we conclude that

lim sup
N→∞

|En∈[N ]e(k · x(n))| � 1

H1/2
.

Since H is arbitrary, the claim follows. �

Remark 1.1.8. There is another famous lemma by van der Corput con-
cerning oscillatory integrals, but it is not directly related to the material
discussed here.

Corollary 1.1.7 has the following immediate corollary:

Corollary 1.1.9 (Weyl equidistribution theorem for polynomials). Let s ≥
1 be an integer, and let P (n) = αsn

s + · · ·+ α0 be a polynomial of degree s
with α0, . . . , αs ∈ Td. If αs is irrational, then n �→ P (n) is asymptotically
equidistributed on Z.
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Proof. We induct on s. For s = 1 this follows from Exercise 1.1.5. Now
suppose that s > 1, and that the claim has already been proven for smaller
values of s. For any positive integer h, we observe that P (n + h) − P (n)
is a polynomial of degree s − 1 in n with leading coefficient shαsn

s−1. As
αs is irrational, shαs is irrational also, and so by the induction hypothesis,
P (n + h) − P (n) is asymptotically equidistributed. The claim now follows
from Corollary 1.1.7. �

Exercise 1.1.6. Let P (n) = αsn
s + · · ·+α0 be a polynomial of degree s in

Td. Show that the following are equivalent:

(i) P is asymptotically equidistributed on N.

(ii) P is totally asymptotically equidistributed on N.

(iii) P is totally asymptotically equidistributed on Z.

(iv) There does not exist a non-zero k ∈ Zd such that k · α1 = · · · =
k · αs = 0.

(Hint: It is convenient to first use Corollary 1.1.3 to reduce to the one-
dimensional case.)

This gives a polynomial variant of the equidistribution theorem:

Exercise 1.1.7 (Equidistribution theorem for abelian polynomial sequences).
Let T be a torus, and let P be a polynomial map from Z to T of some degree
s ≥ 0. Show that there exists a decomposition P = P ′ + P ′′, where P ′, P ′′

are polynomials of degree s, P ′ is totally asymptotically equidistributed in
a subtorus T ′ of T on Z, and P ′′ is periodic (or equivalently, that all non-
constant coefficients of P ′′ are rational).

In particular, we see that polynomial sequences in a torus are equidis-
tributed with respect to a finite combination of Haar measures of cosets of
a subtorus. Note that this finite combination can have multiplicity; for in-
stance, when considering the polynomial map n �→ (

√
2n, 13n

2) mod Z2, it
is not hard to see that this map is equidistributed with respect to 1/3 times
the Haar probability measure on (T)×{0 mod Z}, plus 2/3 times the Haar
probability measure on (T)× {1

3 mod Z}.
Exercise 1.1.7 gives a satisfactory description of the asymptotic equidis-

tribution of arbitrary polynomial sequences in tori. We give just one example
of how such a description can be useful:

Exercise 1.1.8 (Recurrence). Let T be a torus, let P be a polynomial map
from Z to T , and let n0 be an integer. Show that there exists a sequence nj

of positive integers going to infinity such that P (nj) → P (n0).
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We discussed recurrence for one-dimensional sequences x : n �→ x(n).
It is also of interest to establish an analogous theory for multi-dimensional
sequences, as follows.

Definition 1.1.10. A multidimensional sequence x : Zm → X is asymptot-
ically equidistributed relative to a probability measure μ if, for every con-
tinuous, compactly supported function ϕ : Rm → R and every function
f ∈ C(X), one has

1

Nm

∑
n∈Zm

ϕ(n/N)f(x(n)) →
(∫

Rm

ϕ

)(∫
X
f dμ

)
as N → ∞. The sequence is totally asymptotically equidistributed relative
to μ if the sequence n �→ x(qn+r) is asymptotically equidistributed relative
to μ for all positive integers q and all r ∈ Zm.

Exercise 1.1.9. Show that this definition of equidistribution on Zm co-
incides with the preceding definition of equidistribution on Z in the one-
dimensional case m = 1.

Exercise 1.1.10 (Multidimensional Weyl equidistribution criterion). Let
x : Zm → Td be a multidimensional sequence. Show that x is asymptotically
equidistributed if and only if

(1.4) lim
N→∞

1

Nm

∑
n∈Zm:n/N∈B

e(k · x(n)) = 0

for all k ∈ Zd\{0} and all rectangular boxes B in Rm. Then show that x is
totally asymptotically equidistributed if and only if

(1.5) lim
N→∞

1

Nm

∑
n∈Zm:n/N∈B

e(k · x(n))e(α · n) = 0

for all k ∈ Zd\{0}, all rectangular boxes B in Rm, and all rational α ∈ Qm.

Exercise 1.1.11. Let α1, . . . , αm, β ∈ Td, and let x : Zm → Td be the linear
sequence x(n1, . . . , nm) := n1α1 + · · ·+ nmαm + β. Show that the following
are equivalent:

(i) The sequence x is asymptotically equidistributed on Zm.

(ii) The sequence x is totally asymptotically equidistributed on Zm.

(iii) We have (k · α1, . . . , k · αm) 
= 0 for any non-zero k ∈ Zd.

Exercise 1.1.12 (Multidimensional van der Corput lemma). Let x : Zm →
Td be such that the sequence ∂hx : n �→ x(n + h) − x(n) is asymptotically
equidistributed on Zm for all h outside of a hyperplane in Rm. Show that
x is asymptotically equidistributed on Zm.
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Exercise 1.1.13. Let

P (n1, . . . , nm) :=
∑

i1,...,im≥0:i1+···+im≤s

αi1,...,imn
i1
1 . . . nim

m

be a polynomial map from Zm to Td of degree s, where αi1,...,im ∈ Td are
coefficients. Show that the following are equivalent:

(i) P is asymptotically equidistributed on Zm.

(ii) P is totally asymptotically equidistributed on Zm.

(iii) There does not exist a non-zero k ∈ Zd such that k · αi1,...,im = 0
for all (i1, . . . , im) 
= 0.

Exercise 1.1.14 (Equidistribution for abelian multidimensional polynomial
sequences). Let T be a torus, and let P be a polynomial map from Zm to
T of some degree s ≥ 0. Show that there exists a decomposition P = P ′ +
P ′′, where P ′, P ′′ are polynomials of degree s, P ′ is totally asymptotically
equidistributed in a subtorus T ′ of T on Zm, and P ′′ is periodic with respect
to some finite index sublattice of Zm (or equivalently, that all non-constant
coefficients of P ′′ are rational).

We give just one application of this multidimensional theory, that gives a
hint as to why the theory of equidistribution of polynomials may be relevant:

Exercise 1.1.15. Let T be a torus, let P be a polynomial map from Z
to T , let ε > 0, and let k ≥ 1. Show that there exists positive integers
a, r ≥ 1 such that P (a), P (a+ r), . . . , P (a+(k− 1)r) all lie within ε of each
other. (Hint: Consider the polynomial map from Z2 to T k that maps (a, r)
to (P (a), . . . , P (a+(k− 1)r)). One can also use the one-dimensional theory
by freezing a and only looking at the equidistribution in r.)

1.1.2. Single-scale equidistribution theory. We now turn from the as-
ymptotic equidistribution theory to the equidistribution theory at a single
scale N . Thus, instead of analysing the qualitative distribution of infinite
sequence x : N → X, we consider instead the quantitative distribution of
a finite sequence x : [N ] → X, where N is a (large) natural number and
[N ] := {1, . . . , N}. To make everything quantitative, we will replace the
notion of a continuous function by that of a Lipschitz function. Recall that
the (inhomogeneous) Lipschitz norm ‖f‖Lip of a function f : X → R on a
metric space X = (X, d) is defined by the formula

‖f‖Lip := sup
x∈X

|f(x)|+ sup
x,y∈X:x�=y

|f(x)− f(y)|
d(x, y)

.

We also define the homogeneous Lipschitz semi-norm

‖f‖ ˙Lip := sup
x,y∈X:x�=y

|f(x)− f(y)|
d(x, y)

.
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Definition 1.1.11. Let X = (X, d) be a compact metric space, let δ > 0,
let μ be a probability measure on X. A finite sequence x : [N ] → X is said
to be δ-equidistributed relative to μ if one has

(1.6) |En∈[N ]f(x(n))−
∫
X
f dμ| ≤ δ‖f‖Lip

for all Lipschitz functions f : X → R.

We say that the sequence x1, . . . , xN ∈ X is totally δ-equidistributed
relative to μ if one has

|En∈P f(x(n))−
∫
X
f dμ| ≤ δ‖f‖Lip

for all Lipschitz functions f : X → R and all arithmetic progressions P in
[N ] of length at least δN .

In this section, we will only apply this concept to the torus Td with
the Haar measure μ and the metric inherited from the Euclidean metric.
However, in subsequent sections we will also consider equidistribution in
other spaces, most notably on nilmanifolds.

Exercise 1.1.16. Let x(1), x(2), x(3), . . . be a sequence in a metric space
X = (X, d), and let μ be a probability measure on X. Show that the
sequence x(1), x(2), . . . is asymptotically equidistributed relative to μ if
and only if, for every δ > 0, x(1), . . . , x(N) is δ-equidistributed relative
to μ whenever N is sufficiently large depending on δ, or equivalently if
x(1), . . . , x(N) is δ(N)-equidistributed relative to μ for all N > 0, where
δ(N) → 0 as N → ∞. (Hint: You will need the Arzelá-Ascoli theorem.)

Similarly, show that x(1), x(2), . . . is totally asymptotically equidis-
tributed relative to μ if and only if, for every δ > 0, x(1), . . . , x(N) is totally
δ-equidistributed relative to μ whenever N is sufficiently large depending on
δ, or equivalently if x(1), . . . , x(N) is totally δ(N)-equidistributed relative
to μ for all N > 0, where δ(N) → 0 as N → ∞.

Remark 1.1.12. More succinctly, (total) asymptotic equidistribution of
x(1), x(2), . . . is equivalent to (total) oN→∞(1)-equidistribution of x(1), . . . ,
x(N) as N → ∞, where on→∞(1) denotes a quantity that goes to zero
as N → ∞. Thus we see that asymptotic notation such as on→∞(1) can
efficiently conceal a surprisingly large number of quantifiers.

Exercise 1.1.17. Let N0 be a large integer, and let x(n) := n/N0 mod 1 be
a sequence in the standard torus T = R/Z with Haar measure. Show that
whenever N is a positive multiple of N0, then the sequence x(1), . . . , x(N)
is O(1/N0)-equidistributed. What happens if N is not a multiple of N0?

If, furthermore, N ≥ N2
0 , show that x(1), . . . , x(N) is O(1/

√
N0)-equi-

distributed. Why is a condition such as N ≥ N2
0 necessary?
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Note that the above exercise does not specify the exact relationship
between δ and N when one is given an asymptotically equidistributed se-
quence x(1), x(2), . . . ; this relationship is the additional piece of information
provided by single-scale equidistribution that is not present in asymptotic
equidistribution.

It turns out that much of the asymptotic equidistribution theory has
a counterpart for single-scale equidistribution. We begin with the Weyl
criterion.

Proposition 1.1.13 (Single-scale Weyl equidistribution criterion). Let x1,
x2, . . . , xN be a sequence in Td, and let 0 < δ < 1.

(i) If x1, . . . , xN is δ-equidistributed, and k ∈ Zd\{0} has magnitude
|k| ≤ δ−c, then one has

|En∈[N ]e(k · xn)| �d δc

if c > 0 is a small enough absolute constant.

(ii) Conversely, if x1, . . . , xN is not δ-equidistributed, then there exists
k ∈ Zd\{0} with magnitude |k| �d δ−Cd, such that

|En∈[N ]e(k · xn)| �d δCd

for some Cd depending on d.

Proof. The first claim is immediate as the function x �→ e(k · x) has mean
zero and Lipschitz constant Od(|k|), so we turn to the second claim. By
hypothesis, (1.6) fails for some Lipschitz f . We may subtract off the mean
and assume that

∫
Td f = 0; we can then normalise the Lipschitz norm to be

one; thus we now have

|En∈[N ]f(xn)| > δ.

We introduce a summation parameter R ∈ N, and consider the Fejér partial
Fourier series

FRf(x) :=
∑
k∈Zd

mR(k)f̂(k)e(k · x)

where f̂(k) are the Fourier coefficients

f̂(k) :=

∫
Td

f(x)e(−k · x) dx

and mR is the Fourier multiplier

mR(k1, . . . , kd) :=
d∏

j=1

(
1− |kj|

R

)
+

.



14 1. Higher order Fourier analysis

Standard Fourier analysis shows that we have the convolution representation

FRf(x) =

∫
Td

f(y)KR(x− y)

where KR is the Fejér kernel

KR(x1, . . . , xd) :=
d∏

j=1

1

R

(
sin(πRxj)

sin(πxj)

)2

.

Using the kernel bounds ∫
Td

KR = 1

and

|KR(x)| �d

d∏
j=1

R(1 +R‖xj‖T)−2,

where ‖x‖T is the distance from x to the nearest integer, and the Lipschitz
nature of f , we see that

FRf(x) = f(x) +Od(1/R).

Thus, if we choose R to be a sufficiently small multiple of 1/δ (depending
on d), one has

|En∈[N ]FRf(xn)| � δ

and thus by the pigeonhole principle (and the trivial bound f̂(k) = O(1)

and f̂(0) = 0) we have

|En∈[N ]e(k · xn)| �d δOd(1)

for some non-zero k of magnitude |k| �d δ−Od(1), and the claim follows. �

There is an analogue for total equidistribution:

Exercise 1.1.18. Let x1, x2, . . . , xN be a sequence in Td, and let 0 < δ < 1.

(i) If x1, . . . , xN is totally δ-equidistributed, k ∈ Zd\{0} has magnitude
|k| ≤ δ−cd , and a is a rational of height at most δ−cd , then one has

|En∈[N ]e(k · xn)e(an)| �d δcd

if cd > 0 is a small enough constant depending only on d.

(ii) Conversely, if x1, . . . , xN is not totally δ-equidistributed, then there
exists k ∈ Zd\{0} with magnitude |k| �d δ−Cd , and a rational a of
height Od(δ

−Cd), such that

|En∈[N ]e(k · xn)e(an)| �d δCd

for some Cd depending on d.

This gives a version of Exercise 1.1.5:
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Exercise 1.1.19. Let α, β ∈ Td, letN ≥ 1, and let 0 < δ < 1. Suppose that
the linear sequence (αn+ β)Nn=1 is not totally δ-equidistributed. Show that

there exists a non-zero k ∈ Zd with |k| �d δ−Od(1) such that ‖k · α‖T �d

δ−Od(1)/N .

Next, we give an analogue of Corollary 1.1.7:

Exercise 1.1.20 (Single-scale van der Corput lemma). Let x1, x2, . . . , xN ∈
Td be a sequence which is not totally δ-equidistributed for some 0 < δ ≤ 1/2.
Let 1 ≤ H ≤ δ−CdN for some sufficiently large Cd depending only on d.
Then there exists at least δCdH integers h ∈ [−H,H] such that the sequence
(xn+h − xn)

N
n=1 is not totally δCd-equidistributed (where we extend xn by

zero outside of {1, . . . , N}). (Hint: Apply Lemma 1.1.6.)

Just as in the asymptotic setting, we can use the van der Corput lemma
to extend the linear equidistribution theory to polynomial sequences. To
get satisfactory results, though, we will need an additional input, namely
the following classical lemma, essentially due to Vinogradov:

Lemma 1.1.14. Let α ∈ T, 0 < ε < 1/100, 100ε < δ < 1, and N ≥ 100/δ.
Suppose that ‖nα‖T ≤ ε for at least δN values of n ∈ [−N,N ]. Then there
exists a positive integer q = O(1/δ) such that ‖αq‖T � εq

δN .

The key point here is that one starts with many multiples of α being
somewhat close (O(ε)) to an integer, but concludes that there is a single
multiple of α which is very close (O(ε/N), ignoring factors of δ) to an
integer.

Proof. By the pigeonhole principle, we can find two distinct integers n, n′ ∈
[−N,N ] with |n − n′| � 1/δ such that ‖nα‖T, ‖n′α‖T ≤ ε. Setting q :=
|n′ − n|, we thus have ‖qα‖T ≤ 2ε. We may assume that qα 
= 0 since we
are done otherwise. Since N ≥ 100/δ, we have N/q ≥ 10 (say).

Now partition [−N,N ] into q arithmetic progressions {nq + r : −N/q +
O(1) ≤ n ≤ N/q + O(1)} for some r = 0, . . . , q − 1. By the pigeonhole
principle, there must exist an r for which the set

{−N/q +O(1) ≤ n ≤ N/q +O(1) : ‖α(nq + r)‖T ≤ ε}
has cardinality at least δN/q. On the other hand, since ‖qα‖T ≤ 2ε ≤
0.02, we see that this set consists of intervals of length at most 2ε/‖qα‖T,
punctuated by gaps of length at least 0.9/‖qα‖T (say). Since the gaps are
at least 0.45/ε times as large as the intervals, we see that if two or more of
these intervals appear in the set, then the cardinality of the set is at most
100εN/q < δN/q, a contradiction. Thus at most one interval appears in the
set, which implies that 2ε/‖qα‖T ≥ δN/q, and the claim follows. �
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Remark 1.1.15. The numerical constants can of course be improved, but
this is not our focus here.

Exercise 1.1.21. Let P : Z → Td be a polynomial sequence P (n) := αsn
s+

· · ·+α0, let N ≥ 1, and let 0 < δ < 1. Suppose that the polynomial sequence
P is not totally δ-equidistributed on [N ]. Show that there exists a non-zero

k ∈ Zd with |k| �d,s δ
−Od,s(1) such that ‖k · αs‖T �d,s δ

−Od,s(1)/N s. (Hint:
Induct on s starting with Exercise 1.1.19 for the base case, and then using
Exercise 1.1.20 and Lemma 1.1.14 to continue the induction.)

Note the N s denominator; the higher-degree coefficients of a polynomial
need to be very rational in order not to cause equidistribution.

The above exercise only controls the top degree coefficient, but we can
in fact control all coefficients this way:

Lemma 1.1.16. With the hypotheses of Exercise 1.1.21, we can in fact
find a non-zero k ∈ Zd with |k| �d,s δ−Od,s(1) such that ‖k · αi‖T �d,s

δ−Od,s(1)/N i for all i = 0, . . . , s.

Proof. We shall just establish the one-dimensional case d = 1, as the general
dimensional case then follows from Exercise 1.1.18.

The case s ≤ 1 follows from Exercise 1.1.19, so assume inductively that
s > 1 and that the claim has already been proven for smaller values of
s. We allow all implied constants to depend on s. From Exercise 1.1.21,
we already can find a positive k with k = O(δ−O(1)) such that ‖kαs‖T �
δ−O(1)/N s. We now partition [N ] into arithmetic progressions of spacing k
and length N ′ ∼ δCN for some sufficiently large C; then by the pigeonhole
principle, we see that P fails to be totally � δO(1)-equidistributed on one
of these progressions. But on one such progression (which can be identified
with [N ′]) the degree s component of P is essentially constant (up to errors
much smaller than δ) if C is large enough; if one then applies the induction
hypothesis to the remaining portion of P on this progression, we can obtain
the claim. �

This gives us the following analogue of Exercise 1.1.7. We say that a
subtorus T of some dimension d′ of a standard torus Td has complexity
at most M if there exists an invertible linear transformation L ∈ SLd(Z)
with integer coefficients (which can thus be viewed as a homeomorphism

of Td that maps T to the standard torus Td′ × {0}d−d′), and such that all
coefficients have magnitude at most M .

Exercise 1.1.22. Show that every subtorus (i.e., compact connected Lie
subgroup) T of Td has finite complexity. (Hint: Let V be the Lie algebra
of T , then identify V with a subspace of Rd and T with V/(V ∩ Zd). Show



1.1. Equidistribution in tori 17

that V ∩ Zd is a full rank sublattice of V , and is thus generated by dim(V )
independent generators.)

Proposition 1.1.17 (Single-scale equidistribution theorem for abelian poly-
nomial sequences). Let P be a polynomial map from Z to Td of some degree
s ≥ 0, and let F : R+ → R+ be an increasing function. Then there exists
an integer 1 ≤ M ≤ OF,s,d(1) and a decomposition

P = Psmth + Pequi + Prat

into polynomials of degree s, where

(i) (Psmth is smooth) The ith coefficient αi,smth of Psmth has size
O(M/N i). In particular, on the interval [N ], Psmth is Lipschitz
with homogeneous norm Os,d(M/N).

(ii) (Pequi is equidistributed) There exists a subtorus T of Td of com-
plexity at most M and some dimension d′, such that Pequi takes
values in T and is totally 1/F (M)-equidistributed on [N ] in this

torus (after identifying this torus with Td′ using an invertible lin-
ear transformation of complexity at most M).

(iii) (Prat is rational) The coefficients αi,rat of Prat are such that qαi,rat

= 0 for some 1 ≤ q ≤ M and all 0 ≤ i ≤ s. In particular, qPrat = 0
and Prat is periodic with period q.

If, furthermore, F is of polynomial growth, and more precisely F (M) ≤
KMA for some A,K ≥ 1, then one can take M �A,s,d KOA,s,d(1).

Example 1.1.18. Consider the linear flow P (n) := (
√
2n, (12+

1
N )n) mod Z2

in T2 on [N ]. This flow can be decomposed into a smooth flow Psmth(n) :=
(0, 1

N n) mod Z2 with a homogeneous Lipschitz norm of O(1/N), an equidis-

tributed flow Pequi(n) := (
√
2n, 0) mod Z2 which will be δ-equidistributed

on the subtorus T1 ×{0} for a reasonably small δ (in fact one can take δ as
small as N−c for some small absolute constant c > 0), and a rational flow
Prat(n) := (0, 12n) mod Z2, which is periodic with period 2. This example
illustrates how all three components of this decomposition arise naturally in
the single-scale case.

Remark 1.1.19. Comparing this result with the asymptotically equidis-
tributed analogue in Example 1.1.7, we notice several differences. Firstly,
we now have the smooth component Psmth, which did not previously make
an appearance (except implicitly, as the constant term in P ′). Secondly,
the equidistribution of the component Pequi is not infinite, but is the next
best thing, namely it is given by an arbitrary function F of the quantity M ,
which controls the other components of the decomposition.
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Proof. The case s = 0 is trivial, so suppose inductively that s ≥ 1, and that
the claim has already been proven for lower degrees. Then for fixed degree,
the case d = 0 is vacuously true, so we make a further inductive assumption
d ≥ 1 and the claim has already been proven for smaller dimensions (keeping
s fixed).

If P is already totally 1/F (1)-equidistributed then we are done (setting
Pequi = P and Psmth = Prat = 0 and M = 1), so suppose that this is not
the case. Applying Exercise 1.1.21, we conclude that there is some non-zero
k ∈ Zd with |k| �d,s F (1)Od,s(1) such that

‖k · αi‖T �d,s F (1)Od,s(1)/N i

for all i = 0, . . . , s. We split k = mk′ where k′ is irreducible and m is a posi-
tive integer. We can therefore split αi = αi,smth+αi,rat+α′

i where αi,smth =

O(F (1)Od,s(1)/N i), qαi = 0 for some positive integer q = Od,s(F (1)Od,s(1)),
and k′ · α′

i = 0. This then gives a decomposition P = Psmth + P ′ + Prat,
with P ′ taking values in the subtorus {x ∈ Td : k′ · x = 0}, which can be
identified with Td−1 after an invertible linear transformation with integer
coefficients of size Od,s(F (1)Od,s(1)). If one applies the induction hypothesis
to P ′ (with F replaced by a suitably larger function F ′) one then obtains
the claim.

The final claim about polynomial bounds can be verified by a closer
inspection of the argument (noting that all intermediate steps are polyno-
mially quantitative, and that the length of the induction is bounded by
Od,s(1)). �

Remark 1.1.20. It is instructive to see how this smooth-equidistributed-
rational decomposition evolves as N increases. Roughly speaking, the torus
T that the Pequi component is equidistributed on is stable at most scales,
but there will be a finite number of times in which a “growth spurt” oc-
curs and T jumps up in dimension. For instance, consider the linear flow
P (n) := (n/N0, n/N

2
0 ) mod Z2 on the two-dimensional torus. At scales

N � N0 (and with F fixed, and N0 assumed to be sufficiently large de-
pending on F ), P consists entirely of the smooth component. But as N
increases past N0, the first component of P no longer qualifies as smooth,
and becomes equidistributed instead; thus in the range N0 � N � N2

0 , we
have Psmth(n) = (0, n/N2

0 ) mod Z2 and Pequi(n) = (n/N0, 0) mod Z2 (with
Prat remaining trivial), with the torus T increasing from the trivial torus
{0}2 to T1 ×{0}. A second transition occurs when N exceeds N2

0 , at which
point Pequi encompasses all of P . Evolving things in a somewhat different
direction, if one then increases F so that F (1) is much larger than N2

0 , then
P will now entirely consist of a rational component Prat. These sorts of
dynamics are not directly seen if one only looks at the asymptotic theory,
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which roughly speaking is concerned with the limit after takingN → ∞, and
then taking a second limit by making the growth function F go to infinity.

There is a multidimensional version of Proposition 1.1.17, but we will
not describe it here; see [GrTa2011] for a statement (and also see the next
section for the ultralimit counterpart of this statement).

Remark 1.1.21. These single-scale abelian equidistribution theorems are a
special case of a more general single-scale nilpotent equidistribution theorem,
which will play an important role in later aspects of the theory, and which
was the main result of the aforementioned paper of Ben Green and myself.

As an example of this theorem in action, we give a single-scale strength-
ening of Exercise 1.1.8 (and Exercise 1.1.15):

Exercise 1.1.23 (Recurrence). Let P be a polynomial map from Z to Td

of degree s, and let N ≥ 1 be an integer. Show that for every ε > 0 and
N > 1, and every integer n0 ∈ [N ], we have

|{n ∈ [N ] : ‖P (n)− P (n0)‖ ≤ ε}| �d,s ε
Od,s(1)N.

Exercise 1.1.24 (Multiple recurrence). With the notation of Exercise 1.1.23,
establish that

|{r ∈[−N,N ] : ‖P (n0 + jr)− P (n0)‖ ≤ ε for j = 0, 1, . . . , k − 1}|
�d,s,k εOd,s,k(1)N

for any k ≥ 1.

Exercise 1.1.25 (Syndeticity). A set of integers is syndetic if it has bounded
gaps (or equivalently, if a finite number of translates of this set can cover
all of Z). Let P : Z → Td be a polynomial and let ε > 0. Show that
the set {n ∈ Z : ‖P (n) − P (n0)‖ ≤ ε} is syndetic. (Hint: First reduce to
the case when P is (totally) asymptotically equidistributed. Then, if N is
large enough, show (by inspection of the proof of Exercise 1.1.21) that the
translates P (· + n0) are ε-equidistributed on [N ] uniformly for all n ∈ Z,
for any fixed ε > 0. Note how the asymptotic theory and the single-scale
theory need to work together to obtain this result.)

1.1.3. Ultralimit equidistribution theory. The single-scale theory was
somewhat more complicated than the asymptotic theory, in part because
one had to juggle parameters such as N, δ, and (for the equidistribution
theorems) F as well. However, one can clean up this theory somewhat
(especially if one does not wish to quantify the dependence of bounds on
the equidistribution parameter δ) by using an ultralimit, which causes the δ
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and F parameters to disappear, at the cost of converting the finitary theory
to an infinitary one. Ultralimit analysis is discussed in Section 2.1; we give
a quick review here.

We first fix a non-principal ultrafilter α∞ ∈ βN\N (see Section 2.1 for a
definition of a non-principal ultrafilter). A property Pα pertaining to a natu-
ral number α is said to hold for all α sufficiently close to α∞ if the set of α for
which Pα holds lies in the ultrafilter α∞. Two sequences (xα)α∈N, (yα)α∈N
of objects are equivalent if one has xα = yα for all α sufficiently close to
α∞, and we define the ultralimit limα→α∞ xα to be the equivalence class of
all sequences equivalent to (xα)α∈N, with the convention that x is identified
with its own ultralimit limα→α∞ xα. Given any sequence Xα of sets, the
ultraproduct

∏
α→α∞ Xα is the space of all ultralimits limα→α∞ xα, where

xα ∈ Xα for all α sufficiently close to α∞. The ultraproduct
∏

α→α∞ X of
a single set X is the ultrapower of X and is denoted ∗X.

Ultralimits of real numbers (i.e., elements of ∗R) will be called limit real
numbers; similarly one defines limit natural numbers, limit complex num-
bers, etc. Ordinary numbers will be called standard numbers to distinguish
them from limit numbers, thus for instance a limit real number is an ul-
tralimit of standard real numbers. All the usual arithmetic operations and
relations on standard numbers are inherited by their limit analogues; for in-
stance, a limit real number limα→α∞ xα is larger than another limα→α∞ yα
if one has xα > yα for all α sufficiently close to α∞. The axioms of a
non-principal ultrafilter ensure that these relations and operations on limit
numbers obey the same axioms as their standard counterparts3.

Ultraproducts of sets will be called limit sets; they are roughly analogous
to “elementary sets” in measure theory. Ultraproducts of finite sets will be
called limit finite sets. Thus, for instance, if N = limα→α∞ Nα is a limit
natural number, then [N ] =

∏
α→α∞ [Nα] is a limit finite set, and can be

identified with the set of limit natural numbers between 1 and N .

Remark 1.1.22. In the language of non-standard analysis, limit numbers
and limit sets are known as non-standard numbers and internal sets, respec-
tively. We will, however, use the language of ultralimit analysis rather than
non-standard analysis in order to emphasise the fact that limit objects are
the ultralimits of standard objects; see Section 2.1 for further discussion of
this perspective.

3The formalisation of this principle is �Los’s theorem, which roughly speaking asserts that
any first-order sentence which is true for standard objects, is also true for their limit counterparts.
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Given a sequence of functions fα : Xα → Yα, we can form the ultralimit
limα→α∞ fα : limα→α∞ Xα → limα→α∞ Yα by the formula

( lim
α→α∞

fα)

(
lim

α→α∞
xα

)
:= lim

α→α∞
fα(xα);

one easily verifies that this is a well-defined function between the two ultra-
products. We refer to ultralimits of functions as limit functions ; they are
roughly analogous to “simple functions” in measurable theory. We identify
every standard function f : X → Y with its ultralimit limα→α∞ f : ∗X → ∗Y ,
which extends the original function f .

Now we introduce limit asymptotic notation, which is deliberately chosen
to be similar (though not identical) to ordinary asymptotic notation. Given
two limit numbers X,Y , we write X � Y , Y � X, or X = O(Y ) if we
have |X| ≤ CY for some standard C > 0. We also write X = o(Y ) if we
have |X| ≤ cY for every standard c > 0; thus for any limit numbers X,Y
with Y > 0, exactly one of |X| � Y and X = o(Y ) is true. A limit real
is said to be bounded if it is of the form O(1), and infinitesimal if it is of
the form o(1); similarly for limit complex numbers. Note that the bounded
limit reals are a subring of the limit reals, and the infinitesimal limit reals
are an ideal of the bounded limit reals.

Exercise 1.1.26 (Relation between limit asymptotic notation and ordinary
asymptotic notation). Let X = limα→α∞ Xα and Y = limα→α∞ Yα be two
limit numbers.

(i) Show that X � Y if and only if there exists a standard C > 0 such
that |Xα| ≤ CYα for all α sufficiently close to α0.

(ii) Show that X = o(Y ) if and only if, for every standard ε > 0, one
has |Xα| ≤ εYα for all α sufficiently close to α0.

Exercise 1.1.27. Show that every bounded limit real number x has a
unique decomposition x = st(x) + (x − st(x)), where st(x) is a standard
real (called the standard part of x) and x− st(x) is infinitesimal.

We now give the analogue of single-scale equidistribution in the ultra-
limit setting.

Definition 1.1.23 (Ultralimit equidistribution). Let X = (X, d) be a stan-
dard compact metric space, let N be an unbounded limit natural number,
and let x : [N ] → ∗X be a limit function. We say that x is equidistributed
with respect to a (standard) Borel probability measure μ on X if one has

stEn∈[N ]f(x(n)) =

∫
X
f dμ
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for all standard continuous functions f ∈ C(X). Here, we define the expec-
tation of a limit function in the obvious limit manner, thus

En∈[N ]f(x(n)) = lim
α→α∞

En∈[Nα]f(xα(n))

if N = limα→α∞ Nα and x = limα→α∞ xα.

We say that x is totally equidistributed relative to μ if the sequence
n �→ x(qn + r) is equidistributed on [N/q] for every standard q > 0 and
r ∈ Z (extending x arbitrarily outside [N ] if necessary).

Remark 1.1.24. One could just as easily replace the space of continuous
functions by any dense subclass in the uniform topology, such as the space
of Lipschitz functions.

The ultralimit notion of equidistribution is closely related to that of
both asymptotic equidistribution and single-scale equidistribution, as the
following exercises indicate:

Exercise 1.1.28 (Asymptotic equidistribution vs. ultralimit equidistribu-
tion). Let x : N → X be a sequence into a standard compact metric space
(which can then be extended from a map from ∗N to ∗X as usual), let μ be
a Borel probability measure on X. Show that x is asymptotically equidis-
tributed on N with respect to μ if and only if x is equidistributed on [N ]
for every unbounded natural number N and every choice of non-principal
ultrafilter α∞.

Exercise 1.1.29 (Single-scale equidistribution vs. ultralimit equidistribu-
tion). For every α ∈ N, let Nα be a natural number that goes to infinity as
α → ∞, let xα : [Nα] → X be a map to a standard compact metric space.
Let μ be a Borel probability measure on X. Write N := limα→α∞ Nα and
x := limα→α∞ xα for the ultralimits. Show that x is equidistributed with
respect to μ if and only if, for every standard δ > 0, xα is δ-equidistributed
with respect to μ for all α sufficiently close to α∞.

In view of these correspondences, it is thus not surprising that one has
ultralimit analogues of the asymptotic and single-scale theory. These ana-
logues tend to be logically equivalent to the single-scale counterparts (once
one concedes all quantitative bounds), but are formally similar (though not
identical) to the asymptotic counterparts, thus providing a bridge between
the two theories, which we can summarise by the following three statements:

(i) Asymptotic theory is analogous to ultralimit theory (in particular,
the statements and proofs are formally similar);

(ii) ultralimit theory is logically equivalent to qualitative finitary the-
ory; and
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(iii) quantitative finitary theory is a strengthening of qualitative finitary
theory.

For instance, here is the ultralimit version of the Weyl criterion:

Exercise 1.1.30 (Ultralimit Weyl equidistribution criterion). Let x : [N ] →
∗Td be a limit function for some unbounded N and standard d. Then x is
equidistributed if and only if

(1.7) En∈[N ]e(k · x(n)) = o(1)

for all standard k ∈ Zd\{0}. Hint: Mimic the proof of Proposition 1.1.2.

Exercise 1.1.31. Use Exercise 1.1.30 to recover a weak version of Propo-
sition 1.1.13, in which the quantities δcd , δCd are replaced by (ineffective)
functions of δ that decay to zero as δ → 0. Conversely, use this weak version
to recover Exercise 1.1.30. (Hint: Similar arguments appear in Section 2.1.)

Exercise 1.1.32. With the notation of Exercise 1.1.30, show that x is to-
tally equidistributed if and only if

En∈[N ]e(k · x(n))e(θn) = o(1)

for all standard k ∈ Zd\{0} and standard rational θ.

Exercise 1.1.33. With the notation of Exercise 1.1.30, show that x is
equidistributed in Td on [N ] if and only if k · x is equidistributed in T
on [N ] for every non-zero standard k ∈ Zd.

Now we establish the ultralimit version of the linear equidistribution
criterion:

Exercise 1.1.34. Let α, β ∈ ∗Td, and let N be an unbounded integer.
Show that the following are equivalent:

(i) The sequence n �→ nα+ β is equidistributed on [N ].

(ii) The sequence n �→ nα+ β is totally equidistributed on [N ].

(iii) α is irrational to scale 1/N , in the sense that k · α 
= O(1/N) for
any non-zero standard k ∈ Zd.

Note that in the ultralimit setting, assertions such as k · α 
= O(1/N)
make perfectly rigorous sense (it means that |k ·α| ≥ C/N for every standard
C), but when using finitary asymptotic big-O notation

Next, we establish the analogue of the van der Corput lemma:

Exercise 1.1.35 (van der Corput lemma, ultralimit version). Let N be an
unbounded integer, and let x : [N ] → ∗Td be a limit sequence. Let H =
o(N) be unbounded, and suppose that the derivative sequence ∂hx : n �→
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x(n + h) − x(n) is equidistributed on [N ] for � H values of h ∈ [H] (by
extending x arbitrarily outside of [N ]). Show that x is equidistributed on
[N ]. Similarly, “equidistributed” is replaced by “totally equidistributed”.

Here is the analogue of the Vinogradov lemma:

Exercise 1.1.36 (Vinogradov lemma, ultralimit version). Let α ∈ ∗T, N
be unbounded, and ε > 0 be infinitesimal. Suppose that ‖nα‖T ≤ ε for
� N values of n ∈ [−N,N ]. Show that there exists a positive standard
integer q such that ‖αq‖T � ε/N .

These two lemmas allow us to establish the ultralimit polynomial equidis-
tribution theory:

Exercise 1.1.37. Let P : ∗ Z → ∗Td be a polynomial sequence P (n) :=
αsn

s + · · · + α0 with s, d standard, and α0, . . . , αs ∈ ∗Td. Let N be an
unbounded natural number. Suppose that P is not totally equidistributed
on [N ]. Show that there exists a non-zero standard k ∈ Zd with ‖k ·αs‖T �
N−s.

Exercise 1.1.38. With the hypotheses of Exercise 1.1.37, show in fact that
there exists a non-zero standard k ∈ Zd such that ‖k · αi‖T � N−i for all
i = 0, . . . , s.

Exercise 1.1.39 (Ultralimit equidistribution theorem for abelian polyno-
mial sequences). Let P be a polynomial map from ∗Z to ∗Td of some stan-
dard degree s ≥ 0. Let N be an unbounded natural number. Then there
exists a decomposition

P = Psmth + Pequi + Prat

into polynomials of degree s, where

(i) (Psmth is smooth) The ith coefficient αi,smth of Psmth has size
O(N−i). In particular, on the interval [N ], Psmth is Lipschitz with
homogeneous norm O(1/N).

(ii) (Pequi is equidistributed) There exists a standard subtorus T of Td,
such that Pequi takes values in T and is totally equidistributed on
[N ] in this torus.

(iii) (Prat is rational) The coefficients αi,rat of Prat are standard rational

elements of Td. In particular, there is a standard positive integer
q such that qPrat = 0 and Prat is periodic with period q.

Exercise 1.1.40. Show that the torus T is uniquely determined by P , and
decomposition P = Psmth + Pequi + Prat in Exercise 1.1.39 is unique up to
expressions taking values in T (i.e., if one is given another decomposition
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P = P ′
smth + P ′

equi, P
′
rat, then Pi and P ′

i differ by expressions taking values

in T ).

Exercise 1.1.41 (Recurrence). Let P be a polynomial map from ∗Z to ∗Td

of some standard degree s, and let N be an unbounded natural number.
Show that for every standard ε > 0 and every n0 ∈ N , we have

|{n ∈ [N ] : ‖P (n)− P (n0)‖ ≤ ε}| � N

and more generally

|{r ∈ [−N,N ] : ‖P (n0 + jr)− P (n0)‖ ≤ ε for j = 0, 1, . . . , k − 1}| � N

for any standard k.

As before, there are also multidimensional analogues of this theory. We
shall just state the main results without proof:

Definition 1.1.25 (Multidimensional equidistribution). Let X be a stan-
dard compact metric space, let N be an unbounded limit natural number,
let m ≥ 1 be standard, and let x : [N ]m → ∗X be a limit function. We
say that x is equidistributed with respect to a (standard) Borel probability
measure μ on X if one has

stEn∈[N ]m1B(n/N)f(x(n)) = mes(Ω)

∫
X
f dμ

for every standard box B ⊂ [0, 1]m and for all standard continuous functions
f ∈ C(X).

We say that x is totally equidistributed relative to μ if the sequence
n �→ x(qn + r) is equidistributed on [N/q]d for every standard q > 0 and
r ∈ Zm (extending x arbitrarily outside [N ] if necessary).

Remark 1.1.26. One can replace the indicators 1B by many other classes,
such as indicators of standard convex sets, or standard open sets whose
boundary has measure zero, or continuous or Lipschitz functions.

Theorem 1.1.27 (Multidimensional ultralimit equidistribution theorem for
abelian polynomial sequences). Let m, d, s ≥ 0 be standard integers, and let
P be a polynomial map from ∗Zm to ∗Td of degree s. Let N be an unbounded
natural number. Then there exists a decomposition

P = Psmth + Pequi + Prat

into polynomials of degree s, where

(i) (Psmth is smooth) The ith coefficient αi,smth of Psmth has size

O(N−|i|) for every multi-index i = (i1, . . . , im). In particular,
on the interval [N ], Psmth is Lipschitz with homogeneous norm
O(1/N).



26 1. Higher order Fourier analysis

(ii) (Pequi is equidistributed) There exists a standard subtorus T of Td,
such that Pequi takes values in T and is totally equidistributed on
[N ]m in this torus.

(iii) (Prat is rational) The coefficients αi,rat of Prat are standard rational

elements of Td. In particular, there is a standard positive integer
q such that qPrat = 0 and Prat is periodic with period q.

Proof. This is implicitly in [GrTa2011]; the result is phrased using the
language of single-scale equidistribution, but this easily implies the ultralimit
version. �

1.2. Roth’s theorem

We now give a basic application of Fourier analysis to the problem of count-
ing additive patterns in sets, namely the following famous theorem of Roth
[Ro1953]:

Theorem 1.2.1 (Roth’s theorem). Let A be a subset of the integers Z whose
upper density

δ(A) := lim sup
N→∞

|A ∩ [−N,N ]|
2N + 1

is positive. Then A contains infinitely many arithmetic progressions a, a +
r, a+ 2r of length three, with a ∈ Z and r > 0.

This is the first non-trivial case of Szemerédi’s theorem [Sz1975], which
is the same assertion but with length three arithmetic progressions replaced
by progressions of length k for any k.

As it turns out, one can prove Roth’s theorem by an application of linear
Fourier analysis by comparing the set A (or more precisely, the indicator
function 1A of that set, or of pieces of that set) against linear characters
n �→ e(αn) for various frequencies α ∈ R/Z. There are two extreme cases to
consider (which are model examples of a more general dichotomy between
structure and randomness, as discussed in [Ta2008]). One is when A is
aligned almost completely with one of these linear characters, for instance,
by being a Bohr set of the form

{n ∈ Z : ‖αn− θ‖R/Z < ε}
or, more generally, of the form

{n ∈ Z : αn ∈ U}
for some multi-dimensional frequency α ∈ Td and some open set U . In
this case, arithmetic progressions can be located using the equidistribution
theory from Section 1.1. At the other extreme, one has Fourier-uniform or
Fourier-pseudorandom sets, whose correlation with any linear character is


