
Chapter 1

Introduction

Welcome to the world of super mathematics! In this short chapter we give
some of the basic definitions concerning Lie superalgebras. We also state
the Classification Theorem for finite dimensional classical simple Lie super-
algebras.

1.1. Basic Definitions

Let K be a field. We assume that the characteristic of K is different from
2, 3. Unless otherwise stated, all vector spaces, Lie algebras, etc., are defined
over K. A Z2-graded vector space is merely a direct sum of vector spaces
V = V0 ⊕ V1. We call elements of V0 (resp. V1) even (resp. odd). Nonzero
elements of V0 ∪ V1 are homogeneous and for homogeneous v ∈ Vi, we set
v = i, the degree of v. First we mention an important convention which we
use throughout this book.

Degree Convention 1.1.1. If v is an element of a Z2-graded vector space
and v appears in some formula or expression, then v is assumed to be homo-
geneous.

This convention simplifies the notation in many formulas beginning with the
very definition of a Lie superalgebra. Background on Z2-graded structures
is contained in Section A.1 of Appendix A.

A Lie superalgebra is a Z2-graded vector space g = g0 ⊕ g1 together with a
bilinear map [ , ] : g× g → g such that

(a) [gα, gβ] ⊆ gα+β for α, β ∈ Z2 (Z2-grading),

(b) [a, b] = −(−1)ab[b, a] (graded skew-symmetry),
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2 1. Introduction

(c) (−1)ac[a, [b, c]]+(−1)ab[b, [c, a]]+(−1)bc[c, [a, b]] = 0 (graded Jacobi
identity),

for all a, b, c ∈ g.1

The related notion of a Z-graded Lie algebra was introduced in [MM65]. A
Z-graded Lie algebra is a direct sum g =

⊕
α∈Z g(α) together with a bilinear

map [ , ] : g× g → g such that

(a) [g(α), g(β)] ⊆ g(α+ β),

(b) [a, b] = −(−1)αβ[b, a],
(c) (−1)αγ [a, [b, c]] + (−1)αβ[b, [c, a]] + (−1)βγ [c, [b, a]] = 0,

for all a ∈ g(α), b ∈ g(β), c ∈ g(γ).

Any Z-graded Lie algebra can be made into a Lie superalgebra by setting

(1.1.1) g0 =
⊕
α∈Z

g(2α), g1 =
⊕
α∈Z

g(2α+ 1).

Scheunert calls a Lie superalgebra with a Z-grading satisfying (1.1.1) a con-
sistently graded Lie superalgebra, [Sch79].

There is another formulation of the graded Jacobi identity which is used
frequently. Let A be a not necessarily associative Z2-graded algebra over K.
A K-linear map ∂ : A −→ A of degree α 2 is a left superderivation provided

∂(bc) = ∂(b)c+ (−1)αbb∂(c)
for all b, c ∈ A. Similarly ∂ is a right superderivation of degree α if

∂(bc) = b∂(c) + (−1)αc∂(b)c
for all b, c ∈ A.

Lemma 1.1.2. Assume that A is a Z2-graded algebra whose product

(a, b) −→ [a, b]

is graded skew-symmetric. Then the following are equivalent.

(a) A satisfies the graded Jacobi identity.

(b) For all a ∈ A the map ad a : b −→ [a, b] is a left superderivation of
degree a.

(c) For all a ∈ Aα the map ad′a : b −→ [b, a] is a right superderivation
of degree a.

1Note that if char K = 2 or 3, we encounter difficulties with this definition. For example in
characteristic 3, if a = b = c ∈ g1, then (c) holds vacuously.

2For the degree of a linear map between two Z-graded vector spaces in general, when defined,
see (A.4.7) in Appendix A.
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Proof. Exercise 1.4.2. �

Henceforth a superderivation will mean a left superderivation. Super-
derivations of degree 0 (resp. 1) are also called even (resp. odd ) superderi-
vations.

If g is a Lie superalgebra, then a g-module is a vector space V together
with a bilinear map, g× V → V , denoted (x, v)→ xv such that

x(yv)− (−1)xyy(xv) = [x, y]v

for all x, y ∈ g. We do not assume that V is Z2-graded.

Let g be a Lie superalgebra. If V and W are subspaces of g, we write
[V,W ] for the subspace spanned by all [v, w] with v ∈ V,w ∈ W . A Z2-
graded subspace a of g is an ideal if [a, g] ⊂ a. The derived series g(i) of g is
defined by setting

g(0) = g, g(i+1) = [g(i), g(i)] if i ≥ 0.

The lower central series g[i] of g is defined by

g[0] = g, g[i+1] = [g, g[i]] if i ≥ 0.

We say that g is solvable (resp. nilpotent) if g(n) = 0 (resp. g[n] = 0) for
large n and that g is abelian if [g, g] = 0.

1.2. Simple Lie Superalgebras

We say the Lie superalgebra g is simple if it is not abelian and the only
Z2-graded ideals of g are 0 and g.

Lemma 1.2.1. Let g be a Lie superalgebra such that g0 �= 0 �= g1. Then g

is simple if and only if the following conditions hold.

(a) If a is a nonzero g0-submodule of g1 such that [g1, [g1, a]] ⊆ a, then
[g1, a] = g0.

(b) g1 is a faithful g0-module under the adjoint action.

(c) [g0, g1] = g1.

Proof. Assume that g is simple and that a is as in (a). Let

b = {x ∈ g0|[x, g1] = 0}
and

c = [g0, g1].

It is readily checked that each of

[g1, a]⊕ a, b, and g0 ⊕ c

is an ideal of g, and properties (a)–(c) follow from this.
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Conversely suppose that (a)–(c) hold and that I is a graded ideal of g.
If I1 = 0, then I0 �= 0 and [I0, g1] = 0, contradicting (b). Thus I1 �= 0 and
I1 is a g0-submodule of g1 such that [g1, [g1, I1]] ⊂ I1. Thus by (c) and (a),
I contains [g1, I1] = g0 and [g0, g1] = g1. �

Define a left ideal in a Lie superalgebra g to be a subspace a of g such that
[g, a] ⊆ a. Left ideals are not assumed to be Z2-graded subspaces. The
remaining results in this section are adapted from [Sch79].

Proposition 1.2.2. The only left ideals in a simple Lie superalgebra g are
0 and g.

To prove this, we need a lemma.

Lemma 1.2.3. Let g be a simple Lie superalgebra, and suppose that τ :
g −→ g is an odd linear map such that

(1.2.1) τ([a, b]) = [a, τ(b)] for a, b ∈ g.

Then τ = 0.

Proof. Since the kernel and image of τ are ideals, τ is either zero or bijec-
tive. For a contradiction assume the latter. If a, b are homogeneous of the
same degree, then

(1.2.2) [τ(a), τ(b)] = τ([τ(a), b]) = −τ([b, τ(a)]) = −τ2([b, a]).
However one side of this equation is symmetric in a, b and the other side is
skew-symmetric. Thus, since τ is bijective, [a, b] = 0 if a, b are homogeneous
of the same degree. Next if a, b are homogeneous of different degree, then
a, τ(b) have the same degree, so τ([a, b]) = [a, τ(b)] = 0. Therefore [g, g] = 0,
a contradiction. �

Proof of Proposition 1.2.2. The linear map γ : g −→ g defined by
γ(x) = (−1)x̄x is an automorphism of g. If x ∈ g, then the component of x
in g of degree α ∈ Z2 is (x+ (−1)αγ(x))/2. If a is a nonzero left ideal in g,
then so is γ(a). Assume that a is different from 0 and g. Then a∩ γ(a) = 0,
and a+ γ(a) = g. Thus g is the direct sum of a and γ(a). It follows that for
α ∈ Z2,

(1.2.3) gα = {x+ (−1)αγ(x)|x ∈ a}.
Define a linear map τ : g −→ g by

τ(x) = x, τ(γ(x)) = −γ(x) for x ∈ a.

From (1.2.3) we deduce that τ(gα) = gα+1 for α ∈ Z2. Since a and γ(a) are
left ideals, it follows that τ([a, b]) = [a, τ(b)] for a, b ∈ g. The existence of a
map τ with these properties contradicts Lemma 1.2.3. �



1.2. Simple Lie Superalgebras 5

From now on we consider only graded ideals in Lie superalgebras. We men-
tion several further general properties of simple Lie superalgebras. A bilin-
ear form ( , ) on g is invariant if ([a, b], c) = (a, [b, c]) for all a, b, c ∈ g, (see
(A.2.28) for the general case of an invariant bilinear form on a g-module.)

Proposition 1.2.4. Let g be a simple Lie superalgebra.

(a) Any invariant bilinear form on g is either nondegenerate or equal
to zero.

(b) Any invariant bilinear form on g is supersymmetric, that is, (a, b) =

(−1)ab(b, a) for a, b ∈ g.

(c) Any two nonzero invariant bilinear forms on g are proportional.

(d) The invariant bilinear forms on g are either all odd or all even.

Proof. If ψ is any invariant bilinear form, then the radical

{b ∈ g|ψ(a, b) = 0 for all a ∈ g}
of ψ is a left ideal, and thus (a) follows from Proposition 1.2.2. The proofs
of (b) and (c) are outlined in the exercises. To prove (d) consider bilinear
forms ψ and ψ′ of different degrees such that ψ is nondegenerate. There
is a unique odd linear map τ : g −→ g such that ψ′(a, b) = ψ(a, τ(b)) for
a, b ∈ g. Then for a, b, c ∈ g,

ψ(a, τ([b, c])) = ψ′(a, [b, c]) = ψ′([a, b], c) = ψ([a, b], τ(c)) = ψ(a, [b, τ(c)]).

Since ψ is nondegenerate, it follows that [b, τ(c)] = τ([b, c]).Hence by Lemma
1.2.3, τ = 0, so ψ′ = 0. �

Proposition 1.2.5. Let g be a finite dimensional simple Lie superalgebra
with g1 �= 0, and suppose g1 = g11+g21 is the sum of two proper g0-invariant
subspaces. Then g1 is the direct sum of g11 and g21, each gi1 is a simple
g0-module, and we have

(1.2.4) [g11, g
1
1] = [g21, g

2
1] = 0, [g11, g

2
1] = g0.

The proof uses the next result, known as the modular law.

Lemma 1.2.6. If A,B, and C are subgroups of an abelian group D and
B ⊆ A, then A ∩ (B + C) = (A ∩ C) +B.

A special case of the proposition requires no finite dimensionality assump-
tion.

Lemma 1.2.7. Let g be a simple Lie superalgebra with g1 �= 0, and suppose
g1 =

⊕r
i=1 g

i
1 for nonzero g0-invariant subspaces g

i
1. Then r = 1 or 2 and

if r = 2, then (1.2.4) holds.
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Proof. If r = 1, there is nothing to prove. Suppose first that r = 2. Set
a = a0 ⊕ a1 where a0 = [g11, g

1
1] and a1 = [g11, [g

1
1, g

1
1]]. Then we claim that

a is an ideal of g. Clearly a is g0-invariant and [g11, a] ⊆ a. Now using the
Jacobi identity,

[[g11, g
1
1], g

2
1] ⊆ [g11, [g

1
1, g

2
1]] ⊆ [g11, g0] ⊆ g11.

Since g21 is g0-invariant, this implies

[[g11, g
1
1], g

2
1] ⊆ [g0, g

2
1] ⊆ g11 ∩ g21 = 0.

Hence again by the Jacobi identity,

[g21, a1] = [g21, [g
1
1, [g

1
1, g

1
1]]] ⊆ [g11, [g

2
1, [g

1
1, g

1
1]]] + [[g21, g

1
1], [g

1
1, g

1
1]]

⊆ [g0, [g
1
1, g

1
1]] ⊆ [g11, g

1
1] = a0,

and clearly [g11, a1] ⊆ [g11, g
1
1]. Thus a is an ideal in g. It is a proper ideal

since [g11, [g
1
1, g

1
1]] ⊆ [g11, g0] ⊆ g11 �= g1. Thus [g11, g

1
1] = 0 and similarly

[g21, g
2
1] = 0. Since [g1, [g1, g1]] ⊆ g1, it follows from Lemma 1.2.1(a) that

[g1, g1] = g0, and thus [g11, g
2
1] = g0. Finally if r > 2, then for 1 ≤ s ≤ r

we have g1 = gs1 ⊕
⊕

i �=s g
i
1, so by the case r = 2, [

⊕
i �=s g

i
1,

⊕
i �=s g

i
1] = 0.

This implies that [gs1, g
t
1] = 0 for 1 ≤ s, t ≤ r and hence that [g1, g1] = 0, a

contradiction, since as shown above [g1, g1] = g0. �

Proof of Proposition 1.2.5. For i = 1, 2 define a sequence of subspaces
{ain}n≥−1 of g by

ai−1 = g1, ai0 = g0, ai1 = gi1,

and then inductively ain = [gi1, a
i
n−1] for n ≥ 2. Note that ain ⊆ g0 for n even

and ain ⊆ g1 for n odd. By induction we see that

(1.2.5) ain is g0-invariant, a
i
n+2 ⊆ an, and [g1, a

i
n+1] ⊆ ain.

Since g is finite dimensional, there is an integer m ≥ 1 such that ai2m+2 =

ai2m for i = 1, 2. Hence, by (1.2.5), ai2m⊕ ai2m+1 is a graded ideal of g which

must be zero since ai2m+1 ⊆ g11 �= g1. It follows that aiM = 0 for some M .
Next for r ≥ 0 define

b
r
0 =

r∑
s=0

a12r−2s ∩ a22s

and

b
r
1 =

r+1∑
s=0

a12r−2s+1 ∩ a22s−1.

By (1.2.5), br = b
r
0⊕b

r
1 is a graded ideal of g for all r ≥ 0. Note that b00 = g0

and that b01 = g11+g21 = g1. Now since
∑r+1

s=1 a
1
2r−2s+1∩a22s−1 ⊂ a21, we have

b
r
1 ⊆ (a12r+1 ∩ a2−1) + a21, and because a21 ⊆ a2−1, the modular law gives

b
r
1 ⊆ a2−1 ∩ (a12r+1 + a21) ⊆ a12r+1 + g21.
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Similarly

(1.2.6) b
r
1 ⊆ (a12r+1 + g21) ∩ (a22r+1 + g11).

It follows that br1 ⊆ g11∩g21 for all sufficiently large r, and then br = 0 since br

is an ideal. Let N be minimal such that bN = 0. Then b
N−1 = g. Therefore

a12N−1 �= 0, since otherwise bN−1
1 ⊆ g21 by (1.2.6). Likewise a22N−1 �= 0. Also

the sums defining b
N−1 are direct; for example, for 1 ≤ p ≤ N − 1,

(a12N−2p−2 ∩ a22p) ∩
p−1∑
s=0

(a12N−2s−2 ∩ a22s) ⊆ a12N−2p ∩ a22p = 0.

Since a12N−1 ∩ a2−1 and a22N−1 ∩ a1−1 are nonzero, the other terms defining

b
N−1
1 are zero by Lemma 1.2.7. It follows from the minimality of N that

N = 1. From b
0 = g, we see that g1 = a11 + a21, and from b

1 = 0 that
a11 ∩ a21 = 0. Thus g1 is the direct sum of a11 = g11 and a21 = g21. It only
remains to show that g11 and g21 are simple g0-modules. However if c is a
proper submodule of, say, g11, then g1 is the sum of the two proper submod-
ules c ⊕ g21 and g11. Therefore, by what we have already shown, this sum
must be direct, and so c = 0. �

From now on, unless otherwise indicated, we assume that all Lie super-
algebras are finite dimensional over K. We say that g is classical simple if g
is simple and g1 is a completely reducible g0-module.

Corollary 1.2.8. Let g be a classical simple Lie superalgebra, and suppose
the center z = z(g0) of g0 is nontrivial. Then z is one-dimensional and g1
is the direct sum of two simple submodules:

g1 = g11 ⊕ g21.

Furthermore there is a unique element z ∈ z such that z = Kz and

(1.2.7) [z, x] = (−1)ix
for all x ∈ gi1.

Proof. Suppose that g1 is simple as a g0-module. Then if z ∈ z, there exists
α ∈ K such that [z, x] = αx for all x ∈ g1, since g1 is finite dimensional.
Hence if x, y ∈ g1, we have

0 = [z, [x, y]] = 2α[x, y],

and so α = 0. However Lemma 1.2.1 requires that g1 be a faithful g0-module,
so this gives z = 0 against our assumption.

Since g1 is completely reducible, it follows from Proposition 1.2.5 that
g1 = g11 ⊕ g21 is a direct sum of two simple submodules. Now for nonzero
z ∈ z there exist α1, α2 ∈ K such that [z, x] = αix, for all x ∈ gi1. Hence for



8 1. Introduction

x ∈ g11, y ∈ g21 we have 0 = [z, [x, y]] = (α1 + α2)[x, y], so as [g11, g
2
1] = g0 by

Proposition 1.2.5 we have α1 + α2 = 0. Since g1 is faithful as a g0-module,
we have α1 �= 0. If w ∈ z, there exists βi ∈ K such that [w, x] = βix, for all
x ∈ gi1. Hence [α1w−β1z, x] = 0 for all such x, and faithfulness implies that
dim z = 1. Finally we can replace z by z/α1 to ensure that (1.2.7) holds. �

Theorem 1.2.9. The simple Lie superalgebra g is classical simple if and
only if g0 is reductive.

Comments on the Proof. We assume that g1 �= 0. By Lemma 1.2.1, g1
is a faithful g0-module. Thus if g1 is a completely reducible g0-module, it
follows from the proof of [Hum72, Proposition 19.1] that g0 is reductive.

Conversely assume that g0 is reductive. If g0 is semisimple, then g1 is
completely reducible, as are all finite dimensional g0-modules. Given this,
the proof of complete reducibility is surprisingly difficult when the center
of g0 is nontrivial. We refer to [Sch79, Theorem 1, page 101] for full de-
tails. �

A classical simple Lie superalgebra g is called basic if g admits an even
nondegenerate g-invariant bilinear form. See Section 8.3 for more on basic
classical simple Lie superalgebras.

1.3. Classification of Classical Simple Lie Superalgebras

From this point on, unless otherwise stated, we work over an algebraically
closed base field K of characteristic zero. We now state the classification
of finite dimensional classical simple Lie superalgebras due to Kac, and
independently to Nahm, Rittenberg, and Scheunert, [SNR76a], [SNR76b].
Special cases of the classification were also obtained by other authors; see
[Kac77a, pages 47–48] for details. As is the case for semisimple Lie algebras
there are a number of infinite families and a finite number of exceptions.
One difference is the existence of the infinite family of algebras D(2, 1;α)
depending on the continuous parameter α.

Theorem 1.3.1. Let g be a finite dimensional classical simple Lie superal-
gebra. Then either g is a simple Lie algebra or g is isomorphic to one of the
following algebras:

A(m,n) = sl(m+ 1, n+ 1) with m > n ≥ 0,

A(n, n) = psl(n+ 1, n+ 1) with n ≥ 1,

B(m,n) = osp(2m+ 1, 2n) with m ≥ 0, n > 0,

C(n) = osp(2, 2n− 2) with n ≥ 2,

D(m,n) = osp(2m, 2n) with m ≥ 2, n ≥ 1,
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D(2, 1;α) = Γ(1,−1− α, α) α �= 0,−1,

p(n), n ≥ 2; q(n), n ≥ 2,

G(3), a simple algebra of dimension 31,

F (4), a simple algebra of dimension 40.

The Lie superalgebras appearing in the theorem will be described in
Chapters 2 and 4. We remark that Kac classifies all finite dimensional sim-
ple Lie superalgebras. The remaining algebras which are not classical are
often called simple superalgebras of Cartan type. This refers to the fact that
they are Lie superalgebra analogs of some infinite dimensional Lie algebras
studied by Cartan; see [Car09], [Car53], and also [FS88] for some finite
dimensional simple Lie algebra analogs in positive characteristic.

Among the Lie superalgebras listed in Theorem 1.3.1 we have the following
isomorphisms:

(a) A(1, 0) ∼= C(2),

(b) D(2, 1) ∼= D(2, 1, 1).

In addition there are some isomorphisms between the various D(2, 1;α) as
described in Section 4.2. There are no further isomorphisms between the
algebras listed in the theorem. The simplicity of the algebras in Theorem
1.3.1 can be proved by verifying the hypotheses of Lemma 1.2.1.

1.4. Exercises

1.4.1. Let A = A0 ⊕ A1 be a Z2-graded associative algebra. Show that A
becomes a Lie superalgebra if we define for all a, b ∈ A,

[a, b] = ab− (−1)abba.

We say that A is supercommutative if [a, b] = 0 for all a, b.

1.4.2. Prove Lemma 1.1.2.

1.4.3. Let k be a Lie superalgebra, and let A be a supercommutative asso-
ciative algebra over K. Set

kA = (k⊗A)0 = (k0 ⊗A0)⊕ (k1 ⊗A1).

Show that kA becomes a Lie algebra when we define

[x⊗ a, y ⊗ b] = [x, y]⊗ ab

for x, y ∈ k, a, b ∈ A.
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1.4.4. Let A be a Z2-graded algebra and set

Sder(A)α = {∂ ∈ EndK A|∂ is a superderivation of degree α}.
Show that Sder(A) = Sder(A)0 ⊕ Sder(A)1 is a Lie subsuperalgebra of
EndK A.

1.4.5. Prove Proposition 1.2.4(b). Hint: If ( , ) is an invariant bilinear form

on g, show that (a, [b, c]) = (−1)ab+ac([b, c], a) for a, b, c ∈ g.

1.4.6. Prove Proposition 1.2.4(c). Hint: If ( , ) is an invariant bilinear
form on g, show that the map φ : g −→ g∗ defined by φ(x)(y) = (x, y) is a
homomorphism of g-modules. Use Schur’s Lemma.

1.4.7. Prove the modular law, Lemma 1.2.6.



Chapter 8

Enveloping Algebras of
Classical Simple Lie
Superalgebras

In this chapter we set up some of the notation that we will use in subsequent
chapters to study enveloping algebras of classical simple Lie superalgebras.
Until further notice g will be a classical simple Lie superalgebra or a Lie
superalgebra of Type A.

8.1. Root Space and Triangular Decompositions

In Subsection A.1.3 we recall the root space and triangular decompositions
of a reductive Lie algebra k. We want similar decompositions for g. First
let h0 be a Cartan subalgebra of g0. From the Classification Theorem 1.3.1
and the description of the classical simple Lie superalgebras in Chapter 2, it
follows that the adjoint action of h0 on g is semisimple. This can be shown
independently of the classification; see Theorem 1.2.9. Let h = g0 be the
centralizer of h0 in g. We denote the set of roots of gi with respect to h0 by
Δi for i = 0, 1 and put Δ = Δ0 ∪Δ1. Thus

(8.1.1) Δi = {α ∈ h∗0|α �= 0, gαi �= 0}.

Having chosen h0, we have a canonical root space decomposition (compare
equation (2.1.1))

g = h⊕
⊕
α∈Δ

gα.

181
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By a triangular decomposition of g we mean a vector space decomposition

(8.1.2) g = n− ⊕ h⊕ n+

with b = h⊕ n+ a BPS-subalgebra and n−⊕ h the BPS-subalgebra opposite
b.

Lemma 8.1.1. If (8.1.2) is a triangular decomposition, then

(a) n−, n+, h = g0 are Z2-graded subalgebras of g with n± nilpotent,

(b) g0 = n
−
0 ⊕ h0 ⊕ n

+
0 is a triangular decomposition of the reductive

Lie algebra g0 as in (A.1.6).

Proof. Since for any roots α and β, we have [gα, gβ] ⊆ gα+β and since the
set of roots is finite, it follows that n± are nilpotent. This easily gives (a),
and (b) follows from Theorem A.1.1. �

Given the triangular decomposition (8.1.2), let Δ+ be the set of roots of n+,
and set Q = ZΔ, Q+ = NΔ+. Define a partial order ≥ on h∗ by setting

(8.1.3) λ ≥ μ if and only if λ− μ ∈ Q+.

This extends the definitions given in Section 5.1. There are several ways
that triangular decompositions may arise. The first imitates the situation
for reductive Lie algebras.

Lemma 8.1.2. If α1, . . . , αn is a basis of simple roots for g, then there is a
triangular decomposition of g with n± =

⊕
α∈±Q+ gα.

Proof. This follows from Lemma 3.2.2. �

Lemma 8.1.3. If g = g(A, τ) is the contragredient Lie superalgebra defined
by (5.2.1), then g has a basis of simple roots. Moreover the antiautomor-
phism of g defined in Lemma 5.2.5 is the identity on h and interchanges n−

and n+.

Proof. By the definition of realizations, the roots α1, . . . , αn are linearly
independent in h

∗. Thus from (5.2.2), {α1, . . . , αn} is a basis of simple roots.
The remaining assertion is clear. �

A classical simple Lie superalgebra g is said to be of Type I if

(8.1.4) g1 = g
+
1 ⊕ g

−
1 ,

a direct sum of two simple g0-submodules. The Type I Lie superalgebras
consist of the series A(m,n), C(n), and p(n). By checking each case, or by
using Proposition 1.2.5, we have that

(8.1.5) [g+1 , g
+
1 ] = [g−1 , g

−
1 ] = 0.
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Also for any Lie superalgebra g of Type A we have a decomposition as
in (8.1.4) such that (8.1.5) holds. Let g0 = n

−
0 ⊕ h ⊕ n

+
0 be a triangular

decomposition of g0, and set

(8.1.6) n+ = n
+
0 ⊕ g

+
1 , n− = n

−
0 ⊕ g

−
1

and

(8.1.7) b = h⊕ n+, p = g0 ⊕ g
+
1 .

Then the following holds.

Lemma 8.1.4.

(a) g = n− ⊕ h⊕ n+ is a triangular decomposition of g.

(b) I = g
+
1 U(p) = U(p)g+1 is a nilpotent ideal of U(p) such that

U(p)/I ∼= U(g0).

(c) As vector spaces, U(g) = U(g−1 )⊗ U(p).

Proof. If g = psl(2, 2), then (a) is easy to check directly using results from
Section 3.6. Otherwise (a) follows from the explicit description of Borel
subalgebras given in Chapter 3, together with Proposition 4.6.1. Part (b)
follows from Lemma 6.1.7. To prove (c), note that g = g

−
1 ⊕ p and use

Lemma 6.1.4. �

Remarks 8.1.5.

(a) The choice of which g0-submodule of g1 to call g+1 and which to
call g−1 in (8.1.4) is arbitrary but can have some significant conse-
quences. For example if g = p(n), then dim g+1 �= dimg−1 .

(b) If g = psl(n, n) or p(n), the triangular decomposition of g given by
Lemma 8.1.4 does not arise from a basis of simple roots.

Proposition 8.1.6.

(a) If g is a classical simple Lie superalgebra or a Lie superalgebra of
Type A, then g has a triangular decomposition.

(b) If g = g(A, τ) or q(n), there is an antiautomorphism x −→ tx of
g which is the identity on h, sends gα to g−α for all roots α, and
interchanges n− and n+ for some triangular decomposition g =
n− ⊕ h⊕ n+. This antiautomorphism sends tx to x for all x ∈ g.

Proof. For (a) note that by the Classification Theorem, the only case not
covered by Lemma 8.1.2 or Lemma 8.1.4 is the Lie superalgebra q(n). In
this case the result follows easily from Lemma 2.4.1. The statement in (b)
follows from Lemma 2.4.1 or Lemma 8.1.3. �



184 8. Enveloping Algebras of Classical Simple Lie Superalgebras

The map in Proposition 8.1.6(b) extends to an antiautomorphism of U(g),
which we also denote by x −→ tx.

Next we examine some consequences of the assumption that g has a tri-
angular decomposition.

Lemma 8.1.7. Suppose that the Lie superalgebra g has a triangular decom-
position as in (8.1.2). Then as vector spaces we have

(8.1.8) U(g) = U(n−)⊗ U(b),

(8.1.9) U(b) = U(h)⊗ U(n+),

and

(8.1.10) U(g) = U(h)⊕ (n−U(g) + U(g)n+).

Proof. Equations (8.1.8) and (8.1.9) follow immediately from Lemma 6.1.4.
To prove (8.1.10), suppose x1, . . . , xm, h1, . . . , hn, and y1, . . . , yp are homo-
geneous bases for n−, h, and n+ respectively. Then the set of all monomials

xa11 . . . xamm hb11 . . . hbnn yc11 . . . y
cp
p

where the exponents ai, bi, ci satisfy the same conditions as in Theorem
6.1.2 form a basis for U(g). Equation (8.1.10) results since the set of all
such monomials with ai = ci = 0 for all i form a basis for U(h) while the
remaining monomials form a basis for n−U(g) + U(g)n+. �

We call the projection ζ : U(g) −→ U(h) = S(h) relative to the decomposi-
tion equation (8.1.10) the Harish-Chandra projection.

8.2. Verma Modules and the Category O

8.2.1. Verma Modules. Verma modules for semisimple Lie algebras were
introduced in Verma’s thesis; see [Ver68]. Before we can define Verma mod-
ules for classical simple Lie superalgebras, we need to know about some pecu-
liar behavior of the Lie superalgebra g = q(n). We consider the subalgebras
of g defined in (2.4.6)–(2.4.8). The next result is taken from [Pen86, Propo-
sition 1].

Proposition 8.2.1.

(a) For any λ ∈ h∗0 there exists a unique graded simple b-module Vλ

such that n+Vλ = 0 and hv = λ(h)v for all h ∈ h∗0, v ∈ Vλ.

(b) Any finite dimensional graded simple b-module is isomorphic to Vλ

for some λ ∈ h∗0.
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Proof. (a) For λ ∈ h∗0, define a symmetric bilinear form fλ on h1 by
fλ(x, y) = λ([x, y]). Let h⊥1 = {x ∈ h1|fλ(x, h1) = 0} be the radical of
fλ and let

aλ = Kerλ⊕ h⊥1 .

Then aλ is an ideal in h and we set cλ = h/aλ. We can regard λ as a linear
form on (cλ)0. If λ �= 0, we can find z ∈ (cλ)0 such that λ(z) = 1. The
factor algebra Aλ = U(cλ)/(z− 1) of U(h) depends only on λ. Let qλ be the
quadratic form on (cλ)1 defined by

qλ(x+ h⊥1 ) =
1

2
fλ(x, x).

Then qλ is nonsingular, and Aλ is isomorphic to the Clifford algebra of qλ.
By Theorem A.3.6 this Clifford algebra is a central simple graded algebra,
so it has a unique graded simple module Vλ. We can regard Vλ as a U(b)-
module, and it has the required properties. If λ = 0, then aλ = h, and we
let V0 be the trivial U(b)-module and A0 = U(h)/hU(h).

(b) Now let V be any finite dimensional graded simple b-module and
let φ : b −→ gl(V ) be the representation afforded by V . We claim that if
x ∈ n+, then φ(x) is nilpotent. It suffices to show this for x ∈ n

+
0 , since for

x ∈ n
+
1 we have

φ(x)2 =
1

2
φ([x, x]).

By Lie’s Theorem every b0-composition factor of V is one-dimensional,
and hence annihilated by n

+
0 = [b+0 , b

+
0 ], so the claim follows. From Engel’s

Theorem for Lie superalgebras [Sch79, page 236], V ′ = {v ∈ V |n+v = 0} �=
0. Since n+ is an ideal in b, V ′ is a graded submodule of V and so V = V ′.
Because h0 is central in h, there exists λ ∈ h∗0 such that hv = λv for all
h ∈ h by an easy adaptation of Schur’s Lemma. Thus V is an (h/Kerλ)-
module. If h⊥1 is defined as in the proof of (a), then the image φ(h⊥1 ) of
h⊥1 in gl(V ) is central. Since φ is graded simple and φ(h⊥1 ) consists of odd
elements, it follows that φ(h⊥1 ) = 0. Hence V is a graded simple Aλ-module,
so V ∼= Vλ. �

Let g be a classical simple Lie superalgebra or a Lie superalgebra of Type
A and fix a triangular decomposition as in (8.1.2).

Lemma 8.2.2.

(a) For λ ∈ h∗0, there is a unique finite dimensional graded simple b-
module Vλ such that n+Vλ = 0 and hv = λ(h)v for all h ∈ h0 and
v ∈ Vλ.

(b) If g �= q(n), then Vλ is one-dimensional.
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Proof. If g = q(n), this was proved in Proposition 8.2.1. In all other cases
b = h⊕ n+ with n+ an ideal in b and h = h0 is abelian. The same reasoning
used in the proof of Proposition 8.2.1(b) shows that n+V = 0 for any finite
dimensional graded simple b-module V , and the result follows easily. �

Fix a triangular decomposition

g = n− ⊕ h⊕ n+

of g, and set b = h⊕ n+. Similarly let k be a reductive Lie algebra, and fix
a triangular decomposition as in (A.1.6). Let Vλ be as in Lemma 8.2.2, and
let Kvλ be the one-dimensional b0-module with n

+
0 vλ = 0 and hvλ = λ(h)vλ

for h ∈ h0. We define Verma modules for k and g by

(8.2.1) M(λ) = U(k)⊗U(b0) Kvλ,

(8.2.2) M̃(λ) = U(g)⊗U(b) Vλ.

Next we give some of the most basic properties on Verma modules.

Lemma 8.2.3.

(a) The module M(λ) (resp. M̃(λ)) has a unique maximal submodule
(resp. a unique maximal Z2-graded submodule).

(b) M̃(λ) = U(n−)Vλ; this is a free U(n−)-module with basis a vector
space basis for Vλ.

(c) M(λ) = U(n−0 )vλ; this is a free U(n−0 )-module with basis vλ.

(d) There is a surjective map of U(g)-modules

U(g)⊗U(g0) M(λ) −→ M̃(λ).1

(e) EndU(g) M̃(λ) ∼= EndU(h) Vλ, and EndU(k)M(λ) ∼= K.

Proof. (a) Let N be a Z2-graded submodule of M̃(λ). Then N is a direct
sum of weight spaces. If Nλ �= 0, then since Vλ is a simple b-module and

λ is the highest weight of M̃(λ), we have Vλ ⊆ N , so N = M̃(λ), because

M̃(λ) is generated by Vλ. Hence if N is a proper Z2-graded submodule,

then N ⊆
⊕

μ �=λ M̃(λ)μ = M−. Therefore the sum of all proper Z2-graded

submodules of M̃(λ) is contained in M−, so this sum is the unique maximal

Z2-graded submodule. This proves the result for M̃(λ), and the proof for
M(λ) is similar.

1This statement can also be proved using Frobenius reciprocity, as can Lemma 8.2.4(a).
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(b) By (8.1.8), U(g) = U(n−)⊗ U(b) as vector spaces. Therefore

M̃(λ) = U(g)⊗U(b) Vλ

= U(n−)⊗ U(b)⊗U(b) Vλ

= U(n−)⊗ Vλ.

Now (b) is clear and the same proof works for (c).
(d) By (c) any element of M(λ) can be written uniquely in the form

bvλ with b ∈ U(n−0 ). Thus if v is any nonzero homogeneous element of Vλ,

we can define a map φ of U(g)-modules U(g) ⊗U(g0) M(λ) −→ M̃(λ) by

φ(a⊗ bvλ) = abv for a ∈ U(g) and b ∈ U(n−0 ). Now Vλ = U(b)v since Vλ is

a graded simple U(b)-module, so from (8.2.2) we have M̃(λ) = U(g)v. Thus
the map φ is surjective. For the proof of (e) see Exercise 8.7.4. �

By Lemma 8.2.3, the module M(λ) (resp. M̃(λ)) has a unique simple (resp.

graded-simple) quotient which we denote by L(λ) (resp. L̃(λ)). Any non-

zero factor module ofM(λ) or M̃(λ) is called amodule generated by a highest
weight vector with weight λ.

8.2.2. Highest Weight Modules in the Type I Case. At this point
we prove a result that will be used to study primitive ideals in the Type I
case; see Theorem 15.2.5. We use the notation of Lemma 8.1.4.

Lemma 8.2.4.

(a) For λ ∈ h∗ we regard M(λ) as a U(p)-module with I acting trivially.
Then

M̃(λ) ∼= U(g)⊗U(p) M(λ).

(b) As a U(g)-module, U(g)⊗U(p)L(λ) has a unique simple factor mod-

ule which is isomorphic to L̃(λ).

(c) As a U(p)-module, L̃(λ) has a unique simple submodule which is
isomorphic to L(λ).

Proof. There is a well-defined map of U(g)-modules φ : U(g)⊗U(p)M(λ) −→
M̃(λ) given by φ(a ⊗ bvλ) = abv. Now by Lemma 8.1.4 we have U(g) =
U(g−1 )⊗ U(p), so since g

−
1 ⊕ n−0 = n− and M(λ) = U(n−0 )vλ, we have

U(g)⊗U(p) M(λ) = U(g−1 )⊗ U(p)⊗U(p) M(λ)

= U(g−1 )⊗ U(n−0 )vλ

= U(n−)⊗Kvλ

= M̃(λ),

and φ is an isomorphism.
(b) holds as U(g) ⊗U(p) L(λ) is a factor module of U(g) ⊗U(p) M(λ) ∼=

M̃(λ).
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(c) Suppose that L(ν) is a simple U(p)-submodule of L̃(λ). Then there

is a nonzero homomorphism of U(g)-modules from U(g)⊗U(p) L(ν) to L̃(λ).

Since L̃(λ) is simple, we see that L̃(λ) is a factor module of U(g)⊗U(p)L(ν),

and hence using (a), L̃(λ) is also a factor module of U(g) ⊗U(p) M(ν) ∼=
M̃(ν). However M̃(ν) has a unique simple factor module L̃(λ). Therefore

L̃(ν) ∼= L̃(λ) and it follows that ν = λ. �

We call the U(g)-module K(λ) = U(g) ⊗U(p) L(λ) the Kac module with
highest weight λ.

8.2.3. The Category O. In the study of Verma modules for U(k) it is
convenient to consider the category O introduced by Berns̆tĕın, Gel′fand,
and Gel′fand, [BGG71], [BGG75], [BGG76]. By definition, objects in
the category O are U(k)-modules with the following properties.

(a) M =
⊕

μ∈h∗0
Mμ.

(b) For all v ∈M, dimU(n+0 )v < ∞.

(c) M is a finitely generated U(k)-module.

Morphisms are just U(k)-module homomorphisms. Modules satisfying con-
dition (a) are called weight modules. When k = g0, we also consider the

category Õ of graded U(g)-modules which belong to the category O when
regarded as U(k)-modules by restriction. We emphasize that the definition of

the category Õ depends only on a triangular decomposition of g0. However
whenever we refer to highest weight modules, we implicitly fix a triangular
decomposition of g as in (8.1.2).

It is easy to see that a submodule of a homomorphic image of an object
in the category O is again an object in O. We show below that any object
in O has finite length. First we identify the simple modules in the categories

O and Õ.

Lemma 8.2.5. If L is a simple object in Õ (resp. O), then L ∼= L̃(λ) (resp.
L ∼= L(λ)) for some λ ∈ h

∗.

Proof. We give the proof for L ∈ Õ since it is slightly more involved.
Since L is Z2-graded, there exists μ ∈ h

∗ such that Lμ contains a nonzero
homogeneous element v. Since N = U(n+)v is finite dimensional, there
exists λ ∈ h

∗ such that Nλ �= 0, but Nλ+α = 0 for all positive roots α. Now
Nλ is a finite dimensional Z2-graded b-module, so if g = q(n), Nλ contains
a b-submodule isomorphic to Vλ, by Proposition 8.2.1. If g �= q(n), then
Vλ is one-dimensional, and then obviously Nλ contains a copy of Vλ. Since
U(g)Vλ is a g-submodule of L, it equals L by simplicity. Then the result
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follows since M̃(λ) = U(g) ⊗U(b) Vλ maps onto L, and M̃(λ) has a unique
simple Z2-graded factor module. �

Lemma 8.2.6. Let M be a module in the category O.

(a) If M is nonzero, then M contains a highest weight vector.

(b) There is a finite series of submodules

M = Ms ⊃ Ms−1 ⊃ · · · ⊃ M1 ⊃ M0 = 0

such that Mi/Mi−1 is a highest weight module for 1 ≤ i ≤ s.

(c) For all μ ∈ h
∗
0 the weight space Mμ is finite dimensional.

Proof. Part (a) follows from Engel’s Theorem and the fact that dimU(n+0 )v
< ∞ for v ∈ M. For (b) suppose that Mi−1 has been constructed and
Mi−1 �= M . Then by (a) there exists vi ∈ M such that the image of vi in
M/Mi−1 is a highest weight vector, and we set Mi = U(k)vi +Mi−1. Since
M is Noetherian, this process terminates, so M = Ms for some s. By (b)
the proof of (c) reduces to the case where M is a highest weight module.
For highest weight modules, the result follows from the well-known fact that
the dimension of the weight spaces of a Verma module for k are given by a
partition function; see Section 8.4 or [Hum72, Section 24]. �

8.2.4. Central Characters and Blocks. Denote the center of U(g) (resp.
U(k)) by Z(g) (resp. Z(k)). For simplicity assume that g �= q(n) (see
[Ser83] for this case). Then in (8.2.2), Vλ is one-dimensional. Thus if
z ∈ Z(g) and v ∈ Vλ, zv is a highest weight vector of weight λ so we have

(8.2.3) zv = χλ(z)v,

for some χλ(z) ∈ K. The map χλ : Z(g) −→ K is an algebra homomorphism

called the central character of U(g) afforded by the U(g)-module M̃(λ). Be-

cause z is central in U(g) and M̃(λ) is generated by v, it follows that z acts

on M̃(λ) as the scalar χλ(z). Similarly, if z ∈ Z(g0), z acts on M(λ) as
χ0
λ(z) and the map χ0

λ : Z(g0) −→ K is called the central character of U(g0)
afforded by the U(g0)-module M(λ).

Now let ζ : U(g) −→ U(h) = S(h) be the Harish-Chandra projection; see
(8.1.10). Suppose that

(8.2.4) M = U(g)vλ

is a U(g)-module generated by a highest weight vector vλ with weight λ.
For h ∈ h we have hvλ = λ(h)vλ. We set h(λ) = λ(h) and view S(h) as
the algebra of polynomial functions on h∗. Then clearly fvλ = f(λ)vλ for
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all f ∈ S(h). Set M− =
⊕

μ �=λM
μ. Then n+vλ = 0 and n−M ⊆ M−.

Therefore (n−U(g) + U(g)n+)vλ ⊆ M−, so for any z ∈ U(g) we have

(8.2.5) zvλ ≡ ζ(z)vλ = ζ(z)(λ)vλmodM−.

Corollary 8.2.7. If ζ : U(g) −→ U(h) = S(h) is the Harish-Chandra
projection, then for all z ∈ Z(g) and λ ∈ h

∗ we have

χλ(z) = ζ(z)(λ).

Proof. Combine (8.2.3) and (8.2.5). �

For each central character χ of U(k) and M an object of O we define

(8.2.6) Mχ = {m ∈ M |(Kerχ)nm = 0 for some n ≥ 0}.

For distinct central characters χ0, . . . , χp with p ≥ 1, we have for large n,

(8.2.7) (Kerχ0)
n +

p⋂
i=1

(Kerχi)
n = Z(k),

by the Chinese Remainder Theorem (note that the left side cannot be con-
tained in any maximal ideal). Therefore the sum

∑
Mχ is direct where χ

runs over all central characters of U(k). Since the category O is closed under
images, it follows that

(8.2.8) M =
⊕

Mχ.

Moreover this sum is finite since M is finitely generated. In addition for
λ ∈ h

∗, we set

(8.2.9) M(λ) = Mχλ
.

Let Oλ be the full subcategory of the category O consisting of all modulesM
such that M = M(λ). The categories Oλ are called the blocks of the category
O.

8.2.5. Contravariant Forms. Let ζ be the Harish-Chandra projection
(8.1.10).

Lemma 8.2.8. Assume g = g(A, τ) or q(n) and the triangular decomposi-
tion satisfies the conditions of Proposition 8.1.6(b). Then:

(a) The decomposition (8.1.10) is stable under the antiautomorphism
x −→ tx.

(b) ζ(u) = ζ(tu) for all u ∈ U(g).

Proof. Exercise 8.7.1. �
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Following Jantzen [Jan79, Section 1.6], we say that a bilinear form F defined
on a U(g)-module M is contravariant if

(a) F (x, y) = F (y, x),

(b) F (ux, y) = F (x, tuy),

for all x, y ∈ M and u ∈ U(g).

Corollary 8.2.9. The bilinear form F on U(g) with values in S(h) given
by

F (x, y) = ζ(txy) for x, y ∈ U(g)

is contravariant.

Proof. Exercise 8.7.2. �

Now suppose again that M is as in (8.2.4).

Lemma 8.2.10. For y ∈ U(g) the following conditions are equivalent.

(a) yvλ is contained in a proper submodule of M .

(b) U(g)yvλ ⊆ M−.

(c) ζ(txy)(λ) = 0 for all x ∈ U(g).

Proof. Clearly (a) and (b) are equivalent, and the equivalence of (b) and
(c) results from setting z = txy, for x ∈ U(g), in (8.2.7). �

Corollary 8.2.11. There is a well-defined K-valued contravariant bilinear
form ( , )M on M given by the formula

(xvλ, yvλ)M = ζ(txy)(λ)

for x, y ∈ U(g). The radical of ( , )M is the largest proper submodule of M .

Proof. See Exercise 8.7.5. �

This applies in particular if M = M̃(λ) is a Verma module, and we set

F λ = F
˜M(λ)

. Recall that M̃(λ) = U(n−)vλ, a free U(n−)-module. The

bilinear forms F λ are related to the S(h)-valued bilinear form F introduced
in Corollary 8.2.9. Indeed we have

(8.2.10) F (x, y)(λ) = F λ(xvλ, yvλ) = ζ(txy)(λ)

for all λ ∈ h∗ and x, y ∈ U(n−).
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8.2.6. Base Change. Much of the foregoing is easily extended to a more
general situation. What follows is largely based on [Jan79, Kapitel 4]. This
material is used in the construction of the Jantzen filtration. For a vector
space V over K and a commutative K-algebra A, except where noted, we
set VA = V ⊗ A. If k is a Lie superalgebra, then kA is a Lie superalgebra
over A and we define the enveloping algebra U(kA) to be U(k)A = U(k)⊗A.

Now suppose that g is classical simple and h is a Cartan subalgebra of
g. Mainly for notational reasons we assume that g �= q(n), so that h = h0.
Fix a triangular decomposition g = n− ⊕ h ⊕ n+ of g, and set b = n− ⊕ h.
Then gA = n

−
A ⊕ hA ⊕ n

+
A is a triangular decomposition of gA. Note that h∗A

is naturally paired with hA, and we can consider gA-modules with highest
weights in h

∗
A = h

∗ ⊗A. Let M be a U(gA)-module and let λ ∈ h
∗
A. Set

Mλ = {m ∈ M |hm = λ(h)m for all h ∈ hA}.

If M is torsion free as an A-module and λ �= μ ∈ h
∗
A, then Mλ ∩Mμ = 0,

and more generally the sum of weight spaces
⊕

μ∈h∗A
Mμ is direct. We say

that M is a weight module if

(8.2.11) M =
⊕
μ∈h∗A

Mμ.

Equation (8.2.11) is called the weight space decomposition of M . For λ ∈ h
∗
A,

let Aλ = Avλ be the U(bA)-module which is isomorphic to A as an A-module
and which satisfies n+Avλ = 0 and ha = λ(h)a for h ∈ hA and a ∈ Aλ. Then
the Verma module with highest weight λ is defined to be

(8.2.12) M̃(λ)A = U(gA)⊗U(bA) Aλ.

The weight space decomposition of M̃(λ)A is given by

M̃(λ)A =
⊕
η∈Q+

M̃(λ)λ−η
A .

If B is a field extension of K, then M̃(λ)B has a unique simple factor mod-

ule which we denote by L̃(λ)B. Note however that L̃(λ)B need not be ob-
tained from a U(g)-module by extension of scalars. If A is a domain with

field of fractions B, then L̃(λ)B is torsion free as an A-module, and we set

L̃(λ)A = U(gA)vλ. Note that L̃(λ)A ⊗B = L̃(λ)B.

Consider the Harish-Chandra projection ζA : U(gA) −→ U(hA) = S(hA)
relative to the decomposition

(8.2.13) U(gA) = U(hA)⊕ (n−AU(gA) + U(gA)n
+
A).
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Just as in Corollary 8.2.9, the S(hA)-valued bilinear form F ⊗ A on U(gA)
with values given by

(F ⊗A)(x, y) = ζA(
txy) for x, y ∈ U(g)

is contravariant. Next suppose that

(8.2.14) M = U(gA)vλ

is a U(gA)-module generated by a highest weight vector vλ with weight λ.
Then Corollary 8.2.11 holds verbatim except that the contravariant bilinear
form ( , )M on M is now A-valued.

Let φ : A −→ A′ be a map of commutative K-algebras. For a vector space
V , define Vφ : VA −→ VA′ by Vφ(v ⊗ a) = v ⊗ φ(a). If V has an additional
structure, such as that of a Lie superalgebra or associative algebra, then
Vφ respects this structure. Now suppose that M is as in (8.2.14) and let ψ
denote the natural map ψ : M −→M ′ = M ⊗A A′. Then we have

φ((x, y)M ) = (ψ(x), ψ(y))′M .

Given λ ∈ h
∗
A, abbreviate h

∗
φ(λ) to λ′. Then φ induces a map from the bA-

module Aλ to the bA′-module Aλ′ that is compatible with bφ : bA −→ bA′ .
The same holds for the map U(g)φ : U(gA) −→ U(gA′), if we consider
the action of bA (resp. gA) and bA′ (resp. gA′) via right (resp. left)

multiplication. Thus φ induces a map M̃(λ)φ : M̃(λ)A −→ M̃(λ′)A′ sending
uvλ to (U(g)φu)vλ′ .

8.2.7. Further Properties of the Category O. In the proof of the next
result, we use the fact that a submodule of a finitely generated module over
the Noetherian ring U(g0) is again finitely generated.

Theorem 8.2.12. If M is an object in the category O, then M has finite
length.

Proof. By (8.2.8), we may assume thatM = Mχ where χ = χ0
λ. Since U(g0)

is Noetherian and M is finitely generated, M is a Noetherian U(g0)-module.
IfN is a nonzero submodule ofM , thenN has a maximal submoduleN ′, and
N/N ′ ∼= L(μ) for some μ ∈ h

∗ by Lemma 8.2.5. Since L(μ),M(λ) have the
same central character, we have μ ∈ W ◦ λ by Theorem A.1.8. If the result
is false, M would contain an infinite chain of submodules N0 ⊇ N1 ⊇ . . .
with Ni/Ni+1 simple for each i. Since W is finite, infinitely many of these
quotients would be isomorphic to one another. This would imply that M
has a weight of infinite multiplicity, a contradiction to Lemma 8.2.6. �

Corollary 8.2.13. Any object in the category Õ of graded U(g)-modules
has finite length.
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Proof. Immediate. �

Lemma 8.2.14. The Verma module M̃(λ) has a finite composition series

as a Z2-graded module with composition factors of the form L̃(μ) where

χλ = χμ and μ ≤ λ. Furthermore L̃(λ) is a composition factor of M̃(λ)
with multiplicity one.

Proof. By Corollary 8.2.13, M̃(λ) has a finite composition series. Suppose

that L̃(μ) is a composition factor. Since any central element z of U(g) acts

on M̃(λ) as the scalar χλ(z), it follows that χλ = χμ. Finally it was shown in

the proof of Lemma 8.2.3 that any proper Z2-graded submodule of M̃(λ) is

contained in
⊕

μ �=λ M̃(λ)μ. The remaining statements follow from this. �

Lemma 8.2.15. If M,V are modules in the category Õ with V finite di-

mensional, then M ⊗ V is a module in the category Õ.

Proof. This follows from the corresponding result in the semisimple case;
see [Hum08, Theorem 1.1]. �

For a tensor product of a Verma module with a finite dimensional module
we can say more.

Lemma 8.2.16. Assume g �= q(n).

(a) Let V be a finite dimensional U(g)-module, and order the set of
weights ν1, . . . , νs of V so that νi > νj implies i < j. If λ ∈ h

∗,

then M̃(λ)⊗ V has series

M̃(λ)⊗ V = Ms ⊃ Ms−1 ⊃ · · · ⊃ M0 = 0

such that Mi/Mi−1
∼= M̃(λ+ νi) for 1 ≤ i ≤ s.

(b) Let V be a finite dimensional U(k)-module, and order the set of
weights ν1, . . . , νs of V as in (a). Then M(λ) ⊗ V has a finite
series of submodules

M(λ)⊗ V = Ms ⊃ Ms−1 ⊃ · · · ⊃ M0 = 0

such that Mi/Mi−1
∼= M(λ+ νi) for 1 ≤ i ≤ s.

Proof. (a) The argument is well known so we merely sketch it; see [Dix96,
Lemma 7.6.14] or [Jan79, Satz 2.2] for more details. Let x1, . . . , xs be a
basis for V , where xi has weight νi. Then ai = vλ⊗xi ∈ Kvλ⊗V has weight
λ+ νi . Let Mi be the submodule generated by a1, . . . , ai. Then Mi/Mi−1 is
generated by the image of ai, which is a highest weight vector, so Mi/Mi−1

is an image of M̃(λ+νi). A computation using the PBW Theorem for U(n−)
completes the proof of (a) and the proof of (b) is similar. For a different
proof of (b) see [Hum08, Theorem 3.6]. �
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For a much more detailed study of the category O we refer to [Hum08].
We note in particular that the category O has enough projectives and that
there are only finitely many indecomposable projectives in each block. It
follows that each block is equivalent to the category of finite dimensional
modules over a finite dimensional algebra, namely the endomorphism ring
of a projective generator. Furthermore each block has a natural graded
structure, and the combinatorics of graded translation functors and graded
projectives can be described using Hecke algebras and Kazhdan-Lusztig the-
ory [BGS96], [Str03a], [Soe90a]. For explicit examples in low ranks see
[MS08], [Str03b].

8.3. Basic Classical Simple Lie Superalgebras and a
Hypothesis

8.3.1. Basic Lie Superalgebras. Recall that a classical simple Lie su-
peralgebra g is called basic if g admits an even nondegenerate g-invariant
bilinear form. Such a form is necessarily supersymmetric; see Proposition
1.2.4. By Theorem 5.4.1 the contragredient Lie superalgebra g = G(A, τ)/C
is basic. On the other hand, by Exercises 2.7.11 and 2.7.13, if g ∼= p(n) or
q(n), then g does not have an even nondegenerate invariant bilinear form.
Thus the basic classical simple Lie superalgebras are precisely the finite
dimensional simple Lie superalgebras that can be constructed as contra-
gredient Lie superalgebras. In particular for g basic we have h = h0. In
addition if g = gl(m,n), then by Exercise 2.7.1 we can define a nondegener-
ate g-invariant supersymmetric even bilinear form on g using the supertrace.
Hence although g is not simple, it has many properties in common with ba-
sic classical simple Lie superalgebras. Thus in the following we assume that
g is either basic classical simple or g = gl(m,n).

In Section A.1 we defined the Weyl group of a reductive Lie algebra k using
the Killing form on k. However for g as above it is preferable to use a bilin-
ear form ( , ) with properties as in the preceding paragraph, and we shall
always do so; see also Remark A.1.7. Let h = h0 be a Cartan subalgebra of
g and define the set of roots of Δ as in (8.1.1). Set

(8.3.1) Δ0 = {α ∈ Δ0|α/2 �∈ Δ1}, Δ1 = {α ∈ Δ1|2α �∈ Δ0}.

If α ∈ Δ1, we say that α is isotropic if (α, α) = 0.

Lemma 8.3.1. We have the following.

(a) (gα, gβ) = 0 unless α+ β = 0.

(b) The restriction of ( , ) to gα× g−α is nondegenerate. In particular
the restriction of ( , ) to h is nondegenerate.
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Proof. (a) Suppose x ∈ gα and y ∈ gβ. If α + β �= 0, there exists h ∈ h,
such that (α+ β)(h) �= 0. Then we have

([h, x], y) = −([x, h], y) = −(x, [h, y]).
This implies (α+ β)(h)(x, y) = 0, so (x, y) = 0.

(b) The first statement follows immediately from (a), and the second
holds because h = g0. �

Next recall the elements hα ∈ h
∗ defined in (5.4.2).

Lemma 8.3.2.

(a) If x ∈ gα, y ∈ g−α, then [x, y] = (x, y)hα.

(b) [gα, g−α] = Khα.

(c) An odd root α is isotropic if and only if 2α is not a root, that is,
α ∈ Δ1.

Proof. (a) For h ∈ h we have, using invariance of the form ( , ), that

(h, [x, y]) = ([h, x], y)

= α(h)(x, y)

= (h, hα)(x, y)

= (h, (x, y)hα).

This says that [x, y]− (x, y)hα is orthogonal to h, so the result follows from
(b).

(b) If g = psl(2, 2), the result can be checked directly. Otherwise
[gα, g−α] can have dimension at most one, since each of gα, g−α is one-
dimensional. Hence the result follows from (a) and Lemma 8.3.1(b).

(c) Suppose that (α, α) �= 0. Since ( , ) is nondegenerate and (gα, gβ) = 0
unless α+ β = 0, we can choose x ∈ gα, y ∈ g−α such that (x, y) �= 0. Thus
by (a) and the Jacobi identity

[[x, x], y] = −2[[x, y], x]
= −2(x, y)[hα, x]
= −2(x, y)(α, α)x.

Thus, 0 �= [x, x] ∈ g2α. Conversely if 2α is an even root, then (α, α) =
(2α, 2α)/4 �= 0. �

By the lemma, the set of nonisotropic roots is

Δnonisotropic = Δ0 ∪ (Δ1\Δ1).
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For α ∈ Δnonisotropic we set α∨ = 2α/(α, α) and define the reflection sα in
the hyperplane orthogonal to α by

(8.3.2) sα(λ) = λ− (λ, α∨)α.

This definition extends (A.1.2). As usual the Weyl group W is the subgroup
of GL(h∗) generated by all reflections.

Now consider a triangular decomposition for the classical simple Lie su-
peralgebra g (resp. reductive Lie algebra k) as in (8.1.2) (resp. (A.1.6)).
Let b,b be Borel subalgebras of g, k respectively. We allow the case k = g0,
in which case we assume b0 = b. Let ρ0 be the half sum of the positive roots
of b, ρ1(b) the half sum of the positive odd roots of b, and ρ(b) = ρ0−ρ1(b).
When b is fixed, we set ρ = ρ(b). Define translated actions of the Weyl group
W on h∗ by

(8.3.3) w ◦ λ = w(λ+ ρ0)− ρ0,

(8.3.4) w . λ = w(λ+ ρ)− ρ

for w ∈ W and λ ∈ h∗.

8.3.2. A Hypothesis.

Remark 8.3.3. The Lie superalgebras psl(n, n) and sl(n, n) have the un-
pleasant property that the simple roots for the distinguished Borel subal-
gebra are not linearly independent. This causes some technical difficulties,
for example with character formulas and with the Šapovalov determinant.
The simplest solution is to work instead with gl(n, n). To justify this, we
make some remarks about the relation between representations of psl(n, n)
and sl(n, n), and between representations of sl(m,n) and gl(m,n) (m is
not necessarily equal to n).2 First note that since psl(n, n) is an image of
sl(n, n), we can regard any psl(n, n)-module as an sl(n, n)-module. Thus
nothing is lost in studying representations of sl(n, n) instead of studying
representations of psl(n, n).

Note that z =
∑m+n

i=1 ei,i is central in gl(m,n), and if m �= n we have a
direct sum of ideals,

gl(m,n) = sl(m,n)⊕Kz,

and therefore
U(gl(m,n)) = U(sl(m,n))[z].

This makes it very easy to pass between representations of gl(m,n) and
representations of sl(m,n). It is not always as clear what to do if m = n,
but we give two examples below.

2We remark that a comparison between the category O (and parabolic category O) for the
Lie algebras sl(n) and gl(n) can be found in [Kla11, Section 1.4].
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Let g = gl(m,n), g′ = sl(m,n), let h be the Cartan subalgebra of g
consisting of diagonal matrices, and let h′ = g′ ∩ h. Suppose λ ∈ h

∗, and let

λ′ denote the restriction of λ to h
′. Let M̃g(λ) and M̃g′(λ′) be the Verma

modules for g and g′ constructed using the distinguished Borel subalgebra.

Then as a g′-module M̃g(λ) ∼= M̃g′(λ′), and for α a root of g, we have

(λ − α)′ = λ′ − α′, so the weight spaces of M̃g(λ) restricted to g′ are just

the weight spaces of M̃g′(λ′).

Now consider the simple highest weight module L̃(λ) for g′. If m �= n,
we set

z = (n
m∑
i=1

ei,i +m
m+n∑

i=m+1

ei,i)/(n−m) ∈ g′.

Then z is central in g′0 and [z, eβ] = eβ for any odd positive root β. It follows
that as a g′0-module we have a decomposition

(8.3.5) L =
⊕
i≥0

L(i)

where

L(i) = {x ∈ L|zx = (λ(z)− i)x}.
This is useful if we want to study the primitive ideals of U(g′0) that are

minimal over U(g′0) ∩ annU(g′) L̃(λ). Note that

L(i) = span{e−πvλ|π(β) = 1 for exactly i odd positive roots β}.

When m = n, we take this as the definition of L(i), and then (8.3.5) still
holds. Let Q+

0 =
∑

α∈Δ+
0
Nα; compare (A.1.5). Then for w ∈ W, we have

w ◦ (λ−Q+
0 ) ⊆ λ−Q+

0 and wβ ∈ β+Q+
0 , where β is the unique odd simple

root. It follows that if i �= j, then any weight in L(i) cannot be in the
W -orbit of a weight of L(j).

In view of Remark 8.3.3 we will often invoke the following hypothesis in
the rest of this book. When this is done, we will use the notation established
in this chapter without further comment.

Hypothesis 8.3.4. The Lie superalgebra g is either basic classical simple
of type different from A or g = gl(m,n). Equivalently g can be constructed
as a contragredient Lie superalgebra g(A, τ); see Exercise 5.6.12 and the
remarks before Lemma 8.3.1.

If Hypothesis 8.3.4 holds, then as we have remarked above, g has a nonde-
generate g-invariant supersymmetric even bilinear form ( , ). In addition g

has a basis of simple roots, denoted by Π or by Πb if we need to call atten-
tion to the corresponding Borel subalgebra b. Set Q+ =

∑
γ∈ΠNγ; compare

(A.1.5).
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8.4. Partitions and Characters

Assume Hypothesis 8.3.4. For λ ∈ h∗, set D(λ) = λ − Q+ and let E be
the set of functions on h∗ which are zero outside of a finite union of sets of
the form D(λ). Elements of E can be written as formal linear combinations∑

λ∈h∗ cλε
λ where ελ(μ) = δλμ. We can make E into an algebra using the

convolution product

(fg)(λ) =
∑

μ+ν=λ

f(μ)g(ν).

Next we use partitions to introduce some functions in E . If η ∈ Q+, a
partition of η is a map π : Δ+ −→ N such that π(α) = 0 or 1 for all α ∈ Δ+

1

and

(8.4.1)
∑

α∈Δ+

π(α)α = η.

For π a partition, set |π| =
∑

α∈Δ+ π(α). We denote by P(η) the set of

partitions of η, and for α ∈ Δ+
1 we define

Pα(η) = {π ∈ P(η)|π(α) = 0}.

Set p(η) = |P(η)| and pα(η) = |Pα(η)|. The partition function p is defined
by p =

∑
p(η)ε−η. Thus p(μ) =

∑
p(η)ε−η(μ) = p(−μ). Also,

(8.4.2) p =
∏

α∈Δ+
1

(1 + ε−α)/
∏

α∈Δ+
0

(1− ε−α).

Similarly if α ∈ Δ+
1 , we define pα =

∑
pα(η)ε

−η. Then we have

(8.4.3) pα = p/(1 + ε−α).

Hence

p(η) = pα(η) + pα(η − α).

Partitions are useful because they can be used to index a basis for U(n±), as
in the next lemma. First however we need a suitable basis for n±. From the
description of the root systems given in earlier chapters, Δ0 ∩Δ1 is empty
and dim gα = 1 for all α ∈ Δ+. For all α ∈ Δ+, we choose elements eα ∈ gα,
e−α ∈ g−α such that

[eα, e−α] = hα.

This is possible by Lemma 8.3.2. Fix an ordering on the set Δ+, and for π
a partition, set

(8.4.4) e−π =
∏

α∈Δ+

e
π(α)
−α ,
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the product being taken with respect to this order. In addition set

(8.4.5) eπ = te−π =
∏

α∈Δ+

eπ(α)α

where the product is taken in the opposite order.

Lemma 8.4.1. The elements e±π with π ∈ P(η) form a basis of U(n±)±η.
Thus dimU(n±)±η = p(η).

Proof. This follows easily from the PBW Theorem. �

Corollary 8.4.2. Any element of U(g) can be written uniquely as a finite
sum of the form

(8.4.6)
∑

γ,μ∈Q+

∑
ν∈P(μ)
τ∈P(γ)

e−τφτ,ν
te−ν

with φτ,ν ∈ S(h).

Proof. Combine Lemma 8.4.1 with Lemma 8.1.7. �

See Exercise 8.7.6 for the analog of Lemma 8.4.1 for homogenized enveloping
algebras.

Remark 8.4.3. Sometimes, for example in Chapter 9, it is helpful to modify
the notation used in Lemma 8.4.1. To do this, we suppose that η ∈ Q+ and
define P(η) to be the set of all maps π : Δ+ −→ N such that (8.4.1) holds,
and in addition π(α) = 0 or 1 for all α ∈ Δ1, and π(α) = 0 for all α ∈ Δ0\Δ0.
Clearly there is a bijection f : P(η) −→ P(η) defined by

(a) f(π)(α) = π(α) for α ∈ Δ
+
0 ∪Δ

+
1 ,

(b) f(π)(α) = 0 for α ∈ Δ+
0 \Δ

+
0 ,

(c) f(π)(α) = π(α) + 2π(2α) for α ∈ Δ+
1 \Δ

+
1 .

Now suppose the set Δ+ is ordered in such a way that 2α follows α whenever

α ∈ Δ+
1 \Δ

+
1 . If σ = f(π), we define e±σ as in (8.4.4) and (8.4.5) with π

replaced by σ. It is clear that e±σ is a nonzero constant multiple of e±π.

Lemma 8.4.4. The elements e±σ with σ ∈ P(η) form a basis of U(n−)±η.

Proof. This follows easily from Lemma 8.4.1 and the above remarks. �

Example 8.4.5. Suppose that g = osp(1, 2) and use the notation of Exer-
cise A.4.4. Then x2 = −e, where x (resp. e) is a basis for n+1 (resp. n

+
0 ).

The bases of U(n+) given by Lemmas 8.4.1 and 8.4.4 are {ek, xek|k ∈ N}
and {xk|k ∈ N} respectively.



8.5. The Casimir Element 201

If M is an object of O, the character chM of M is defined by

chM =
∑

dimMη εη.

Since M̃(λ)λ−μ has a basis consisting of all e−πvλ with π ∈ P(μ), it follows
that

(8.4.7) ch M̃(λ) = ελp.

Note that M(λ), M̃(λ) ∈ E , so E is useful in calculations involving charac-
ters; see for example Section 14.4 on the Kac-Weyl character formula. Also
if M ∈ O and E is a finite dimensional simple module, we have

ch(M ⊗ E) = chM chE ∈ E .

The Grothendieck groups of the categories O, Õ are denoted by K(O) and

K(Õ) respectively. The group K(O) is defined as follows. For M ∈ O, write
[M ] for the isomorphism class of M . Then K(O) is the free abelian group
generated by the symbols [M ] with relations [M ] = [M ′] + [M ′′] whenever

0 −→M ′ −→M −→M ′′ −→ 0

is a short exact sequence in O. For any such sequence, we have

chM = chM ′ + chM ′′ ∈ E .

It follows from Lemma 8.2.5 and Theorem 8.2.12 that chM ∈ E for any
module M ∈ O. The same results imply that K(O) is free abelian on the
[L(λ)] with λ ∈ h

∗. Let C(O) be the additive subgroup of E generated by
the characters chL(λ) for λ ∈ h

∗. Then it is easy to show the following; see
[Jan79, Satz 1.11].

Theorem 8.4.6. There is an isomorphism from the group K(O) to C(O)
sending [M ] to chM for all modules M ∈ O.

The group K(Õ) is defined similarly, and of course there are analogous

results for the category Õ.

8.5. The Casimir Element

Assume Hypothesis 8.3.4. We show how to construct a central element Ω of
U(g) known as the Casimir element. Assume that x1, . . . , xn and y1, . . . , yn
are bases of g such that (xi, yj) = δi,j and xi, yi are homogeneous elements
of g of the same degree βi. Fix x ∈ gα and write

[x, xi] =
∑
j

aijxj , [x, yi] =
∑
j

bijyj .
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Then

aik =
∑
j

aij(xj , yk) = ([x, xi], yk)

= −(−1)αβi([xi, x], yk) = −(−1)αβi(xi, [x, yk])

= −(−1)αβi
∑
j

(xi, bkjyj) = −(−1)αβibki.

Now set Ω =
∑

(−1)βixiyi ∈ U(g).

Lemma 8.5.1. The Casimir element Ω is central in U(g).

Proof. Retaining the notation above, we have for x ∈ gα

xΩ− Ωx =
∑
i

(−1)βi [x, xi]yi +
∑
i

(−1)βi(α+1)xi[x, yi]

=
∑
i,j

(−1)βiaijxjyi +
∑
i,j

(−1)βi(α+1)bijxiyj

= −
∑
i,j

(−1)βj(α+1)bijxiyj +
∑
i,j

(−1)βi(α+1)bijxiyj = 0.

Here we used the fact that if bij �= 0, then βj ≡ βi + αmod2 and hence
βj(α+ 1) ≡ βi(α+ 1)mod2. �

Remark 8.5.2. It is possible to give a more conceptual proof of the lemma
using the fact that

g⊗ g ∼= g⊗ g∗ ∼= End(g).

Then up to scalar, Ω corresponds to the identity map in End(g). From this
it follows that Ω is independent of the choice of dual bases.

Next we compute the action of the Casimir element Ω on the Verma

module M̃(λ). To do this, we choose the dual bases in a special way.

Lemma 8.5.3. For all λ ∈ h∗, Ω acts on the Verma module M̃(λ) as the
scalar (λ+ 2ρ, λ), that is,

χλ(Ω) = (λ+ 2ρ, λ).

Proof. By Lemma 8.3.1 the restriction of ( , ) to h is nondegenerate. Let
h1, . . . , hm and k1, . . . , km be dual bases of h with respect to ( , ), so that
(hi, kj) = δij . We claim that

(8.5.1) (μ, μ) =
∑
i

μ(hi)μ(ki) for all μ ∈ h∗.
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To see this, write hμ =
∑

j ajhj . Then μ(hi) = (hμ, hi) =
∑

j aj(hj, hi), and

μ(ki) = (hμ, ki) =
∑

j aj(hj, ki) = ai. Thus

(μ, μ) = (hμ, hμ) =
∑
i,j

aiaj(hi, hj) =
∑
i

μ(hi)μ(ki).

For all α ∈ Δ+, the elements eα ∈ gα, e−α ∈ g−α are chosen so that
[eα, e−α] = hα. It follows from Lemma 8.3.1 that we obtain bases {xi}, {yj}
for g such that (xi, yj) = δi,j by taking the elements

{hi, ki}, {eα, e−α}α∈Δ0

and

{eα, e−α}α∈Δ+
1
, {e−α,−eα}α∈Δ+

1
.

Thus we can write

Ω =
m∑
i=1

hiki +
∑

α∈Δ+
0

(eαe−α + e−αeα)

+
∑

α∈Δ+
1

(e−αeα − eαe−α).

We have Ωvλ = χλ(Ω)vλ from the definition of χλ. Furthermore

(
∑

hiki)vλ =
∑

λ(hi)λ(ki)vλ = (λ, λ)vλ

by (8.5.1). Now since eαvλ = 0 for all α ∈ Δ+, we have

(eαe−α)vλ = (±e−αeα + hα)vλ = (α, λ)vλ.

Thus since 2ρ0 =
∑

α∈Δ+
0
α, 2ρ1 =

∑
α∈Δ+

1
α, and ρ = ρ0 − ρ1, we obtain

Ωvλ = (λ, λ)vλ + (
∑

α∈Δ+
0

eαe−α −
∑

α∈Δ+
1

eαe−α)vλ

= (λ+ 2ρ, λ)vλ,

as required. �

Corollary 8.5.4. If α ∈ Π is a simple root, then 2(ρ, α) = (α, α).

Proof. If M̃(0) denotes the Verma module with highest weight vector v of
weight 0, it is easy to see that e−αv is another highest weight vector of weight

−α. Thus there is a nonzero homomorphism M̃(−α) −→ M̃(0). Therefore
the Casimir element acts as the same scalar on both Verma modules. Hence
from Lemma 8.5.3,

0 = (2ρ, 0) = (−α+ 2ρ,−α),
and the result follows from this. �
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Note that these definitions imply that

hλv = (λ, μ)v for all v ∈ Mμ.

By Corollary 8.5.4 we have

(8.5.2) (ρ(b), β) = 0 if β is a simple isotropic root.

8.6. Changing the Borel Subalgebra

Assume Hypothesis 8.3.4. We consider the behavior of highest weight mod-
ules when the Borel subalgebra is changed. For simplicity we suppose that
g = g(A, τ) is a contragredient Lie superalgebra. Let (h,Π,Π∨) be a minimal
realization of A where

(8.6.1) Π = {α1, . . . , αn}, Π∨ = {h1, . . . , hn}.

Then g is generated by h and elements ei, fi, for i = 1, . . . , n, and rela-
tions (5.1.5)–(5.1.7) hold. Next suppose β = αk ∈ Π is an odd isotropic root
and consider the elements e′1, . . . , e

′
n and f ′

1, . . . , f
′
n of g defined in (3.5.5).

Let b (resp. b′) be the subalgebra of g generated by h and the ei (resp. by
h and the e′i). Then b,b′ are adjacent Borel subalgebras, and

(8.6.2) gβ ⊂ b, g−β ⊂ b
′

for some isotropic root β. Let n− be the subalgebra of g generated by the
fi, and set Q+ = NΠ. Note that

(8.6.3) ρ(b′) = ρ(b) + β.

Lemma 8.6.1. Suppose V = U(g)vλ where vλ is a highest weight vector
for b with weight λ, and set e−β = fk and u = e−βvλ. Then either u = 0

or u is a highest weight vector of weight λ− β for b′. Moreover one of the
following holds.

(a) (λ, β) �= 0 and U(g)u = V .

(b) (λ, β) = 0 and u generates a proper U(g)-submodule of V .

Proof. If u �= 0, we need to show that e′ju = 0 for all j. If j = k, this

follows since e′j = e−β has square zero in U(g). If j �= k and ajk �= 0, then

e′j = [ek, ej ] ∈ gαj+αk so [e′j, fk] ∈ gαj , and

e′jfkvλ = (±fke′j + [e′j, fk])vλ = 0.

Finally, if j �= k and ajk = 0, then e′j = ej and [ej, fk] = 0 imply that

ejfkvλ = 0. It follows that u is a highest weight vector for b′. Next observe
that

(8.6.4) eβe−βvλ = hβvλ = (λ, β)vλ.
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This immediately gives (a). Now assume (λ, β) = 0. Then (b) is clear if
u = 0. Otherwise (8.6.4) and the assumption imply that u is a highest
weight vector for b. Hence any weight of U(g)u = U(n−)u is contained in
λ− β −Q+. Since this set does not contain λ, (b) follows. �

Corollary 8.6.2. Assume V as in the lemma is simple. Then one of the
following holds.

(a) (λ, β) �= 0 and V has highest weight λ− β with respect to b
′.

(b) (λ, β) = 0 and V has highest weight λ with respect to b
′.

Proof. Immediate. �

We say a highest weight module V is b-typical if the highest weight λ(b)
satisfies (λ(b) + ρ(b), γ) �= 0 for all isotropic roots γ.

Corollary 8.6.3. Suppose b,b′ are Borel subalgebras of g with b0 = b
′
0.

If V is a highest weight module for b which is b-typical, then V is also
a b

′-typical highest weight module for b
′, and the highest weights for b,b′

satisfy

λ(b) + ρ(b) = λ(b′) + ρ(b′).

Proof. By Theorem 3.1.3 this reduces to the case where b,b′ are adja-
cent. Assume V is b-typical, and let β be as in Lemma 8.6.1. By (8.5.2),
(ρ(b), β) = 0, so case (a) holds in Lemma 8.6.1, and the result follows from
(8.6.3) �

This result shows that typicality does not depend on the choice of Borel
subalgebra, and we say that a module V is a typical highest weight module if
for some Borel subalgebra b with even part b, V is a highest weight module
for b which is b-typical.

8.7. Exercises

8.7.1. Prove Lemma 8.2.8

8.7.2. Prove Corollary 8.2.9

8.7.3. Suppose that ( , ) is a nondegenerate invariant even bilinear form on
the Lie superalgebra g. If z is the center of g0, show that ([g0, g0], z) = 0.

8.7.4. Prove Lemma 8.2.3(e). Hint: By Frobenius reciprocity

HomU(g)(M̃(λ), M̃(λ)) = HomU(b)(Vλ, M̃(λ)).

8.7.5. Prove Corollary 8.2.11. Hint: Use Lemma 8.2.10 and Lemma 8.2.8.
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8.7.6. The purpose of this exercise is to give an analog of Lemma 8.4.1 for
the homogenized enveloping algebra H(n). First for η ∈ h∗ define

H(n)−η = {x ∈ H(n)|[hT, x] = η(h)xT for all h ∈ h}.
Then for π ∈ P (η), let

E−π = e−πT
|π| =

∏
α∈Δ+

E
π(α)
−α

where the products are taken in the same fixed order used to define the e−π.
Show that H(n)−η is a free K[T ]-module on the set {E−π|π ∈ P(η)}.

8.7.7. Suppose that the Lie superalgebra g has a triangular decomposition

g = n− ⊕ h⊕ n+.

Show that as K[T ]-modules

H(g) = H(n−)⊗K[T ] H(h)⊗K[T ] H(n+).


