
Chapter 1

Some Background
and Preliminaries

In that it is an attempt to model mathematically a phenomenon that may
or may not actually exist, probability theory is a rather peculiar subject.
If two people play a game of dice and one of them repeatedly wins, is the
explanation that the winner is “a chosen of the gods” or is there something
more that can be said? Until the late Middle Ages, most of the Westerners
who gave it any thought interpreted luck as a manifestation of an individ-
ual’s standing with whatever divinity or divinities were in vogue. Since
other inexplicable phenomena were also assumed to have divine origins, this
interpretation was reasonable. On the other hand, like the biblical account
of the origins of life, attributing luck to divine sources leaves little room for
further analysis. Indeed, it is a prerogative of any self-respecting deity to be
inscrutable, and therefore one is rude, if not sinful, to subject the motives
of one’s deity to detailed analysis.

Simply abandoning a divine explanation of luck does not solve the prob-
lem but only opens it to further inquiry. For instance, if one believes that
all experience is a corollary of “the laws of nature,” then there is no such
thing as luck. One person wins more often than the other because “the laws
of nature” dictate that outcome. From this hyper-rational perspective, the
concept of luck is a cop-out: a crutch that need never be used if one is suf-
ficiently diligent in one’s application of “the laws of nature.” Although its
origins may be strictly rational, this reason for denying the existence of luck
does little to advance one’s understanding of many phenomena. Even if one
accepts Newton’s laws of motion as sacrosanct, it is unlikely that one will
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ever to able to solve his equations of motion for Avogadro’s number of par-
ticles, and, if one could, there is considerable doubt that one would be able
to extract useful information from the solution. Thus, replacing a divine
with a mechanistic explanation of luck only substitutes one imponderable
by another.

In the 17th century, a few Europeans introduced a wholly new way of
thinking about luck. Even the idea of thinking about luck instead of just
accepting it as a phenomenon incapable of analysis requires an entirely new
mindset. Spurred by questions posed by Chevalier de Méré (a nobleman
with a more than passing interest in gambling), Blaise Pascal (of triangu-
lar fame) and Pierre de Fermat (of conjectural fame) began formulating a
mathematical model which can be seen as the origins of what we now call the
theory of probability. Loosely speaking, their thinking was based on the idea
that, even if one cannot predict the particular outcome of something like a
game of chance, one nonetheless knows all the possible outcomes. Further,
one often has reason to believe that one knows with what probability each
outcome will occur. Hence, one can compute the probability of an event
(i.e., a collection of the possible outcomes) by adding the probabilities of
the individual outcomes making up the event. For instance, if a fair (i.e.,
unbiased) coin is tossed two times, then it is reasonable to suppose that each
of the four outcomes (H,H) (i.e., heads on both the first and second tosses),
(H,T ) (i.e., heads on the first and tails on the second), (T,H), and (T, T )
is equally likely to occur. That is, each of these outcomes has probability
1
4 , and the probability of the event that one T and one H occur is therefore
1
4 +

1
4 = 1

2 . Alternatively, if one knows that the coin is biased and that heads
occur twice as often as tails, then one assigns the preceding list of outcomes
probabilities 4

9 ,
2
9 ,

2
9 , and

1
9 , and therefore the event one H and one T has

probability 4
9 .

During the period since their introduction, Pascal’s and Fermat’s ideas
have been refined and applied in venues which their authors could not have
anticipated, and the goal of this book is to provide an introduction to some
of these developments.

1.1. The Language of Probability Theory

Like any other topic in mathematics, probability has its own language. Be-
cause the terminology is chosen to reflect the role of probability theory as a
model of random phenomena, it sometimes differs from the choice made else-
where in mathematics. Thus, although I assume that my readers are familiar
with most of the concepts discussed in this section, they may not immedi-
ately recognize the terminology that probabilists use to describe them.
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1.1.1. Sample Spaces and Events. I assume that my readers are familiar
with the rudiments of näıve set theory and therefore, except for the notation
and terminology, will find here very little that is new.

Before one does anything of a set-theoretic nature, one has to specify the
universe in which one is working. In probability theory, the role of universe
is played by the sample space, often denoted by Ω, which is a non-empty
set that should be thought of as the space of all possible outcomes of the
experiment or game under consideration. An element ω of Ω (abbreviated
by ω ∈ Ω) is called a sample point, and a subset A of Ω (abbreviated by
A ⊆ Ω) is called an event.

Events are usually described in terms of some property that sample
points may or may not possess. To wit, if P is a property, then one writes
{ω ∈ Ω : ω has property P} to denote the event that the observed outcome
has property P . To simplify the description of events, it is important to make
a judicious choice of the sample space. Above, I took the sample space for
two tosses of a coin to be {H,T}2 = {(H,H), (H,T ), (T,H), (T, T )}, the
set of ordered pairs whose components are either H or T , and considered
the event A determined by the occurrence of one H and one T . For many
purposes, a more clever choice would have been the set of ordered pairs
{0, 1}2 = {(1, 1), (1, 0), (0, 1), (0, 0)}. With the latter choice, the event that
one head and one tail occur would have been {ω = (ω1, ω2) ∈ {0, 1}2 :
ω1+ω2 = 1}. More generally, what one looks for is a sample space on which
there are functions in terms of which interesting events are easily described.
That is, it is often useful to describe an event as {ω : F (ω) ∈ Γ}, where F
is a function on Ω and Γ is a subset of its possible values. In the future, I
will usually remove the ω from such a description and will abbreviate it by
{F ∈ Γ}.

Very often, one describes an event in terms of other events. Thus, if A
and B are events, then their union {ω ∈ Ω : ω ∈ A or ω ∈ B}, denoted by
A∪B, is the event that the outcome has either the property PA determining
A or1 the property PB determining B. More generally, if {Ai : i ∈ I} is a
family of events indexed by the index set I, then⋃

i∈I
Ai = {ω ∈ Ω : ω ∈ Ai for some i ∈ I}.

The intersection {ω ∈ Ω : ω ∈ A and ω ∈ B} of A and B, denoted by
A∩B, is the event that the outcome has both properties PA and PB. Just as
in the case of unions, this operation can be applied to a family {Ai : i ∈ I},
and one writes

⋂
i∈I Ai to denote the event

{ω ∈ Ω : ω ∈ Ai for all i ∈ I}.
1The “or” here is non-exclusive. That is, A ∪B includes ω’s that are in both A and B.
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When the properties PA and PB are mutually exclusive and thereforeA∩B =
∅, where ∅ denotes the empty set (the set having no elements), one says
that A and B are disjoint.

Writing ω /∈ A to mean that the sample point ω is not an element of the
event A, one defines the complement of A to be the event {ω ∈ Ω : ω /∈ A},
denoted by A�, consisting of those outcomes for which property PA fails to
hold. In this connection, the difference, denoted by A \B, between events
A and B is the event A ∩B� = {ω ∈ A : ω /∈ B}. Thus, A� = Ω \A.

Exercises 1.1.8 and 1.1.10 are about various more or less obvious rela-
tionships between these set-theoretic operations.

1.1.2. Probability Measures. Sample spaces and events have no value
unless one has a way to assign probabilities to them. Indeed, the goal of
probability theory is to provide a rational way to compute the probability
of events. Thus, there is a third, and essential, ingredient. Namely, one
wants a function P that assigns to an event the probability that it occurs.
There are three basic requirements that the function P must satisfy. First,
the probability of any event must be non-negative. Second, since Ω con-
tains all the possible outcomes and some outcome must occur, one requires
that Ω have probability 1. Third, when events A and B are disjoint, one
requires that the probability of their union be the sum of their individual
probabilities. Thus,

(1.1.1)
P(A) ≥ 0 for all events A, P(Ω) = 1,

and P(A ∪B) = P(A) + P(B) if A ∩B = ∅.

Several additional properties follow immediately from (1.1.1). For in-
stance, because Ω ∪ ∅ = Ω and Ω ∩ ∅ = ∅, one has that

1 = P(Ω) = P(Ω ∪ ∅) = P(Ω) + P(∅) = 1 + P(∅),
and therefore P(∅) = 0. Also, if A ⊆ B, then,

P(B) = P(A ∪ (B \A)
)
= P(A) + P(B \ A),

and so 0 ≤ P(B \ A) = P(B) − P(A). As an application, since A ∪ B =
A ∪

(
B \ (A ∩B)

)
, we have that

P(A ∪B) = P(A) + P
(
B \ (A ∩B)

)
= P(A) + P(B)− P(A ∩B)

for any events A and B. Summarizing, we have shown that

(1.1.2)
P(∅)=0, A⊆B =⇒ P(A)≤P(B) and P(B \ A)=P(B)− P(A),

and P(A ∪B)=P(A) + P(B)−P(A ∩B).

All these properties should be seen as consistent with our goal of mea-
suring the probability of events. In that some outcome must occur, it is
clear that the null event must have probability 0. When event B contains
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event A, it should be the more probable of the two, and the event that B
occurs but not the event A should equal the difference between the proba-
bilities of B and A. Finally, when A∩B 
= ∅, then P(A)+P(B) fails to take
into account that the sample points in both are getting counted twice and
therefore must be corrected by subtracting off P(A ∩ B) in order to arrive
at the probability of A ∪B.

In addition to the preceding, one needs an extension of the additivity
property for disjoint events. Namely, by induction on n ≥ 2, one can easily
check that

(1.1.3) P
(
A1 ∪ · · · ∪An

)
= P(A1) + · · ·+ P(An) if Ak ∩A� = ∅ for k 
= �.

However, one wants to know that the same additivity property holds for a
countable number of mutually disjoint events. That is, if {Ak : k ≥ 1} is a
sequence of events, then one wants to know that

(1.1.4) P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P(Ak) if Ak ∩A� = ∅ for k 
= �.

Equivalently, one is insisting that P be continuous under monotone conver-
gence. To be precise, say that the sequence of events {Bn : n ≥ 1} increases
to the event B, denoted by Bn ↗ B, if Bn ⊆ Bn+1 and B =

⋃∞
n=1Bn. Then

(1.1.4) is equivalent to

(1.1.5) P(Bn)↗ P(B) if Bn ↗ B.

To check this equivalence, suppose Bn ↗ B, and set A1 = B1 and Ak =
Bk\Bk−1 for k ≥ 2. Then the Ak’s are mutually disjoint, Bn =

⋃n
k=1Ak, and

B =
⋃∞

k=1Ak. Hence, since by (1.1.3), P(Bn) =
∑n

k=1 P(Ak), (1.1.5) holds
if and only if (1.1.4) does. Similarly, say that {Bn : n ≥ 1} decreases
to B and write Bn ↘ B if Bn ⊇ Bn+1 and B =

⋂∞
n=1Bn. Then, since

Bn ↘ B =⇒ Bn�↗ B�,

1− P(Bn) = P(Bn�)↗ P(B�) = 1− P(B),

and therefore

(1.1.6) P(Bn)↘ P(B) if Bn ↘ B.

Finally, observe that, even if the Ak’s are not mutually disjoint, nonetheless

(1.1.7) P

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

P(Ak).

To see this, take C1 = A1 and Ck = Ak \
⋃k−1

j=1 Aj for k ≥ 2. Then the Ck’s
are mutually disjoint, and their union is the same as the union of the Ak’s.
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Hence, by (1.1.4),

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P(Ck) ≤
∞∑
k=1

P(Ak),

since Ck ⊆ Ak and therefore P(Ck) ≤ P(Ak) for all k ≥ 1.

A function P on events that possesses the properties in (1.1.1) and (1.1.4)
is called a probability measure on Ω. It turns out that, when Ω is un-
countable, there are logical obstructions2 to constructing probability mea-
sures which are defined for all events, and, to overcome these obstructions,
one usually has to settle for a probability measure that is defined only on a
carefully specified class of events. However, in this chapter we avoid these
problems by restricting our attention to countable sample space, where these
technicalities do not arise.

Exercises for § 1.1

Exercise 1.1.8. Here are a couple of elementary exercises in set theory.

(i) One of Norbert Wiener’s least renowned contributions to mathemat-
ics was his set-theoretic formulation of an ordered pair. Namely, given a and
b, define the ordered pair (a, b) =

{
{a}, {a, b}

}
, and show that (a, b) = (c, d)

if and only if a = c and b = d.

(ii) Let I 
= ∅ be an index set, and show that
(⋃

i∈I Ai

)
� =

⋂
i∈I Ai�.

This equality is sometimes called DeMorgan’s Law.

Exercise 1.1.9. Given a probability measure P on a sample space Ω, N ≥ 2,
and events A1, . . . , AN , use (1.1.2) and induction on N to show that

P
(
A1 ∪ · · · ∪ AN

)
= −

∑
F

(−1)card(F )P(AF ),

where F runs over non-empty subsets of {1, . . . , N} and AF =
⋂

j∈F Aj .
3

Exercise 1.1.10. Given a sequence {An : n ≥ 1} of events, define

lim
n→∞

An =
∞⋂

m=1

∞⋃
n=m

An and lim
n→∞

An =
∞⋃

m=1

∞⋂
n=m

An.

Show that limn→∞An is the set of points that are in infinitely many An’s and
that limn→∞An is the set of points that are in all but a finite number of An’s

and therefore that limn→∞An ⊆ limn→∞An. One says that limn→∞An

exists if limn→∞An = limn→∞An.

2See, for example, Theorem 2.2.18 in [10].
3card(F ) is the number of elements in the set F .
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Exercise 1.1.11. Notice that the preceding are natural, set-theoretic ver-
sions of the corresponding notions for real numbers, and show that

(1.1.12) P

(
lim
n→∞

An

)
≤ lim

n→∞
P(An) and lim

n→∞
P(An) ≤ P

(
lim
n→∞

An

)
,

and therefore

lim
n→∞

An exists =⇒ P
(
lim
n→∞

An

)
= lim

n→∞
P(An).

Finally, show that, as a consequence of (1.1.7) and (1.1.6),

(1.1.13)
∞∑
n=1

P(An) <∞ =⇒ P
(
lim
n→∞

An

)
= 0.

This last statement, which is attributed to E. Borel, has many applications.

1.2. Finite and Countable Sample Spaces

The technicalities alluded to at the end of § 1.1.1 do not arise when the sam-
ple space Ω is finite or countable, and therefore we will begin by considering
examples of such sample spaces.

1.2.1. Probability Theory on a Countable Space. To get started, I
need to specify what we will mean when we sum over a countable index set
I. The definition that we will adopt looks a little cumbersome at first, but
it is the one which corresponds to Lebesgue’s theory of integration (cf. § 2.4)
and is therefore the natural one for our purposes.

Let I be a finite or countable index set and let {ai : i ∈ I} ⊆ (−∞,∞]
be given. If I = ∅, we will take

∑
i∈I ai = 0, and if it is non-empty but

finite and {ai : i ∈ I} ⊆ R, the meaning of
∑

i∈I ai is unambiguously
defined by ordinary arithmetic. When I is finite and ai =∞ for some i ∈ I,
we will say that

∑
i∈I ai =∞. Finally, assume that I is infinite, and write

F ⊂⊂ I when F is a finite subset of I. We will say that
∑

i∈I ai converges
to s ∈ R if and only if for each ε > 0 there is a finite Fε ⊂⊂ I such that∣∣s−∑i∈F ai

∣∣ < ε whenever Fε ⊆ F ⊂⊂ I, in which case I will use
∑

i∈I ai to
denote s. Finally, say that

∑
i∈I ai converges to∞ and write

∑
i∈I ai =∞ if

for all R ∈ (0,∞) there exists an FR ⊂⊂ I such that
∑

i∈F ai ≥ R whenever
FR ⊆ F ⊂⊂ I.

In the following, and elsewhere, for a ∈ (−∞,∞] I will use a+ to denote
the positive part a ∨ 0 and a− to denote the negative part −(a ∧ 0) =
(−a)+ of a. Obviously, |a| = a+ + a− and a = a+ − a−.
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Lemma 1.2.1. Assume that I is infinite and that {ai : i ∈ I} ⊆ (−∞,∞].
If ai ≥ 0 for all i ∈ I, then∑

i∈I
ai converges to sup

{∑
i∈F

ai : F ⊂⊂ I
}
.

More generally, if
∑

i∈I a
−
i <∞, then∑

i∈I
ai converges to

∑
i∈I

a+i −
∑
i∈I

a−i .

In fact, if ai ∈ R for all i ∈ I, then
∑

i∈I ai converges to some s ∈ (−∞,∞]

if and only if
∑

i∈I a
−
i < ∞, and

∑
i∈I ai converges to some s ∈ R if and

only if
∑

i∈I |ai| <∞. Finally, if {ik : k ≥ 1} is an enumeration of I (i.e.,
k ∈ Z+ �−→ ik ∈ I is one-to-one and onto) and

∑
i∈I ai converges to some

s ∈ (−∞,∞], then the sequence {
∑n

k=1 ai : n ≥ 1} converges to s.

Proof. To prove the first assertion, set s = sup
{∑

i∈F ai : F ⊂⊂ I
}
. Since,

s ≥
∑

i∈F ai for all F ⊂⊂ I, what we must show is that for each s′ < s
there is an Fs′ ⊂⊂ I such that

∑
i∈F ai ≥ s′ for all I ⊃⊃ F ⊇ Fs′ . But,

by definition, there exists an Fs′ ⊂⊂ I such that
∑

i∈Fs′
ai ≥ s′, and so,

because the ai’s are non-negative,
∑

i∈F ai ≥ s′ for all I ⊃⊃ F ⊇ Fs′ .

Next, suppose that u ≡
∑

i∈I a
−
i < ∞. If

∑
i∈I a

+
i = ∞ and R < ∞,

then there exists an FR ⊂⊂ I such that
∑

i∈FR
a+i ≥ R + u, and therefore,

for any FR ⊆ F ⊂⊂ I,
∑

i∈F ai ≥ R+u−
∑

i∈F a−i ≥ R. Thus, in this case,∑
i∈I ai converges to∞ =

∑
i∈I a

+
i −
∑

i∈I a
−
i . If v ≡

∑
i∈I a

+
i <∞ and ε >

0, then there exists an Fε ⊂⊂ I such that
∣∣v −∑i∈F a+i

∣∣+∣∣u−∑i∈F a−i
∣∣ < ε

and therefore
∣∣v − u−

∑
i∈F ai

∣∣ < ε for all Fε ⊆ F ⊂⊂ I. Thus, in this case

also,
∑

i∈I ai converges to
∑

i∈I a
+
i −
∑

i∈I a
−
i . Hence,

∑
i∈I a

−
i <∞ always

implies that
∑

i∈I ai converges to
∑

i∈I a
+
i −

∑
i∈I a

−
i .

Now suppose that {ai : i ∈ I} ⊆ R and that
∑

i∈I ai converges to

s ∈ (−∞,∞]. To see that
∑

i∈I a
−
i <∞, choose some t ∈ (−∞, s) and note

that there exists an F ⊂⊂ I such that
∑

i∈H ai ≥ t whenever F ⊆ H ⊂⊂ I.
Thus, if G ⊂⊂ {i ∈ I \ F : ai < 0}, then

t ≤
∑

i∈F∪G
ai =

∑
i∈F

ai −
∑
i∈G

a−i ,

and so
∑

i∈G a−i ≤
∑

i∈F ai−t, which means that, for anyH ⊂⊂ I,
∑

i∈H a−i
≤ 2

∑
i∈F |ai| − t and therefore

∑
i∈I a

−
i < ∞. Hence, we now know that

when {ai : i ∈ I} ⊆ R,
∑

i∈I ai converges to some s ∈ (−∞,∞] if and only

if
∑

i∈I a
−
i <∞.

If
∑

i∈I |ai| <∞, then we already know that
∑

i∈I ai converges to some
s ∈ R. Conversely, suppose that

∑
i∈I ai converges to some s ∈ R. Then
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ai <∞ for all i ∈ I. Indeed, if ai0 =∞ for some i0 ∈ I, then
∑

i∈F ai =∞
for any F ⊂⊂ I with i0 ∈ F . Thus, by the preceding, we know that∑

i∈I a
−
i < ∞. Applying the same reasoning to {−ai : i ∈ I}, we see that∑

i∈I a
+
i <∞ and therefore

∑
i∈I |ai| <∞.

Finally, suppose
∑

i∈I ai converges to some s ∈ (−∞,∞] and that {ik :
k ≥ 1} is an enumeration of I. Set sn =

∑n
k=1 aik . Assuming that s < ∞,

for a given ε > 0, choose Fε ⊂⊂ I accordingly, and choose Nε ≥ 1 so that
F ⊇ {i1, . . . , iNε}. Then |sn − s| < ε for all n ≥ Nε. The argument when
s =∞ is essentially the same. �

Remark 1.2.2. Given {ak : k ∈ Z+} ⊆ R, in calculus one says that∑∞
k=1 ak converges to s ∈ (−∞,∞] if the sequence of partial sums sn =∑n
k=1 ak converge to s. The final part of Lemma 1.2.1 says that if

∑
k∈Z+ ak

converges, then
∑∞

k=1 ak does as well. However, the converse is not true.

Indeed,
∑∞

k=1
(−1)k

k converges in the calculus sense to − log 2, whereas∑
k∈Z+

(−1)k

k does not converge. The point is that the convergence or diver-
gence of

∑∞
k=1 ak depends on the order in which the ak’s are added, whereas

the convergence or divergence of
∑

k∈Z+ ak does not depend on how one
orders the summands. In the future it will be important to distinguish be-
tween these two notions of summation, and for that reason I will continue
to reserve

∑∞
k=1 ak for the standard calculus notion.

Suppose that {ai : i ∈ I} ∪ {bi : i ∈ I} ⊆ (−∞,∞]. Then it should be
clear that

(1.2.3)

∑
i∈I

a−i <∞ and ai ≤ bi for all i ∈ I

=⇒
∑
i∈I

b−i <∞ and
∑
i∈I

ai ≤
∑
i∈I

bi.

Equally clear should be the fact that

(1.2.4)

∑
i∈J∪K

ai =
∑
i∈J

ai +
∑
i∈K

ai

if
∑

i∈J∪K
a−i <∞ and J and K are disjoint subsets of I.

With the preceding at hand, we can now discuss probability measures
on a finite or countable sample space Ω. Indeed, if (1.1.4) is going to hold,
then a probability measure P is completely determined by the probability it
assigns to events consisting of precisely one sample point. That is, once one
knows p(ω) ≡ P({ω}) for each ω ∈ Ω, one knows that

(1.2.5) P(A) =
∑
ω∈A

p(ω)
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for every A ⊆ Ω. Obviously, p(ω) ≥ 0 and 1 = P(Ω) =
∑

ω∈Ω p(ω). Con-
versely, if p : Ω −→ [0, 1] and 1 =

∑
ω∈Ω p(ω), then there is a unique prob-

ability measure on Ω such that p(ω) = P({ω}) for all ω ∈ Ω. Namely, one
simply defines P(A) by (1.2.5). Thus, there is a one-to-one correspondence
between functions p : Ω −→ [0, 1] satisfying 1 =

∑
ω∈Ω p(ω) and probability

measures P on Ω. A non-negative function p on Ω satisfying
∑

ω∈Ω p(ω) = 1
is sometimes called a probability function, and the associated probability
measure P given by (1.2.5) is called the probability measure determined
by p.

1.2.2. Uniform Probabilities and Coin Tossing. Perhaps the most
easily understood examples of the preceding are those in which Ω is finite
and each of its elements occurs with the same probability. That is, there is
a p ≥ 0 such that P({ω}) = p for all ω ∈ Ω. Because 1 =

∑
ω∈Ω P({ω}) =

card(Ω)p, it is clear that p must be equal to 1
card(Ω) . When this is the case,

P is said to be the uniform probability measure on Ω. Obviously, when P

is the uniform probability measure,

(1.2.6) P(A) =
card(A)

card(Ω)
for all A ⊆ Ω.

Thus, the computation of P(A) comes down to the combinatorial problem
of determining how many elements A contains.

Modeling a fair coin tossing game of length N (i.e., the coin is unbiased
and the game ends after the Nth toss) is a good example of the preceding.
In this model, one takes Ω = {0, 1}N , the set of all maps ω : {1, . . . , N} −→
{0, 1}. The map ω records the history of the game: ω(n) = 1 or ω(n) = 0
depending on whether the coin came up heads or tails on the nth toss. If
the coin is unbiased, then it is reasonable to expect that any history is just
as likely as any other, in which case P({ω}) = 2−N , since card(Ω) = 2N .

It is important to observe that this model of coin tossing has a crucial
homogeneity property. Namely, given an M -element set S ⊆ {1, . . . , N} and
Γ ⊆ {0, 1}S ,

(1.2.7) P
(
{ω ∈ {0, 1}N : ω � S ∈ Γ}

)
= P
(
{ω ∈ {0, 1}M : ω ∈ Γ}

)
.

Indeed, there are 2N−Mcard(Γ) elements ω ∈ {0, 1}N such that ω � S ∈ Γ,
and there are card(Γ) such ω ∈ {0, 1}M . Hence, the left-hand side equals
2N−M card(Γ)

2N
= card(Γ)

2M
, which is equal to the right-hand side. As a conse-

quence, when Γ ⊆ {0, 1}S , the number P
(
{ω ∈ {0, 1}N : ω � S ∈ Γ}

)
is the

same for all N such that S ⊆ {1, . . . , N}. In particular, by the preceding
considerations, if A ⊆ {0, 1}M and N > M , then

P(A) = P({ω ∈ {0, 1}N : ω � {1, . . . ,M} ∈ A}
)
.
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To develop some feeling for this model, consider the event consisting of
those games in which precisely m of the coins come up heads. Equivalently,
if

(1.2.8) Sn(ω) ≡
n∑

m=1

ω(m),

then we are looking at the event {SN = m}. Obviously, {SN = m} = ∅
unless 0 ≤ m ≤ N . To compute card({SN = m}) when 0 ≤ m ≤ N , observe
that SN (ω) = m if and only if there are precisely m tosses on which heads
occurred. Thus, the number of such ω’s is the same as the number of ways
in which one can choose the m tosses on which the heads appeared. Since
there is a total of N tosses, this is tantamount to counting the number of
ways of choosing m elements from a set of size N . Hence, card(Am) is the
binomial coefficient(

N

m

)
=

N(N − 1) · · · (N −m+ 1)

m!
=

N !

m!(N −m)!
,

which is sometimes called N choose m, and therefore the probability that,
when it is tossed N times, a fair coin will come up heads exactly m times
is4

(1.2.9) P(SN = m) =

{
2−N

(N
m

)
for 0 ≤ m ≤ N,

0 otherwise.

As a consequence of the homogeneity property discussed above, we know
that if we replaced our sample space by {0, 1}N ′

for some N ′ > N and did

the same calculation in the sample space {0, 1}N ′
, (1.2.9) would still hold.

Now suppose that two players toss a fair coin N times and that player
1 wins a dollar from player 2 each time the coin comes up heads and he
pays player 2 a dollar each time a tail occurs. Given k ∈ Z with |k| ≤ N ,
consider the event that, at the end of the game, player 1, depending on
whether k ≥ 0 or k < 0, gains or loses |k| dollars. Equivalently, since∑N

n=1 ω(n) is the number of times player 1 wins and
∑N

n=1(1−ω(n)) is the
number of times he loses, we are looking at the event {WN = k} where

(1.2.10) WN (ω)≡
N∑

n=1

ω(n)−
N∑

n=1

(
1−ω(n)

)
=

N∑
n=1

(
2ω(n)−1

)
=2SN (ω)−N.

Since SN = WN+N
2 and therefore {WN = k} =

{
SN = N+k

2

}
, we conclude

4Here, and elsewhere, I will use P(F ∈ Γ) to abbreviate P({ω : F (ω) ∈ Γ}).
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from (1.2.9) that

(1.2.11) P(WN = k) =

{
2−N

( N
N+k

2

)
if |k| ≤ N and N+k

2 ∈ Z,

0 otherwise.

For a more challenging example, consider the event Ck,� that player 1
ends up with a gain of � dollars and that, at some time during the game, he
had a gain of k dollars. Before trying to compute P(Ck,�), it is helpful to
introduce a more dynamic formulation. Set W0(ω) = 0 and, for 1 ≤ n ≤ N ,
Wn(ω) =

∑n
m=1(2ω(m)−1). ThenWn(ω) represents player 1’s net gain after

n tosses of the coin. Alternatively, one can think of {Wn(ω) : 1 ≤ n ≤ N}
as an N -step random walk that starts at 0 and, at each time 1 ≤ n ≤ N ,
moves forward or backward 1 step depending on whether the nth toss came
up heads or tails. Thus, if

ζ
{k}
N (ω) ≡ inf{0 ≤ n ≤ N : Wn(ω) = k},

with the understanding that the infimum over the empty set is +∞, then

ζ
{k}
N (ω) is the first time that the walk {Wn(ω) : 1 ≤ n ≤ N} gets to

k. Equivalently, ζ
{k}
N (ω) = ∞ if Wn(ω) 
= k for any 0 ≤ n ≤ N and

ζ
{k}
N (ω) = n for some 0 ≤ n ≤ N if Wn(ω) = k and Wm(ω) 
= k for

0 ≤ m < n. In terms of these quantities, Ck,� = {ζ{k}N ≤ N and WN = �}.
Because Wn(ω) −Wn−1(ω) = ±1 for all 1 ≤ n ≤ N , if WN (ω) = �, then
the walk {Wn(ω) : 0 ≤ n ≤ N} must pass through all the integers between

0 and �. That is, if WN (ω) = �, then ζ
{k}
N (ω) ≤ N , depending on whether

� ≥ 0 or � ≤ 0, for all 0 ≤ k ≤ � or all � ≤ k ≤ 0. Hence, if 0 ≤ k ≤ � or
� ≤ k ≤ 0, then Ck,� = {WN = �}.

In order to handle the cases when either k ≥ 0 and � < k or k ≤ 0 and
� > k, consider the map R(k) : {0, 1}N −→ {0, 1}N given by

R(k)ω(n) =

{
ω(n) if n ≤ N ∧ ζ

{k}
N (ω),

1− ω(n) if ζ
{k}
N (ω) < n ≤ N.

Then, Wn(R
(k)ω) = W

ζ
{k}
N (ω)

(ω) −
(
Wn(ω) −W

ζ
{k}
N (ω)

(ω)
)
when ζ

{k}
N (ω) <

n ≤ N , and therefore

Wn

(
R(k)ω) =

{
Wn(ω) if 0 ≤ n ≤ N ∧ ζ

{k}
N (ω),

2k −Wn(ω) if ζ
{k}
N (ω) < n ≤ N.

Equivalently, thinking in terms of random walks, {Wn(R
(k)ω) : 0 ≤ n ≤ N}

is the random walk obtained by reflecting {Wn(ω) : 0 ≤ n ≤ N} at time
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ζ
{k}
N (ω). Here is a picture of a path and its reflection at level k:

•(0,0)

•(0,k) � � � � � � � � � � � � �

• (N,�)

•(N,2k−�)

���� ��
��

�

��
��

� �����

�����

�����

����� ��
��

�

��
��

Original path —, Reflected path · · ·

In particular, ζ
{k}
N ◦R(k) = ζ

{k}
N , from which it is clear that R(k)◦R(k)(ω) = ω

and therefore that R(k) is both one-to-one and onto. In addition, for each
�, R(k) : Ck,� −→ Ck,2k−�, and so, for each �, R(k) is a one-to-one map from
Ck,� onto Ck,2k−�.

Now suppose that k ≥ 0 and that � < k. Then, by the preceding,
card(Ck,�) = card(Ck,2k−�), and, because 2k − � ≥ k,

Ck,2k−� = {WN = 2k − �}.
Hence card(Ck,�) = card({WN = 2k − �}) when k ≥ 0 and � < k, and the
same reasoning shows that this equality holds as well when k ≤ 0 and � > k.
Summarizing these results, we have now shown that

(1.2.12) P(ζ
{k}
N ≤N & WN =�)=

{
P(WN =�) if k�≥0 & |k|≤|�|,
P(WN =2k−�) otherwise.

Again, it is important to observe that, by the homogeneity property of coin
tossing,

P
(
{ω ∈ {0, 1}N ′

: ζ
{k}
N ′ (ω) ≤ N & WN (ω) = �}

)
= P
(
{ω ∈ {0, 1}N : ζ

{k}
N (ω) ≤ N & WN (ω) = �}

)
if N ′ > N .

1.2.3. Tournaments5. Graph theory provides a rich venue in which to
think about coin tossing. A graph is a pair (V,E) consisting of a set V of
points, known as the vertices v, and a set E of pairs {v, w}, called edges,
of not necessarily distinct vertices v and w. The edge {v, w} is thought of
as a bond or connection between v and w.

If V has M elements, then there are
(
M
2

)
= M(M−1)

2 possible edges

connecting distinct vertices andM+
(M
2

)
= M(M+1)

2 possible edges if vertices
are allowed to be connected to themselves. A complete graph (V,E) is one
for which E contains all possible edges between distinct vertices and none
connecting a vertex to itself. Thus E has

(
M
2

)
elements if (V,E) is complete.

5The material in this subsection is derived from Alon and Spencer’s book [1].
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Given a complete graph (V,E), a tournament is an ordering of the vertices
in the edges. That is, starting from E =

{
{v, w}, v 
= w

}
, one constructs a

tournament T by replacing each unordered pair {v, w} by either the ordered
pair (v, w) or by the ordered pair (w, v). The origin of the terminology
should be clear: V is thought of as the players in a competition in which
every player plays a game against every other player, and a tournament is
the record of which of the two players won in each of the games. With this
model in mind, we will say that v dominates w if (v, w) ∈ T .

Clearly, there are N ≡ 2(
M
2 ) tournaments. Moreover, there is a natural

isometry between Ω = {0, 1}N and the set of all tournaments. Namely,
assign each edge a number, and choose a reference tournament T0. Then,
for a given ω ∈ Ω, determine the tournament T (ω) so that, for each n, its
nth edge has the same or opposite ordering as the nth edge in T0 according
to whether ω(n) = 0 or ω(n) = 1. Equivalently, thinking in terms of coin
tossing, T (ω) is constructed from T0 by keeping or reversing the order of
the nth edge depending on whether the nth toss comes up tails or heads.
Thus, one can create a random tournament by flipping a fair coin N times,
thereby putting the uniform probability on the set of tournaments. In other
words, the probability of a tournament having a certain property P is the
probability that the uniform probability measure P on {0, 1}N assigns to the
set of ω ∈ {0, 1}N for which T (ω) has property P .

A powerful method for proving that there exist graphs possessing a par-
ticular property is to consider random graphs and show that a random graph
will have that property with positive probability. To see this method in ac-
tion, say that a tournament T has property Pk if, for every subset S ⊆ V of
k vertices, there is a v ∈ V \ S such that (v, w) ∈ T for all w ∈ S. Phrased
more picturesquely, a tournament has property Pk if, for every k-member
subset of players, there is a player who beats all of its members. Put that
way, a natural question is how many players must there be in order for there
to exist a tournament with property Pk. Obviously, M must be larger than
k, but it is less clear how much larger it must be. Using random tourna-
ments, P. Erdős showed that if

(
M
k

)
(1 − 2−k)M−k < 1, then there exists a

tournament with property Pk.

To carry out Erdős’s line of reasoning, let S be a k-element subset of ver-
tices. We begin by computing the number of tournaments with the property
QS that no player beats all the players in S, or, equivalently, the number of
T ’s such that, for each v /∈ S, (w, v) ∈ T for some w ∈ S. To do this, let Nd

be the number of tournaments with property QS when d = M − k. When

d = 1, there are 2(
k
2) orderings of the edges between elements of S. More-

over, there are 2k ways to order the edges between the v /∈ S to the w’s in S,
but only 1 of these orderings has the property that v dominates every w ∈ S.
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Hence, N1 = 2(
k
2)(2k − 1). When d = 2, there are two elements v1 and v2

which are not in S. To count the number of tournaments with property QS ,
first choose one of the N1 tournaments with vertices S ∪ {v1} having prop-
erty QS . Next, complete the construction of a tournament having property
QS with vertices S ∪ {v1, v2} by choosing one of the two orderings of the
edges between v1 and v2 and then choosing one of the 2k − 1 orderings of
the edges between v2 and the w’s in S so that at least one w dominates v2.
Hence, N2 = N12(2

k − 1). More generally, if V \ S = {v1, . . . , vd+1}, there
are Nd tournaments having property QS with vertices S ∪ {v1, . . . , vd}, and
for each such tournament there are 2d(2k−1) orderings of the edges between
vd+1 and the vertices in S∪{v1, . . . , vd} which result in a tournament having
property QS with vertices in V . Thus, Nd+1 = Nd2

d(2k − 1).

Starting from the preceding, an easy induction argument shows that,

when card(V ) = M > k, there are 2(
k
2)2

∑M−k−1
j=1 j(2k − 1)M−k tournaments

with property QS . Hence, the probability of such a tournament is

2(
k
2)2

(M−k)(M−k−1)
2 (2k − 1)M−k

2(
M
2 )

.

Noting that (M−k)(M−k−1)
2 =

(
M−k

2

)
and that

(
M
2

)
−
(
k
2

)
−
(
M−k

2

)
is k(M−k),

we see that this probability simplifies to (1− 2−k)M−k.

To complete Erdős’s argument, for each k-element S ⊆ V , let AS be
the event that a tournament has property QS . Then the event that a tour-
nament does not have property Pk is the union over S of the events AS .
Since P(AS) = (1 − 2−k)M−k for each S and there are

(
M
k

)
S’s, it follows

from (1.1.7) that the probability of a tournament not having property Pk

is less than or equal to
(M
k

)
(1− 2−k)M−k. Hence, if

(M
k

)
(1− 2−k)M−k < 1,

then, with positive probability, there is a tournament with property Pk, and
therefore there is at least one such tournament.

1.2.4. Symmetric Random Walk. As I said in § 1.2.2, the sequence
{Wn(ω) : 0 ≤ n ≤ N} can be thought of as a random walk. In fact, because
we are dealing with fair coins, the random walk considered in § 1.2.2 is said
to be a symmetric random walk because, at each step, it is equally likely
to move in either direction.

When one thinks in terms of random walks, a host of questions comes
to mind, an interesting one of which is with what probability a walk will

pass through k by time N . That is, one is asking what P(ζ
{k}
N ≤ N) is. To

find the answer, first suppose that k ≥ 1. Since {ζ{k}N ≤ N} is the union

over � ∈ Z of the mutually disjoint events {ζ{k}N ≤ N andWN = �}, we know
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from (1.2.12) that

P(ζ
{k}
N ≤ N) =

∑
�

P(ζ
{k}
N ≤ N and WN = �)

=
∑
�≥k

P(WN = �) +
∑
�<k

P(WN = 2k − �) = P(WN ≥ k) + P(WN > k).

Since P(ζ
{−k}
N ≤ N) = P(ζ

{k}
N ≤ N) and P(WN = −k) = P(WN = k), we

now know that

(1.2.13) P(ζ
{k}
N ≤ N) = P

(
WN (ω) ≥ |k|

)
+ P
(
WN > |k|

)
.

Because its derivation is an application of the reflection map R(k), equa-
tion (1.2.13) is often called the reflection principle for symmetric random
walks.

Starting from (1.2.13), one sees that, for k ≥ 1,

P
(
ζ
{k}
N > N

)
= 1− P(WN ≥ k)− P(WN > k) = P(WN ≤ k)− P(WN ≥ k).

Hence, since P(ζ
{−k}
N > N) = P(ζ

{k}
N > N) and P(WN ≥ k) = P(WN ≤ −k),

we have the following corollary of (1.2.13):

(1.2.14) P
(
ζ
{k}
N > N

)
= P
(
−|k| < WN ≤ |k|

)
.

It is interesting to know that a symmetric random walk will eventually
visit every integer point. That is,

(1.2.15) lim
N→∞

P
(
ζ
{k}
N > N

)
= 0 for all k ∈ Z.

In view of (1.2.14), this comes down to showing that, for every 0 < k ≤ N ,

P(−k < WN ≤ k) =
∑

−k<�≤k

P(WN = �) = 2−N
∑

−k<�≤k

(
N
N+�
2

)
−→ 0

as N → ∞, and obviously this reduces to showing that 2−N
(N
�

)
−→ 0 for

every � ∈ Z. To check this, first note that, for any 1 ≤ m ≤ n,

(1.2.16)

(
n

m− 1

)
≤
(
n

m

)
⇐⇒ m ≤ n+ 1

2
.

Hence, it suffices to show that 2−2N
(2N
N

)
and 2−2N−1

(2N+1
N+1

)
tend to 0 as

N → ∞. Furthermore, since 2−2N−1
(
2N+1
N+1

)
≤ 2−2N

(
2N
N

)
, we need only

worry about 2−2N
(2N
N

)
. Finally,

2−2N

(
2N

N

)
=

∏N
m=1(2m− 1)

2NN !
=

N∏
m=1

(
1− 1

2m

)
,
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and so it remains to check that limN→∞
∏N

m=1

(
1− 1

2m

)
= 0. Equivalently,

we need to show that log
∏N

m=1

(
1− 1

2m

)
=
∑N

m=1 log
(
1− 1

2m

)
tends to −∞

as N →∞. However, since log(1− x) ≤ −x for x ∈ [0, 1),

N∑
m=1

log
(
1− 1

2m

)
≤ −1

2

N∑
m=1

1

m
−→ −∞

as N →∞, and so we have now proved (1.2.15).

1.2.5. DeMoivre’s Central Limit Theorem. A second result about the
long-time behavior of a symmetric random walk is the one, proved originally
in the 17th century by A. DeMoivre, which eventually led to what is now
called the central limit theorem (cf. Theorem 4.1.3). To understand his
result, one should first know that the approximate distance traveled by a
symmetric random walk after n steps is on the order of

√
n. It is intuitively

obvious that, because of all its dithering back and forth, the walk will have
gone a distance significantly less than n, but it is not so obvious how much
less. A crude estimate can be obtained from the fact that

(1.2.17) 1
2P
(
|WN | ≥ N

1
2R
)
= P
(
±WN ≥ N

1
2R
)
≤ e−

R2

2 for R > 0.

One way to prove this is to note that, for any α ∈ R,

∑
k

eαkP(WN = k)=
N∑
k=0

eα(2k−N)P(WN = 2k −N) = e−αN
N∑
k=0

e2αkP(SN = k)

= 2−Ne−αN
N∑
k=0

e2αk
(
N

k

)
= 2−Ne−αN

(
1 + e2α

)N
=
(
coshα

)N ≤ e
α2N
2 ,

since, for n ≥ 1, (2n)! = 2nn!
∏n

k=1(2k − 1) ≥ 2nn!, and therefore

coshx =
∞∑
n=0

x2n

(2n)!
≤

∞∑
n=0

x2n

2nn!
= e

x2

2 .

Hence, for any α ∈ R,

P
(
WN ≥ N

1
2R) ≤ e−αN

1
2R

∑
k≥N

1
2 R

eαkP(WN = k) = e−αN
1
2R+α2N

2 .

By taking α = R

N
1
2
, we get P(WN ≥ N

1
2R) ≤ e−

R2

2 , and, after combining

this with P(|WN | ≥ N
1
2R) = 2P(WN ≥ N

1
2R), one arrives at (1.2.17).

Knowing that, with probability close to 1, the size of |WN | is no larger

than a large constant times N
1
2 , it is reasonable to look more closely and

to ask about the probability that W̆N ≡ N− 1
2WN lies in an interval. The
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answer to this question was found by DeMoivre, who proved the following
theorem.6

Theorem 1.2.18 (DeMoivre). Referring to the preceding,

(1.2.19) P
(
a < W̆N ≤ b

)
−→ (2π)−

1
2

∫ b

a
e−

ξ2

2 dξ,

where the convergence is uniform with respect to a, b ∈ [−∞,∞] with a ≤ b.

The first step in our proof of (1.2.19) will be to show that

(∗) lim
N→∞

P
(
0 < W̆2N ≤ x

)
−→ (2π)−

1
2

∫ x

0
e−

ξ2

2 dξ,

where the convergence is uniform with respect to x in bounded subsets of
(0,∞). To this end, note that, for k ≥ 1,

P(W2N = 2k)

P(W2N = 0)
=

(N !)2

(N + k)!(N − k)!
=

∏k
j=1(N − j + 1)∏k

j=1(N + j)

=

∏k
j=1

(
1− j−1

N

)
∏k

j=1

(
1 + j

N

) .

Write log(1− x) = −x−E(x) for |x| < 1, and observe that

|E(x)| =
∣∣∣∣∣
∞∑
n=2

xn

n

∣∣∣∣∣ ≤ |x|2
2

∞∑
n=0

|x|n =
x2

2(1− |x|) .

In particular, |E(x)| ≤ x2 for |x| ≤ 1
2 . Now let R > 0 be given. If N ≥ 8R2

and 1 ≤ k ≤ (2N)
1
2R, then∣∣∣∣log P(W2N = 2k)

P(W2N = 0)
+

k2

N

∣∣∣∣ ≤ 2

N2

k∑
j=1

j2 ≤ CR

N
1
2

,

where CR = 4R3. Thus, since

P(0 < W̆2N ≤ x) =
∑

0<2k≤(2N)
1
2 x

P(W2N = 2k),

we have that

e−CRN− 1
2

∑
0<2k≤(2N)

1
2 x

e−
k2

N ≤
P
(
0 < W̆2N ≤ x

)
P(W2N = 0)

≤ eCRN− 1
2

∑
0<2k≤(2N)

1
2 x

e−
k2

N

6In truth, DeMoivre proved somewhat less. Specifically, he did not know the constant
√
2π

that appears in the asymptotic formula for n!. Nonetheless, aside from that constant, in the course
of deriving his result, DeMoivre derived what we now call Stirling’s formula. After looking at
DeMoivre’s work, Stirling provided the missing constant. Although Stirling fully acknowledged
DeMoivre as the formula’s discoverer, Stirling was the more renowned mathematician, and his
name has been attached to it ever since.
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for 0 < x ≤ R and N ≥ 8R2. At the same time,∫ √
2
N
(k+1)

√
2
N
k

e−
ξ2

2 dξ ≤
√

2

N
e−

k2

N ≤
∫ √

2
N
k

√
2
N
(k−1)

e−
ξ2

2 dξ,

and so we know that, for x ∈ (0, R] and N ≥ 8R2,

e−CRN− 1
2

∫ x

√
2
N

e−
ξ2

2 dξ ≤
P
(
0 < W̆2N ≤ x

)√
N
2 P(W2N = 0)

≤ eCRN− 1
2

∫ x

0
e−

ξ2

2 dξ,

from which it is evident that

P
(
0 < W̆2N ≤ x

)√
N
2 P(W2N = 0)

−→
∫ x

0
e−

ξ2

2 dξ

uniformly for 0 < x ≤ R. Finally, by Stirling’s formula (2.5.12),7√
N
2 P(W2N = 0) =

√
N
2 2

−2N

(
2N

N

)
=

1√
2π

+O
(
1
N

)
,

and therefore we have now proved that (∗) holds and that the convergence
is uniform in 0 < x ≤ R.

The next step is to show that

(∗∗) P
(
W̆N ≤ x

)
−→ (2π)−

1
2

∫ x

−∞
e−

ξ2

2 ξ

uniformly with respect to x in bounded subsets of R. Because P(W̆2N < 0) =

P(W2N < 0) = P(W2N > 0), 2P(W̆2N < 0) = P(W2N 
= 0) = 1−P(W2N = 0)
and therefore

P(W̆2N ≤ 0
)
= 1

2 + 1
2P(W2N = 0) −→ 1

2
as N →∞.

Combining this with the preceding, we know that, for x ≥ 0 (cf. (2.5.4)),

P
(
W̆2N ≤ x

)
= P
(
W̆2N ≤ 0

)
+ P
(
0 < W̆2N ≤ x

)
−→ 1

2 + (2π)−
1
2

∫ x

0
e−

ξ2

2 dξ = (2π)−
1
2

∫ x

−∞
e−

ξ2

2 dξ

and therefore

P(W̆2N < −x) = P(W̆2N > x) = 1− P(W̆2N ≤ x)

−→ 1− (2π)−
1
2

∫ ∞

x
e−

ξ2

2 dξ = (2π)−
1
2

∫ −x

−∞
e−

ξ2

2 dξ

uniformly with respect to x in bounded subsets of [0,∞). Since

P(W̆2N ≤ x) = P(W̆2N < x) + P(W̆2N = −x)
7Here, and elsewhere, O(t) is used to denote a function such that t−1O(t) stays bounded as

t tends to a limit. Thus here, NO( 1
N
) stays bounded as N → ∞.
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and

P(W2N = −(2N)
1
2x) ≤ P(W2N = 0) −→ 0,

we now know that (∗∗) with N replaced by 2N holds uniformly for x in
bounded subsets of R. To remove the restriction to even N ’s, note that

P(W̃2N−1 ≤ x) is bounded above by P
(
W̆2N ≤ x + (2N)−

1
2

)
and below by

P
(
W̆2N ≤ x−(2N)−

1
2

)
. Hence, by the preceding uniform convergence result,

it follows that (∗∗) holds and that the convergence is uniform with respect
to x in bounded subsets of R.

To complete the proof, let ε > 0 be given, and choose R ≥ 1 satisfying

e−
R2

2 < ε
2 . Next, choose M ∈ Z+ such that∣∣∣∣P(W̆N ≤ x

)
− (2π)−

1
2

∫ x

−∞
e−

ξ2

2 dξ

∣∣∣∣ < ε

for all |x| ≤ R and N ≥ M . If x < −R, then, by (1.2.17), P(W̆N ≤ x) ≤
P(W̆N ≤ −R) < ε

2 for any N . At the same time (cf. (2.5.6))∫ x

−∞
e−

ξ2

2 dξ =

∫ ∞

−x
e−

ξ2

2 dξ ≤
∫ ∞

R
e−

ξ2

2 dξ ≤ e−
R2

2 <
ε

2
,

and so ∣∣∣∣P(W̆N ≤ x
)
− (2π)−

1
2

∫ x

−∞
e−

ξ2

2 dξ

∣∣∣∣ ≤ ε.

If x > R, then, because (cf. (2.5.4)) (2π)−
1
2

∫∞
−∞ e−

ξ2

2 dξ = 1, for any N ,∣∣∣∣P(W̆N ≤ x
)
− 1√

2π

∫ x

−∞
e−

ξ2

2 dξ

∣∣∣∣ =
∣∣∣∣P(W̆n > x

)
− 1√

2π

∫ ∞

x
e−

ξ2

2 dξ

∣∣∣∣ < ε.

Hence, for all N ≥M and x ∈ R,∣∣∣∣P(W̆N ≤ x
)
− (2π)−

1
2

∫ x

−∞
e−

ξ2

2 dξ

∣∣∣∣ < ε.

Finally, simply note that P(a < W̆N ≤ b) = P(W̆N ≤ b) − P(W̃N ≤ a) in
order to get DeMoivre’s result.

1.2.6. Independent Events. In that we have been dealing with uniform
probability measures, it is inevitable that all our computations have involved
combinatorics: the probability of an event is the ratio of its cardinality to
the cardinality of the sample space. Nonetheless, as we will see in this
subsection, some of our calculations would have been simplified if we had
made systematic use of the inherent independence properties possessed by
the structures under consideration.
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A pair of events A and B are said to be independent of one another if
P(A∩B) = P(A)P(B). More generally, the events A1, . . . , A� are said to be
mutually independent if

(1.2.20) P

(⋂
i∈F

Ai

)
=
∏
i∈F

P(Ai) for all ∅ 
= F ⊆ {1, . . . , �}.

To understand the origin of this terminology, one should think about
spaces, like {0, 1}N , whose elements are built out of components and as-
sume that the choice of one component has no bearing on the choice of the
other components. For example, when Ω = {0, 1}N and S ⊆ {1, . . . , N},
specifying the restriction ω � S of ω to S does not prejudice the properties
of ω � S�. Thus, if M = card(S) and, for some choice of ΓS ⊆ {0, 1}S and

ΓS� ⊆ {0, 1}S�, AS = {ω : ω � S ∈ ΓS} is an event which depends only on
properties of ω � S and AS� = {ω : ω � S ∈ ΓS�} is an event which is entirely
determined by the properties of ω � S�, then card(AS) = 2N−Mcard(ΓS),
card(AS�) = 2Mcard(ΓS�), and card(AS∩AS�) = card(ΓS)card(ΓS�). Hence,
when P is the uniform probability measure on this Ω, then

P(AS ∩ AS�) =
card(ΓS)card(ΓS�)

2N
=

card(ΓS)

2M
card(ΓS�)

2N−M
= P(AS)P(AS�),

and so AS is independent of AS�. More generally, the same argument shows
that if {S1, . . . , S�} is a partition of {1, . . . , N} (i.e., the Si’s are mutually
disjoint and their union is {1, . . . , N}), then, for any choice of Γi ⊆ {0, 1}Si ,
the events ASi = {ω ∈ {0, 1}N : ω � Si ∈ Γi} are mutually independent
under the uniform probability measure on {0, 1}N . On the other hand, when
A and B are events both of whose descriptions impose restrictions on ω(n)
for some of the same n’s, then, even though they may be independent of each
other, there is no obvious reason for A to be independent of B under the
uniform probability measure. For example, take N = 2, A = {ω ∈ {0, 1}2 :
ω(1) = 0}, and, for k ∈ {0, 1, 2}, Bk = {ω ∈ {0, 1}2 : ω(1) + ω(2) = k}.
Then, under the uniform probability measure, P(A) = 1

2 , P(Bk) = 1
4 if

k ∈ {0, 2}, P(B1) = 1
2 , P(A ∩ Bk) = 1

4 if k ∈ {0, 1}, and P(A ∩ B2) = 0.
Hence, A will not be independent of either B0 or B2, but, by accident, it
will be independent of B1.

The tournament question in § 1.2.3 provides a typical example of the
power of independence considerations to facilitate computations. For each
pair of distinct vertices v and w, let A(v, w) be the event that v dominates
w. Then the A(v, w)’s are mutually independent and P

(
A(v, w)

)
= 1

2 . Given
a subset S of vertices, the event AS that no vertex dominates all vertices
in S is equal to

⋂
v∈V \S Bv, where Bv ≡

⋃
w∈S A(w, v), and so P(AS) =
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∏
v∈V \S P(Bv). Finally, since Bv =

(⋂
w∈S A(v, w)

)
�,

P(Bv) = 1−
∏
w∈S

P
(
A(v, w)

)
= 1− 2−k,

and therefore P(AS) = (1− 2−k)M−k, as we saw before.

To describe a second, more interesting, example of the use of indepen-
dence, return to the setting in § 1.2.4, where we discussed symmetric random
walks. Set

A±
N = {ω ∈ {0, 1}N : ±Wn(ω) > 0 for 1 ≤ n ≤ N}.

Obviously, P(A−
N ) = P(A+

N ), and A+
N = {ω ∈ {0, 1}N : ω(1) = 1} ∩ B+

N−1,
where

B+
N−1 ≡

{
ω ∈ {0, 1}N :

n∑
m=2

(
2ω(n)− 1

)
≥ 0 for 2 ≤ n ≤ N

}
.

Since B+
N−1 depends only on ω � {2, . . . , N}, it is independent of the event

{ω ∈ {0, 1}N : ω(1) = 1}, and so P(A+
N ) = 1

2P(B
+
N−1). In addition, if

ΓN−1 =
{
ω ∈ {0, 1}N−1 : ζ

{−1}
N−1 (ω) > N − 1

}
, then

B+
N−1 =

{
ω ∈ {0, 1}N : ω � {2, . . . , N} ∈ ΓN−1

}
,

and so, by homogeneity and (1.2.14), P(B+
N−1) = P(0 ≤ WN−1 ≤ 1). Thus,

if

AN = A+
N ∪A−

N = {Wn 
= 0 for 1 ≤ n ≤ N},
then P(AN ) = P(0 ≤ WN−1 ≤ 1). If N is even, then, because WN+1(ω)
cannot be 0 and WN (ω) cannot be 1, AN = AN+1 and so

P(AN ) = P(0 ≤WN ≤ 1) = P(WN = 0).

If N is odd, then AN = AN−1, and so in general we have the remarkable
equation8

(1.2.21) P
(
Wn 
= 0 for 1 ≤ n ≤ N

)
= P
(
W2
N

2
� = 0

)
= 2−2
N

2
�
(
2�N2 �
�N2 �

)
,

where �t� = max{n ∈ Z : n ≤ t} is the integer part of t ∈ R.

Another way to interpret (1.2.21) is in terms of the time of first return

ρ
(1)
N (ω), given by (remember the infimum over the empty set is +∞)

(1.2.22) ρ
(1)
N (ω) ≡ inf{1 ≤ n ≤ N : Wn(ω) = 0},

8We take
(0
0

)
= 1.
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of the walk to 0. Obviously, if ρ
(1)
N (ω) <∞, then ρ

(1)
N (ω) is an even number.

In addition, if 1 ≤ r ≤ N
2 , then {ρ

(1)
N > 2r} = {Wn 
= 0 for 1 ≤ n ≤ 2r},

and therefore, by (1.2.21),

(1.2.23) P
(
ρ
(1)
N > 2r

)
= P
(
W2r = 0

)
= 2−2r

(
2r

r

)
.

In particular, since, as we have already shown, P(W2r = 0) −→ 0 as r →∞,

(1.2.24) lim
N→∞

P
(
ρ
(1)
N ≤ N

)
= 1,

which, because it says that the walk will eventually return to the place where
it starts, is called the recurrence property of the symmetric random walk
on Z. In addition, since

P(ρ
(1)
N = 2r) = P

(
ρ
(1)
N > 2(r − 1)

)
− P
(
ρ
(1)
N > 2r

)
,

(1.2.25) P
(
ρ
(1)
N = 2r

)
=

2−2r

2r − 1

(
2r

r

)
=

P(W2r = 0)

2r − 1
.

Related to the preceding is another important relationship, known as a
renewal equation, between the time of first return and the probability that

the walk is at 0. Namely, suppose that W2M (ω) = 0. Then ρ
(1)
N (ω) ≤ 2M

and, if ρ
(1)
N (ω) = 2r, thenW2M (2M)−W2r(ω) =

∑
2r<m≤2M(2ω(m)−1) = 0.

Hence,

{W2M = 0} =
M⋃
r=1

{ρ(1)N = 2r} ∩

⎧⎨
⎩ω :

∑
2r<m≤2M

(
2ω(m)− 1

)
= 0

⎫⎬
⎭ .

Since {ω : ρ
(1)
N (ω) = 2r} depends only on ω � {1, . . . , 2r} whereas⎧⎨

⎩ω :
∑

2r<m≤2M

(
2ω(m)− 1

)
= 0

⎫⎬
⎭

depends only on ω � {2r + 1, . . . , 2M}, these events are independent. Fur-
thermore, by the same homogeneity argument as we used above,

P

⎛
⎝
⎧⎨
⎩ω :

∑
2r<m≤2M

(
2ω(m)− 1

)
= 0

⎫⎬
⎭
⎞
⎠ = P

(
W2(M−r) = 0

)
.

Hence

(1.2.26) P
(
W2M = 0

)
=

M∑
r=1

P
(
ρ
(1)
N = 2r

)
P
(
W2(M−r) = 0

)
.

The reason why (1.2.26) is called a renewal equation is that it reflects the
fact that, upon returning to its starting point, the walk begins again afresh.
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Of course, one can argue that, in view of (1.2.25), (1.2.26) is simply the
purely combinatorial identity(

2M

M

)
=

M∑
r=1

1

2r − 1

(
2r

r

)(
2(M − r)

M − r

)
.

On the other hand, attempting to verify this identity by purely combinatorial
means may increase one’s appreciation of probabilistic reasoning.

1.2.7. The Arc Sine Law. Thinking of {W0(ω), . . . ,W2M (ω)} as the dis-
crete time path of a random walk, construct the continuous time path
{Wt(ω) : t ∈ [0, 2M ]} by piecewise linear interpolation. That is,

Wt(ω) = (n−t)Wn−1(ω)+(t−n+1)Wn(ω) for n− 1≤ t≤n and 1≤n≤2M.

Next, set

T[0,2M ](ω) ≡
∫ 2M

0
1[0,∞)

(
Wt(ω)

)
dt,

where, for any set S, I use 1S to denote the indicator function of S. That
is, 1S(x) = 1 if x ∈ S and 1S(x) = 0 if x /∈ S. Since, t � 1[0,∞)(Wt(ω))
has at most a finite number of discontinuities in the interval [0, 2M ], the
preceding integral is well-defined as a Riemann integral. In fact, for each
1 ≤ n ≤ M , Wt(ω) > 0 for all t ∈ (2n − 2, 2n) if W2n−1(ω) > 0 and
Wt(ω) < 0 for all t ∈ (2n− 2, 2n) if W2n−1(ω) ≤ 0, and so

T[0,2M ](ω) = 2

M∑
n=1

1(0,∞)

(
W2n−1(ω)

)
,

twice the number of 1 ≤ n ≤M for which W2n−1(ω) > 0.

To understand why T[0,2M ](ω) is a quantity of interest, think again about
a gambling game with two contestants who toss a fair coin 2M times, waiting
one second between tosses. Further, suppose that one of them wins a dollar
each time a head turns up and the other wins a dollar each time a tail turns
up. Then Wn(ω) represents the net gain or loss of the player who wins on
heads, and so T[0,2M ](ω) represents the amount of time that that player is
not behind. Those who have not done a lot of gambling often believe that
the law of averages predicts that each player should be ahead about half the
time. In other words, their näıve prediction is that, with high probability,
the value of T[0,2M ](ω) will be in a neighborhood of M . On the other hand,
habitual gamblers know that this prediction is false and that acting on it
can lead to tragic consequences.

To show that our model of coin tossing reflects the experience of habitual
gamblers, set B2M

m = {ω ∈ {0, 1}2M : T[0,2M ](ω) = m} for 0 ≤ m ≤ 2M .
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Because T[0,2M ] is even, B
2M
m = ∅ when m is odd. Also, since

B2M
2M = {ζ{−1}

2M > 2M} and B2M
0 = {ζ(1)2M > 2M},

(1.2.14) implies that

(∗) P(B2M
0 ) = P(B2M

2M ) = P(W2M = 0).

Now assume that 1 ≤ m < M . Then B2M
2m ⊆ {ρ(1)2M < 2M}, and so

P(B2M
2m ) =

∑
1≤r<M

P(R2r∩B2M
2m ) =

∑
1≤r<M

P(R+
2r∩B2M

2m )+
∑

1≤r<M

P(R−
2r∩B2M

2m ),

where R2r = {ρ(1)2M = 2r} and R±
2k = R2r ∩ {W (1) = ±1}.

Observe that ω ∈ R+
2r =⇒ W2r(ω) = 0 and T[0,2r](ω) = 2r, and there-

fore ω ∈ R+
2r ∩B2M

2m if and only if r ≤ m and ω ∈ R+
2r ∩ C2M

2(m−r)(2r), where

C2M
2n (2r) is the set of ω’s for which ω � {2r+1, . . . , 2M} ∈ B

2(M−r)
2(m−r) . Further,

C2M
2(m−r)(2r) is independent of R+

2r and, by homogeneity, P
(
C2M
2(m−r)(r)

)
=

P(B
2(M−r)
2(m−r) ). Hence

∑
1≤r<M

P(R+
2r ∩B2M

2m ) =
m∑
r=1

P(R+
2r)P(B

2(M−r)
2(m−r) ).

Next observe that ω ∈ R−
2r =⇒ W2r(ω) = 0 and T[0,2r](ω) = 0. Hence,

R−
2r ∩B2M

2m 
= ∅ if and only if r ≤M −m and R−
2r ∩B2M

2m = R−
2r ∩C2M

2m (2r).
Starting from here and reasoning as in the preceding paragraph, we find
that ∑

1≤r<M

P(R−
2r ∩B2M

2m ) =
M−m∑
r=1

P(R−
2r)P(B

2(M−r)
2m ).

Finally, since

R±
2r = {±Wn > 0 for 1 ≤ n < 2r and W2r = 0},

P(R+
2r) = P(R−

2r), and therefore 2P(R±
2r) = P(R+

2r) + P(R−
2r) = P(R2r).

Putting this together with the results in the preceding paragraphs, we have
shown that, for 1 ≤ m < M ,

(∗∗) P(B2M
2m ) =

1

2

m∑
r=1

P(R2r)P(B
2(M−r)
2(m−r) ) +

1

2

M−m∑
r=1

P(R2r)P(B
2(M−r)
2m ).

We can now show that

(1.2.27)

P
(
T[0,2M ] = 2m

)
= P
(
W2m = 0

)
P
(
W2(M−m) = 0

)
= 4−M

(
2m

m

)(
2(M −m)

M −m

)
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for all M ≥ 1 and 0 ≤ m ≤M . Indeed, it is clear that (∗) together with (∗∗)
completely determines the numbers P(B2M

2m ) for all M ≥ 1 and 0 ≤ m ≤M .
Thus, all that we have to do is verify that the numbers uMm on the right-
hand side of (1.2.27) satisfy (∗) and (∗∗). There is nothing to do when
m ∈ {0, 2M}. To prove it when 1 ≤ m < M , observe that

{W2m = 0 & W2M = 0} = {W2m = 0} ∩ {W2(M−m) −W2m = 0}

and therefore that uMm = P(W2m = 0& W2M = 0). Hence, by the same
reasoning as we used to derive the renewal equation (1.2.26),

uMm =
m∑
r=1

P(R2r)P
(
W2(m−r) = 0 & W2(M−r) = 0

)
=

m∑
r=1

P(R2r)u
M−r
m−r .

Similarly, because

{W2(M−m) = 0 & W2M = 0} = {W2(M−m) = 0} ∩ {W2M −W2(M−m) = 0},

uMm =
∑M−m

r=1 P(R2r)u
M−r
m , and so {uMm : 1 ≤ m < M} satisfies (∗∗).

Using the second equation in (1.2.27), one can easily check that

P
(
T[0,2M ] = 2(m− 1)

)
≥ P
(
T[0,2M ] = 2m

)
⇐⇒ m ≤ M + 1

2
.

Hence, the closer m is to M , the less likely it is that the amount of time
the player who wins on heads will be ahead for 2m seconds. Equivalently,
if T [0,2M ](ω) =

1
2M T[0,2M ](ω) is the average time that he is ahead, then the

least likely values for T [0,2M ](ω) are those near 1
2 .

As another application of (1.2.27) and Stirling’s formula, one can show
that

(1.2.28) lim
M→∞

P
(
a < T [0,2M ] ≤ b

)
= 2

π

(
arcsin

√
b− arcsin

√
a
)

for all 0 ≤ a < b ≤ 1, a famous result known as the arc sine law. Indeed,
by Stirling’s formula (2.5.12),

2−n

(
2n

n

)
=

1√
πn

(
1 +O

(
1
n

))
.

Hence, if 0 < a < b < 1, then, because B2M
m = ∅ when m is odd, for

sufficiently large M

P
(
a < T [0,2M ] ≤ b

)
=

∑
aM<m≤bM

P(B2M
2m )

=
(
1 +O

(
1
M

)) 1
π

∑
aM<m≤bM

1√
m(M −m)

.
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Next write ∑
aM<m≤bM

1√
m(M −m)

= M
∑

aM<m≤bM

(
m
M (1− m

M )
)− 1

2 ,

think of the right-hand side as a Riemann sum, and conclude that

lim
M→∞

∑
aM<m≤bM

1√
m(M −m)

=

∫ b

a
t−

1
2 (1− t)−

1
2 dt

= 2
(
arcsin

√
b− arcsin

√
a
)
.

Thus (1.2.28) is proved for 0 < a < b < 1. To prove it when 0 = a < b < 1,
note that, for any 0 < ε < b, by the preceding,

lim
M→∞

∣∣P(0 ≤ T [0,2M ] ≤ b
)
− 2

π arcsin
√
b
∣∣ ≤ lim

M→∞
P
(
T [0,2M ] < ε

)
+ 2

π arcsin
√
ε.

Hence, it suffices to show that

lim
ε↘0

lim
M→∞

P
(
T [0,2M ] < ε

)
= 0.

But

P
(
T [0,2M ] < ε

)
≤ P
(
T [0,2M ] < ε or T [0,2M ] > 1− ε

)
= 1− P

(
ε ≤ T [0,2M ] ≤ 1− ε

)
−→ 1− 2

π arcsin
√
1− ε+ 2

π arcsin
√
ε,

which tends to 0 as ε ↘ 0. The argument when b = 1 is essentially the
same.

1.2.8. Conditional Probability. A key concept in probability theory is
that of conditioning. Namely, knowing that an event A occurs, one wants
to compute the probability that an event B occurs. The mathematical
interpretation of such a computation is that the conditional probability

P(B|A) of B given A is the ratio P(B∩A)
P(A) .9 To understand the origin of

this interpretation, suppose that P is the uniform probability measure on
some finite space Ω. Then P(B|A) is the proportion of the set A which lies
in B. Equivalently, P(B|A) is the probability that the uniform probability
measure on A assigns to B ∩A, the portion of B inside A.

In order to be useful, the computation of a conditional probability must
be done without having to compute the ratio. That is, in most applications,
one wants to use conditioning to compute the probability of the intersection
of events A and B as the product P(B|A)P(A) of the conditional probability
of B given A and the probability of A. For example, in the derivation of
(1.2.26), we could have argued that the conditional probability of the event

9Until further notice, we will always condition with respect to events of positive probability.
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{W2M = 0} given the event {ρ(1)2M = 2r} must be P(W2(M−r) = 0) since,

knowing that ρ
(1)
2M (ω) = 2r, W2M (ω) = 0 is equivalent to saying that half

the tosses 2r+1 through 2M are heads, and that probability is the same as
the probability that half the tosses 1 through 2(M − r) are heads. Hence,

we have shown that P(W2M = 0 | ρ(1)2M = 2r) = P(W2(M−r) = 0), and so

P({ρ(1)2M = 2r} ∩ {W2M = 0}) = P(ρ
(1)
2M = 2r)P(W2(M−r) = 0).

Equation (1.2.26) now can be viewed as an example of Bayes’s formula,
which is the simple observation that if {A1, . . . , AL} is a partition of the
sample space into events of positive probability, then for any event B

(1.2.29) P (B) =
L∑

�=1

P(B|A�)P(A�).

Indeed, (1.2.29) is nothing but P(B) =
∑L

�=1 P(B ∩A�) written in terms of
conditional probabilities.

The art of successful conditioning requires that one make a judicious
choice of the event on which one is conditioning. In the preceding,

{ρ(1)2M = 2r} was a good choice because we can write

{ρ(1)2M = 2r} ∩ {W2M = 0}

as the intersection of {ρ(1)2M = 2r} with a set, namely {W2M −W2r = 0},
of which it is independent. More generally, if A ∩ B = A ∩ C, where C is
independent of A, then P(B|A) = P(C). To give another example of the
same reasoning, recall the argument which eventually led to (1.2.27). The
key step can be thought of as the computation of P(B2M

2m |R2r). However,
R2r ∩ B2M

2m cannot be written as the intersection of R2r with an event of
which it is independent. For this reason, we chose to condition with respect

to R±
2r instead. What we found is that R+

2r ∩B2M
2m = R+

2r ∩C
2(M−r)
2(m−r) (2r) and

R−
2r = R−

2r ∩C
2(M−r)
2m (2r), and since C

2(M−r)
2m (2r) is independent of R+

2r and

C
2(M−r)
2m (2r) is independent of R−

2r, this means that

P(B2M
2m |R+

2r) = P
(
C

2(M−r)
2(m−r) (2r)

)
and P(B2M

2m |R−
2r) = P

(
C2M
2m (2r)

)
.

Finally, because P(R±
2r) = 1

2P(R2r) and P(C2M
2n (2r)) = P(B

2(M−r)
2n ), this

leads to P(R±
2r|R2r) =

1
2 and

P(B2M
2m |R2r) =

1
2P(B

2(M−r)
2(m−r)

) + 1
2P(B

2(M−r)
2m )

after one applies the easily verified equality

(1.2.30)
P(B|A) = P(B|A1)P(A1|A) + P(B|A2)P(A2|A)

if A1 ∩A2 = ∅ and A = A1 ∪A2.
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Exercises for § 1.210

Exercise 1.2.31. Although I have seldom had an occasion to use it in one of
my own classes, in probability classes that attract large audiences a standard
opening gambit is to find out if there are any students who share a birth
date. If the class has at least twenty-five students and they were all born in
the same year, then there is a surprisingly good chance that two or more of
them were born on the same date, and if there are fifty or more students,
then it is nearly certain that this will be the case. To understand why,
consider the space Ω = {1, . . . , N}M with the uniform probability measure.
Here N is thought of as the number of days (ignore leap years) in the year
and M as the number of students in the class. Then the quantity of interest
is the probability of the event B = {ω : ω(m) = ω(n) for some m 
= n}. By
a trivial pigeonhole argument, P(B) = 1 if M ≥ N . If M < N , show that

P(B) = 1−
M−1∏
m=1

(
1− m

N

)
≥ 1− e−

M(M−1)
2N .

Exercise 1.2.32. Suppose that an illiterate secretary is assigned the task
of putting N invitations into N envelopes. Each invitation is to a different
individual, and on each envelope is the address of the individual to whom
the corresponding invitation is to be sent. What is the probability that
no individual will receive the correct invitation? To model this problem
mathematically, let ΠN denote the group of permutations of {1, . . . , N}, and
take P to be the uniform probability measure on ΠN . Then the quantity
of interest is P

(
{π : π(n) 
= n for any 1 ≤ n ≤ N}

)
. To compute this, for

∅ 
= F ⊆ {1, . . . , N}, set AF = {π : π(n) = n for n ∈ F}, and show that

P(AF ) = (N−r)!
N ! if card(F ) = r. Use this together with Exercise 1.1.9 to

show that

P
(
{π : π(n) = n for some 1 ≤ n ≤ N}

)
= −

N∑
r=1

(−1)r
r!

and therefore that

P
(
{π : π(n) 
= n for any 1 ≤ n ≤ N}

)
=

N∑
r=0

(−1)r
r!

.

Note that there are two rather surprising aspects of this result. Namely,
one might expect that this probability should decrease monotonically to 0
as N →∞. However, the result shows that the probability is larger for 2N
than it is for 2N − 1 and that, as N →∞, it tends to 1

e , not 0.

10For a much more comprehensive and challenging list of exercises of this sort, see either [3]
or [8]. The second of these contains a helpful selection of worked problems.
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Exercise 1.2.33. Let P be the uniform probability measure on {0, 1}N .

(i) If (cf. (1.2.8))

σk(ω) = inf {n : 1 ≤ n ≤ N and Sn(ω) = k} for 1 ≤ k ≤ N,

show that P(σk = n) = 2−n
(
n−1
k−1

)
for 1 ≤ k ≤ n ≤ N .

(ii) Show that, for 1 ≤ k < � ≤ N and k ≤ m < n ≤ N ,

P(σ� = n|σk = m) = P(σ�−k = n−m),

and use Bayes’s formula together with (i) to conclude that(
n− 1

�− 1

)
=

n−�+k∑
m=k

(
n−m− 1

�− k − 1

)(
m− 1

k − 1

)
.

Exercise 1.2.34. Refer to § 1.2.3. Given a complete graph (V,E) and two
colors (e.g., blue and yellow), a two-coloring of its edges is any coloring of
its edges with the two colors. That is, each edge is assigned one of the
two colors. Say that a coloring is monotone if all the edges are assigned
the same color. Assuming that all colorings are equally likely and that
1 ≤ k ≤ N ≡ card(V ), show that with probability no more than

2

(
N

k

)
2−(

k
2) =

(
N

k

)
2−

k(k−1)
2

+1

will the coloring of some k-vertex subgraph be monotone. Use this to con-

clude that if
(
N
k

)
< 2

k(k−1)
2

−1, then there will exist a coloring of (V,E) for
which the coloring of no k-vertex subgraph will be monotone.

Exercise 1.2.35. Again take P to be the uniform probability measure on
{0, 1}N . Assume that N = 2M , and define

L2M (ω) = max{n : 0 ≤ n ≤ 2M and W2n(ω) = 0}
to be the last time the random walk visits 0 before or at time 2M . Show
that

P(L2M = 2m) = P(W2m = 0)P
(
ρ
(1)
2(M−m) > 2(M −m)

)
= P(W2m = 0)P(W2(M−m) = 0).

Conclude that P(L2M = 2m) = P(T[0,2M ] = 2m) and therefore that, as

M →∞, P(L2M ≤ 2Mx) −→ 2
π arcsin

√
x for x ∈ [0, 1].

Exercise 1.2.36. Consider a coin tossing game in which two coins, C1 and
C2, are used. C1 comes up heads with probability p1 and C2 with probability
p2 
= p1. On the first toss, C1 is used. Thereafter, if a head comes up on
toss n, then C1 is used on toss n+ 1, and if tails comes up on toss n, then
C2 is used on toss n + 1. Let Pn be the probability of a head coming up
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on toss n. Show that Pn+1 = p1Pn + p2(1 − Pn), and use this to see that

Pn = p2
1+Δ +

(
p1 − p2

1+Δ

)
(−Δ)n−1, where Δ = p2 − p1.

Exercise 1.2.37. Consider the network

in �� out ��
���� 5��

������
1
��

		
		
	

3


����

��
��

��
4 

����

�����

2
�������

.

Assume that each switch closes with probability p ∈ (0, 1) and remains open
with probability (1−p) and that the switches are independent of one another.
What is the probability that a signal will pass through the network? Also,
what is the conditional probability that switch 5 is open given that a signal
passes through?

Exercise 1.2.38. Let P be a probability on Ω, and suppose that A1, . . . , AN

are events.

(i) If the An’s are mutually independent, show that P(B1 ∩ · · · ∩BN ) =∏N
n=1 P(Bn) if Bn ∈ {An, An�,Ω} for each 1 ≤ n ≤ N .

(ii) If the An’s form a partition of Ω and each one has positive proba-
bility, show that for any B of positive probability,

(1.2.39) P(Am|B) =
P(B|Am)P(Am)∑N
n=1 P(B|An)P(An)

for 1 ≤ m ≤ N.

Like the one in (1.2.29), the expression in (1.2.39) is called Bayes’s for-
mula.

(iii) Assuming that P is the uniform probability measure on {0, 1}2M ,
show that, for 0 ≤ m ≤M ,

P(W2M = 0|W2m = 0) = P(W2(M−m) = 0) = 4−M+m

(
2(M −m)

M −m

)

and P(W2m = 0|W2M = 0) =

(2m
m

)(2(M−m)
M−m

)
(2M
M

) .

Exercise 1.2.40. If k ≥ 1 and N ≥ k with N+k
2 ∈ Z, show that

2P(ζ
{k}
N = N) = P(ζ

{k}
N > N − 1 & WN−1 = k − 1)

= P(WN−1 = k − 1)− P(ζ
{k}
N ≤ N − 1 & WN−1 = k − 1)

= P(WN−1 = k − 1)− P(WN−1 = k + 1),

and use this to show that P(ζ
{k}
N = N) = |k|

N P(WN = k) for all 1 ≤ |k| ≤ N .



32 1. Some Background and Preliminaries

Exercise 1.2.41. Say that a sequence of events {An : n ≥ 1} are mutually
independent if {A1, . . . , AN} are mutually independent for all N ∈ Z+.
Assuming that the events {An : n ≥ 1} are mutually independent events,
show that, for each 1 ≤ m ≤ N ,

P

(
N⋃

n=m

An

)
= 1−

N∏
n=1

(
1− P(An)

)
≥ 1− e−

∑N
n=m P(An),

and conclude that (cf. (1.1.11)) P
(
limn→∞An

)
= 1 if

∑∞
n=1 P(An) =∞. In

conjunction with (1.1.13), this proves that if {An : n ≥ 1} is a sequence of
mutually independent events, then

P
(
lim
n→∞

An

)
=

{
0 if

∑∞
n=1 P(An) <∞,

1 if
∑∞

n=1 P(An) =∞.

That is, P
(
limn→∞An

)
is either 0 or 1 according to whether

∑∞
n=1 P(An) is

finite or infinite. This dichotomy is known as the Borel–Cantelli lemma.

1.3. Some Non-Uniform Probability Measures

As I said in the introduction to § 1.2.1, if Ω is finite or countable, then any
probability function p : Ω −→ [0, 1] determines a probability measure P on
Ω by the prescription P(A) =

∑
ω∈A p(ω). Thus, even when Ω is finite, there

is no need to take P({ω}) to be the same for all ω. On the other hand, if one
is going to have a chance of computing probabilities of non-trivial events,
then the assignment of P({ω}) had better possess some structure, and, as
we will see, independence is the sort of structure for which one should be
looking.

1.3.1. Random Variables and Their Distributions. As we are about
to see, we already have a ready source of non-uniform probability measures.
Namely, suppose that Ω is a finite or countable sample space. Then any
function X on Ω is called a random variable no matter where it takes
its values. Because Ω is at most countable, so is the image Image(X) ≡
{X(ω) : ω ∈ Ω} of X. Moreover, if P is a probability measure on Ω and
pX(x) = P(X = x) for x ∈ Image(X), then pX is a probability function on
Image(X) and, as such, determines a probability measure μX , known as the
distribution of X under P, on Image(X). Clearly,

(1.3.1) μX(Γ) = P(X ∈ Γ) for Γ ⊆ Image(X).

The considerations in §§ 1.2–1.3 give us several examples of random vari-
ables whose distributions arise again and again.
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Bernoulli Distribution: Recall from § 1.2.2 the random variable Sn in (1.2.8),
which is the number of heads when a fair coin is tossed n times. The dis-
tribution of Sn under the uniform probability measure is the probability
measure on {0, . . . , n} that assigns probability 2−n

(
n
m

)
to each 0 ≤ m ≤ n.

For historical reasons, this probability measure is called a Bernoulli mea-
sure.

Discrete Arcsine Distribution: In § 1.2.7 we discussed the random variable
T[0,2M ], which was the amount of time that a symmetric random walk spends
above 0 during the time interval [0, 2M ]. What we showed there is that the
T[0,2M ] takes its values in {2m : 0 ≤ m ≤M} and, in (1.2.27), that

P(T[0,2M ] = 2m) = P(W2m = 0)P(W2(M−m) = 0).

Hence, there is a probability measure on {2m : 0 ≤ m ≤M} which assigns

probability 4−M
(
2m
m

)(2(M−m)
M−m

)
to 2m. For reasons that are made clear by

(1.2.28), this probability measure is sometimes called the discrete arcsine
measure. In Exercise 1.2.35, it was shown that L2M , the last time the walk
visits 0 at or before time 2M , also has the discrete arcsine measure as its
distribution.

Hitting Distributions : Again refer to § 1.2.4, and, for N ≥ k ≥ 1, consider

the random variable ζ
{k}
N , which is the first time that a random walk of

duration N hits k. By the homogeneity property of coin tossing, we know

that, for given k ∈ Z and n ≥ k, P(ζ
{k}
N = n) is the same for all N ≥ n.

Thus, by Exercise 1.2.40, P(ζ
{k}
N = n) = k

nP(Wn = k). Furthermore,

N∑
n=1

P(ζ
{k}
N = n) = 1− P(ζ

{k}
N > N) for all N ≥ k,

and, by (1.2.15), P(ζ
{k}
N > N) −→ 0 as N → ∞. Hence, for each k ∈ Z+,

there is a probability measure on
{
k + 2n : n ∈ N} that assigns probability

2−k−2nk
k+2n

(k+2n
n+k

)
to k + 2n.

First Return Time: A similar example is provided by the time ρ
(1)
N that a

random walk of duration N first returns to 0. For a symmetric random walk

(cf. (1.2.23) and (1.2.25)), we know that P(ρ
(1)
N = 2r) = 4−r

2r−1

(2r
r

)
and that

P(ρ
(1)
N > 2r) = 4−r

(
2r
r

)
for N ≥ 2r. Since, as we saw in the derivation of

(1.2.24), 4−r
(2r
r

)
−→ 0 as r → ∞, the same reasoning as we used in the

preceding shows that there is a probability measure on {2r : r ∈ Z+} that

assigns probability 4−r

2r−1

(
2r
r

)
to 2r.

1.3.2. Biased Coins. A quite different source of non-uniform probability
comes from replacing the fair coin in § 1.1.1 with a biased one.
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Again take the sample space to be {0, 1}N . In § 1.1.1, we modeled
N tosses of a fair coin by putting the uniform probability measure on
{0, 1}N . However, we could have chosen a different description of that model.
Namely, we could have said that the tosses are mutually independent and
that, on each toss, the chance of a head is the same as that of a tail. More
precisely, the uniform probability measure on {0, 1}N is the probability mea-
sure on {0, 1}N with the properties that, for any choice of {ηn : 1 ≤ n ≤
N} ⊆ {0, 1}, the events {ω : ω(1) = η1}, . . . , {ω : ω(N) = ηN} are mutually
independent and that each of these events has probability 1

2 . The advantage
of this description is that it lends itself to natural generalizations. To wit,
continue assuming that the tosses are mutually independent, but suppose
that, instead of a fair one, the coin being tossed may be biased so that on
each toss it comes up heads with probability p ∈ (0, 1) and tails with proba-
bility q = 1− p. Then, unless p = 1

2 , the corresponding probability measure

Pp on {0, 1}N is no longer uniform. Indeed (cf. (1.2.8)),

(1.3.2) Pp({ω}) = pSN (ω)qN−SN (ω).

Of course, when p = 1
2 , P 1

2
is the uniform probability measure.

Even though Pp is not uniform, it is locally uniform on sets of the form
{Sn = m}. Indeed, if A ⊆ {0, 1}N depends only on ω � {1, . . . , n} for some
1 ≤ n ≤ N and if Sn(ω) = m for all ω ∈ A, then P(A) = card(A)pmqn−m.
In particular,

(1.3.3) P(Sn = m) =

(
n

m

)
pmqn−m for n ≥ 1 and 0 ≤ m ≤ n.

This distribution is called the binomial distribution with parameters
(n,p), and obviously the Bernoulli measures are binomial distributions cor-
responding to p = 1

2 . A second way of expressing this local uniformity of Pp

is in terms of conditional probabilities. Namely, if 1 ≤ n ≤ N and if A and
B are events that depend only on ω � {1, . . . , n}, then

(1.3.4) Pp(B|A) =
card(B ∩A)

card(A)
= P 1

2
(B|A) if Sn is constant on A.

Another important fact about Pp is that it too has the same homogeneity
property that P 1

2
does. That is, (1.2.7) holds with Pp replacing P, and so

for any M -element subset S ⊆ {1, . . . , N} and Γ ⊆ {0, 1}M , Pp, thought
of as a probability measure on {0, 1}N , assigns

{
ω : ω � S ∈ Γ

}
the same

probability that Pp, thought of as a probability measure on {0, 1}M , assigns
to Γ. Finally, it is clear that, for any A ⊆ {0, 1}N ,

(1.3.5)
Pq(A) = Pq

(
{ω ∈ {0, 1}N : ω̆ ∈ A}

)
where ω̆ ∈ {0, 1}N is given by ω̆(n) = 1− ω(n) for 1 ≤ n ≤ N.
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Because of (1.3.4), many of the calculations that we made in § 1.2 for
symmetric random walks transfer to biased random walks, a random walk
corresponding to a biased coin. To see how this is done, note that, since
Wn = k ⇐⇒ Sn = n+k

2 , (1.3.4) implies that, for any B that depends only
on ω � {1, . . . , n},

(1.3.6)
Pp

(
B ∩ {Wn = k}

)
= P 1

2

(
B ∩ {Wn = k}

) Pp(Wn = k)

P 1
2
(Wn = k)

= P 1
2

(
B ∩ {Wn = k}

)
2np

n+k
2 q

n−k
2 .

As an immediate applications of (1.3.6) and homogeneity, we have

(1.3.7)

Pp

(
ζ
{k}
N ≤ n & Wn = �

)
=

⎧⎨
⎩Pp(Wn = �) if k� ≥ 0 & |k| ≤ |�|,(

p
q

)�−k
Pp(Wn = 2k − �) otherwise

from (1.2.12),

(1.3.8) Pp

(
ρ
(1)
N = 2r

)
=

Pp(W2r = 0)

2r − 1
=

(pq)r

2r − 1

(
2r

r

)
for N ≥ 2r

from (1.2.25),

(1.3.9) Pp(W2M = 0) =
M∑
r=1

Pp

(
ρ
(1)
N = 2r

)
Pp

(
W2(M−r) = 0

)
for N ≥ 2M

from (1.2.26), and from Exercise 1.2.38

(1.3.10) Pp

(
ζ
{k}
N = n

)
=
|k|
n
Pp(Wn = k) for N ≥ n ≥ |k|.

It should be recognized that, because they involve events to which (1.3.4)
does not apply, results like (1.2.14) and (1.2.21) do not admit such simple
generalizations to random walks that are not symmetric.

Before closing this discussion, it seems appropriate to mention a famous
approximation procedure discovered by Poisson. Namely, given a number
α > 0 and an n > α,

Pα
n

(
Sn = m

)
=

n!αm

m!(n−m)!nm
αm
(
1− α

n

)n−m

=
αm

m!

(
m−1∏
�=0

(
1− �

n

)) (
1− α

n

)n−m
.

Hence

(1.3.11) lim
n→∞

Pα
n

(
Sn = m

)
=

αme−α

m!
for each m ∈ N.
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This result is known as the Poisson approximation, and the limit measure

on N which assigns probability αme−λ

m! to m is called the Poisson measure
with rate α. Although a full explanation of the term “rate” will not come
until the end of § 6.2.1, it should already be apparent what sort of phenomena
are modeled by Poisson measures. Namely, they arise when one has a large
number of rare, independent events and one is counting the number of events
that occur. For example, if one has a chunk of radioactive material and one
counts the number of particles that it emits over a long period of time,
then the distribution of that number will be well approximated by a Poisson
measure.

1.3.3. Recurrence and Transience of Random Walks. In § 1.2.4
we showed that the symmetric random walk will eventually visit every

point in the sense that limN→∞ P 1
2
(ζ

{k}
N ≤ N) = 1 for every k ∈ Z \ {0},

and then, in (1.2.24), we showed that it is recurrent in the sense that

limN→∞ P 1
2
(ρ

(1)
N ≤ N) = 1. We will now investigate the corresponding

properties of the random walk under Pp when p 
= 1
2 . One suspects that,

when p > 1
2 , it should be harder for a biased random walk to visit points to

the left of 0 and easier for it to visit points to the right. In fact, the same in-
tuition ought to make one think that such a random walk will, with positive
probability, drift off to the right and never return to 0. In this subsection,
we will verify both of these guesses.

By (1.3.10), with k = 1, and (1.3.3)

lim
N→∞

Pp

(
ζ
{1}
N ≤ N

)
= lim

N→∞

N∑
n=0

Pp(W2n+1 = 1)

2n+ 1
= pu(pq),

where

(1.3.12) u(x) =
∞∑
n=0

1

2n+ 1

(
2n+ 1

n+ 1

)
xn for x ∈

(
0, 14 ].

Because

1 = lim
N→∞

P 1
2

(
ζ
(1)
N ≤ N

)
=

u
(
1
4

)
2

,

we know that u(x) ≤ 2. In order to get a closed form expression for u(x),
observe that

1

2n+ 1

(
2n+ 1

n+ 1

)
=

(2n)!

n!(n+ 1)!
= 2n

∏n
m=1(2m− 1)

(n+ 1)!
= (−4)n

∏n
m=1

(
1
2 −m

)
(n+ 1)!

= 2(−4)n
∏n

m=0

(
1
2 −m

)
(n+ 1)!

= −(−4)n+1

2

( 1
2

n+ 1

)
,
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where, for r ∈ R and m ≥ 1,

(1.3.13)

(
r

m

)
≡
∏m−1

�=0 (r − �)

m!

is the generalized binomial coefficient : the coefficient of ξm in the Taylor
expansion of ξ � (1 + ξ)r around 0. Hence,

u(x) = − 1

2x

∞∑
n=0

( 1
2

n+ 1

)
(−4x)n+1 = − 1

2x

∞∑
n=1

(1
2

n

)
(−4x)n,

and so

(1.3.14) u(x) =
1−

√
1− 4x

2x
for x ∈

(
0, 14
]
.

Noting that pq ≤ 1
4 and that 1−4pq = (p+ q)2−4pq = (p− q)2, we see that

u(pq) = p∧q
pq = 1

p∨q and therefore that

lim
N→∞

Pp

(
ζ
{1}
N ≤ N

)
=

p

p ∨ q
=

{
1 if p ≥ 1

2 ,
p
q if p < 1

2 .

Further, since, by (1.3.5), Pp(ζ
{−k}
N ≤ N) = Pq(ζ

{k}
N ≤ N), we also have that

lim
N→∞

Pp

(
ζ
{−1}
N ≤ N

)
=

q

p ∨ q
=

{
1 if p ≤ 1

2 ,
q
p if p > 1

2 .

Hence, as predicted, when p > 1
2 , the biased walk will, with probability 1,

eventually visit 1, but, with positive probability, it will never visit −1.
Starting from the preceding, we can now show that (cf. (1.2.22))

(1.3.15) lim
N→∞

Pp

(
ρ
(1)
N ≤ N

)
= 2(p ∧ q)

and therefore that limN→∞ Pp(ρ
(1)
N ≤ N) < 1 if p 
= 1

2 . Indeed, if N > 2,
then

Pp

(
ρ
(1)
N ≤ N

∣∣W1 = ±1
)
= Pp

(
ζ
{∓1}
N ≤ N − 1

)
,

and so

Pp

(
ρ
(1)
N ≤ N

)
= pPp

(
ζ
{−1}
N−1 ≤ N−1

)
+qPp

(
ζ
{1}
N−1 ≤ N−1

)
−→ 2pq

p ∨ q
= 2(p∧q).

In that this says that a biased (i.e., p 
= 1
2) random walk will, with positive

probability, never return to the place where it starts, one says that biased
random walks are transient.

A similar argument allows us to compute limN→∞ Pp(ζ
{k}
N ≤ N) for all

k 
= 0. Namely, if k ≥ 1, then

Pp

(
ζ
{k+1}
N ≤ N

∣∣ ζ{k}N = n
)
= Pp

(
ζ
{1}
N−n ≤ N − n

)
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for all N ≥ k + 1 and k ≤ n ≤ N − 1. Hence, by Bayes’s formula,

Pp

(
ζ
{k+1}
N ≤ N

)
=

N−1∑
n=k

Pp

(
ζ
{k}
N = n

)
Pp

(
ζ
{1}
N−n ≤ N − n

)
.

Therefore, since Pp

(
ζ
(1)
k ≤ N − n

)
≤ p

p∨q for 1 ≤ n ≤ N ,

lim
N→∞

Pp

(
ζ
{k+1}
N ≤ N

)
≤ p

p ∨ q
lim

N→∞

N∑
n=k

Pp

(
ζ
{k}
N = n

)
=

p

p ∨ q
lim

N→∞
Pp

(
ζ
{k}
N ≤ N

)
,

and so
lim

N→∞
Pp

(
ζ
{k+1}
N ≤ N

)
≤ p

p ∨ q
lim

N→∞
Pp

(
ζ{k} ≤ N

)
.

At the same time, for each k < M ≤ N

Pp

(
ζ
{k+1}
N ≤ N

)
≥

M−1∑
n=k

Pp

(
ζ
{k}
N = n

)
Pp

(
ζ
{1}
N−n ≤ N − n

)
,

and therefore

lim
N→∞

Pp

(
ζ
{k+1}
N ≤ N

)
≥ p

p ∨ q

M−1∑
n=k

Pp

(
ζ
{k}
N = n

)
=

p

p ∨ q
Pp

(
ζ
{k}
M−1 ≤M − 1

)
for all k < M ≤ N . Combining this with the preceding, we conclude that

lim
N→∞

Pp

(
ζ
{k+1}
N ≤ N

)
=

p

p ∨ q
lim

N→∞
Pp

(
ζ
{k}
N ≤ N

)
and therefore, by induction and (1.3.5), that

(1.3.16) lim
N→∞

Pp

(
ζ
{k}
N ≤ N

)
=

⎧⎪⎨
⎪⎩
(

p
p∨q

)k
for k ≥ 1,(

q
p∨q

)−k
for k ≤ −1.

Related to the preceding is the following strengthening of (1.2.24). Given

N , use induction to define themth return time ρ
(m)
N on {0, 1}N forN≥ m≥ 2

by

ρ
(m)
N (ω) =

{
inf{n : ρ(m−1)(ω) < n ≤ N & Wn(ω) = 0} if ρ

(m−1)
N (ω) < N,

∞ otherwise.

Then, Pp(ρ
(m)
N ≤ N | ρ(m−1) = n) = Pp(ρ

(1)
N−n ≤ N − n), and so

Pp

(
ρ
(m)
N ≤ N

)
=

N−1∑
n=0

Pp

(
ρ
(m−1)
N = n

)
Pp

(
ρ
(1)
N−n ≤ N − n

)
,
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from which, reasoning in the same way as above, we find that

(1.3.17) lim
N→∞

Pp

(
ρ
(m)
N ≤ N

)
=
(
2(p ∧ q)

)m
.

In particular, with probability 1, the symmetric random walk will eventually
return to 0 arbitrarily often.

Exercises for § 1.3

Exercise 1.3.18. Assuming that k ∧ � ≥ 1 and N ≥ k + �, show that

Pp

(
ζ
{k+�}
N = n

)
=

n∑
m=0

Pp

(
ζ
{k}
N = m

)
Pp

(
ζ
{�}
N−m = n−m

)
for N ≥ n.

Similarly, show that

Pp

(
ρ
(�+m)
N = r

)
=

r∑
n=0

Pp

(
ρ
(�)
N = n

)
Pp

(
ρ
(m)
N−n = r − n

)
for N ≥ r.

Exercise 1.3.19. If X and Y are independent random variables, show that

P(X + Y = z) =
∑

x∈Image(X)

P(Y = z − x)P(X = x)

=
∑

y∈Image(Y )

P(X = z − y)P(Y = y).

Next, suppose that X and Y are independent, Poisson, random variables
with rates α and β. That is, X and Y are N-valued and

P(X = m &Y = n) = e−(α+β)α
mβn

m!n!
.

Show that X + Y is a Poisson random variable with rate (α+ β).

Exercise 1.3.20. Show that
∞∑
r=1

1

2r − 1

(
2r

r

)
xr = 1−

√
1− 4x for x ∈

[
0, 14
]
.

Next show that, for x ∈ [0, 1],

∞∑
r=1

lim
N→∞

Pp

(
ρ
(1)
N = 2r

)
xr = 1−

√
1− 4pqx,

and use the second part of Exercise 1.3.18 and induction to conclude that

∞∑
r=0

lim
N→∞

Pp

(
ρ
(m)
N = 2r

)
xr =

(
1−
√

1− 4pqx
)m

for x ∈ [0, 1].

Finally, use this to give another derivation of (1.3.17).
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Exercise 1.3.21. Show that
∞∑
n=0

lim
N→∞

Pp

(
ζ
{1}
N = n

)
xn =

1−
√
1− 4pqx

2q
for x ∈ [0, 1].

Using this expression together with the first part of Exercise 1.3.18 and
induction on k ≥ 1, show that

∞∑
n=0

lim
N→∞

Pp

(
ζ
{k}
N = n

)
xn =

(
1−

√
1− 4pqx

2q

)k

for x ∈ [0, 1].

Finally, use these considerations to give another derivation of (1.3.16).

1.4. Expectation Values

In § 1.3.1 we used random variables as a source of non-uniform probability
measures. In this section we will take their expectation values, and again we
will restrict our attention to sample spaces which are finite or countable. To
carry out this program, it will be useful to have the following results about
series.

Lemma 1.4.1. Let I be a finite or countable index set and let

{ai : i ∈ I} ∪ {bi : i ∈ I} ⊆ (−∞,∞],

and assume that
∑

i∈I(a
−
i + b−i ) < ∞. If either α, β ∈ [0,∞) or α, β ∈ R

and
∑

i∈I(|ai|+ |bi|) <∞, then∑
i∈I

(αai + βbi) = α
∑
i∈I

ai + β
∑
i∈I

bi.

Proof. When I is finite, there is nothing to do. Thus, assume that I is
infinite. In addition, in either case,

∑
i∈I αai = α

∑
i∈I ai and

∑
i∈I βbi =

β
∑

i∈I bi, and so it is suffices to handle α = 1 = β.

First suppose that ai ∧ bi ≥ 0 for all i ∈ I. Then, for any F ⊂⊂ I,∑
i∈F

(ai + bi) =
∑
i∈F

ai +
∑
i∈F

bi ≤
∑
i∈I

ai +
∑
i∈I

bi,

and so
∑

i∈I(ai + bi) ≤
∑

i∈I ai +
∑

i∈I bi. At the same time, if F ⊂⊂ I
and G ⊂⊂ I, then∑

i∈F
ai +

∑
i∈G

bi ≤
∑

i∈F∪G
(ai + bi) ≤

∑
i∈I

(ai + bi),

and therefore
∑

i∈I ai +
∑

i∈I bi ≤
∑

i∈I(ai + bi).

Having handled the case when the ai’s and bi’s are non-negative, the
other cases can be handled as follows. Set I+ = {i ∈ I : ai + bi ≥ 0} and
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I− = I \ I+. Since a+i + b+i = (ai + bi) + (a−i + b−i ), the preceding implies
that ∑

i∈I+

(a+i + b+i ) =
∑
i∈I+

(ai + bi) +
∑
i∈I+

(a−i + b−i )

and therefore that∑
i∈I+

(ai + bi) =
∑
i∈I+

a+i +
∑
i∈I+

b+i −
∑
i∈I+

a−i −
∑
i∈I+

b−i .

The same line of reasoning shows that∑
i∈I−

(ai + bi) =
∑
i∈I−

a+i +
∑
i∈I−

b+i −
∑
i∈I−

a−i −
∑
i∈I−

b−i .

Hence, by Lemma 1.2.1, when we add these two and apply (1.2.4), we get
the desired result. �

Lemma 1.4.2. Suppose that I and J are finite or countable index sets, and
let {ai,j : (i, j) ∈ I ×J } ⊆ (−∞,∞]. If either ai,j ≥ 0 for all (i, j) ∈ I ×J
or
∑

(i,j)∈I×J |ai,j| <∞, then both

∑
i∈I

⎛
⎝∑

j∈J
ai,j

⎞
⎠ and

∑
j∈J

(∑
i∈I

ai,j

)

converge and are equal to
∑

(i,j)∈I×J ai,j.

Proof. There is nothing to do when I and J are both finite. In addition,
by reversing the roles of i and j, one can reduce the problem to showing

that
∑

i∈I

(∑
j∈J ai,j

)
has the asserted properties.

Now assume that the ai,j ’s are non-negative. Then, for each F ⊂⊂ I
and G ⊂⊂ J ,

∑
(i,j)∈I×J

a(i,j) ≥
∑

(i,j)∈F×G

a(i,j) =
∑
i∈F

⎛
⎝∑

j∈G
ai,j

⎞
⎠ .

Thus,
∑

(i,j)∈I×J a(i,j) ≥
∑

i∈F

(∑
j∈J ai,j

)
for all F ⊂⊂ I, and therefore∑

(i,j)∈I×J a(i,j) ≥
∑

i∈I

(∑
j∈J ai,j

)
. At the same time, if H ⊂⊂ I × J

and F ⊂⊂ I and G ⊂⊂ J are chosen so that H ⊆ F ×G, then

∑
i∈I

⎛
⎝∑

j∈J
ai,j

⎞
⎠ ≥∑

i∈F

⎛
⎝∑

j∈G
ai,j

⎞
⎠ =

∑
(i,j)∈F×G

ai,j ≥
∑

(i,j)∈H
ai,j ,

and therefore
∑

i∈I

(∑
j∈J ai,j

)
≥
∑

(i,j)∈I×J ai,j .
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Finally, assume that
∑

(i,j)∈I×J |ai,j | <∞. Then, by the preceding,

∑
i∈I

⎛
⎝∑

j∈J
|ai,j |

⎞
⎠ <∞,

and so
∑

(i,j)∈I×J ai,j converges to some s ∈ R,
∑

j∈J ai,j converges to some

ui ∈ R for each i, and
∑

i∈I |ui| <∞. Hence, by the preceding and Lemmas
1.2.1 and 1.4.1, the following equalities are justified:∑

(i,j)∈I×J
ai,j =

∑
(i,j)∈I×J

a+i,j −
∑

(i,j)∈I×J
a−i,j

=
∑
i∈I

⎛
⎝∑

j∈J
a+i,j

⎞
⎠−∑

i∈I

⎛
⎝∑

j∈J
a−i,j

⎞
⎠

=
∑
i∈I

⎛
⎝∑

j∈J
a+i,j −

∑
j∈J

a−i,j

⎞
⎠ =

∑
i∈I

⎛
⎝∑

j∈J
ai,j

⎞
⎠ . �

Now let P be a probability measure on a finite or countable sample space
Ω. Given a random variable X : Ω −→ [0,∞], the expected value EP[X]
of X with respect to P is

∑
ω∈ΩX(ω)P({ω}). Given a random variable X :

Ω −→ (−∞,∞], define the non-negative random variables X± by X±(ω) =
X(ω)± and |X| = X+ + X−. Then we say that the expected value
of X exists if EP[X−] < ∞, in which case we define its expected value
EP[X] ≡ EP[X+]− EP[X−]. Notice that, by Lemma 1.2.1,

(1.4.3) EP[X] =
∑
ω∈Ω

X(ω)P(ω) when EP[X−] <∞.

Thus, when Ω is finite and P is uniform, EP[X] is precisely the ordinary
average value of X on Ω. When EP[|X|] <∞, we say that X is integrable.

Starting from (1.4.3) and applying the facts that we already have about
series, it is clear that

(1.4.4) EP[X] ≤ EP[Y ] if EP[X−] <∞ and X ≤ Y,

and, for α, β ∈ R,

(1.4.5) EP[αX + βY ] = αEP[X] + βEP[Y ]

if either α∧β ≥ 0 and EP[X−]∨EP[Y −] <∞ or EP[|X|]∨EP[|Y |] <∞. Note
that if A ⊆ Ω is an event, then 1AX

± ≤ X± and so, by (1.4.4), EP[1AX]
exists if EP[X] does, and 1AX is integrable ifX is. In the future, when EP[X]
exists, I will use the notation EP[X, A] to denote EP[1AX]. Obviously,

EP[X, A] =
∑
ω∈A

X(ω)P({ω}) when EP[X−] <∞.
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By using Lemma 1.4.2, we see that

EP[X] =
∑
ω∈Ω

⎛
⎝ ∑

x∈Image(X)

X(ω)1{x}
(
X(ω)

)
P({ω})

⎞
⎠

=
∑

x∈Image(X)

x

⎛
⎝ ∑

{ω:X(ω)=x}
P({ω})

⎞
⎠ ,

and so

(1.4.6) EP[X] =
∑

x∈Image(X)

xP(X = x) when EP[X−] <∞.

In other words, when it exists, EP[X] is the weighted average of the values
of X, the weight assigned to each value being the probability that X takes
that value; and, for this reason, EP[X] is often called the mean value of X.

Equation (1.4.6) generalizes in the following way. Suppose that X is a
random variable with values in some space E and that f : E −→ [0,∞),
and set Y = f ◦X, the composition of f with X. Then, by (1.4.6), EP[Y ]
equals

∑
y∈Image(Y )

yP(Y = y) =
∑

y∈Image(Y )

⎛
⎝ ∑

x∈Image(X)

y1{y}
(
f(x)

)
P(X = x)

⎞
⎠

=
∑

x∈Image(X)

f(x)

⎛
⎝ ∑

y∈Image(Y )

1{y}
(
f(x)

)⎞⎠P(X = x)

=
∑

x∈Image(X)

f(x)P(X = x).

More generally, if f : E −→ (−∞,∞], then, by applying the preceding to
(f ◦X)+ and (f ◦X)−, we have that

(1.4.7) EP[f ◦X] =
∑

x∈Image(X)

f(x)P(X = x) if EP
[
(f ◦X)−

]
<∞.

As a weighted average of the size of X, one should expect that EP[|X|]
can be used to estimate the probability that |X| is large. To see that this
is the case, note that, for any R > 0, R1{X≥R} ≤ 1{X≥R}X ≤ |X| and
therefore, by (1.4.4), that

(1.4.8) P(X ≥ R) ≤ 1

R
EP[X, X ≥ R] ≤ 1

R
EP
[
|X|
]

for R > 0,

an inequality which is known as Markov’s inequality. Simple as it is,
Markov’s inequality is the origin of a great many estimates in probability
theory. In fact, although we did not say so at the time, we used Markov’s
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inequality in our derivation of (1.2.17). Namely, in the language of expecta-
tion values, if Ω = {0, 1}N and P = P 1

2
is the uniform probability measure

on {0, 1}N , then, for α ∈ R,

EP
[
eαWN

]
= e−αNEP

[
e2αSN

]
= 2−Ne−αN

N∑
n=1

(
N

n

)
e2αn

= 2−Ne−αN
(
e2α + 1

)N
=
(
coshα

)N
.

Hence, if α ≥ 0 and R > 0, then, by Markov’s inequality,

P
(
WN ≥ R

)
= P
(
eαWN ≥ eαR

)
≤ e−αREP

[
eαWN

]
≤ e−αR

(
coshα

)N
,

and it was from this inequality that (1.2.17) was an easy consequence.

Closely related to the preceding are the following considerations. Sup-
pose that X is an R-valued random variable for which X2 is integrable.

Since |X| ≤ 1+X2

2 , X is also integrable. For any α ∈ R,11

0 ≤ EP
[
(X − α)2

]
= EP[X2]− 2αEP[X] + α2.

In particular, because the right-hand side achieves its unique minimum at
α = EP[X], we see that

(1.4.9) Var(X) ≡ EP
[(
X − EP[X]

)2]
= EP[X2]− EP[X]2

is the minimum value of α � EP
[
(X − α)2

]
. In other words, when one uses

EP
[
(X−α)2

]
to measure the difference between the random variable X and

the constant α, EP[X] is the one and only choice of α which is closest to X.
Thus, in this sense, Var(X) measures how much X differs from a constant,
and for this reason it is called the variance of X. Notice that, by Markov’s
inequality, for any R > 0,

P
(∣∣X − EP[X]

∣∣ ≥ R
)
= P
(∣∣X − EP[X]

∣∣2 ≥ R2
)
≤ R−2EP

[(
X − EP[X]

)2]
,

and therefore

(1.4.10) P
(∣∣X − EP[X]

∣∣ ≥ R
)
≤ Var(X)

R2
for R > 0.

Inequality (1.4.10) is called Chebychev’s inequality.

Before completing this introduction to expectation values, it should be
pointed out that there is an alternative way to think about the “expected
value” of an R-valued random variable X. Namely, if one interprets “ex-
pected” as being synonymous with “typical,” then one might say that an
equally good candidate would be a number γ ∈ R such that X is equally
likely to be larger or smaller than γ. That is, P(X ≥ γ) = 1

2 = P(X ≤ γ).

11In the following and elsewhere, if α ∈ R, then I will use α to denote the random variable
α1Ω.
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However, after a moment’s thought, one realizes that there either may be
no such γ or that there may be more than one such γ. For example,

P 1
2
(S2 ≥ γ) ≥ 1

2 =⇒ γ ≤ 1 =⇒ P 1
2
(S2 ≥ γ) ≥ 3

4 ,

whereas P 1
2
(S1 ≥ γ) = 1

2 = P 1
2
(S1 ≤ γ) for all γ ∈ (0, 1). To eliminate the

existence problem, one looks for a γ ∈ R such that

(1.4.11) P(X ≥ γ) ∧ P(X ≤ γ) ≥ 1

2

and calls such a γ a median of X.

That every R-valued random variable has a median is easy to check.
Indeed, define

α = inf{x : P(X ≤ x) ≥ 1
2} and β = sup{x : P(X ≥ x) ≥ 1

2}.

Because P(X ∈ R) = 1, (1.1.6) implies there exists an R > 0 such that
P(X ≥ −R) > 1

2 and P(X ≥ R) < 1
2 . Hence α, β ∈ [−R,R]. Furthermore,

since {X ≤ α+ 1
n} ↘ {X ≤ α}, (1.1.5) implies that

P(X ≤ α) = lim
n→∞

P
(
X ≤ α+ 1

n

)
≥ 1

2 .

Similarly, since {X ≥ α− 1
n} ↗ {X < α},

P(X < α) = lim
n→∞

P
(
X ≥ α− 1

n

)
≤ 1

2 ,

and therefore P(X ≥ α) = 1 − P(X < α) ≥ 1
2 . Hence, α is a median of X.

The same sort of reasoning shows that β is also a median of X. In addition,
since P(X ≥ α) ≥ 1

2 , we also know that α ≤ β. Finally, it is obvious that
any median must lie between α and β, and knowing that α and β are both
medians, it is clear that every γ ∈ [α, β] is a median. In other words, X
always admits a median, but, in general, it will admit an entire, non-trivial
interval of them. See Exercise 1.4.22 for a variational characterization of
medians.

1.4.1. Some Elementary Examples. There is no universally applicable
procedure for computing expectation values any more than there is one for
computing probabilities. Indeed, the probability of an event A is the expec-
tation value of its indicator function 1A, and so any universal technique for
computing expectation values would be a technique for computing proba-
bilities. Nonetheless, as is often the case, there are advantages to thinking
in terms of the more general problem, the one of computing expectation
values, even if our primary goal is to compute probabilities.

We will devote this subsection to a few elementary examples, and we
begin by taking a hands-on approach. Our first example is the computation
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of (cf. (1.2.8)) EPp [Sn] and Varp(Sn), the variance of Sn under Pp. From
(1.3.3) and (1.4.6),

EPp
[
Sn

]
=

n∑
m=0

m

(
n

m

)
pmqn−m = np

n∑
m=1

(
n− 1

m− 1

)
pm−1qn−m

= np
n−1∑
m=0

(
n− 1

m

)
pmqn−1−m = np.

Similarly, from (1.4.3), if n ≥ 1,

EPp
[
S2
n

]
=

n∑
m=0

m2

(
n

m

)
pmqn−m

=
n∑

m=0

m(m− 1)

(
n

m

)
pmqn−m +

n∑
m=0

m

(
n

m

)
pmqn−m.

We already know that the last of these sums equals np. If n = 1, the second
to last sum is 0, and if n ≥ 2, it equals

n(n− 1)p2
n∑

m=2

(
n− 2

m− 2

)
pm−2qn−m = n(n− 1)p2

n−2∑
m=0

(
n− 2

m

)
pmqn−2−m

= n(n− 1)p2.

Hence

EPp
[
S2
n

]
= n(n− 1)p2 + np = np(np− p+ 1) = npq + (np)2,

and so Varp(Sn) = npq.

In the preceding computation, we took minimal advantage of structure.
In particular, we did not take any advantage of the fact that Sn is a sum
and apply (1.4.5). If we had, we would have immediately seen that

EPp [Sn] =
n∑

m=1

EPp
[
ω(m)

]
=

N∑
m=1

Pp

(
ω(m) = 1

)
= np

and that, because ω(m1) is independent of ω(m2) when m1 
= m2,

EP
[
S2
n

]
=

n∑
m=1

EPp
[
ω(m)2

]
+

∑
1≤m1 �=m2≤n

EPp
[
ω(m1)ω(m2)

]

=

n∑
m=1

Pp

(
ω(m) = 1

)
+

∑
1≤m1 �=m2≤n

Pp

(
ω(m1) = 1

)
Pp

(
ω(m2) = 1

)
= np+ n(n− 1)p2 = npq + (np)2.
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On the basis of these computations, we can easily compute the expected
value and variance of Wn under Pp. Indeed, Wn = 2Sn − n, and so, by
(1.4.5), EPp [Wn] = 2np− n = np− nq = n(p− q) and

EPp [W 2
n ] = 4EPp

[
S2
n

]
− 4nEPp [Sn] + n2 = 4npq + 4(np)2 − 4n2p+ n2

= 4npq + n2(1− 4pq) = 4npq +
(
n(p− q)

)2
.

Hence, Varp(Wn) = 4npq.

1.4.2. Independence and Moment Generating Functions. Although
hands-on procedures work, one suspects that there must be more clever
approaches. One such approach is to begin by computing the moment
generating function

(1.4.12) gX(λ) ≡ EP
[
eλX
]

for λ ∈ R.

Of course, in general, gX(λ) will be infinite for all λ 
= 0. On the other hand,
if X is non-negative, it will be finite for λ ∈ (−∞, 0], and it will be finite for
all λ ∈ R if X is bounded (i.e., P(|X| ≤ R) = 1 for some R ∈ (0,∞)).

To understand the virtue, as well as the origin, of the name of moment
generating functions, again consider Sn under Pp. Obviously

EPp
[
eλSn

]
=

n∑
m=0

eλm
(
n

m

)
pmqn−m =

n∑
m=0

(
n

m

)
(peλ)mqn−m =

(
peλ + q)n.

Hence, EPp [eλSn ] is a smooth function of λ and12

∂k
λE

Pp
[
eλSn

]
=

n∑
m=0

mkeλm
(
n

m

)
pmqn−m = EPp

[
Sk
ne

λSn
]
.

In particular,

EPp
[
Sk
n

]
= ∂k

λ

(
peλ + q

)n∣∣
λ=0

,

from which it is an easy exercise to recover the results proved in § 1.4.1. More
generally, because EP[Xk] is called the kth moment of X and since, under
appropriate conditions, these moments can be computed by differentiating
gX at 0, it is reasonable to think of gX as generating them.

Of course, moment generating functions are no deus ex machina. Aside
from technical questions (addressed in Theorem 1.4.16) about justifying the
differentiation of them to compute moments, there is a more basic problem:
that of computing them at all. To understand why moment generating func-
tions are often easier to compute than the moments themselves, we will re-
peat the preceding calculation, this time taking advantage of independence.

12I use ∂x to denote differentiation with respect to x.
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Namely,

EPp
[
eλSn

]
=

∑
ω∈{0,1}n

eλ
∑n

m=1 ω(m)Pp({ω}) =
∑

ω∈{0,1}n

n∏
m=1

eλω(m)pω(m)q1−ω(m)

=
n∏

m=1

EPp
[
eλω(m)

]
=
(
peλ + q

)n
,

the point being that, because the events {ω(1) = ±1}, . . . , {ω(n) = ±1} are
mutually independent,

Pp({ω}) =
n∏

m=1

Pp

(
{ω′ : ω′(m) = ω(m)}

)
=

n∏
m=1

pω(m)q1−ω(m)

and therefore

EPp

[
n∏

m=1

eλω(m)

]
=

n∏
m=1

EPp
[
eλω(m)

]
.

To generalize the above line of reasoning, let P be a probability mea-
sure on a finite or countable sample space Ω. We will say that the random
variables X1, . . . , Xn on Ω are mutually independent under P if, for all
x1, . . . , xn ∈ R, the events {X1 = x1}, . . . , {Xn = xn} are mutually inde-
pendent under P. Hence, if X1, . . . , Xn are mutually independent random
variables with values in some space E and if f1, . . . , fn are non-negative
functions on E, then, by (1.4.7),

EP

[
n∏

m=1

fm ◦Xm

]
=

∑
(x1,...,xn)

n∏
m=1

fm(xm)P(Xm = xm)

=

n∏
m=1

∑
xm

fm(xm)P(Xm = xm),

and so

(1.4.13) EP

[
n∏

m=1

fm ◦Xm

]
=

n∏
m=1

EP
[
fm(Xm)

]
.

Starting from (1.4.13), it is clear that for any f1, . . . , fn on E into R such
that f1 ◦X1, . . . , fn ◦Xn are integrable,

∏n
m=1 fm ◦Xm is again integrable

and (1.4.13) continues to hold.
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As an immediate consequence of (1.4.13), we see that if X1, . . . , Xn are
mutually independent, (−∞,∞]-valued random variables, then

(1.4.14) gS(λ) =
n∏

m=1

gXm(λ) where S =
n∑

m=1

Xm,

and this important fact is one of the major reasons why moment generating
functions are often easier to compute than one might expect.

1.4.3. Basic Convergence Results. For many applications, it is impor-
tant to know under what conditions one can say that EP[Xn] −→ EP[X]
when one knows that Xn(ω) −→ X(ω) for each ω ∈ Ω. For instance, one
needs such results when one attempts to justify the interchange, used in the
computation of moments from the moment generating function, of differen-
tiation with the taking of expectation values.

Theorem 1.4.15. Let P be a probability measure on a finite or countable
sample space Ω, and let {Xn : n ≥ 1} be a sequence of (−∞,∞]-valued
random variables on Ω with EP[X−

n ] <∞ for all n ≥ 1.

(i) If 0 ≤ Xn(ω)↗ X(ω) for each ω ∈ Ω, then EP[Xn]↗ EP[X].

(ii) If Xn ≥ 0 for all n ≥ 1, then

EP

[
lim
n→∞

Xn

]
≤ lim

n→∞
EP[Xn].

(iii) If there exists an integrable random variable Y such that Xn ≤ Y
for all n ≥ 1 and limn→∞Xn is integrable, then

lim
n→∞

EP[Xn] ≤ EP
[
lim
n→∞

Xn

]
.

(iv) If there exists an integrable random variable Y such that |Xn| ≤ Y
for all n ≥ 1 and Xn(ω) −→ X(ω) for each ω ∈ Ω, then X is integrable and∣∣∣EP[Xn]− EP[X]

∣∣∣ ≤ EP
[
|Xn −X|

]
−→ 0.

Proof. (i) First note that, by (1.4.4), 0 ≤ EP[Xn] ≤ EP[Xn+1] ≤ EP[X]
for all n ≥ 1. Thus L ≡ limn→∞ EP[Xn] exists in [0,∞] and is dominated
by EP[X]. To complete the proof, note that, for any A ⊂⊂ Ω, EP[X, A] =
limn→∞ EP[Xn, A] ≤ L, and therefore (cf. Lemma 1.2.1)

EP[X] = sup
A⊂⊂Ω

EP[X, A] ≤ L.
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(ii) Set Yn(ω) = inf{Xm(ω) : m ≥ n} for n ≥ 1. Then, Xn ≥ Yn ↗
limn→∞Xn, and therefore, by (i) and (1.4.4),

lim
n→∞

EP[Xn] ≥ lim
n→∞

EP[Yn] = EP

[
lim
n→∞

Xn

]
.

(iii) Set Zn = Y −Xn. Then, by (ii) applied to {Zn : n ≥ 1},

EP[Y ] + EP
[
− lim

n→∞
Xn

]
= EP

[
Y − lim

n→∞
Xn

]
= EP

[
lim
n→∞

Zn

]
≤ lim

n→∞
EP[Y −Xn] = EP[Y ]− lim

n→∞
EP[Xn].

Hence, limn→∞ EP[Xn] ≤ −EP
[
− limn→∞Xn

]
, and so limn→∞ EP[Xn] ≤

EP
[
limn→∞Xn

]
.

(iv) Since |X| ≤ |Y |, it is clear that X is integrable. In addition, since
±(Xn − X) ≤ |Xn − X| and therefore ±EP[Xn − X] ≤ EP

[
|Xn − X|

]
, we

know that
∣∣EP[Xn]−EP[X]

∣∣ ≤ EP
[
|Xn−X|

]
. Now set Zn = |Xn−X|. Then

0 ≤ Zn ≤ 2Y and Zn(ω) −→ 0 for all ω ∈ Ω. Hence, by (iii), we know that
limn→∞ EP

[
|Xn −X|

]
= 0. �

The results in Theorem 1.4.15 are the countable sample space version of
three famous convergence results (cf. Theorem 2.4.12) in Lebesgue’s theory
of integration. The result in (i) is known as the monotone convergence
theorem, those in (ii) and (iii) are called Fatou’s lemma, and the one in
(iv) is Lebesgue’s dominated convergence theorem.

As an application of these, we give an important result about computing
moments from moment generating functions. Here and elsewhere, e−∞ is
taken to be 0.

Theorem 1.4.16. If −∞ ≤ a < b ≤ ∞ and gX(λ) <∞ for λ ∈ (a, b), then
(cf. (1.4.12)) gX is smooth (i.e., infinitely differentiable) on (a, b) and

EP
[
XkeλX

]
= ∂k

λgX(λ) for k ∈ N and λ ∈ (a, b).

In addition, if X is bounded below (i.e., P(X ≥ −R) = 1 for some R ∈
(0,∞)), then

EP
[
Xk, X <∞

]
= lim

λ↗0
∂k
λgX(λ) for each k ∈ N.

Proof. To prove the first assertion, we will work by induction on k ∈ N,
and when k = 0 there is nothing to do. Now let k ≥ 1, and assume the result
for k − 1. Given λ ∈ (a, b), choose δ > 0 satisfying [λ− 2δ, λ+ 2δ] ⊆ (a, b).
Then for any h ∈ [−2δ, 2δ],

∂k−1
λ gX(λ+ h)− ∂k−1

λ gX(λ)

h
= EP

[
Xk

∫ 1

0
e(λ+th)X dt

]
.
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Since, for any h ∈ R with |h| < δ,

|xk|e(λ+h)x ≤ |xk|e−δ|x|eλx+2δ|x| ≤
(

k

eδ

)k (
e(λ+2δ)x + e(λ−2δ)x

)
,

∣∣∣∣Xk

∫ 1

0
e(λ+th)X dt

∣∣∣∣ ≤
(

k

eδ

)k (
e(λ+2δ)X + e(λ−2δ)X

)
for such h. Hence, by Lebesgue’s dominated convergence theorem,

lim
h→0

∂k−1
λ gX(λ+ h)− ∂k−1

λ gX(λ)

h
= EP

[
XkeλX

]
.

Given the first part, the second part comes down to showing that
EP
[
XkeλX

]
−→ EP

[
Xk, X <∞

]
as λ↗ 0. To this end, write

EP
[
XkeλX

]
= EP

[
XkeλX , X ∈ [−R, 0)

]
+ EP

[
XkeλX , X ∈ [0,∞)

]
.

By Lebesgue’s dominated convergence theorem, the first term on the right
tends to EP

[
Xk, X < 0

]
and, by the monotone convergence theorem, the

second term tends to EP
[
Xk, X ∈ [0,∞)

]
as λ ↗ 0. Thus, the sum tends

to EP
[
Xk, X <∞

]
. �

Exercises for § 1.4

Exercise 1.4.17. If X takes its values in N, show that

EP[X] =
∞∑
n=0

P(X > n) and EP[X2] =
∞∑
n=0

(2n+ 1)P(X > n).

Exercise 1.4.18. If X is a Poisson random variable with rate α (i.e., X

is N-valued and P(X = n) = αne−α

n! for n ∈ N), show that gX(λ) = eα(e
λ−1)

and conclude that EP[X] = α = Var(X).

Exercise 1.4.19. Let p ∈ (0, 1) and q = 1 − p, suppose that X is a Z+-
valued random variable with P(X = n) = qpn−1 for n ∈ Z+, and show that

gX(λ) = qeλ

1−peλ
for λ < − log p, EP[X] = 1

q , and Var(X) = p
q2
. Also, show

that such a random variable arises when one asks what the probability is
that a tail occurs for the first time on the nth toss of a coin.

Exercise 1.4.20. Assume that X is an R-valued random variable for which
there exists a δ > 0 such that gX(λ) <∞ whenever λ ∈ (−δ, δ). If ΛX(λ) =
log gX(λ), show that

EP[X] =
dΛX

dλ
(0) and Var(X) =

d2ΛX

dλ2
(0).

More generally, the derivatives of ΛX are called the cumulants of X.
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Exercise 1.4.21. It should be clear that a major difference between a me-
dian of a random variable and its expected value is that a median ignores
“outliers” whereas the expected value can be influenced by them. Thus,
one should expect that the difference between a median and the expected
value can be estimated in terms of the variance. To verify this, let X be an
R-valued random variable for which X2 is integrable, and suppose that γ is
a median of X. Show that, for any x ∈ R, (γ − x)2 ≤ 2EP

[
(X − x)2

]
, and

conclude that |γ − EP[X]| ≤
√

2Var(X).

Exercise 1.4.22. Suppose that X is a Z-valued random variable.

(i) Show that if α ∈ R \ Z is a median of X and if m ∈ Z is determined
by m < α < m+ 1, then P(X ≤ m) = 1

2 = P(X ≥ m+ 1) and therefore, for

every β ∈ [m,m + 1], P(X ≤ β) = 1
2 = P(X ≥ β). In particular, conclude

that there exist integers m1 ≤ m2 such that, for any α ∈ R, α is a median
of X if and only if m1 ≤ α ≤ m2.

(ii) Assume that X is integrable and let m ∈ Z. If m ≤ α ≤ m+1, show
that

EP
[
|X − α|

]
− EP

[
|X −m|

]
= (α−m)

(
1− 2P(X ≥ m+ 1)

)
.

If m− 1 ≤ α ≤ m, show that

EP
[
|X − α|

]
− EP

[
|X −m|

]
= (α−m)

(
1− 2P(X ≥ m)

)
.

(iii) Again, assume that X is integrable, and let m1 and m2 be as in (i).
Using (ii), show that

EP
[
|X − α|

]
≥ EP

[
|X −m1|

]
for all α ∈ R

and that equality holds if and only if α ∈ [m1,m2]. Conclude from this that
α ∈ R is a median of X if and only if

EP
∣∣[X − α|

]
= min

{
EP
[
|X − β|

]
: β ∈ R

}
.

It can be shown (cf. Exercise 1.4.3 in my book [9]) that this variational
characterization works for general R-valued random variables, not just for
integer-valued random variables.

Comments on Chapter 1

As I have said, when the sample space is finite, the engine behind probabilis-
tic computations is combinatorics. Nonetheless, when these computations
are phrased in probabilitic terms, many techniques for solving them become
more transparent and better motivated. In addition, because it does not
require the sometimes cumbersome machinery required to do probability
theory in uncountable sample spaces, finite and countable state spaces pro-
vide a testing ground for results that one would like to prove. To wit, people
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working in statistical mechanics or quantum field theory make systematic
use of finite analogs of the physical situations in which they are interested.
In fact, they sometimes are able to prove the results they want by making
finite approximations and then passing to a limit. Three of the most intrigu-
ing examples of this procedure are percolation theory, the Ising model, and
Euclidean quantum field theory. Also, results are often first discovered in a
finite setting and only later are shown to be more general. Both DeMoivre’s
theorem and the arc sine law are examples.


