
Introduction

This monograph is based on a one-semester course on measure theory, which
I have taught several times. The prerequisite for the course is an intro-
ductory analysis course, covering such matters as metric spaces, uniform
convergence of functions, the contraction mapping principle, and aspects
of multi-variable calculus, including the inverse function theorem. For the
convenience of the reader, some of this material is briefly treated in some
appendices.

The core topic for the course treated here is the theory of measure and
integration, associated especially with the work of H. Lebesgue, though of
course many other mathematicians have contributed to this central subject.
We mention particularly E. Borel, M. Riesz, J. Radon, M. Frechet, G. Fubini,
C. Caratheodory, F. Hausdorff, and A. Besicovitch, among the classical
founders.

We begin with an introductory chapter on the Riemann integral, for
functions defined on an interval [a, b] in R. We develop some of the properties
of the Riemann integral, including a proof of the Fundamental Theorem of
Calculus. We see that while continuous functions are Riemann integrable,
some very reasonable-looking functions are not.

In Chapter 2 we construct Lebesgue measure on R. We emphasize that
the key difference between Lebesgue measure of S ⊂ R and the “content”
of S, arising from the Riemann integral, is that the content is approximated
by taking finite coverings of S by intervals, while the Lebesgue measure
is approximated by taking countable (perhaps infinite) coverings of S by
intervals.

In Chapter 3 we define the Lebesgue integral and establish some basic
properties, such as the Monotone Convergence Theorem and the Lebesgue
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Dominated Convergence Theorem. We integrate measurable functions de-
fined on general measure spaces. Though at this point we have only con-
structed Lebesgue measure on R, the basic theory of integration is not more
complicated on general measure spaces, and pursuing it helps clarify what
one should do to construct more general measures. In Chapter 4 we in-
troduce Lp spaces, consisting of measurable functions f such that |f |p is
integrable or, more precisely, of equivalence classes of such functions, where
we say f1 ∼ f2 provided these functions differ only on a set of measure
zero. If µ is a measure on a space X, we study Lp(X, µ) as a Banach space,
for 1 ≤ p ≤ ∞, and in particular we study L2(X, µ) as a Hilbert space.
We develop some Hilbert space theory and apply it to establish the Radon-
Nikodym Theorem, comparing two measures µ and ν when ν is “absolutely
continuous” with respect to µ.

Constructing measures other than Lebesgue measure on R is an impor-
tant part of measure theory, and we begin this task in Chapter 5, giving
some useful general methods, especially due to Caratheodory, for making
such constructions, establishing that they are measures, and identifying cer-
tain types of sets as measurable. The first concrete application of this is
made in Chapter 6, in the construction of the “product measure” on X ×Y,
when X has a measure µ and Y has the measure ν. The integral with re-
spect to the product measure µ × ν is compared to “iterated integrals,” in
theorems of Fubini and Tonelli.

In Chapter 7 we construct Lebesgue measure on Rn, for n > 1, as a
product measure. We study how the Lebesgue integral on Rn transforms
under an invertible linear transformation on Rn and, more generally, under
a C1 diffeomorphism. We go a bit further, considering transformation via
a Lipschitz homeomorphism, and we establish a result under the hypothe-
sis that the transformation is differentiable almost everywhere, a property
that will be studied further in Chapter 11. We extend the scope of the n-
dimensional integral in another direction, constructing surface measure on
an n-dimensional surface M in Rm. This is done in terms of the Riemann
metric tensor induced on M . We go further and discuss integration on more
general Riemannian manifolds. This central chapter contains a larger num-
ber of exercises than the others, divided into several sets of exercises. After
the first set, of a nature parallel to exercise sets for other chapters, there is a
set relating the Riemann and Lebesgue integrals on Rn, extending the pre-
vious discussion of the relationship between the material of Chapter 1 and
that of Chapters 2–3, an exercise set on determinants, and an exercise set
on row reduction on matrix products, providing linear algebra background
for the proof of the change of variable formula. There is also an exercise set
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on the connectivity of Gl(n, R) and a set on integration on certain matrix
groups.

In Chapter 8 we discuss “signed measures,” which differ from the mea-
sures considered up to that point only in that they can take negative as
well as positive values. The key result established there is the Hahn de-
composition, ν = ν+ − ν−, for a signed measure ν, on X, where ν+ and
ν− are positive measures, with disjoint supports. This allows us to extend
the Radon-Nikodym Theorem to the case of a signed measure ν, absolutely
continuous with respect to a (positive) measure µ. We consider a further
extension, to complex measures, though this is completely routine.

In Chapter 9 we again take up the study of Lp spaces and pursue it a bit
further. We identify the dual of the Banach space Lp(X, µ) with Lq(X, µ),
where 1 ≤ p < ∞ and 1/p + 1/q = 1, making use of the Radon-Nikodym
Theorem for signed measures as a tool in the demonstration. We study
some integral operators, including convolution operators, amongst others,
and derive operator bounds on Lp spaces. We consider the Fourier transform
F and prove that F is an invertible norm-preserving operator on L2(Rn).
Some mention of Fourier series was made in Chapter 4, particularly in the
exercises.

Chapter 10 discusses Sobolev spaces, Hk,p(Rn), consisting of functions
whose derivatives of order ≤ k, defined in a suitable weak sense, belong
to Lp(Rn). Certain Sobolev spaces are shown to consist entirely of bounded
continuous functions, even Hölder continuous, on Rn. This subject is of great
use in the study of partial differential equations, though such applications
are not made here. The most significant application we make of Sobolev
space theory in these notes appears in the following chapter. We mention
that in Chapter 10 certain results on the weak derivative depend on the
Fundamental Theorem of Calculus for the Riemann integral; it is for this
reason that we included a proof of this result in Chapter 1.

Chapter 11 deals with various results in the area of almost-everywhere
convergence. The basic result, called Lebesgue’s differentiation theorem,
is that a function f ∈ L1(Rn) is equal for almost all x ∈ Rn to the limit
of its averages over balls of radius r, centered at x, as r → 0. Under a
slightly stronger condition on x, we say x is a Lebesgue point for f ; more
generally there is the notion of an Lp-Lebesgue point, and one shows that
if f ∈ Lp(Rn), then almost every x ∈ Rn is an Lp-Lebesgue point for f,
provided 1 ≤ p < ∞. We use the Hardy-Littlewood maximal function as a
tool to establish these results. This area also requires a “covering lemma,”
allowing one to select from a collection of sets covering S a subcollection
with desirable properties.
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Another important result established in Chapter 11 is Rademacher’s
Theorem that a Lipschitz function on Rn is differentiable almost everywhere.
We get this as a corollary of the stronger result that if f ∈ H1,p(Rn) and
p > n (or p = n = 1), then f is differentiable almost everywhere; in fact, f
is differentiable at every Lp-Lebesgue point of the weak derivative ∇f. With
this result, we can complete the demonstration of the result from Chapter
7 that the change of variable formula for the integral extends to Lipschitz
homeomorphisms. Making use of Rademacher’s Theorem, we show that a
Lipschitz function can be altered off a small set to yield a C1 function. These
results are important in the study of Lipschitz surfaces in Rn.

The covering lemma we use for the results of Chapter 11 mentioned above
is Weiner’s Covering Lemma. We also discuss covering lemmas of Vitali and
of Besicovitch and show how Besicovitch’s result leads to extensions of the
Lebesgue differentiation theorem.

In Chapter 12 we construct r-dimensional Hausdorff measure Hr, on a
separable metric space X, for any r ∈ [0,∞). In case S is a Borel set in Rn,
one has Hn(S) = Ln(S), Lebesgue measure; this is not a straightforward
consequence of the definition (unless n = 1), and its proof requires some
effort. In particular, the proof requires a covering lemma. We extend this
analysis to show that n-dimensional Hausdorff measure on an n-dimensional
manifold with a continuous metric tensor coincides with the volume mea-
sure constructed in Chapter 7. This applies to C1 surfaces in Euclidean
space. We go further and study Hausdorff measure on Lipschitz surfaces
in Euclidean space. Results on Lipschitz functions established in Chapter
11 are invaluable here. These provide basic results in “geometric measure
theory.” There is a great deal more to geometric measure theory, which has
been developed as a tool in the study of minimal surfaces, amongst other
applications. A good overview can be found in [Mor], a reading of which
should prepare one for the treatise [Fed].

While the bulk of Chapter 12 deals with Hr when r is an integer, there
are wild sets, some of incredible beauty, called “fractals,” for which Hr is
germane for a value r /∈ Z. We touch this only briefly; one can consult [Ed],
[Mdb], [Fal], and [PR] for more material on fractals.

In Chapter 13 we show how a positive linear functional on C(X), the
space of continuous functions on X, gives rise to a (positive) measure on X,
when X is a compact metric space, and how a bounded linear functional on
C(X) gives rise to a signed measure on X. Out of this come compactness
results for bounded sets of measures. These results extend to the case where
X is a general compact Hausdorff space; treatments of this can be found in
several places, including [Fol] and [Ru]. The argument is somewhat simpler
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when X is metrizable; in particular, we can appeal to results from Chapter
5 for a lot of the technical work.

Chapters 14–17 explore connections between measure theory and proba-
bility theory. The basic connection is that a probability measure is a positive
measure of total mass 1. Chapter 14 treats ergodic theory, which deals with
statistical properties of iterates of a measure-preserving map ϕ on a proba-
bility space (X, F, µ). In particular, one studies the map Tf(x) = f(ϕ(x))
on Lp spaces and the means Akf = (1/k)

∑k−1
j=0 T jf(x). Mean ergodic the-

orems and Birkhoff’s Ergodic Theorem treat Lp-norm behavior and point-
wise a.e. behavior of Akf(x), tending to a limit Pf(x) as k → ∞. Ergodic
transformations are those for which such limits are constant. Knowing that
certain transformations are ergodic can provide valuable information, as we
will see.

Chapter 15 discusses some of the fundamental results of probability the-
ory, dealing with random variables (i.e., measurable functions) on a proba-
bility space. These results include weak and strong laws of large numbers,
whose basic message is that means of a large number of independent ran-
dom variables of the same type (i.e., with the same probability distribution)
tend to constant limits, with probability one. We approach the strong law
via Birkhoff’s Ergodic Theorem. We also treat the Central Limit Theorem,
giving conditions under which such means have approximately Gaussian
probability distributions.

In Chapter 16, we construct Wiener measure on the set of continuous
paths in Rn, describing the probabilistic behavior of a particle undergoing
Brownian motion. We begin with a probability measure W on a countable
product P of compactifications of Rn, first defining a positive linear func-
tional on C(P) and then getting the measure via the results of Chapter 13.
The index set for the countable product is Q+, the set of rational numbers
≥ 0. The space of continuous paths is naturally identified with a subset
P0, shown to be a Borel subset of P, of W -measure one. To illustrate how
fuzzy Brownian paths are, we show that when n ≥ 2, almost all paths have
Hausdorff dimension 2.

There is a further structure associated with Wiener measure on path
space, namely a filtered family of σ-algebras. Certain families of functions
ft on P0 are “martingales,” i.e., ft is obtained from fs by taking the “condi-
tional expectation,” when t < s. This is discussed in Chapter 17. We define
martingales more generally, prove the Martingale Maximal Inequality, and
apply this to a number of convergence results for martingales, obtaining
both a variant of the Lebesgue differentiation theorem and another proof of
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the strong law of large numbers. We also produce several martingales asso-
ciated with Brownian motion and apply the martingale maximal inequality
to these.

This book has several appendices, some providing background material,
as mentioned above, and others providing supplementary material. Appen-
dix A contains some basic material on metric spaces, topological spaces, and
compactness. In particular, we prove the Stone-Weierstrass Theorem, which
gives a very useful sufficient condition for a set A of continuous functions
on a compact space X to be dense in the space of all continuous functions
C(X). This result is used in a number of places, including Chapters 4, 6,
and 16. In Appendix B we give some basic results in multi-variable dif-
ferential calculus, including the Inverse Function Theorem, the nature of a
diffeomorphism, and the concept of a manifold. This material is useful for
appreciating change of variable formulas for integrals and also the results on
integration on surfaces and more general manifolds in Chapters 7 and 12.

Appendix C is devoted to the Whitney Extension Theorem, needed for
the approximation theorem for Lipschitz functions in Chapter 11. Appendix
D treats the Marcinkiewicz Interpolation Theorem, giving Lp estimates on
an operator satisfying “weak type” estimates on Lq and Lr, with q < p < r.
Appendix E discusses Sard’s Theorem, that the set of critical values of a C1

map F : Rn → Rn has measure zero. This result is applied in Appendix F,
to help prove a change of variable theorem for a C1 map of Rn not assumed
to be a diffeomorphism.

In Appendix G we discuss the elements of the theory of differential forms
and their integration. These results have many applications to problems in
differential equations, differential geometry, and topology. A key result is a
general Gauss-Green-Stokes formula. To illustrate the power of this formula,
we show how it leads to a short proof of the famous Brouwer Fixed-Point
Theorem. In Appendix H we apply the differential form results to obtain
another approach to the change of variable formula, a modification of an
approach put forward by P. Lax [La]. Finally in Appendix I we extend the
Gauss-Green-Stokes formula from the setting of smoothly bounded domains
considered in Appendix G to the setting of Lipschitz domains.

There are several ways to use this monograph in a course. Chapters 1–4
provide a quick introduction to the basics of Lebesgue integration. I have
used this material at the end of analysis courses that precede a full-blown
course in measure theory. For a one quarter course on measure theory, Chap-
ters 1–9 would provide a solid background in the subject. For a semester
course, one could deepen this background with a selection of material from
Chapters 10–17 and the appendices.
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Each of the seventeen chapters in this monograph ends with a set of
exercises. These form an integral part of our presentation, and thinking
about them should sharpen the reader’s understanding of the material. On
occasion, the results of some of the exercises are used in the development of
subsequent material.
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