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is archimedean. Equip kv and its subset Ov with the analytic (i.e., v-adic)
topology coming from the place.

The adèle ring A = Ak of k is defined as the restricted product∏′

v∈Ωk

(kv,Ov);

it is a k-algebra for the diagonal embedding of k, and it is equipped with the
unique topology such that

• A is a topological group under addition,
• the subset

∏
v∈Ωk

Ov is open, and

• the subspace topology on
∏

v∈Ωk
Ov agrees with the product topol-

ogy.

The image of k in A is discrete, and A/k is compact.

1.1.4. Other fields. For some other kinds of fields, see Appendix B.

1.2. Cr fields

(References: [Gre69], [Sha72], [Pfi95, Chapter 5])

Definition 1.2.1 ([Lan52]). Let k be a field, and let r ∈ R≥0. Then k is
Cr if and only if every homogeneous form f(x1, . . . , xn) of degree d > 0 in
n variables with n > dr has a nontrivial zero in kn. The adjective quasi-
algebraically closed is a synonym for C1.

1.2.1. Norm forms and normic forms.

Definition 1.2.2. Let L be a finite extension of a field k. Let e1, . . . , en
be a k-basis of L. Write L′ = L(x1, . . . , xn) and k′ = k(x1, . . . , xn), where
x1, . . . , xn are indeterminates. If NL′/k′ denotes the norm from L′ to k′, then
NL′/k′(x1e1 + · · ·+ xnen) is called a norm form for L over k.

Example 1.2.3. Let k = Q and L = Q(
√
7). The norm form for L over k

associated to the basis 1,
√
7 is x21 − 7x22.

Each norm form for L over k is a degree n homogeneous polynomial
in k[x1, . . . , xn], where n = [L : k]. Although it depends on the choice
of basis, changing the basis changes the norm form only by an invertible
k-linear transformation of the variables. The value of the norm form at a
point (b1, . . . , bn) ∈ kn equals NL/k(b1e1 + · · ·+ bnen).

Definition 1.2.4. Let k be a field. A homogeneous form f ∈ k[x1, . . . , xn]
is called normic if deg f = n and f has only the trivial zero in kn.
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Any norm form is normic. To construct other normic forms, we introduce
some notation. If f and g are homogeneous forms, let f(g | g | · · · | g) be
the homogeneous form obtained by substituting a copy of g for each variable
in f , except that a new set of variables is used after each occurrence of |.
If f is of degree d in n variables, and g is of degree e in m variables, then
f(g | g | · · · | g) is of degree de in nm variables. If f and g are normic, then
so is f(g | g | · · · | g).

Lemma 1.2.5. If k is a field and k is not algebraically closed, then k has
normic forms of arbitrarily high degree.

Proof. Since k is not algebraically closed, it has a finite extension of degree
d > 1. Let F1 = f be an associated norm form. For � ≥ 2, let

F� = F�−1(f | f | · · · | f).
By induction, F� is normic of degree d�. �

1.2.2. Systems of forms.

Proposition 1.2.6 (Artin, Lang, Nagata). Let k be a Cr field, and let
f1, . . . , fs be homogeneous forms of the same degree d > 0 in n common
variables. If n > sdr, then f1, . . . , fs have a nontrivial common zero in kn.

Proof. Suppose that k is algebraically closed. Since n > sdr ≥ s, the
projective dimension theorem [Har77, I.7.2] implies that the intersection of
the s hypersurfaces fi = 0 in Pn−1 contains a point.

Therefore, from now on assume that k is not algebraically closed. Sup-
pose also that the fi have no nontrivial common zero. We will inductively
build forms Φm of degree Dm in Nm variables, each having no nontrivial
zero, and get a contradiction for large m. By Lemma 1.2.5, we can find a
normic form Φ0 of arbitrarily high degree e (later we will specify how large
we need e to be). So D0 = N0 = e. For m ≥ 1, define

Φm = Φm−1(f1, . . . , fs | f1, . . . , fs | · · · | f1, . . . , fs | 0, 0, . . . , 0),
where within each block f1, . . . , fs the same n variables are used, but new
variables are used after each |, and we use as many blocks as possible (namely,

Nm−1/s� blocks) and pad with zeros to get the right number of arguments
to Φm−1. Thus Dm = dDm−1 and Nm = n
Nm−1/s�. By induction on m,
the form Φm has no nontrivial zero.

By induction, Dm = dme. If we could ignore the 
 �, then Nm would be
(n/s)me, and

Nm

Dr
m

=
( n

sdr

)m
e1−r > 1
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for sufficiently large m, since n > sdr. But we cannot quite ignore 
 �, so we
choose β ∈ R with dr < β < n/s and choose the degree e of the normic form
Φ0 so that n
x/s� ≥ βx holds for all x ≥ e. Then Nm ≥ βme by induction
on m, and

Nm

Dr
m

≥
(

β

dr

)m

e1−r > 1

for m sufficiently large.
Since k is Cr, the form Φm has a nontrivial zero, a contradiction. �

1.2.3. Transition theorems.

Theorem 1.2.7. Let k be a Cr field, and let L be a field extension of k.

(i) If L is algebraic over k, then L is Cr.

(ii) If L = k(t), where t is an indeterminate, then L is Cr+1.

(iii) If tr deg(L/k) = s, then L is Cr+s.

Proof.

(i) Let f ∈ L[x1, . . . , xn] be a form of degree d > 0, where n > dr.
Since L is algebraic over k, the coefficients of f generate a finite
extension L0 of k. If we find a nontrivial zero of f over L0, then the
same is a nontrivial zero over L. Thus we reduce to the case where
L is a finite extension of k.

Choose a basis e1, . . . , es of L over k. Introduce new variables
yij with 1 ≤ i ≤ n and 1 ≤ j ≤ s, and substitute

xi =

s∑
j=1

yijej

for all i into f , so that

f(x1, . . . , xn) = F1e1 + · · ·+ Fses,

where each F� ∈ k[{yij}] is a form of degree d in ns variables. Since
n > dr, we have ns > sdr, so Proposition 1.2.6 implies that the F�

have a nontrivial common zero (yij) over k. This means that f has
a nontrivial zero over L.

(ii) Let f ∈ k(t)[x1, . . . , xn] be a form of degree d > 0, where n > dr+1.
Multiplying f by a polynomial in k[t] to clear denominators, we
may assume that f has coefficients in k[t]. Let m be the maximum
of the degrees of these coefficients. Choose s ∈ Z>0 large (later we
will say how large), introduce new variables yij with 1 ≤ i ≤ n and
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0 ≤ j ≤ s, and substitute

xi =
s∑

j=0

yijt
j

for all i into f , so that

f(x1, . . . , xn) = F0 + F1t+ · · ·+ Fds+mtds+m,

where each F� ∈ k[{yij}] is a form of degree d in n(s+1) variables.
Because n > dr+1,

n(s+ 1) > (ds+m+ 1)dr

holds for sufficiently large s, and then Proposition 1.2.6 implies that
the F� have a nontrivial common zero (yij) over k. This means that
f has a nontrivial zero over k[t], hence over k(t).

(iii) This follows from (i) and (ii), by induction on s. �

1.2.4. Examples of Cr fields.

(1) A field is C0 if and only if it is algebraically closed. For a general-
ization, see Exercise 1.3.

(2) The following special case of Theorem 1.2.7 is known as Tsen’s
theorem: If L is the function field of a curve over an algebraically
closed field k (that is, L is a finitely generated extension of k of
transcendence degree 1), then L is C1.

(3) The Chevalley–Warning theorem states that finite fields are C1.
This was conjectured by E. Artin and was proved first by Cheval-
ley [Che36], who proved more generally that over a finite field Fq,
a (not necessarily homogeneous) polynomial f of total degree d
in n > d variables with zero constant term has a nontrivial zero.
Warning’s proof [War36] of this proceeded by showing that the
total number of zeros, including the trivial zero, was a multiple of
p := charFq. Ax [Ax64] showed moreover that the number of zeros
was divisible by q, and in fact divisible by qb, where b = �n/d� − 1
is the largest integer strictly less than n/d. For an improvement in
a different direction, observe that Warning’s theorem says that a
hypersurface X in Pn−1 over Fq defined by a homogeneous form of
degree d < n satisfies #X(Fq) ≡ 1 (mod p); this can be extended
to some varieties that are not hypersurfaces, such as smooth pro-
jective rationally chain connected varieties [Esn03, Corollary 1.3];
see [Wit10] for a survey about this and further generalizations.
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(4) Lang proved that if k is complete with respect to a discrete valuation
having algebraically closed residue field, then k is C1. More gen-
erally, if k is a henselian discrete valuation field with algebraically
closed residue field such that the completion k̂ is separable over
k, then k is C1. (See Section B.3 for the definition of henselian.)
This applies in particular if k is the maximal unramified exten-
sion of a complete discrete valuation field with perfect residue field.
For example, the maximal unramified extension Qunr

p of Qp is C1.
See [Lan52] for all these results.

(5) A local field of positive characteristic is C2; see [Lan52, Theorem 8].
More generally, if k is Cr, then k((t)) is Cr+1 [Gre66].

1.2.5. Counterexamples. The field R is not Cr for any r, since for every
n ≥ 1 the equation x21 + · · · + x2n = 0 has no nontrivial solution. The same
argument applies to any formally real field.

E. Artin conjectured that nonarchimedean local fields were C2, the expec-
tation being that if a field k is complete with respect to a discrete valuation
with a Cr residue field, then k should be Cr+1. That nonarchimedean local
fields satisfy the C2 property restricted to degree d forms was proved for d = 2
[Has24] and d = 3 [Dem50,Lew52]. Also Ax and Kochen [AK65] nearly
proved that the field Qp is C2: using model theory they showed that for each
d, for all primes p outside a finite set depending on d, every homogeneous
form of degree d in > d2 variables over Qp has a nontrivial zero. But then
Terjanian [Ter66] disproved Artin’s conjecture by finding a homogeneous
form of degree 4 in 18 variables over Q2 with no nontrivial zero. Later it was
shown that if [k : Qp] < ∞, then k is not Cr for any r [AK81,Ale85]. It
follows that if k is a number field, then k is not Cr for any r (Exercise 1.8).

1.2.6. Open questions.

Question 1.2.8. Is there a field k and r ∈ R≥0 such that k is Cr but not
C�r�?

Question 1.2.9 (E. Artin). Let Qab be the maximal abelian extension of
Q. (The Kronecker–Weber theorem states that Qab is obtained by adjoining
all roots of 1 to Q.) Is Qab a C1 field?

Definition 1.2.10. A field k is called C ′
r if whenever one has homogeneous

forms f1, . . . , fs in n common variables of degrees d1, . . . , ds, respectively,
with n > dr1 + · · ·+ drs, the forms have a nontrivial common zero in kn.

Question 1.2.11 ([Gre69, p. 21]). Is Cr equivalent to C ′
r?

By definition, C ′
r implies Cr. The converse holds at least for fields k

such that for every d ≥ 1 there exists a homogeneous form of degree d in
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dr variables over k with no nontrivial zero [Lan52, Theorem 4]. The C ′
r

property is studied in more detail in [Pfi95, Chapter 5].

Question 1.2.12. What general classes of varieties are guaranteed to have
a k-point whenever k is C1?

Question 1.2.13 (Ax). Is every perfect PAC field C1? (See Section B.5 for
the definition of PAC.)

By [Kol07a, Theorem 1], every PAC field of characteristic 0 is C1, and
even C ′

1. See [FJ08, 21.3.6] for a few other positive partial results toward
Question 1.2.13.

1.3. Galois theory

1.3.1. Gk-sets. Let k be a field. Let Gk be the profinite group Gal(ks/k).
A Gk-set is a set S (with the discrete topology) equipped with a continuous
action of Gk. A morphism of Gk-sets is a map of sets respecting the Gk-
actions. A Gk-set is called finite if it is finite as a set. For example, if H is
an open subgroup of Gk, then Gk/H equipped with the left multiplication
action of Gk is a finite Gk-set.

A continuous action of Gk on a set S is called transitive if S �= ∅ and
for every s1, s2 ∈ S there exists g ∈ Gk such that gs1 = s2. In this case, if
we fix s ∈ S and define H = StabGk

(s) := {g ∈ Gk : gs = s}, then H is
open and the map Gk/H → S sending gH ∈ Gk/H to gs is an isomorphism
of Gk-sets; in particular, S is finite. Every Gk-set decomposes uniquely as a
disjoint union of transitive Gk-sets, the orbits.

1.3.2. Étale algebras. The problem with field extensions L ⊇ k is that if
we change the base by tensoring with a field extension k′ of k, the resulting
algebra L ⊗k k′ over k′ need not be a field. The notion of étale algebra
generalizes the notion of finite separable field extension in order to fix this
problem.

Definition 1.3.1. A k-algebra L is called étale if it satisfies any of the
following equivalent conditions:

• L is a direct product of finite separable extensions of k;
• the ks-algebra L⊗k ks is a finite product of copies of ks;
• the morphism of schemes SpecL→ Spec k is finite and étale in the

sense of Section 3.5.8 (see Proposition 3.5.35).

A morphism between two étale k-algebras is a homomorphism of k-
algebras. If L is an étale k-algebra and k′ is any field extension of k, then
L⊗k k

′ is an étale k′-algebra.



92 3. Properties of morphisms

As mentioned above, Yoneda’s lemma implies thatN is unique if it exists.
Moreover, if X is a group scheme (see Section 5.1) and N exists, then the
functor of points of N factors through Groups, so N is a group object in
the category of smooth R-schemes; that is, N is a smooth group scheme over
R.

Néron has his name attached to the concept because in 1964 he proved
that N exists when X is an abelian variety over the fraction field of a discrete
valuation ring; see Section 5.7.5. Here is a more recent result, in a different
direction:

Theorem 3.5.83 (Liu and Tong). Let S be an integral Dedekind scheme.
Let K = k(S). Let X be a nice curve over K of positive genus. Let X → S
be the minimal regular proper model of X (see Section 9.3.1.6). Then the
smooth locus X smooth of X → S is a Néron model of X.

Proof. See [LT16, Theorem 1.1]. �

3.6. Rational maps

3.6.1. Rational maps and domain of definition.

(Reference: [EGA I, §7])

Definition 3.6.1 ([EGA I, 7.1.2]). Let X and Y be S-schemes. Consider
pairs (U, φ) in which U is a dense open subscheme of X and φ : U → Y is an
S-morphism. Call pairs (U, φ) and (V, ψ) equivalent if φ and ψ agree on a
dense open subscheme of U ∩ V . A rational map X ��� Y is an equivalence
class of such pairs. In other words,

{rational maps X ��� Y } := lim−→
U

HomS(U, Y ),

where U ranges over dense open subschemes of X ordered by reverse inclu-
sion.

Definition 3.6.2 ([EGA I, 7.2.1]). The domain of definition of a rational
map is the union of the U as (U, φ) ranges over the equivalence class. It is
an open subscheme of X.

Definition 3.6.2 is useful mainly when X is reduced and Y is separated:

Proposition 3.6.3. Let W be the domain of definition of a rational map
X ��� Y , where X is reduced and Y is separated. Then there is a unique
ξ : W → Y such that (W, ξ) belongs to the equivalence class.

Proof. If (U, φ) and (V, ψ) are equivalent, so φ and ψ agree on a dense open
subscheme of U ∩ V , then by Corollary 2.3.23 they agree on all of U ∩ V .
Therefore all the (U, φ) can be glued to give (W, ξ). �
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Remark 3.6.4. One can drop the hypothesis that X is reduced in Propo-
sition 3.6.3 if one replaces “dense” by the stronger property “scheme-theo-
retically dense” everywhere in Definition 3.6.1. This leads to the notion of
pseudo-morphism, a variant of the notion of rational map; see [EGA IV4,
20.2.1].

3.6.2. Rational points over a function field.

Proposition 3.6.5. Let X be an integral k-variety, and let Y be an arbitrary
k-variety. Let K = k(X).

(a) The natural map

{rational maps from X to Y } −→ Y (K)

[φ : U → Y ] �−→ (the composition SpecK ↪→ U
φ→ Y )

is a bijection.

(b) If moreover X is a regular curve and Y is proper, then we get bi-
jections

Homk(X,Y )
∼→ {rational maps from X to Y } ∼→ Y (K).

Proof.

(a) Every dense open subscheme of X contains a dense affine open sub-
scheme; i.e., the inverse system (SpecAi) of dense affine open sub-
schemes of X is cofinal in the system of all dense open subschemes.
Thus we have bijections

{rational maps from X to Y } = lim−→
U

Y (U) (by definition)

� lim−→Y (Ai) (by cofinality)
� Y (lim−→Ai) (by Remark 3.1.11)
= Y (K) (since lim−→Ai = K).

(b) The first bijection comes from the valuative criterion for properness:
The map Y (X)→ Y (K) is bijective by Remark 3.2.14. The second
bijection was given already in (a). �

3.6.3. Dominant rational maps.

Definition 3.6.6. A rational map X ��� Y is dominant if and only if for
some (or equivalently, for each) representative (U, φ), the image φ(U) is dense
in Y .
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Corollary 3.6.7 (cf. [Har77, Theorem I.4.4]). The functor{
integral k-varieties,

dominant rational maps

}
←→

{
finitely generated field extensions of k,

k-algebra homomorphisms

}opp

X �−→ k(X)

is an equivalence of categories.

Proof. A rational map X ��� Y is dominant if and only if it maps the
generic point of X to the generic point of Y ; thus we have a functor from
left to right. Restricting the bijection in Proposition 3.6.5(a) to the dominant
rational maps X ��� Y shows that the functor is fully faithful. Every finitely
generated field extension of k is isomorphic to the function field of an integral
k-variety (cf. Proposition 2.2.13); i.e., the functor is essentially surjective. �

Definition 3.6.8. If X is an integral k-variety, the set of birational maps
X ��� X forms a group BirX. By Corollary 3.6.7, BirX is isomorphic to
the group Aut(k(X)/k) of automorphisms of the function field over k.

Example 3.6.9. The group BirPn is also called the Cremona group.

Definition 3.6.10. If π : X → Y is a dominant rational map between inte-
gral k-varieties of the same dimension, then k(X) may be viewed as a finite
extension of k(Y ), and we define the degree of π as deg π := [k(X) : k(Y )].

3.6.4. Lang–Nishimura theorem. If π : X → Y is a morphism of k-
varieties and X has a k-point x, then Y has a k-point, namely π(x). If π is
only a rational map, this argument fails, since π might be undefined at x,
but surprisingly the same conclusion can be drawn, under mild hypotheses.
The following theorem is due to Lang [Lan54] and Nishimura [Nis55].

Theorem 3.6.11 (Lang–Nishimura theorem). Let X ��� Y be a rational
map between k-varieties, where Y is proper. If X has a smooth k-point, then
Y has a k-point.

Proof. Let x be the given smooth k-point on X. Replacing X by an open
neighborhood of x, we may assume that X is integral. Let n = dimX.
Proposition 3.5.66 gives the isomorphism in the chain of embeddings

OX,x ↪→ ÔX,x � k[[t1, . . . , tn]] ↪→ F := k((t1))((t2)) · · · ((tn)).

Since F is a field (an iterated formal Laurent series field), the fraction field
FracOX,x = k(X) embeds in F . By Proposition 3.6.5(a), the rational map
gives an element of Y (k(X)), and hence an element of Y (F ). Applying
Lemma 3.6.12 n times shows that Y has a k-point. �
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Lemma 3.6.12. Let Y be a proper k-variety. Let L be a field extension
of k, and let L((t)) be the formal Laurent series field over L. If Y has an
L((t))-point, then Y has an L-point.

Proof. By the valuative criterion for properness (Theorem 3.2.12), the ele-
ment of Y (L((t))) extends to an element of Y (L[[t]]), which reduces modulo
t to an element of Y (L). �

Remark 3.6.13. The Lang–Nishimura theorem can be explained geomet-
rically as follows. If dimxX > 0, then one can show that X contains an
integral curve C such that

• x is a smooth point of C, and

• C meets the domain of definition of the rational map φ.

The valuative criterion for properness shows that φ|C : C ��� Y extends to
be defined at x. It maps x to a k-point of Y . (The reason that we did not
present the proof this way is that the existence of C is not immediate.)

Remark 3.6.14. For another proof of Theorem 3.6.11, see Exercise 3.11.

Remark 3.6.15. In Theorem 3.6.11 one cannot conclude that Y has a
smooth k-point.

The Lang–Nishimura theorem implies that the property of having a
k-point is a birational invariant of smooth, proper, integral k-varieties:

Corollary 3.6.16. Let X and Y be smooth, proper, integral k-varieties that
are birational to each other. Then X has a k-point if and only if Y has a
k-point.

3.7. Frobenius morphisms

(Reference: [SGA 5, XV])

Let p be a prime number. Let X be a scheme of characteristic p, i.e.,
a scheme with pOX = 0. Then the absolute Frobenius morphism is the
morphism of schemes FX : X → X that is the identity on topological spaces
and that induces the pth-power homomorphism f �→ fp on each ring OX(U).

Now let S be a scheme of characteristic p, and let X be an S-scheme.
Let X(p) be the base extension of X by FS . Then the universal property
of the fiber product gives a morphism FX/S : X → X(p) called the relative



Chapter 8

Cohomological
obstructions to rational
points

In 1970, Manin [Man71] explained how, for a variety X over a global field
k, elements of BrX could produce obstructions to the local-global principle.
Meanwhile, Fermat’s method of infinite descent was generalized to show how
a torsor under an algebraic group G over X could give rise to an obstruc-
tion, by Chevalley and Weil [CW30] for finite G, by Colliot-Thélène and
Sansuc [CTS77, CTS80, CTS87] for commutative G, and by Harari and
Skorobogatov [HS02] for general G. In this chapter, we will explain these
and related obstructions.

8.1. Obstructions from functors

8.1.1. The F -obstruction to the local-global principle. Let k be a
global field, and let A be its adèle ring. Let F : Schemesoppk → Sets be a
functor. For a k-algebra L, write F (L) for F (SpecL). Let X be a k-variety.

Suppose that A ∈ F (X). For each k-algebra L, define evA : X(L) →
F (L) as follows: Given x ∈ X(L), the corresponding morphism SpecL

x→ X
induces a map F (X) → F (L), sending A to some element of F (L) called

231
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evA(x) or A(x). Then the diagram

X(k) �
� ��

evA
��

X(A)

evA
��

F (k) �� F (A)

(8.1.1)

commutes. Let X(A)A be the subset of X(A) consisting of elements whose
image in F (A) lies in the image of F (k)→ F (A). Then (8.1.1) shows that
X(k) ⊆ X(A)A. In other words, A puts constraints on the locus in X(A)
where k-points can lie.

Imposing the constraints for all A ∈ F (X) yields the subset

X(A)F = X(A)F (X) :=
⋂

A∈F (X)

X(A)A,

again containing X(k).

Definition 8.1.2. If X(A) �= ∅ but X(A)F = ∅, then we say that there is
an F -obstruction to the local-global principle; in this case X(k) = ∅.

8.1.2. The F -obstruction to weak approximation. We have X(A) ⊆
X(
∏

kv) =
∏

X(kv); cf. Exercise 3.4. (If X is proper, then all three sets are
equal.) There is a variant of Definition 8.1.2 in which X(A) is replaced by
X(
∏

kv) =
∏

X(kv) and F (A) is replaced by
∏

F (kv) in (8.1.1); call the
resulting set X(

∏
kv)

F .

Definition 8.1.3. If X(
∏

kv)
F �= X(

∏
kv), then we say that there is an

F -obstruction to weak approximation. Usually this terminology is used in
a context where X(

∏
kv)

F is known to be closed in X(
∏

kv), in which case
such an F -obstruction would imply that X(k) is not dense in X(

∏
kv).

8.1.3. Examples. In order for the F -obstruction to be nontrivial, F must
be such that F (k)→ F (A) is not surjective. In order for the F -obstruction
to be useful, the image of F (k) → F (A) must be describable in some way.
This is so in the following two examples, as will be explained in subsequent
sections.

Example 8.1.4. Taking F = Br defines the Brauer set X(A)Br.

Example 8.1.5. Taking F = H1(−, G) for an affine algebraic group G over
k defines a set X(A)H

1(X,G).

Remark 8.1.6. To avoid having to understand the Brauer group of a non-
noetherian ring like A, in Section 8.2 we will replace BrA in (8.1.1) by⊕

v Br kv when defining X(A)Br; in fact, the Brauer–Manin obstruction
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was originally defined using
⊕

v Br kv. It turns out that the natural ho-
momorphism BrA →

⊕
v Br kv is an isomorphism [Čes15, Theorem 2.13],

so the resulting set X(A)Br is the same. Similarly, we replace H1(A, G) by∏
v H

1(kv, G) in Section 8.4; the natural map H1(A, G) →
∏

v H
1(kv, G) is

an injection (a consequence of [Čes15, Theorem 2.18]), so again the resulting
set X(A)H

1(X,G) is the same.

Question 8.1.7. Are there other functors that one could use to obtain
obstructions?

8.1.4. Functoriality. The proofs of the following three statements are left
to the reader as Exercise 8.1.

Proposition 8.1.8. Let π : X ′ → X be a morphism of k-varieties. Let
x′ ∈ X ′(L) for some k-algebra L, and let A ∈ F (X). Then the two ways of
evaluating A on x′ yield the same result: If we define x := π(x) ∈ X(L) and
A′ := π∗A ∈ F (X ′), then A′(x′) = A(x) in F (L).

Corollary 8.1.9. The assignment X �→ X(A)F is functorial in X.

Corollary 8.1.10. Let π : X ′ → X be a morphism of k-varieties. If the map
F (X) → F (X ′) is surjective, then X ′(A)F is the inverse image of X(A)F

under X ′(A)→ X(A).

8.2. The Brauer–Manin obstruction

Throughout this section, k is a field, and X is a k-variety.

8.2.1. Evaluation. Let A ∈ BrX. If L is a k-algebra and x ∈ X(L), then
SpecL

x→ X induces a homomorphism BrX → BrL, which maps A to an
element of BrL that we call A(x); cf. Section 8.1.1.

8.2.2. The Brauer set.

(Reference: [Sko01, §5.2])

Now suppose that k is a global field. Fix A ∈ BrX.

Proposition 8.2.1. If (xv) ∈ X(A), then A(xv) = 0 for almost all v.

Proof. By Corollary 6.6.11, for some finite set of places S (containing all
the archimedean places), we can spread out X to a finite-type Ok,S-scheme
X and spread out A to an element A ∈ BrX . Enlarging S if necessary, we
may also assume that xv ∈ X (Ov) for all v /∈ S. Then A(xv) comes from an
element A(xv) ∈ BrOv. But BrOv = 0 by Corollary 6.9.3. �
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Thus A determines a map

X(A) −→ Q/Z

(xv) �−→ (A, (xv)) :=
∑
v

invv(A(xv)).

Proposition 8.2.2. If x ∈ X(k) ⊆ X(A), then (A, x) = 0.

Proof. Use the commutativity of

(8.2.3)

X(k) �
� ��

��

X(A)

��

0 �� Br k ��
⊕

v
Br kv

∑
invv �� Q/Z �� 0. �

Remark 8.2.4. Compare (8.2.3) with (8.1.1).

Definition 8.2.5. For A ∈ BrX, define

X(A)A := { (xv) ∈ X(A) : (A, (xv)) = 0 } .

Also define

X(A)Br :=
⋂

A∈BrX

X(A)A.

This agrees with the definition in Example 8.1.4, because of Remark 8.1.6.

Corollary 8.2.6. We have X(k) ⊆ X(A)Br.

Proof. This is a restatement of Proposition 8.2.2. �

8.2.3. The Brauer–Manin obstruction to the local-global principle.

Definition 8.2.7. One says that there is a Brauer–Manin obstruction to
the local-global principle for X if X(A) �= ∅, but X(A)Br = ∅.

Definition 8.2.8. For a class of nice varieties X over global fields, one says
that the Brauer–Manin obstruction to the local-global principle is the
only one if the implication

X(A)Br �= ∅ =⇒ X(k) �= ∅

holds.

See Conjecture 9.2.27 for a setting in which it is conjectured that the
Brauer–Manin obstruction to the local-global principle is the only one.
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8.2.4. Brauer evaluation is locally constant.

Proposition 8.2.9. Let k be a local field, and let X be a k-variety. Let
A ∈ BrX.

(a) The map X(k) → Br k sending x to A(x) is locally constant with
respect to the analytic topology on X(k).

(b) If k = R, the map X(R) → BrR is constant on each connected
component of X(R).

Proof.

(a) Given α ∈ Br k, we need to show that {x ∈ X(k) : A(x) = α}
is open in X(k). The structure morphism X → Spec k induces a
homomorphism Br k → BrX, which sends α to a “constant” element
αX ∈ BrX. Replacing A by A−αX subtracts α from all the values
A(x). Thus we may reduce to showing that {x ∈ X(k) : A(x) = 0}
is open in X(k).

Let x0 ∈ X(k). Consider pairs (Y, y) where Y is an étale X-
scheme, Y is affine, and y ∈ Y (k) maps to x0 ∈ X(k). Let R be
the direct limit of O(Y ) over the system of such (Y, y). Then R is
the henselization of the local ring OX,x0 , so R is a henselian local
ring with residue field k (see Section B.3). For each (Y, y), we have
morphisms Spec k → SpecR → Y → X, inducing homomorphisms
BrX → BrY → BrR→ Br k, the composition of which sends A to
A(x0) = 0. By Remark 6.9.2, the homomorphism BrR→ Br k is an
isomorphism, so A maps to 0 already in BrR. By Theorem 6.4.3, A
maps to 0 in BrY for some (Y, y). Let π : Y → X be the structure
morphism, which is étale. By functoriality as in Proposition 8.1.8,
A(π(y)) = 0 for every y ∈ Y (k). Since π : Y → X is étale, Proposi-
tion 3.5.73 shows that π(Y (k)) is open in X(k), and it contains x0.

(b) A locally constant map is constant on connected components. �

Remark 8.2.10. The proof of (b) works for every local field k. But if k is
nonarchimedean, then each connected component of X(k) is a point. And if
k = C, then Br k = 0. So only the case k = R is interesting.

Corollary 8.2.11. Let k be a global field. Let X be a k-variety.

(a) For any A ∈ BrX, the map X(A)→ Q/Z sending (xv) to (A, (xv))
is locally constant.

(b) For any A ∈ BrX, the set X(A)A is open and closed in X(A).
(c) The set X(A)Br is closed in X(A).

(d) Let X(k) be the closure of X(k) in X(A). Then X(k) ⊆ X(A)Br.
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(e) If X is proper and X(A)Br �= X(A), then weak approximation for
X fails. In this case, one says that there is a Brauer–Manin ob-
struction to weak approximation for X.

Proof.

(a) Combine Propositions 8.2.1 and 8.2.9.

(b) A fiber of a locally constant map is open and closed.

(c) The set X(A)Br is the intersection of the closed sets X(A)A as A
varies.

(d) This follows from (c) and Corollary 8.2.6.

(e) If X(k) ⊆ X(A)Br � X(A), then X(k) �= X(A), while X(A) =∏
v X(kv) if X is proper. Thus weak approximation for X fails. �

Remark 8.2.12. Suppose that X is a proper variety over a global field k.
For a place v of k, what does a locally constant function f on X(kv) look
like?

• Suppose that v is archimedean. Then f is constant on each con-
nected component of X(kv).

• Suppose that v is nonarchimedean. Let Ov be the valuation ring,
and let πv ∈ Ov be a uniformizer. Then X(kv) = X(Ov) =
lim←−n

X(Ov/π
n
v ), which is compact, and f factors through the finite

set X(Ov/π
n
v ) for some n.

Now suppose that A ∈ BrX. Then the remarks above apply to the eval-
uation map X(kv) → Br kv given by A for each v, and this map is 0 for
all but finitely many v, by Proposition 8.2.1. Thus the map X(A) → Q/Z
sending (xv) to (A, (xv)) admits a finite explicit description, in principle. In
Section 8.2.5, we will see an example of this.

8.2.5. Example: Iskovskikh’s conic bundle with 4 singular fibers.

(References: [Isk71], [Sko01, Chapter 7])

Let U be the smooth, affine, geometrically integral surface

y2 + z2 = (3− x2)(x2 − 2)

over Q. We will construct a nice Q-surface X containing U as an open
subscheme, and then we will show that there is a Brauer–Manin obstruction
to the local-global principle for X.
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8.2.5.1. Conic bundles. The X above will be a conic bundle. Before con-
structing it, let us discuss conic bundles more generally.

A (possibly degenerate) conic over a field k is the zero locus in P2 of a
nonzero degree 2 homogeneous polynomial s in k[x0, x1, x2]. It is a diagonal
conic if s is ax20 + bx21 + cx22 for some a, b, c ∈ k not all zero.

The generalization to conic bundles will be easier if we first re-express
the situation over k in a coordinate-free way. If E is the k-vector space
with basis x0, x1, x2, then P2 = Proj k[x0, x1, x2] = Proj SymE =: PE, and
a degree 2 homogeneous polynomial s is an element of Sym2E. We have
E = L0 ⊕ L1 ⊕ L2, where Li = kxi. To say that s = 0 is a diagonal conic is
to say that s = s0 + s1 + s2 for some si ∈ kx2i = L⊗2

i not all zero.
If B is a k-scheme, then a conic bundle over B is the zero locus of

s in PE := ProjSymE , where E is a rank 3 vector bundle on B, and
s ∈ Γ(B, Sym2 E ) is a section vanishing nowhere on B. In the special case
where E = L0 ⊕L1 ⊕L2 for some line bundles Li on B, and s = s0+s1+s2
for some si ∈ Γ(B,L ⊗2

i ) such that s0, s1, s2 do not simultaneously vanish
anywhere on B, the zero locus of s is called a diagonal conic bundle.
8.2.5.2. Châtelet surfaces. We now specialize further to the following setting:

k : field of characteristic not 2,

B := P1
k,

L0 := O, s0 := 1,

L1 := O, s1 := −a,
L2 := O(2), s2 := −F (w, x),

where a ∈ k×, and F (w, x) ∈ Γ(P1
k,O(4)) is a separable homogeneous poly-

nomial of degree 4 in the homogeneous coordinates w, x on B = P1. The
result is a nice k-surface X containing the affine surface

y2 − az2 = f(x)

as an open subscheme, where f(x) is the dehomogenization F (1, x). Such a
surface X is called a Châtelet surface. It has a map to B = P1, and the
fibers of X → P1 are conics. In fact, all the fibers of X → P1 above points
in P1(k) are nice conics, except above four points (the zeros of F ) where the
fiber degenerates to the union of two intersecting lines in P2.
8.2.5.3. Iskovskikh’s example. Iskovskikh’s surface is the Châtelet surface X
over Q given by the choices a := −1 and f(x) := (3− x2)(x2 − 2) ∈ Q[x].

Remark 8.2.13. One could choose other nice compactifications X ′ of the
affine surface

U : y2 + z2 = (3− x2)(x2 − 2).
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For instance, one could let X ′ be the blowup of X at a closed point of X−U .
But the question of whether such a compactification has a rational point is
independent of the choice, by Corollary 3.6.16.

Let K = k(X). As explained in Section 1.5.7.4, given two elements
a, b ∈ K×, one can define a quaternion algebra with class (a, b) ∈ (BrK)[2].
Let A = (3− x2,−1) ∈ BrK. By Proposition 6.6.7(i), we may view BrX as
a subgroup of BrK.

Proposition 8.2.14. The element A ∈ BrK lies in the subgroup BrX.

Proof. By Theorem 6.8.3, we need only check that A has no residue along
any integral divisor on X. Therefore it will suffice to find a Zariski open
covering {Ui} of X such that A extends to an element of BrUi for each i.

To accomplish this, we rewrite A in other ways. Define B := (x2−2,−1)
and C := (3/x2 − 1,−1) in BrK. Then A + B = (y2 + z2,−1) = 0 by
Proposition 1.5.23 since y2 + z2 = NK(

√
−1)/K(y + z

√
−1). Also, A − C =

(x2,−1) = 0 since x2 is a square in K. But A,B,C are all killed by 2, so
A = B = C.

Let P3−x2 and Px2−2 be the closed points of P1
Q given by 3 − x2 = 0

and x2 − 2 = 0, respectively. Now A = (3− x2,−1) represents a quaternion
Azumaya algebra on all of X except along integral divisors where 3− x2 or
−1 has a zero or pole. Thus A comes from BrUA, where

UA := X − (fiber above ∞)− (fiber above P3−x2).

Similarly, B ∈ BrUB, where

UB := X − (fiber above ∞)− (fiber above Px2−2),

and C ∈ BrUC , where

UC := X − (fiber above 0)− (fiber above P3−x2).

Since UA ∪UB ∪UC = X (in fact, UB ∪UC = X), the element A = B = C ∈
BrK belongs to BrX. �

From now on, we consider A as an element of BrX. To evaluate A at a
point P ∈ X(k) for any field k ⊃ Q, choose one of

(3− x2,−1), (x2 − 2,−1), (3/x2 − 1,−1)

such that the rational function of x is defined and nonzero at P , so that A
extends to an element of the Brauer group of an open subset UA, UB , or
UC containing P , and replace the rational function by its value at P . For
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example, if P ∈ UA(Qp) for some p ≤ ∞, then

invpA(P ) = invp(3− x(P )2,−1)

=

{
0 if 3− x(P )2 ∈ NQp(

√
−1)/Qp

(Qp(
√
−1)×),

1/2 otherwise,

by Proposition 1.5.23.

Proposition 8.2.15. We have X(A) �= ∅, but X(A)A = ∅. In particu-
lar, X(Q) = ∅, and there is a Brauer–Manin obstruction to the local-global
principle for X.

Proof. A computation involving Hensel’s lemma (Theorem 3.5.63(a)) shows
that X(A) �= ∅.

Suppose that P ∈ X(Qp) for some p ≤ ∞. If p �= ∞, let vp : Qp →
Z ∪ {∞} denote the p-adic valuation. Let x = x(P ) ∈ Qp ∪ {∞}.
Case I: p /∈ {2,∞}. If vp(x) < 0 (or x = ∞), then 3/x2 − 1 ∈ Z×

p . If
vp(x) ≥ 0, then either 3 − x2 or x2 − 2 is in Z×

p because their sum is 1. In
either case, A(P ) has the form (u1, u2) with u1, u2 ∈ Z×

p , so A(P ) ∈ BrZp

(this uses p �= 2). But BrZp = 0 by Corollary 6.9.3, so invpA(P ) = 0.
Case II: p = ∞. The leading coefficient of (3 − x2)(x2 − 2) is not a sum
of squares in R, so any P ∈ X(R) satisfies x(P ) �= ∞. Then x(P )2 < 3
or x(P )2 > 2, so 3 − x(P )2 or x(P )2 − 2 is in R>0 = NC/R(C×). Thus
inv∞A(P ) = 0.
Case III: p = 2. Let P ∈ X(Q2). Let x = x(P ). Then

v2(x) > 0 =⇒ 3− x2 ≡ 3 ≡ −1 (mod 4)

v2(x) = 0 =⇒ x2 − 2 ≡ −1 (mod 4)

v2(x) < 0 =⇒ 3/x2 − 1 ≡ −1 (mod 4).

But an element of Z2 that is −1 mod 4 is not of the form a2 + b2 with
a, b ∈ Q2, so it is not a norm from Q2(

√
−1)/Q2. Thus inv2A(P ) = 1/2.

Cases I, II, III imply that if (Pp) ∈ X(A), then (A, (Pp)) = 1/2 �= 0.
Thus X(A)A = ∅. �

Remark 8.2.16. Iskovskikh’s original proof that X(Q) = ∅ used only ad hoc
methods based on quadratic reciprocity. Ironically, according to [CTPS16,
§1], Iskovskikh’s intention was to produce an example that the Brauer–Manin
obstruction could not explain! It was only a few years later that it was
realized that the Brauer–Manin obstruction could explain it, as above.

Remark 8.2.17. Theorem B of [CTSSD87a,CTSSD87b] shows that for
any Châtelet surface over a number field, the Brauer–Manin obstruction
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to the local-global principle is the only one, and even better, the Brauer–
Manin obstruction to weak approximation is the only one; that is, X(k) is
dense in X(A)Br. These results were generalized in [Sal90,CT90,SS91] to
conic bundle surfaces over P1 with at most five degenerate fibers. Moreover,
Schinzel’s hypothesis on prime values of polynomials would imply the same
when the number of degenerate fibers is arbitrary, and more generally for
“generalized Severi–Brauer bundles over P1” [CTSD94, Theorem 4.2]. A
key ingredient in these works is the fibration method ; for an introduction,
see [CT92, §3] and [CT98, §2], and for examples of the further development
of this method, see [Har94,Har97,Lia14,HW16].

8.2.6. Effectivity. Let X be a nice variety over a global field k. One can
imagine the following procedure for attempting to decide whether X has a
k-point:

• by day, search for k-points;
• by night, search for a finite set of Azumaya OX -algebras that ob-

structs k-points.

If the Brauer–Manin obstruction to the local-global principle is the only one
for X, then this procedure terminates successfully. See [Poo06, Remark 5.3]
for more details.

Under additional assumptions on X, one can give more reasonable al-
gorithms and even compute a kind of finite description of X(A)Br; see
[KT08,KT11].

8.3. An example of descent

Suppose (as in [Fly00, §6]) that we want to find the rational solutions to

(8.3.1) y2 = (x2 + 1)(x4 + 1).

Write x = X/Z, where X,Z are integers with gcd 1. Then y = Y/Z3 for
some integer Y with gcd(Y, Z) = 1. We get

Y 2 = (X2 + Z2)(X4 + Z4).

If a prime p divides both X2 + Z2 and X4 + Z4, then

Z2 ≡ −X2 (mod p),

Z4 ≡ −X4 (mod p),

so

2Z4 = (Z2)2 + Z4 ≡ (−X2)2 + (−X4) = 0 (mod p),
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and similarly

2X4 = (X2)2 +X4 ≡ (−Z2)2 + (−Z4) = 0 (mod p).

But gcd(X,Z) = 1, so this forces p = 2. (Alternatively, the resultant of the
homogeneous forms X2 + Z2 and X4 + Z4 is 4, so the only prime p modulo
which these forms have a common nontrivial zero is p = 2.)

Each odd prime p divides at most one of X2 +Z2 and X4 +Z4, but the
product (X2 + Z2)(X4 +Z4) is a square, so the exponent of p in each must
be even. In other words,

X4 + Z4 = cW 2

for some c ∈ {±1,±2}. Since X,Z are not both zero, the left-hand side is
positive, so c > 0. Thus c ∈ {1, 2}.

Dividing by Z4 and setting w = W/Z2, we obtain a rational point on
one of the following smooth curves:

Y1 : w2 = x4 + 1,

Y2 : 2w2 = x4 + 1.

Each curve Yc is of geometric genus g where 2g + 2 = 4; i.e., g = 1. The
point (x,w) = (0, 1) belongs to Y1(Q), and (1, 1) belongs to Y2(Q), so both
Y1 and Y2 are open subsets of elliptic curves.

One can show that Y1 and Y2 are birational to the curves

32A2 : y2 = x3 − x,

64A1 : y2 = x3 − 4x,

where the labels are as in [Cre97]. A “2-descent” (or a glance at [Cre97,
Table 1]!) shows that both elliptic curves have rank 0. One also can compute
that their torsion subgroups are isomorphic to Z/2Z× Z/2Z. Thus the nice
models of Y1 and Y2 have four rational points each. It follows that rational
points on Y1 satisfy x = 0 (there are two more rational points at infinity),
and rational points on Y2 satisfy x ∈ {±1}. So (8.3.1) has six solutions,
namely,

(0, 1), (0,−1), (1, 2), (1,−2), (−1, 2), (−1,−2).

8.3.1. Explanation. We are asked to find U(Q), where U is the smooth
affine curve

y2 = (x2 + 1)(x4 + 1)

in A2
Q. Let X be the nice genus 2 curve over Q containing U as an open

subscheme; explicitly, X = Proj k[x, y, z]/(y2 − (x2 + z2)(x4 + z4)), where
deg x = deg z = 1 and deg y = 3. This description shows also that X − U
consists of two rational points. In particular, finding U(Q) is equivalent to
finding X(Q), and the latter is finite by Faltings’s theorem (Theorem 2.6.8).
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Let Z be the nice curve over Q birational to the curve in (x, y, w)-space
defined by the system

y2 = (x2 + 1)(x4 + 1),

w2 = x4 + 1,

so k(Z) = Q(x,
√
x2 + 1,

√
x4 + 1). For c ∈ Q×, let Zc be the twist of Z that

is birational to the curve

y2 = (x2 + 1)(x4 + 1),

cw2 = x4 + 1.

For each c, there is a degree 2 morphism

Zc −→ X

(x, y, w) �−→ (x, y).

The argument of the previous section can be reinterpreted as follows:

• Each point in X(Q) is the image of fc : Zc(Q) → X(Q) for some
c ∈ Q×.

• Up to multiplying c by Q×2, there are only finitely many c ∈ Q×

for which Zc has Qp-points for all p ≤ ∞. Moreover, such a finite
set of c’s can be computed effectively.

The finite set of c’s turned out to be {1, 2}. Thus the problem of determining
X(Q) was reduced to the problem of determining Zc(Q) for c ∈ {1, 2}.

If Yc is the nice genus 1 curve birational to

cy2 = x4 + 1,

then we have a morphism

πc : Zc −→ Yc

(x, y, w) �−→ (x,w).

Fortunately, for c ∈ {1, 2}, the curve Yc is an elliptic curve of rank 0, so
Yc(Q) = Yc(Q)tors is a computable finite set. We determine the Q-points in
the 0-dimensional preimage π−1

c (Yc(Q)) ⊂ Zc; this gives Zc(Q). Finally we
compute X(Q) =

⋃
c∈{1,2} fc(Zc(Q)).

Remark 8.3.2. The elliptic curve

E : y2 = (t+ 1)(t2 + 1)

is dominated by X, by the morphism

φ : X −→ E

(x, y) �−→ (x2, y).
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Unfortunately, the approach of computing E(Q) and then computing φ−1(P )
for each P ∈ E(Q) cannot be carried out directly, since E(Q) is infinite, of
rank 1. Moreover, one can show that the Jacobian J of X is isogenous to
E × E, so rkJ(Q) = 2 is not less than g(X) = 2, so Chabauty’s method
(see [Ser97, §5.1] or [MP12]) cannot be applied directly to X. On the
other hand, X has two independent maps to E, so the Demyanenko–Manin
method [Ser97, §5.2] could be applied to determine X(Q).

8.3.2. Galois covering. One of the key points is the argument was that
there are only finitely many c such that Zc has Qp-points for all p ≤ ∞.
What makes this work is the fact that Z → X is a Galois covering.

Let us first explain why f : Z → X is étale. Over the affine open subset
V1 of U ⊆ X where x4 + 1 is nonvanishing, the open subset f−1V1 ⊆ Z
is obtained by adjoining

√
x4 + 1 to the affine coordinate ring; this is an

étale extension. Similarly, over the affine open subset V2 of U where x2 + 1
is nonvanishing, f−1V2 is obtained by adjoining

√
x2 + 1. Since V1 and V2

cover U , it follows that f is étale above U . A similar argument shows that f
is étale above the other affine open piece U ′ of X. Thus f : Z → X is étale.

Remark 8.3.3. The argument that f is étale is a special case of the proof
of Abhyankar’s lemma [SGA 1, X.3.6]. It is analogous to the proof that
the field Q(

√
15,
√
3) = Q(

√
15,
√
5) is an everywhere unramified extension

of Q(
√
15).

In fact, the following shows that Z → X is a Galois covering with Galois
group Z/2Z:

Proposition 8.3.4. Let Z → X be an étale morphism between nice k-curves.
If k(Z)/k(X) is a Galois extension of field with Galois group G, then Z → X
is a Galois covering with Galois group G.

Proof. By the equivalence of categories between curves and function fields,
the left G-action on k(Z) induces a right G-action on Z considered as an
X-scheme. Since k(Z)/k(X) is Galois, the X-morphism

ψ : Z ×G −→ Z ×X Z

is an isomorphism above the generic point of X. By spreading out (The-
orem 3.2.1(iv)), ψ gives an isomorphism from an open dense subscheme of
Z ×G to an open dense subscheme of Z ×X Z. Both Z ×G and Z ×X Z are
smooth, proper, and 1-dimensional over k, so any birational maps between
their components are isomorphisms. �
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8.4. Descent

(Reference: [Sko01, §5.3])

In our example, Z was a Z/2Z-torsor over X. We now generalize by
replacing Z/2Z by an arbitrary smooth affine algebraic group G over k.
When we speak of a G-torsor over X, we mean a right fppf GX-torsor over
X, where GX is the base extension. Throughout the rest of Chapter 8, all
cohomology is fppf cohomology, and we use H1(X,G) as an abbreviation
for the pointed set Ȟ

1
fppf(X,G) (which is a group if G is commutative). By

Theorem 6.5.10(i), isomorphism classes of G-torsors over X are in bijection
with H1(X,G).

8.4.1. Evaluation. Let k be a field. Let X be a k-variety. Let G be a
smooth algebraic group over k. Let Z

f→ X be an G-torsor over X, and
let ζ be its class in H1(X,G). If x ∈ X(k), then the fiber Zx → {x} is a
G-torsor over k, and its class in H1(k,G) will be denoted ζ(x). Equivalently,
x determines a morphism in cohomology mapping ζ to ζ(x):

x : Spec k −→ X

H1(k,G)←− H1(X,G)

ζ(x)←−� ζ.

Thus the torsor Z → X gives rise to an “evaluation” map

X(k) −→ H1(k,G)

x �−→ ζ(x).

In other words, Z → X can be thought of as a family of torsors param-
eterized by X, and ζ(x) gives the class of the fiber above x.

8.4.2. The fibers of the evaluation map. We may partition X(k) ac-
cording to the class of the fiber above each rational point:

X(k) =
∐

τ∈H1(k,G)

{x ∈ X(k) : ζ(x) = τ }.

The following key theorem reinterprets the right-hand side.

Theorem 8.4.1. Let k be a field. Let X be a k-variety. Let G be a smooth
affine algebraic group. Suppose that f : Z → X is a G-torsor over X, and
let ζ ∈ H1(X,G) be its class. For each τ ∈ H1(k,G), let f τ : Zτ → X be the
twisted torsor constructed in Example 6.5.12. Then

{x ∈ X(k) : ζ(x) = τ } = f τ (Zτ (k)).

In particular,
X(k) =

∐
τ∈H1(k,G)

f τ (Zτ (k)).
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Proof. For each x ∈ X(k), we have the following equivalences:

x ∈ f τ (Zτ (k))

⇐⇒ the fiber Zτ
x is a trivial Gτ -torsor over k (Proposition 5.12.14)

⇐⇒ Zx

G
× T−1 is a trivial Gτ -torsor over k

⇐⇒ Zx � T as G-torsor
(by taking the contracted product with T on the right)

⇐⇒ ζ(x) = τ. �

8.4.3. The evaluation map over a local field.

Proposition 8.4.2. Let k be a local field. Let X be a proper k-variety. Let
F be a finite étale algebraic group over k. Let f : Z → X be an F -torsor
over X. Then the image of X(k)→ H1(k, F ) is finite.

Proof. For each x ∈ X(k), the fiber f−1(x) is SpecL for some étale k-
algebra L. By Krasner’s lemma (Proposition 3.5.74), there exists an open
neighborhood U of x in X(k) such that for u ∈ U , the fiber f−1(u) is
isomorphic to f−1(x) as a k-scheme. In other words, if H1(k, F ) is given the
discrete topology, then the evaluation map X(k)→ H1(k, F ) is continuous.

On the other hand, X is proper, so Proposition 2.6.1(i) shows that X(k)
is compact. Thus the image of X(k) → H1(k, F ) is compact and hence
finite. �

Remark 8.4.3. If char k = 0, then the whole set H1(k, F ) is finite, by
Theorem 5.12.24(a).

8.4.4. The Selmer set. Return to the notation of Theorem 8.4.1, but as-
sume moreover that k is a global field. For each place v of k, the inclusion
k ↪→ kv induces a homomorphism of fppf cohomology groups H1(k,G) →
H1(kv, G). (Equivalently, it is the restriction homomorphism of Galois co-
homology associated with the inclusion of Gal(ksv/kv) as a decomposition
group in Gal(ks/k).) If τ ∈ H1(k,G), let τv ∈ H1(kv, G) be its image.

Definition 8.4.4. The Selmer set is the following subset of H1(k,G):

SelZ(k,G) :=
{
τ ∈ H1(k,G) : τv ∈ im

(
X(kv)→ H1(kv, G)

)
for all v ∈ Ωk

}
.

Remark 8.4.5. This terminology and notation is compatible with the no-
tion of the Selmer group, in the case where f : Z → X is an isogeny between
abelian varieties, viewed as a torsor under G := ker f . For instance, if
f : E → E is the multiplication-by-2 map on an elliptic curve over a num-
ber field, then SelE(k,E[2]) ⊆ H1(k,E[2]) is the 2-Selmer group defined in
[Sil92, X.§4].
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By Theorem 8.4.1 applied over each kv, we have

SelZ(k,G) = { τ ∈ H1(k,G) : Zτ (kv) �= ∅ for all v ∈ Ωk }
⊇ { τ ∈ H1(k,G) : Zτ (k) �= ∅ }.

In particular,

X(k) =
∐

τ∈SelZ(k,G)

f τ (Zτ (k)).

Theorem 8.4.6. If X is a proper variety over a global field k, then SelZ(k,G)
is finite.

Proof. Let F be the component group of G. For a suitable finite nonempty
subset S ⊆ Ωk containing the archimedean places, Theorem 3.2.1 lets us
spread out G to a smooth finite-type separated group scheme G over Ok,S ,
spread out X to a proper scheme X over Ok,S , and spread out Z to a G-torsor
over X . Let τ ∈ H1(k,G). For v /∈ S, the commutative diagram

H1(k,G)

��

τ


��
X(kv) ��

valuative criterion
for properness

H1(kv, G) τv

X (Ov) �� H1(Ov,G)

��

shows that if τv comes from X(kv), then τv also comes from H1(Ov,G). Thus
SelZ(k,G) is contained in H1

S(k,G). Moreover, for each v ∈ S, the image of
X(kv)→ H1(kv, F ) is finite by Proposition 8.4.2, so the image of SelZ(k,G)
in
∏

v∈S H1(kv, F ) is finite. The preceding two sentences combined with
Theorem 6.5.13(a) show that SelZ(k,G) is finite. �

Remark 8.4.7. One can show that SelZ(k,G) is not only finite, but also
effectively computable, even if one does not know X(k). This makes it
potentially useful for the determination of X(k).

Corollary 8.4.8. There exists a finite separable extension k′ of k such that
X(k) ⊆ f(Z(k′)).

Proof. For each τ ∈ H1(k,G), there exists a finite separable extension k′

such that the image of τ in H1(k′, G) is trivial. By taking a compositum, one
can find a k′ that works simultaneously for all τ ∈ SelZ(k,G). Extending
the base from k to k′ makes Zτ fτ

→ X isomorphic to Z
f→ X. �
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8.4.5. The weak Mordell–Weil theorem. The Mordell–Weil theorem
states that for any abelian variety A over a global field k, the abelian group
A(k) is finitely generated. The following weaker statement is proved along
the way to proving the Mordell–Weil theorem:

Theorem 8.4.9 (Weak Mordell–Weil theorem). Let A be an abelian variety
over a global field k, and let m be a positive integer not divisible by char k.
Then A(k)/mA(k) is finite.

Proof of Theorem 8.4.9. By Proposition 5.7.4, the multiplication-by-m
map A

m→ A is étale, so it is locally surjective in the étale topology. Thus
we get an exact sequence of sheaves on (Spec k)et

0→ A[m]→ A
m→ A→ 0

(or equivalently of Gk-modules), where A[m] is the kernel of A m→ A. Taking
cohomology gives

A(k)
m−→ A(k) −→ H1(k,A[m]).

On the other hand, we may view [m] : A → A as a torsor under the
smooth affine algebraic group A[m], and hence we get an evaluation map

A(k) −→ H1(k,A[m])

a �−→ class of the torsor [m]−1(a).

Its image is contained in the Selmer set, which is finite by Theorem 8.4.6.
One checks that the two maps A(k)→ H1(k,A[m]) coincide. Comparing

images shows that A(k)/mA(k) is isomorphic to the image of the evaluation
map, and we proved already that the latter image is finite. �

8.4.6. Application of descent to failure of strong approximation.
We will use an integral point analogue of descent to prove a theorem of Min-
chev [Min89, Theorem 1] on the failure of strong approximation. Minchev
worked over number fields, but with a little more work we can generalize to
global fields.

Theorem 8.4.10. Let k be a global field. Let S be a finite set of places
of k. Let f : Y → X be a finite étale morphism of geometrically integral
k-varieties. If X(AS) �= ∅ and f is not an isomorphism, then the image of
the inclusion X(k)→ X(AS) is not dense; that is, X does not satisfy strong
approximation with respect to S.

Proof. Let n = dimX = dimY . Let d = deg f > 1. Use Theorem 3.2.1
to enlarge S so that f spreads out to a finite étale morphism F : Y → X
of separated Ok,S-schemes such that X → SpecOk,S and Y → SpecOk,S
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have geometrically integral fibers and X (Ov) �= ∅ for v /∈ S. For any nonar-
chimedean v ∈ S, as xv varies over the compact set X (Ov), there are only
finitely many possibilities for the finite étale Ov-scheme F−1(xv), by Kras-
ner’s lemma (Proposition 3.5.74). Therefore, as x varies over X (Ok,S), the
finite étale Ok,S-scheme F−1(x) has bounded degree and bounded ramifi-
cation over S, so there are only finitely many possibilities for F−1(x). In
particular, there exists an infinite set T of nonarchimedean v /∈ S such that
v splits in F−1(x) for every x ∈ X (Ok,S).

Let X ′ be the smooth locus of X → SpecOk,S , and let Y ′ = F−1X ′. For
v /∈ S, let Fv be the residue field, and let qv = #Fv. By Theorem 7.7.1(ii),
#X ′(Fv) and #Y ′(Fv) are both qnv + O(q

n−1/2
v ) as qv → ∞. In particular,

we may choose w ∈ T such that #Y ′(Fw) < d · #X ′(Fw). Thus there
exists a point āw ∈ X ′(Fw) that does not split in Y ′. By Hensel’s lemma
(Theorem 3.5.63(a)), āw lifts to some aw ∈ X ′(Ow). By Krasner’s lemma
(Proposition 3.5.74), the set Uw := {uw ∈ X ′(Ow) : F−1(uw) � F−1(aw)}
is an open neighborhood of aw in X(kw). Let U be the nonempty open set
Uw ×

∏
v/∈S∪{w}X (Ok,S) of X(AS). If x ∈ X(k) ∩ U , then x ∈ X ′(Ok,S), so

the definition of T implies that w splits in F−1(x), but the definition of Uw

implies that w does not split in F−1(x). Thus X(k)∩U = ∅, so X(k) is not
dense in X(AS). �
Corollary 8.4.11 (cf. [Min89, Theorem 1]). Let k be a global field. Let
S be a finite set of places of k. Let X be a normal geometrically integral
k-variety. If X(AS) �= ∅ and Xks is not algebraically simply connected, then
X does not satisfy strong approximation with respect to S.

Proof. If X(k) is empty, strong approximation fails by definition. If X(k) is
nonempty, apply Lemma 3.5.57 to obtain a nontrivial geometrically integral
finite étale cover Y → X, and apply Theorem 8.4.10. �
Remark 8.4.12. Corollary 8.4.11 can fail if X is not normal. For example,
if X is a nodal cubic curve in P2 over a global field such that the tangent lines
to the branches at the node have irrational slope, then X is not algebraically
simply connected, but X satisfies strong approximation with respect to any
finite S, because there is a dominant morphism P1 � X.

8.4.7. The descent obstruction to the local-global principle. Let k
be a global field. Let X be a k-variety. One can show that there is an
injection X(A) ↪→

∏
v X(kv), so an element of X(A) will be written as a

sequence (xv) indexed by the places v of k. The set X(k) embeds diagonally
into X(A).

A torsor Z
f→ X under a smooth affine algebraic group G over k re-

stricts the locations in X(A) where rational points can lie. Namely, the
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commutativity of

X(k) �
� ��

��

X(A)

��
H1(k,G) �� ∏

v H
1(kv, G)

(8.4.13)

(cf. (8.1.1)) shows that X(k) is contained in the subset X(A)f ⊆ X(A) con-
sisting of points of X(A) whose image in

∏
v H

1(kv, G) comes from H1(k,G).
One can show also that

X(A)f =
⋃

τ∈H1(k,G)

f τ (Zτ (A)),

and that X(A)f is closed in X(A) if X is proper; see Exercise 8.7. More-
over, one can replace H1(k,G) by its subset SelZ(k,G) in either of the two
descriptions of X(A)f above. The condition X(A)f = ∅ is equivalent to
SelZ(k,G) = ∅.

One can constrain the possible locations of rational points further by
using many torsors:

X(A)H
1(X,G) :=

⋂
all G-torsors f : Z → X

X(A)f ,

X(A)descent :=
⋂

all smooth affine G

X(A)H
1(X,G).

Then

X(k) ⊆ X(A)descent ⊆ X(A).

Recall that one says that the local-global principle holds for X if and
only if the implication

X(A) �= ∅ =⇒ X(k) �= ∅

holds.

Definition 8.4.14. One says that there is a descent obstruction to the
local-global principle if X(A) �= ∅ but X(A)descent = ∅.

Sometimes we wish to study the adelic subset cut out by torsors under
a subset of the possible smooth affine algebraic groups. In particular, we
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define

X(A)et :=
⋂

finite étale G

X(A)H
1(X,G),

X(A)conn :=
⋂

smooth connected affine G

X(A)H
1(X,G),

X(A)PGL :=
⋂
n≥1

X(A)H
1(X,PGLn).

8.5. Comparing the descent and Brauer–Manin obstructions

8.5.1. Descent is stronger than Brauer–Manin.

(Reference: [Sko01, Proposition 5.3.4])

Proposition 8.5.3 below shows that the Brauer–Manin obstruction is
equivalent to the special case of the descent obstruction using only PGLn-
torsors for all n.

Recall from Section 6.6.4 that for any scheme X, we have a map of sets

(8.5.1) H1(X,PGLn) −→ (BrX)[n].

(We used Theorem 6.6.17(ii) to know that the image is killed by n.)

Lemma 8.5.2. Let k be a global field. Let X be a k-variety. Let Z f→ X be a
PGLn-torsor for some n ≥ 1. Its class in H1(X,PGLn) is mapped by (8.5.1)
to some A ∈ BrX. Then X(A)f = X(A)A.

Proof. Let (xv) ∈ X(A). Then we have a commutative diagram

H1(X,PGLn) ��

(xv)
��

(BrX)[n]

(xv)

��∏
v H

1(kv,PGLn)
∼ ��
∏

v(Br kv)[n]

H1(k,PGLn)
∼ ��

res1

��

(Br k)[n]

res2

��

in which the downward maps are evaluation at (xv), the upward maps
res1, res2 are restriction maps induced by k → kv, and the horizontal maps
are given by (8.5.1). The lower two horizontal maps are bijections by Re-
mark 1.5.18.

The middle horizontal bijection identifies im(res1) with im(res2), so the
class of f in H1(X,PGLn) maps down into im(res1) if and only if the element



8.5. Comparing the descent and Brauer–Manin obstructions 251

A ∈ (BrX)[n] maps down into im(res2). In other words, (xv) ∈ X(A)f if
and only if (xv) ∈ X(A)A. �

Proposition 8.5.3. Let k be a global field. Let X be a regular quasi-projec-
tive k-variety. Then

X(A)descent ⊆ X(A)PGL = X(A)Br.

Proof. By Corollary 6.6.19, every A ∈ BrX is in the image of (8.5.1) for
some n. So intersecting the equality of Lemma 8.5.2 over all PGLn-torsors
over X yields X(A)PGL = X(A)Br. The inclusion X(A)descent ⊆ X(A)PGL

holds by definition since each PGLn is a smooth affine algebraic group. �

8.5.2. The étale-Brauer set.

(References: [Poo10,Dem09,Sko09])

Let k be a global field. Let X be a k-variety. Let G be a smooth affine
algebraic group. Recall that if Z f→ X is a G-torsor, the determination of
X(k) can be reduced to the determination of Zτ (k) for various twists Zτ of
Z:

X(k) =
∐

τ∈H1(k,G)

f τ (Zτ (k)) ⊆
⋃

τ∈H1(k,G)

f τ (Zτ (A)).

We can produce a possibly better “upper bound” on X(k) by replacing Zτ (A)
by Zτ (A)Br. If we do so for every G-torsor for every finite étale group scheme
G, we are led to define the étale-Brauer set

X(A)et,Br :=
⋂

finite étale G
all G-torsors f : Z → X

⋃
τ∈H1(k,G)

f τ (Zτ (A)Br),

which is the upper bound on X(k) obtained from applying the Brauer–Manin
obstruction to étale covers. A priori, the subset

X(A)et,descent :=
⋂

finite étale G
all G-torsors f : Z → X

⋃
τ∈H1(k,G)

f τ (Zτ (A)descent)

could be even smaller.

8.5.3. Étale-Brauer equals descent.

(References: [Dem09,Sko09])

The proof of the following theorem combines work of Demarche, Harari,
Skorobogatov, and Stoll.

Theorem 8.5.4. Let k be a number field. Let X be a nice k-variety. Then

X(A)et,Br = X(A)et,descent = X(A)descent.
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Sketch of proof. It suffices to prove

X(A)descent ⊆ X(A)et,descent ⊆ X(A)et,Br ⊆ X(A)descent.

The first inclusion is [Sko09, Theorem 1.1], which generalizes [Sto07,
Proposition 5.17] (a statement that we would write as X(A)et = X(A)et,et).
The idea in both results is, roughly speaking, to show that if Y → X is an
torsor under a finite étale group scheme, and Z → Y is a torsor under a
smooth affine algebraic group, then Z → X is dominated by some torsor
under an even larger smooth affine algebraic group over X; this is analogous
to the fact that a Galois extension of a Galois extension of a field k is
contained in some even larger Galois extension of k.

The second inclusion is deduced by applying Proposition 8.5.3 to the
étale covers of X.

The third inclusion is the main result of [Dem09], which generalizes the
equality X(A)conn = X(A)Br of [Har02, Théorème 2, 2., and Remarque 4].
(The latter already is striking in that it implies that the torsors under all
smooth connected affine algebraic groups give no more information than the
torsors under all the groups PGLn.) �

8.5.4. Iterated descent obstruction. In the hope of obtaining an ob-
struction beyond the descent obstruction one might define

X(A)descent,descent :=
⋂

all smooth affine G
all G-torsors f : Z → X

⋃
τ∈H1(k,G)

f τ (Zτ (A)descent)

and similarly X(A)descent,descent,descent, and so on. But Cao, answering a
question of the author, proved the following:

Theorem 8.5.5 ([Cao17, Corollaire 1.2]). For any smooth quasi-projective
geometrically integral variety X over a number field,

X(A)descent,descent = X(A)descent.

Corollary 8.5.6. For any smooth quasi-projective geometrically integral va-
riety X over a number field,

X(A)descent = X(A)descent,descent = X(A)descent,descent,descent = · · · .

Proof. Use induction on the number of descents! Apply the inductive hy-
pothesis to all the torsors Zτ over X. �
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8.6. Insufficiency of the obstructions

8.6.1. A bielliptic surface.

(Reference: [Sko99])

Skorobogatov proved that the Brauer–Manin obstruction is insufficient
to explain all counterexamples to the local-global principle:

Theorem 8.6.1 ([Sko99]). There exists a nice Q-variety X such that
X(A)Br �= ∅ but X(Q) = ∅.

The proof is involved, so we only outline it. First, we describe the kind
of variety used.

Definition 8.6.2. A bielliptic surface over an algebraically closed field k
is a surface isomorphic to (E1 × E2)/G for some elliptic curves E1 and E2

and some finite group scheme G such that G is a subgroup scheme of E1

acting by translations on E1 and G acts on E2 so that the quotient E2/G is
isomorphic to P1. (Since G acts freely on E1, it acts freely on E1 ×E2; i.e.,
E1 × E2 → (E1 × E2)/G is G-torsor.) A surface over an arbitrary field k is
called bielliptic if Xk is bielliptic.

�
Warning 8.6.3. Some authors use the term hyperelliptic surface to mean
bielliptic surface, but these surfaces have nothing to do with hyperelliptic
curves.

Skorobogatov’s example was a bielliptic surface X := Y/G, where Y
was a product of two genus 1 curves over Q, and G was a group generated
by a fixed-point free automorphism of order 2 of Y . Explicitly, his X was
birational to the affine surface defined by

(x2 + 1)y2 = (x2 + 2)z2 = 3(t4 − 54t2 − 117t− 243).

To show that X(Q) = ∅, Skorobogatov proved X(A)et,Br = ∅, by applying
the Brauer–Manin obstruction to the étale cover Y → X and its twists.

Remark 8.6.4. Because X(A)et,Br = X(A)descent, the nonexistence of ra-
tional points must also be explained by a descent obstruction. In fact, it can
be explained by the obstruction from a single torsor under a noncommutative
finite étale group scheme [HS02, §5.1].

8.6.2. A quadric bundle over a curve.

(References: [Poo10], [CTPS16])

We next construct an “even worse” example:

Theorem 8.6.5 ([Poo10]). There exists a nice Q-variety X such that
X(A)et,Br �= ∅ but X(Q) = ∅.
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Combined with Theorem 8.5.4, this shows that even the descent ob-
struction is not enough to explain all counterexamples to the local-global
principle. In the original proof of Theorem 8.6.5, X was a Châtelet surface
bundle over a curve of positive genus. We will present a simpler variant,
based on [CTPS16, §3.1], using quadrics instead of Châtelet surfaces. In
this section, all varieties are over Q.

Start with a nice curve C such that C(Q) consists of a single point c.
(For example, C could be the elliptic curve y2 = x3 − 3, named 972B1
in [Cre97].) Let f : C → P1 be a morphism that is étale at c (for instance,
take f corresponding to a uniformizing parameter at c). Compose with
an automorphism of P1 to assume that f(c) = ∞. Let U be a connected
open neighborhood of c in C(R). By the implicit function theorem, f(U)
contains an open neighborhood of∞ in P1(R). Compose f with a translation
automorphism of P1 to assume that 1 ∈ f(U) and that f is étale above
0, 1 ∈ P1.

Next we construct a quadric bundle Y → P1. View P1 as the result of
gluing A1

t := SpecQ[t] and A1
T := SpecQ[T ] using t = 1/T . In P4 × A1

t ,
define the closed subscheme

Y (t) : t(t− 1)x20 + x21 + x22 + x23 + x24 = 0.

Similarly, in P4 × A1
T , define the closed subscheme

Y (T ) : (1− T )X2
0 + x21 + x22 + x23 + x24 = 0.

Glue Y (t) → A1
t and Y (T ) → A1

T using t = 1/T and x0 = T/X0 to obtain
Y → P1. Alternatively, if E denotes the rank 5 vector bundle O(1)⊕O⊕4 on
P1, then Y is the zero locus in PE := ProjSymE of a section of Sym2 E ; in
particular, Y is projective over Q. A calculation shows that Y (t) and Y (T )

are smooth over Q, so Y is smooth over Q. Thus Y is a family of 3-dimen-
sional quadrics over the base P1, with two degenerate fibers, above 0 and 1.
For each t ∈ P1, let Yt denote the fiber above t. In particular, the locus in
Y (T ) above T = 0 is the fiber

Y∞ : X2
0 + x21 + x22 + x23 + x24 = 0,

a smooth quadric in P4. See Figure 6.
Let π : X → C be the base extension of Y → P1 by f :

X ��

π
��

Y

��
C

f �� P1.

Proposition 8.6.6. The Q-variety X is nice.
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Figure 6. Real points of the varieties C and Y over P1 are shown in
solid black and gray. The open subset U of C(R) is shown as a thicker
curve. The dotted lines indicate some fibers of Y → P1 with imaginary
points.

Proof. Since Y → P1 is projective with geometrically integral fibers, the
same is true of X → C; in particular, X is a projective and geometrically
integral Q-variety. The morphism Y → P1 is smooth above all points except
0, 1, so X → C is smooth above all points of C outside those above 0, 1 ∈ P1;
since C is smooth over Q, this implies that X is smooth over Q outside the
points above 0, 1 ∈ P1. Similarly, C → P1 is smooth above 0, 1, so X → Y is
smooth at the points above 0, 1; since Y is smooth over Q, this implies that
X is smooth over Q also at the points above 0, 1 ∈ P1. Thus X is nice. �

Proposition 8.6.7. We have X(Q) = ∅.

Proof. The sole point of C(Q) maps to∞ ∈ P1, but Y∞ has no Q-points. �

As a warm-up to proving that X(A)et,Br �= ∅, we prove that X(A)Br �= ∅.
For each finite prime p, any quadratic form over Qp of rank ≥ 5 has a

nontrivial zero [Ser73, IV.2.2, Theorem 6], so we may choose yp ∈ Y∞(Qp)
and let xp = (yp, c) ∈ X(Qp). Let yR be the unique point in Y1(R), let cR ∈
U ⊆ C(R) be such that f(cR) = 1 ∈ P1(R), and let xR = (yR, cR) ∈ X(R)
(we use the subscript R for the archimedean place to avoid confusion with
the point ∞ ∈ P1). Together, these define x = (xv) ∈ X(A).

Proposition 8.6.8. We have x ∈ X(A)Br.
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Proof. The adeles π(x) and c agree except for their archimedean parts cR
and c, which lie in the same connected component of C(R). By this and
Proposition 8.2.9, any A ∈ BrC takes the same value at π(x) as at c ∈ C(Q);
by Proposition 8.2.2, that value is 0. Thus π(x) ∈ C(A)Br. Also, the homo-
morphism BrC → BrX is surjective by Proposition 6.9.15. Corollary 8.1.10
then implies x ∈ X(A)Br. �

To generalize Proposition 8.6.8 to prove that x ∈ X(A)et,Br, we must
understand the category FEt(X) of finite étale covers of X.

Lemma 8.6.9. The morphism X → C induces an equivalence of categories
FEt(C)→ FEt(X).

Proof. This follows (by [SGA 1, IX.6.8]) from the fact that each geometric
fiber of X → C (a smooth 3-dimensional quadric or a cone over a smooth
2-dimensional quadric) is algebraically simply connected. �

Proposition 8.6.10. We have x ∈ X(A)et,Br.

Proof. Suppose that G is a finite étale group scheme over Q, and X ′ → X
is a G-torsor. We must show that one of the twists of X ′ → X has an adelic
point not obstructed by the Brauer group. By Lemma 8.6.9, X ′ → X is
the base extension of a G-torsor C ′ → C. We may replace C ′ by a twist to
assume that c lifts to some c′′ ∈ C ′(Q). Let C ′′ be the irreducible component
of C ′ containing c′′. The fiber product X ′′ := X ×C C ′′ fits in a diagram

X ′′ � � ��

π′′
��

X ′ G-torsor ��

π′
��

X ��

π
��

Y

��
C ′′ � � �� C ′ G-torsor �� C

f �� P1.

Since C ′′ → C is finite étale, C ′′ is smooth and projective; moreover, C ′′ is
integral and has a Q-point, so C ′′ is a nice curve. Similarly, X ′′ is smooth
and projective, and X ′′ → C ′′ has geometrically integral fibers (just like
Y → P1), so X ′′ is nice too.

We claim that x lifts to a point x′′ ∈ X ′′(A). For each finite prime p,
let x′′p = (xp, c

′′) ∈ X ′′(Qp). Since U is algebraically simply connected, the
inverse image of U in C ′′(R) is a disjoint union of copies of U ; let U ′′ be the
copy containing c′′, let c′′R ∈ U ′′ be the point mapping to cR ∈ U , and let
x′′R = (xR, c

′′
R) ∈ X ′′(R). Thus we have x′′ ∈ X ′′(A) mapping to x ∈ X(A).

The same proof as for Proposition 8.6.8 shows that x′′ ∈ X ′′(A)Br, so
X ′(A)Br is nonempty. This argument applies to all finite étale torsors over
X, so X(A)et,Br is nonempty. �

This completes the proof of Theorem 8.6.5.
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8.6.3. Hypersurfaces and complete intersections.

(Reference: [PV04])

Definition 8.6.11. A scheme-theoretic intersection X = H1 ∩ · · · ∩ Hr of
hypersurfaces Hi ⊂ Pn is called a complete intersection if dimX = n− r.

In particular, any hypersurface in Pn is a complete intersection.

Theorem 8.6.12. Let k be a number field. If X is a smooth complete
intersection in some Pn

k and dimX ≥ 3, then the descent obstruction and
Brauer–Manin obstruction for X are vacuous; that is,

X(A)descent = X(A)Br = X(A).

Sketch of proof. By Theorem 8.5.4, it suffices to prove X(A)et,Br = X(A).
This follows immediately from the following two claims:

(i) The variety Xk is algebraically simply connected (Definition 3.5.45).
(ii) The homomorphism Br k → BrX is an isomorphism.

Part (i) follows from the weak Lefschetz theorem, which says that the homo-
morphism of fundamental groups π1(X(C), x)→ π1(Pn(C), x) is an isomor-
phism (here an embedding k ↪→ C is chosen and x ∈ X(C)) [Mil63, Theo-
rem 7.4]. For the proof of (ii), see [PV04, Proposition A.1]. �

Heuristics suggest that most smooth hypersurfaces X ⊆ Pn
Q of degree

d > n + 1 = dimX + 2 have no rational points. On the other hand, a
positive fraction of such hypersurfaces have Qp-points for all p ≤ ∞ [PV04,
Theorem 3.6]. Thus one expects many counterexamples to the local-global
principle among such hypersurfaces. But there is no smooth hypersurface
of dimension ≥ 3 for which the local-global principle has been proved to
fail! The reason we are unable to prove anything in this setting is that our
only available tools, the descent and Brauer–Manin obstructions, give no
information.

We need some new obstructions!

Remark 8.6.13. The Brauer–Manin obstruction does yield counterexam-
ples to the local-global principle for some 2-dimensional hypersurfaces, such
as some cubic surfaces; see Section 9.4.9.

Remark 8.6.14. There are some conditional counterexamples among hyper-
surfaces of higher dimension. For instance, Lang’s conjecture [Lan74, (1.3)]
that V (Q) is finite for every nice hyperbolic Q-variety V implies the ex-
istence of nice hypersurfaces in P4 that violate the local-global principle;
see [SW95,Poo01]. (A smooth variety V over a subfield of C is (Brody)
hyperbolic if every holomorphic map C→ V (C) is constant.)
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Exercises

8.1. Prove Proposition 8.1.8, Corollary 8.1.9, and Corollary 8.1.10.
8.2. Let k be a global field. Let X be a proper k-variety such that

X(A) �= ∅. Let A ∈ BrX. Suppose that there exists a place w such
that the evaluation map X(kw) → Br kw given by A is not constant.
Prove that weak approximation for X fails.

8.3. (Brauer–Manin obstruction for a degree 4 del Pezzo surface) Let X
be the smooth surface defined by

uv = x2 − 5y2,

(u+ v)(u+ 2v) = x2 − 5z2

in P4
Q. (This example is from [BSD75, §4].) Let K = k(X).

(a) Prove that X(A) �= ∅. (Suggestion: Let Y be the smooth genus 1
curve obtained by intersecting X with the hyperplane x = 0.
Spread out Y to a smooth proper scheme over Z[S−1] for some
finite set of places S. For p /∈ S, use the Hasse–Weil bound or
Lang’s theorem on H1 over finite fields to show that Y has an
Fp-point, and deduce that Y has a Qp-point.)

(b) Let A be the class of the quaternion algebra
(
5, u+v

u

)
in BrK.

Find other representations of A to show that A ∈ BrX. (Hint :
Why does it suffice to find representations on open subsets that
cover the codimension 1 points of X?)

(c) Prove that if P = (u : v : x : y : z) ∈ X(Qp) for some p ≤ ∞,
then

invpA(P ) =

{
0 if p �= 5,
1/2 if p = 5.

(Hint : If 5 ∈ Q×2
p , what can be said about the image of A in

BrXQp?)
(d) Deduce that X(A)Br = ∅, so X(Q) = ∅.

8.4. Let S be a finite set of places of a number field k, containing all the
archimedean places. Let Ok,S be the ring of S-integers. Let G be a
finite étale group scheme over Ok,S . Prove that H1(Ok,S ,G) is finite.

8.5. (Integral descent) Let Ok,S and G be as above. Let X be a finite-
type separated Ok,S-scheme, and let Z → X be a G-torsor. For each
τ ∈ H1(Ok,S ,G), define a twisted torsor f τ : Zτ → X such that

X(Ok,S) =
∐

τ∈H1(Ok,S ,G)

f τ (Zτ (Ok,S)).
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8.6. Let Ok,S be as above. Let U be an “affine curve of genus 1 over Ok,S”,
by which we mean a smooth, separated, finite-type Ok,S-scheme whose
generic fiber is an affine open subset U of a nice k-curve E of genus 1.
Show that Faltings’s theorem implies that U(Ok,S) is finite. (Hints :
Show that you may enlarge S and/or extend k as needed. Find a
sequence of Galois coverings U ′′ → U ′ → U , where U ′ = X ′ − F ′

with X ′ a nice genus 1 curve and F ′ ⊆ X ′ a closed subscheme with
#F (k) ≥ 4, and U ′′ is an affine open subset of a ramified covering
X ′′ → X ′ branched only over F ′.)

8.7. Let k be a number field. Let X be a k-variety. Let G be a smooth
affine algebraic group over k. Let Z

f→ X be a G-torsor.
(a) Prove that for each place v, the set f(Z(kv)) is open in X(kv).

(Hint : Proposition 3.5.73(ii).)
(b) Prove that for each place v, the evaluation map

X(kv)→ H1(kv, G)

associated to f is continuous (for the v-adic topology on X(kv)
and the discrete topology on H1(kv, G)).

(c) Prove that for each place v, the set f(Z(kv)) is closed in X(kv).
(d) Use results from the proof of Theorem 6.5.13 to prove that

f(Z(A)) = X(A) ∩
∏
v

f(Z(kv))

as subsets of
∏

v X(kv).
(e) Prove that f(Z(A)) is closed in X(A).
(f) Prove that for each τ ∈ H1(k,G),{

(xv) ∈ X(A) : xv maps to τv ∈ H1(kv, G) for all v
}
= f τ (Zτ (A)),

where τv denotes the image of τ in H1(kv, G).
(g) Prove that X(A)f =

⋃
τ∈H1(k,G) f

τ (Zτ (A)).
(h) Prove that if X is proper, then X(A)f is closed in X(A).
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(b) A ruled surface over k is birational to a conic bundle over a nice
k-curve.

Remark 9.3.22. The arithmetic of del Pezzo surfaces will be discussed
in detail in Section 9.4. For the arithmetic of conic bundles, see [Sko01,
Chapter 7].

Corollary 9.3.23. Let k be a separably closed field.

(a) The relatively minimal rational surfaces over k are P2 and the Hirze-
bruch surfaces Fn for n ∈ {0} ∪ {2, 3, . . .}.

(b) The relatively minimal ruled surfaces over k with base of positive
genus are the surfaces PE → Y , where Y is a nice k-curve of positive
genus and E is a rank 2 vector bundle on Y .

Proof. In Theorem 9.3.20, we are in case (ii) or (iii). If (ii), then Xk � P2
k
,

so X � P2 by Remark 4.5.9.
If (iii), then the conic bundle X corresponds to an element of

H1(Y,PGL2) ↪→ H2(Y,Gm) = BrY,

but the latter is trivial by Theorem 6.9.7. Thus X � PE for some rank 2
vector bundle E on Y . Finally, if Y itself is a conic, then Y � P1 (Re-
mark 4.5.9 again), and the classification of vector bundles on P1 shows that
E � O ⊕O(n) for some n ≥ 0. Finally, PE is relatively minimal if and only
if (PE )k is relatively minimal, which holds if and only n �= 1. �

Proposition 9.3.24 ([Wei56]). Let k be a finite field Fq. Let X be a nice
rational surface over k. Then

#X(k) = q2 + (tr Frobq |PicXk)q + 1,

and X has a k-point.

Proof. Apply Proposition 9.2.6 to Xk and then use the Lefschetz trace for-
mula (7.5.18) to obtain the formula. Since tr Frobq |PicXk ∈ Z, we obtain
#X(k) ≡ 1 (mod q), so X(k) �= ∅. �

Remark 9.3.25. As mentioned in (3) in Section 1.2.4, the final conclusion
of Proposition 9.3.24 generalizes to rationally chain connected nice varieties
[Esn03, Corollary 1.3].

9.4. Del Pezzo surfaces

(Reference: [Kol96, III.3])

Recall from Section 9.2.5 that a Fano variety is a nice variety for which
−K (an anticanonical divisor) is ample.
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Definition 9.4.1. A del Pezzo surface is a (nice) Fano variety of dimension
2.

Let X be a del Pezzo surface. According to the general definition for
Fano varieties in Section 9.2.5, the degree of X is the positive integer d :=
(−K).(−K) = K.K. It then turns out that dimH0(X,−K) = d + 1
[Kol96, Corollary III.2.3.5.2], and that −K is very ample when d ≥ 3
[Kol96, Proposition III.3.4.3]. Thus, if d ≥ 3, then |−K| embeds X as
a degree d surface in Pd.

9.4.1. Del Pezzo surfaces over a separably closed field.

Lemma 9.4.2. Let k be a separably closed field. Let X be a del Pezzo
surface over k. If C is a closed integral curve on X with C.C < 0, then C
is a (−1)-curve with constant field k.

Proof. Since −K is ample, C.(−K) > 0. Theorem 9.3.3(iv)⇒(v) implies
that C is a (−1)-curve with constant field k. �
Definition 9.4.3. Let 0 ≤ r ≤ 8. Points P1, . . . , Pr ∈ P2(k) are in general
position if they are distinct and none of the following hold:

(i) Three of the Pi lie on a line.
(ii) Six of the Pi lie on a conic.
(iii) Eight of the Pi lie on a singular cubic, with one of these eight points

at the singularity.

Theorem 9.4.4 (Classification of del Pezzo surfaces). Let k be a separably
closed field. Let X be a del Pezzo surface over k. Then exactly one of the
following holds:

• X � P1 × P1; then degX = 8.
• There exists r with 0 ≤ r ≤ 8 such that X is the blowup of P2 at r
k-points in general position; then degX = 9− r ∈ {1, 2, . . . , 9}.

Proof. Let X → Y be a proper birational morphism to a relatively minimal
surface Y . By Corollary 9.3.23, Y � P2 or Y � Fn for some n ∈ {0} ∪ Z≥2.
A section of Fn → P1 has self-intersection −n [Har77, Proposition V.2.9],
and its strict transform in X would have self-intersection at least as negative,
which contradicts Lemma 9.4.2 if n ≥ 2. Thus Y � P2 or Y � P1 × P1. By
Theorem 9.3.1(b), X is obtained from Y by iteratively blowing up k-points.
The blowup of P1×P1 at a k-point is isomorphic to the blowup of P2 at two
k-points (Example 9.3.11), so we need only consider blowups of P2. If we
ever blow up a point on an exceptional curve from a previous blowup, the
strict transform C of that exceptional curve in X would satisfy C.C < −1,
contradicting Lemma 9.4.2. Thus X is the blowup of P2 at a finite subset
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{P1, . . . , Pr} of X(k). Since −K is ample, 0 < (−K).(−K) = K.K = 9− r
(the last equality follows from [Har77, Proposition V.3.3]), so r ≤ 8. If three
of the Pi were on a line, the strict transform C of that line would satisfy
C.C ≤ 1 − 3 ≤ −2, contradicting Lemma 9.4.2. The other restrictions on
the Pi are similarly derived; see [Dem80, Théorème 1(i)⇔(iii)]. �
Remark 9.4.5. If X is as in Theorem 9.4.4, then PicX � Z10−d: this is
true when X is P2 or P1×P1, and blowing up a k-point adds a new factor of
Z [Har77, Proposition V.3.2]. One can also describe the canonical class and
the intersection pairing on PicX explicitly with respect to a suitable basis
[Man86, Theorem 23.8].

Remark 9.4.6. If r ≥ 9 and X is the blowup of P2 at any r points, then
K.K = 9− r ≤ 0, so X cannot be a del Pezzo surface. This shows that the
property of being a del Pezzo surface is not invariant under birational maps.

Proposition 9.4.7 (Exceptional curves on a del Pezzo surface). Let k be
a separably closed field. Let X → P2 be the blowup of points x1, . . . , xr in
general position, where 0 ≤ r ≤ 8. Then the exceptional curves are the fibers
above the xi together with the strict transforms of the following curves in P2:

(i) a line through 2 of the xi;
(ii) a conic through 5 of the xi;
(iii) a cubic passing through 7 of the xi, such that one of them is a double

point (on the cubic);
(iv) a quartic passing through 8 of the xi, such that three of them are

double points;
(v) a quintic passing through 8 of the xi, such that six of them are double

points; and
(vi) a sextic passing through 8 of the xi, such that seven of them are

double points and one of them is a triple point.

Proof. See [Man86, Theorem 26.2]. �

9.4.2. Del Pezzo surfaces over an arbitrary field. The proof of the
following will be scattered over the next few subsections within Section 9.4.

Theorem 9.4.8. Let k be a field. Let X be a del Pezzo surface over k of
degree d ≥ 5.

(i) If d = 7 or 5, then X has a k-point.
(ii) If dim k ≤ 1, then X has a k-point.
(iii) If X has a k-point, then X is birational to P2

k.
(iv) If X has a k-point and k is infinite, then X(k) is Zariski dense in

X.
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(v) The homomorphism Br k → BrX is surjective.
(vi) If k is a global field, then X satisfies the local-global principle.
(vii) If k is a global field, then X satisfies weak approximation.

Part (iii) implies (iv). To prove (v), list all finite groups G acting on
Z10−d that could be the image of the Gk-action on PicXks respecting the
intersection pairing, check that H1(Gk,PicXks) = 0 in each case, and apply
Corollaries 6.7.8 and 6.9.11. Parts (vi) and (iii) imply (vii).

Remark 9.4.9. In the case where k is finite, Proposition 9.3.24 proves (ii)
even without the restriction d ≥ 5.

Remark 9.4.10. When d ≤ 4, most parts of Theorem 9.4.8 can fail. Part (i)
holds for d = 1 but can fail for d = 2, 3, 4. Part (ii) can fail for d = 2, 3, 4
[CTM04]. The birational invariant H1(Gk,PicXks) (see Exercise 9.6) is 0
for P2

k, but it can be nonzero for a degree d del Pezzo surface over a global field
if d ≤ 4; thus (iii) can fail for each d ≤ 4. For such an example, Corollaries
6.7.8 and 6.9.11 shows that Br k → BrX will fail to be surjective; that is, (v)
fails. This means that there is potentially a Brauer–Manin obstruction to
the local-global principle and/or weak approximation, and in fact part (vi)
can fail for d = 2, 3, 4 and part (vii) can fail for d = 1, 2, 3, 4, as will be
discussed below.

Remark 9.4.11 (Unirationality of del Pezzo surfaces). It may be that every
del Pezzo surface over k with a k-point is k-unirational . This has already
been proved for all d ≥ 3 [Seg43; Seg51; Man86, Theorems 29.4 and 30.1;
Kol02, Theorem 1.1; Pie12, Proposition 5.19; Kne15, Theorem 2.1], and
also under additional hypotheses for d = 2 and d = 1 [Man86, Theo-
rems 29.4; STVA14, Theorems 1.1 and 3.2; FvL16, Theorem 1.1; KM17,
Corollary 36]. For each surface for which this holds, part (iv) of Theo-
rem 9.4.8 holds too.

9.4.3. Degree 9. Then Xks � P2
ks

, so X is a Severi–Brauer surface. In
particular:

• If X has a k-point, then X � P2
k (Proposition 4.5.10).

• If dim k ≤ 1, then X � P2
k.

• If k is a global field, then X satisfies the local-global principle (The-
orem 4.5.11).

9.4.4. Degree 8.

Proposition 9.4.12. Let X be a degree 8 del Pezzo surface over a field k.
Then exactly one of the following holds:
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(1) There is a degree 2 étale extension L ⊇ k and a nice conic C over
L such that X is isomorphic to the restriction of scalars ResL/k C.
(In the split case L = k × k, this means simply that X is a product
of two nice conics over k.)

(2) X is the blowup of P2
k at a k-point.

Proof. By Theorem 9.4.4, either Xks � (P1 × P1)ks or Xks is the blowup of
P2
ks

at a ks-point.

(1) Suppose that Xks � (P1 × P1)ks ; i.e., X is a twist of P1 × P1.
To understand the twists, we need to compute Aut((P1 × P1)ks).
First, AutP1

ks
� PGL2(ks) (see [Har77, Example II.7.1.1]). Let

A ≤ Aut((P1 × P1)ks) be the subgroup generated by the action of
PGL2(ks) on each factor and the involution that interchanges the
two factors. Let S and I be the kernel and image of the homomor-
phism

Aut((P1 × P1)ks)→ Aut(Pic(P1 × P1)ks)

describing the action of automorphisms on the Picard group, which
is Z×Z (see [Har77, Example II.6.6.1 and Corollary II.6.16]). We
have a commutative diagram

1 �� PGL2(ks)× PGL2(ks)
� � ��

��

A ��

��

Z/2Z ��

��

1

1 �� S �� Aut((P1 × P1)ks)
�� I �� 1

(9.4.13)

with exact rows. Any automorphism in S induces linear automor-
phisms of the spaces of global sections of O(1, 0) and O(0, 1), and
hence is given by an element of PGL2(ks) × PGL2(ks). In other
words, the left vertical homomorphism is an isomorphism. On the
other hand, an automorphism of (P1×P1)ks acts on the Picard group
Z×Z so as to preserve the ample cone, which is the first quadrant,
so it can only be the identity or the coordinate-interchanging invo-
lution of Z × Z. In other words, the right vertical homomorphism
is an isomorphism. Thus the middle vertical homomorphism is an
isomorphism too.

Taking cohomology of either of the now-identified rows of (9.4.13)
yields a map of pointed sets

H1(k,Aut((P1 × P1)ks) −→ H1(k,Z/2Z).

An element of the latter corresponds to a degree 2 étale extension
L ⊇ k, and its preimage in H1(k,Aut((P1 × P1)ks)) is in bijection
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with

H1(k, the L/k-twist of PGL2×PGL2) � H1(L,PGL2),

the isomorphism arising from a nonabelian analogue of Shapiro’s
lemma. The latter set H1(L,PGL2) parameterizes twists of P1 over
L, i.e., conics over L. Thus twists of P1 × P1 are parameterized by
pairs (L,C) where L is a degree 2 étale extension of k and C is a
nice conic over L. By writing out explicit 1-cocycles, one can verify
that the twist corresponding to (L,C) is the restriction of scalars
ResL/k C.

(2) There is a unique exceptional curve on Xks . It must be Galois
invariant, so it descends to a genus 0 curve E over k. Blow down
E to get a morphism X → Y , where Y is a Severi–Brauer surface
over k. The image of E is a k-point on Y , so Y � P2

k. Thus X is
the blowup of P2

k at a k-point. �

Corollary 9.4.14. If dim k ≤ 1, then any degree 8 del Pezzo surface X over
k has a k-point.

Proof. It suffices to consider case (1) of Proposition 9.4.12. Since dim k ≤ 1,
we have BrL = 0. Since C is a 1-dimensional Severi–Brauer variety over L,
it has an L-point. Finally, X(k) = C(L). �

Corollary 9.4.15. Let X be a degree 8 del Pezzo surface over a field k. If
X has a k-point, then X is birational to P2

k.

Proof. In case (2) of Proposition 9.4.12, X is a blowup of P2
k, and hence

birational to P2
k. In case (1), X has the form ResL/k C; if X has a k-point,

then C has an L-point, so C � P1
L, which is birational to A1

L, so X is
birational to ResL/k A1

L � A2
k, which is birational to P2

k. �

Corollary 9.4.16. A degree 8 del Pezzo surface over a global field k satisfies
the local-global principle.

Proof. If X = ResL/k C, apply the local-global principle to C over L. If X
is the blowup of P2

k at a k-point, then X has a k-point already. �

9.4.5. Degree 7.

Proposition 9.4.17. A degree 7 del Pezzo surface X is P2
k blown up at

either two k-points or at a closed point whose residue field is separable of
degree 2 over k.

Proof. There are three exceptional curves on Xks , arranged in a chain, say
E1, E2, E3 in order. The middle one E2 is Galois-stable, so E2 descends to
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a nice genus 0 curve over k. Blowing down E2 yields a nice surface Y with
a k-point. Blowing down E1 and E3 together instead yields a Severi–Brauer
variety Z over k. Since Z is birational to Y , it has a k-point too, so Z � P2

k.
The image of E1∪E3 in Z � P2

k is what must be blown up to recover X. �

9.4.6. Degree 6.

Lemma 9.4.18. Let X be a degree 6 del Pezzo surface over a field k. If
there exist separable extensions K and L with [K : k] = 2 and [L : k] = 3
such that X has a K-point and an L-point, then X has a k-point.

Proof. Consider the anticanonical embedding X ⊆ P6. If the K-point or
L-point is defined over k, we are done. Otherwise the conjugates of the
two points give five geometric points on X. If these five points are suffi-
ciently generic on X, then the 4-dimensional linear subspace of P6 passing
through them intersects X in a 0-cycle of degree 6, of which five points
are accounted for, and the remaining point is Gk-stable, hence a k-point.
One can remove the genericity hypothesis by invoking the Lang–Nishimura
theorem (Theorem 3.6.11): the construction above defines a rational map
Sym2X × Sym3X ��� X, and the hypothesis supplies a k-point on the
smooth source, so the target has a k-point. �

There are six exceptional curves on Xks , forming a hexagon. Label them
E1, . . . , E6 in order around the hexagon.

Proposition 9.4.19. Let X be a degree 6 del Pezzo surface over a field k. If
either dim k ≤ 1, or k is a global field and X(A) �= ∅, then X has a k-point.

Proof. (This is based on [CT72].) Since the action of Gk on {E1, . . . , E6}
respects intersections, it preserves the partition {{E1, E3, E5}, {E2, E4, E6}}.
The stabilizer in Gk of {E1, E3, E5} is GK for some separable extension K
of degree 1 or 2. Blowing down E1, E3, E5 simultaneously on XK yields a
degree 9 del Pezzo surface Y . If dim k ≤ 1, then BrK = 0, so Y � P2

K , so
Y has a K-point. If k is a global field and X(A) �= ∅, then X(AK) �= ∅, so
Y (AK) �= ∅, so Y � P2

K by Theorem 4.5.11 (the local-global principle for
Severi–Brauer varieties). In either case, Y has a K-point, and X is birational
to Y , so X has a K-point.

The same argument using the partition {{E1, E4}, {E2, E5}, {E3, E6}}
shows that X has an L-point for some separable extension L of degree 1
or 3. If either K or L has degree 1, then X has a k-point already. Otherwise
Lemma 9.4.18 shows that X has a k-point. �

Sketch of alternative proof. Let U = X−
⋃6

i=1Ei. Then Uks is P2
ks

with
three lines deleted; in other words Uks � G2

m. One can prove that in general,
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if U is a variety over a field k and Uks � Gn
m for some n ∈ N, then U is a

torsor under a torus T . If dim k ≤ 1, then Theorem 5.12.19(b) shows that U
has a k-point. Now suppose that k is a global field and X(A) �= ∅. For every
v, Proposition 3.5.75 shows that X(kv) is Zariski dense in X, so U has a
kv-point. By Theorem 5.12.32, U has a k-point. Hence X has a k-point. �

Proposition 9.4.20. Let X be a degree 6 del Pezzo surface over a field k.
If X has a k-point, then X is birational to P2

k.

Proof. Let x ∈ X(k).
Case 1: The point x lies on a unique exceptional curve Ei. Then Ei is

defined over k and may be blown down, so we reduce to the case of a degree 7
del Pezzo surface.

Case 2: The point x lies on the intersection of two exceptional curves.
Suppose that x ∈ E1 ∩ E2. Then E3 ∪ E6 is Gk-stable. Blowing down E3

and E6 simultaneously, we reduce to the case of a degree 8 del Pezzo surface.
Case 3: The point x does not lie on any exceptional curve. Make the

variety more complicated by blowing up x! This yields a degree 5 del Pezzo
surface Y . Let D be the exceptional divisor for this blowup. Let P be
the dual graph of the ten exceptional curves, so P has one vertex for each
exceptional curve, and one edge for each intersecting pair of exceptional
curves. Then P turns out to be the Petersen graph; this shows that there
are three exceptional curves on Y meeting D, and they are disjoint. Blowing
them down let us reduce to the case of a degree 8 del Pezzo surface. �

9.4.7. Degree 5. Recall the fine moduli space M0,5 of Example 2.3.9.

Lemma 9.4.21. Let X be the blowup of P2 at the points (1 : 0 : 0), (0 : 1 : 0),
(0 : 0 : 1), and (1 : 1 : 1). Then there is an open immersion M0,5 ↪→ X , and
the S5-action on M0,5 extends to an S5-action on X . Moreover, S5 → AutX
is an isomorphism.

Proof. Let X ′ be the complement in X of the ten exceptional curves, so X ′

is the complement in P2 of the
(
4
2

)
lines through the four blown-up points.

Then X ′ and M0,5 are the same open subvariety of A2! By symmetry, the
transposition (0, 1,∞, x, y) �→ (0, 1,∞, y, x) of M0,5 extends to an automor-
phism of X . A calculation shows that the 5-cycle

(0, 1,∞, x, y) �−→ (y, 0, 1,∞, x) ∼
(
0, 1,∞,

1

y
,

x− y

y(x− 1)

)
also extends. These generate S5, so S5 acts faithfully on X . The dual graph
of the set of the exceptional curves is the Petersen graph P . We have

(9.4.22) S5 ↪→ AutX → AutP � S5.
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The homomorphism AutX → AutP is injective since an automorphism
preserving each of the ten exceptional curves would act on the blowdown P2

and would fix the four blown-up points, forcing it to be the identity. Thus
all the homomorphisms in (9.4.22) are isomorphisms. �

Remark 9.4.23. One can show that X ⊃ X ′ is isomorphic to the compact-
ification M0,5 ⊃ M0,5 of Example 2.3.12. This explains why the S5-action
on M0,5 extends to X .

Lemma 9.4.24. Every degree 5 del Pezzo surface over a field k is dominated
by the Grassmannian Gr(2, 5).

Proof. Let X be the degree 5 del Pezzo surface in Lemma 9.4.21. The group
S5 acts on k5 by permuting the coordinates, so it acts on the Grassmannian
Gr(2, 5) defined in Example 9.2.3. Given a general point [W ] ∈ Gr(2, 5), so
W is a 2-dimensional subspace of k5, the intersections of W with the five
coordinate hyperplanes are five distinct lines in W , and projectivizing yields
a point of M0,5. This defines the first of the two S5-equivariant rational maps

(9.4.25) Gr(2, 5) ��� M0,5 ↪→ X ,

and the second map is the open immersion of Lemma 9.4.21. The first
map is dominant since given five distinct points in P1, or equivalently five
distinct lines in a 2-dimensional space W , one can choose linear functionals
λ1, . . . , λ5 : W → k cutting out these lines, and the image of the linear map
(λ1, . . . , λ5) : W → k5 represents a preimage in Gr(2, 5).

We now twist. Over a separably closed field, there is only one degree 5
del Pezzo surface; see Exercise 9.8. Thus, over k, any other one is a twist
X of X by a cocycle ξ representing a class in H1(k,AutXks) = H1(k, S5).
Twist k5 and (9.4.25) by ξ to obtain a degree 5 étale k-algebra L and

(9.4.26) Gr(2, L) ��� M
(L)
0,5 ↪→ X,

where M
(L)
0,5 is as in Example 2.3.11. In Gr(2, L), the space L is just another

5-dimensional vector space, so Gr(2, L) � Gr(2, 5). Thus Gr(2, 5) dominates
X. �

Remark 9.4.27. Let X be a degree 5 del Pezzo surface. Let X ′ ⊂ X be
the complement of the ten exceptional curves. The proof of Lemma 9.4.24
shows that X ′ ⊂ X is isomorphic to M

(L)
0,5 ⊂ M

(L)
0,5 for some degree 5 étale

k-algebra L, where M
(L)
0,5 is as in 2.3.12.

Corollary 9.4.28. Every degree 5 del Pezzo surface has a k-point.

Proof. Combine Lemma 9.4.24 with the Lang–Nishimura theorem (Theo-
rem 3.6.11). �
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The literature contains several different proofs of Corollary 9.4.28; see
[Enr97] (not quite complete), [SD72], [SB92], [Sko93], [Kol96, Exer-
cise III.3.13], and [Has09, Exercise 3.1.4]. The proof we gave is closest
to that in [Sko93].

Lemma 9.4.24 implies that a degree 5 del Pezzo surface X over k is
k-unirational, but even more is true: X is k-rational—this was first proved by
Manin [Man66, Theorem 3.15] (at least for perfect k), assuming Enriques’s
claim that X(k) �= ∅).
Theorem 9.4.29. Every degree 5 del Pezzo surface over a field k is birational
to P2

k.

Proof. Let X be the del Pezzo surface. Let X ′ ⊂ X be the complement of
the exceptional curves in X.

First suppose that X ′ has a k-point x. Then the blowup of X at x is a
degree 4 del Pezzo surface Y . There are 16 exceptional curves on Y (over ks):
the strict transforms of the ten exceptional curves on X, the preimage of x,
and five more. Moreover, those last five curves are skew, as can be checked
over k: if Y is the blowup of P2 at points x1, . . . , x5 in general position,
and X is the blowup of P2 at x1, . . . , x4, then the five curves are the strict
transforms of the conic through x1, . . . , x5 and of the four lines connecting
each of x1, . . . , x4 to x5. Blowing down this Gk-stable set of five skew lines
on Y yields a degree 9 del Pezzo surface Z with a k-point, so Z � P2

k.
Now suppose that X ′ has no k-points. The pair X ′ ⊂ X is isomorphic

to M
(L)
0,5 ⊂ M

(L)
0,5 for some degree 5 étale k-algebra L. Then M

(L)
0,5 has no

k-point, so there is no closed immersion SpecL ↪→ P1
k. Counting the closed

points on P1
k with each residue field shows this is possible only in these cases:

(i) L = k5 with k = F2 or k = F3; or
(ii) L = F2 × F4 × F4 with k = F2.

In case (i), X is the blowup of P2
k at four k-points, so X is birational to P2

k.
In case (ii), L � L3×L2 for étale algebras L3 of degree 3 and L2 of degree 2.
Fix one closed immersion ι : SpecL3 → P1

k. Then each (AutP1)-orbit of
closed immersions SpecL → P1

k contains a unique representative whose re-
striction to SpecL3 is ι, so X ′ is isomorphic to the space of closed immersions
SpecL2 → U := P1 − ι(SpecL3). Thus we have birational equivalences

X ∼ X ′ ∼ ResL2/k U ∼ ResL2/k A
1
k � A2

k ∼ P2
k. �

9.4.8. Degree 4. These X are smooth intersections of two quadrics in P4

[Kol96, Theorem III.3.5.4]. If k is a global field, then the local-global prin-
ciple can fail (Exercise 8.3), and weak approximation can fail even if X has
a k-point [CTS77, III, Exemple (a)].
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9.4.9. Degree 3. These are nice cubic surfaces in P3 [Kol96, Theorem
III.3.5.3]. Mordell [Mor49] conjectured that nice cubic surfaces over Q sat-
isfy the local-global principle, but this turned out to be false [SD62, §2].
Selmer [Sel53] proved that diagonal cubic surfaces ax3+by3+cz3+dw3 = 0
in P3

Q for nonzero integers a, b, c, d satisfy the local-global principle if ab = cd

or |abcd| ≤ 500, but later Cassels and Guy [CG66] discovered that the sur-
face

5x3 + 9y3 + 10z3 + 12w3 = 0

over Q violates the local-global principle. Also, weak approximation can
fail even if X is minimal and has a rational point [SD62, §3] (we ask for
X to be minimal since otherwise one could simply blow up a k-point on a
degree 4 counterexample to weak approximation). See [CTKS87] for many
more counterexamples.

9.4.10. Degree 2. The anticanonical map is a degree 2 morphism X → P2

ramified along a nice curve of degree 4 in P2 [Kol96, Theorem III.3.5.2]. In
other words, X is of degree 4 in a weighted projective space P(1, 1, 1, 2). If
k is a global field, then X need not satisfy the local-global principle: Kresch
and Tschinkel [KT04] give many counterexamples, including the surface over
Q defined by the weighted homogeneous equation

w2 = −6x4 − 3y4 + 2z4.

Colliot-Thélène observed that one can obtain a counterexample also by re-
placing z2 by z4 in Iskovskikh’s surface of Section 8.2.5; this results in the
surface

y2 = −z4 + (3w2 − x2)(x2 − 2w2)

over Q.
Weak approximation can fail too, even if X is minimal and has a k-point

[KT04].

Remark 9.4.30. So far, every time a del Pezzo surface has been found to
violate the local-global principle, the violation has been explained by the
Brauer–Manin obstruction, as predicted by Conjecture 9.2.27.

9.4.11. Degree 1. Then X is of degree 6 in a weighted projective space
P(1, 1, 2, 3) [Kol96, Theorem III.3.5.1]. The common zero locus of any basis
s1, s2 of the 2-dimensional space H0(X,−K) is independent of the choice of
basis. This locus consists of a single degree 1 point, since (−K).(−K) = 1.
In other words, the intersection of any two distinct divisors in |−K| is a
canonical k-point! Thus X(k) �= ∅.

In particular, the local-global principle holds trivially. On the other
hand, there can be a Brauer–Manin obstruction to weak approximation,
even if X is minimal [VA08, Proposition 7.1].
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9.4.12. Summary. The results on the arithmetic of del Pezzo surfaces are
summarized in the following table, whose entries answer the following ques-
tions about a del Pezzo surface of specified degree over a field k:

• k-point: Must the surface have a k-point?
• k-rational†: If the surface has a k-point, must it be birational to
P2
k?

• k-unirational†: If the surface has a k-point, must it be dominated
by P2

k?
• local-global: If k is a global field, must the surface satisfy the

local-global principle?
• weak appr.: If k is a global field, must the surface satisfy weak

approximation?

Degree k-point k-rational† k-unirational† local-global weak appr.
9 NO YES YES YES YES
8 NO YES YES YES YES
7 YES YES YES YES YES
6 NO YES YES YES YES
5 YES YES YES YES YES
4 NO NO YES NO NO
3 NO NO YES NO NO
2 NO NO ? NO NO
1 YES NO ? YES NO

The daggers † warn that those columns presume the existence of a k-point.

9.5. Rational points on varieties of general type

9.5.1. Curves of genus > 1 over number fields.

(References: [HS00], [BG06])

Let X be a nice curve over a field K. In Section 2.6.4.2, we stated the
following result, conjectured by Mordell in 1922 (for K = Q) [Mor22] and
proved by Faltings in 1983.

Theorem 9.5.1 ([Fal83]). Let X be a nice curve of genus > 1 over a number
field K. Then X(K) is finite.

We will not give a proof, since the known proofs are very complicated.
Faltings’s proof uses an idea of Parshin to reduce the problem to proving a
conjecture of Shafarevich that for a fixed number field K, a fixed finite set of
places S of K, and a fixed d ≥ 0, there are at most finitely many isomorphism
classes of d-dimensional abelian varieties over K with good reduction outside
S [Fal83]. Vojta [Voj91] gave a different proof of Theorem 9.5.1, based



Appendix A

Universes

(Reference: [SGA 4I, I.Appendice])

The plan is to assume the existence of a very large set, called a universe,
such that almost all the constructions we need can be carried out within it.
Those constructions that cannot be carried out within it can be carried out
in a larger universe.

According to [SGA 4I, I.Appendice], the theory of universes comes from
“the secret papers of N. Bourbaki”. According to [SGA 1, VI, §1], the details
will be given in a book in preparation by Chevalley and Gabriel to appear
in the year 3000.

A.1. Definition of universe

Everything is a set. In particular, elements of a set are themselves sets.
Given a set x, let P(x) be the set of all subsets of x.

Definition A.1.1 ([SGA 4I, I.Appendice, Définition 1]). A universe is a
set U satisfying the following conditions:

(U.I) If y ∈ U and x ∈ y, then x ∈ U .

(U.II) If x, y ∈ U , then {x, y} ∈ U .

(U.III) If x ∈ U , then P(x) ∈ U .

(U.IV) If I ∈ U , and (xi)i∈I is a collection of elements of U , then the union⋃
i∈I xi is an element of U .

A universe U is not a “set of all sets”. In particular, a universe cannot
be a member of itself; see Exercise A.2.

295
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A.2. The universe axiom

To the usual ZFC axioms of set theory (the Zermelo-Frenkel axioms with the
axiom of choice), one adds the universe axiom [SGA 4I, I.Appendice.§4]:1

Every set is an element of some universe.

Suppose that ZFC is consistent. Then it turns out that the negation of
the universe axiom is consistent with ZFC: given a model of ZFC, one can
build another model of ZFC in which the universe axiom fails. But it is not
known whether the universe axiom itself is consistent with ZFC.

The universe axiom is so convenient that we are going to assume it despite
its uncertain status relative to ZFC.

Remark A.2.1. The original proof of Fermat’s last theorem made use of
constructions relying on the universe axiom! But the proof can probably be
redone without this axiom; see Section A.5.

A.3. Strongly inaccessible cardinals

Definition A.3.1. A cardinal κ is strongly inaccessible if the following two
conditions hold:

(1) For every λ < κ, we have 2λ < κ.
(2) Whenever (λi)i∈I is a family of cardinals indexed by a set I such

that #I < κ and λi < κ for every i ∈ I, we have
∑

i∈I λi < κ.

The two smallest strongly inaccessible cardinals are 0 and ℵ0. By (1),
any other strongly inaccessible cardinal κ must be larger than all of

�0 := ℵ0
�1 := 2ℵ0

�2 := 22
ℵ0

...

By (2), κ must also be larger than the supremum �ω of all these. Transfinite
induction continues this sequence of cardinals by defining �α for any ordinal
α. Then κ must be larger than �ωω , �ωωω , . . . , and even �ω1 , where ω1 is
the first uncountable ordinal. Identify each cardinal with the first ordinal of

1In [SGA 4I, I.Appendice.§4] one finds an additional axiom (UB) that is present only because
Bourbaki’s axioms for set theory are different from the usual ZFC axioms. Bourbaki’s set theory
includes a global choice operator τ : for any 1-variable predicate P (x), the expression τxP (x)
represents an element y such that P (y) is true, if such a y exists. Axiom (UB) says that for any
1-variable predicate P (x) and any universe U , if there exists y ∈ U such that P (y) is true, then
τxP (x) is an element of U . So axiom (UB) says that the elements produced by the global choice
operator lie in a given universe whenever possible.
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its cardinality. Then ω1 ≤ 2ℵ0 = �1, so �ω1 ≤ ��1 . But κ is also larger than
��ω1

, ���ω1
, and so on.

Theorem A.3.2. Within ZFC, the universe axiom is equivalent to the fol-
lowing “large cardinal axiom”:

For every cardinal, there is a strictly larger strongly inac-
cessible cardinal.

Proof. One direction is easy, because if U is a universe, then the cardi-
nal sup{#x : x ∈ U} is strongly inaccessible. For the other direction, see
[SGA 4I, I.Appendice.§5], which constructs a universe from a strongly in-
accessible cardinal. �

A.4. Universes and categories

We now assume that an uncountable universe U has been fixed.
Recall that everything is a set. For instance, an ordered pair (x, y) is

{x, {y}}. A group is a 4-tuple (G,m, i, e) such that various conditions hold.
Even a scheme can be described as a set.

Definition A.4.1. A small category is a category in which the collection
of objects is a set (instead of a class).

We want all our categories to be small categories. Thus for example,
Sets will denote not the category of all sets, but the category of sets that
are elements of U . Similarly, Groups will be the category of groups that
are elements of U , and so on.

For categories such as these two, the set of objects is a subset of U having
the same cardinality as U , which implies that the set of objects cannot be
an element of U . This creates a minor problem: the collection of all functors
Schemesopp → Sets, say, is a set of cardinality larger than that of U ! The
category of such functors is still a small category, but it lives in a larger
universe U ′.

A.5. Avoiding universes

Suppose that we want to prove theorems that are not conditional on the
universe axiom. Then we cannot define the category Schemes as the set
of schemes that are elements of a particular universe U . Instead we choose
a category of schemes that is closed under various operations, and work
within that category [SP, Tag 020S, Tag 03XB]. Ideally, we should then
show that our choice did not matter for our particular objects of study; see
[SP, Tag 00VY] for an example of this.
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Exercises

A.1. Classify all finite universes.
A.2. Let U be a universe. Prove that U /∈ U .
A.3. Let P0 = ∅. For n ∈ N, inductively define Pn+1 := P(Pn). Let

U =
⋃

n∈N Pn. Prove that U is a universe.


	gsm-186-sect1.2
	gsm-186-sect3.6
	gsm-186-chpt8
	gsm-186-sect9.4
	gsm-186-AppendixA

