
Preface

There are a myriad of books about probability theory already on the mar-
ket. Nonetheless, a few years ago Sergei Gelfand asked if I would write a
probability theory book for advanced undergraduate and beginning gradu-
ate students who are interested in mathematics. He had in mind an updated
version of the first volume of William Feller’s renowned An Introduction to
Probability Theory and Its Applications [3]. Had I been capable of doing
so, I would have loved to oblige, but, unfortunately, I am neither the math-
ematician that Feller was nor have I his vast reservoir of experience with
applications. Thus, shortly after I started the project, I realized that I
would not be able to produce the book that Gelfand wanted. In addition,
I learned that there already exists a superb replacement for Feller’s book.
Namely, for those who enjoy combinatorics and want to see how probability
theory can be used to obtain combinatorial results, it is hard to imagine
a better book than N. Alon and J. H. Spencer’s The Probabilistic Method
[1]. For these reasons, I have written instead a book that is a much more
conventional introduction to the ideas and techniques of modern probabil-
ity theory. I have already authored such a book, Probability Theory, An
Analytic View [9], but that book makes demands on the reader that this
one does not. In particular, that book assumes a solid grounding in analy-
sis, especially Lebesgue’s theory of integration. In the hope that it will be
appropriate for students who lack that background, I have made this one
much more self-contained and developed the measure theory that it uses.

Chapter 1 contains my attempt to explain the basic concepts in proba-
bility theory unencumbered by measure-theoretic technicalities. After intro-
ducing the terminology, I devote the rest of the chapter to probability theory
on finite and countable sample spaces. In large part because I am such a
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poor combinatorialist myself, I have emphasized computations that do not
require a mastery of counting techniques. Most of the examples involve
Bernoulli trials. I have not shied away from making the same computations
several times, each time employing a different line of reasoning. My hope is
that in this way I will have made it clear to the reader why concepts like
independence and conditioning have been developed.

Many of the results in Chapter 1 are begging for the existence of a
probability measure on an uncountable sample space. For example, when
discussing random walks in Chapter 1, only computations involving a finite
number of steps can be discussed. Thus, answers to questions about recur-
rence were deficient. Using this deficiency as motivation, in Chapter 2 I
first introduce the fundamental ideas of measure theory and then construct

the Bernoulli measures on {0, 1}Z+
. Once I have the Bernoulli measures, I

obtain Lebesgue measure as the image of the symmetric Bernoulli measure
and spend some time discussing its translation invariance properties. The
remainder of Chapter 2 gives a brief introduction to Lebesgue’s theory of
integration.

With the tools developed in Chapter 2 at hand, Chapter 3 explains how
Kolmogorov fashioned those tools into what has become the standard mathe-
matical model of probability theory. Specifically, Kolmogorov’s formulations
of independence and conditioning are given, and the chapter concludes with
his strong law of large numbers.

Chapter 4 is devoted to Gaussian distributions and normal random vari-
ables. It begins with Lindeberg’s derivation of the central limit theorem
and then moves on to explain some of the transformation properties of
multi-dimensional normal random variables. The final topic here is centered
Gaussian families.

In the first section of Chapter 5 I revisit the topic that I used to motivate
the contents of Chapter 2. That is, I do several computations of quantities
that require the Bernoulli measures constructed in § 2.2. I then turn to a
somewhat cursory treatment of Markov chains, concluding with a discussion
of their ergodic properties when the state space is finite or countable.

Chapter 6 begins with Markov processes that are the continuous pa-
rameter analog of Markov chains. Here I also introduce transition probabil-
ity functions and discuss some properties of general continuous parameter
Markov processes. The second part of this chapter contains Lévy’s construc-
tion of Brownian motion and proves a few of its elementary path properties.
The chapter concludes with a brief discussion of the Ornstein–Uhlenbeck
process.

Martingale theory is the subject of Chapter 7. The first three sections
give the discrete parameter theory, and the continuous parameter theory
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is given in the final section. In both settings, I try to emphasize the con-
tributions that martingale theory can make to topics treated earlier. In
particular, in the final section, I discuss the relationship between continuous
martingales and Brownian motion and give some examples that indicate how
martingales provide a bridge between differential equations and probability
theory.

In conclusion, it is clear that I have not written the book that Gelfand
asked for, but, if I had written that book, it undoubtedly would have looked
pale by comparison to Feller’s. Nonetheless, I hope that, for those who read
it, the book that I have written will have some value. I will be posting an
errata file on www.ams.org/bookpages/gsm-149. I expect that this file will
grow over time.

Daniel W. Stroock Nederland, CO


