
Chapter 1

Modular Forms

This chapter introduces modular forms and congruence subgroups, which
are central objects in this book. We first introduce the upper half plane and
the group SL2(Z) then recall some definitions from complex analysis. Next
we define modular forms of level 1 followed by modular forms of general
level. In Section 1.4 we discuss congruence subgroups and explain a simple
way to compute generators for them and determine element membership.
Section 1.5 lists applications of modular forms.

We assume familiarity with basic number theory, group theory, and com-
plex analysis. For a deeper understanding of modular forms, the reader is
urged to consult the standard books in the field, e.g., [Lan95, Ser73, DI95,
Miy89, Shi94, Kob84]. See also [DS05], which is an excellent first intro-
duction to the theoretical foundations of modular forms.

1.1. Basic Definitions

The group

SL2(R) =
{(

a b
c d

)
: ad − bc = 1 and a, b, c, d ∈ R

}

acts on the complex upper half plane

h = {z ∈ C : Im(z) > 0}

by linear fractional transformations, as follows. If γ =
(

a b
c d

)
∈ SL2(R), then

for any z ∈ h we let

(1.1.1) γ(z) =
az + b

cz + d
∈ h.
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2 1. Modular Forms

Since the determinant of γ is 1, we have(
d

dz
γ

)
(z) =

1
(cz + d)2

.

Definition 1.1 (Modular Group). The modular group is the group of all
matrices

(
a b
c d

)
with a, b, c, d ∈ Z and ad − bc = 1.

For example, the matrices

(1.1.2) S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)

are both elements of SL2(Z); the matrix S induces the function z �→ −1/z
on h, and T induces the function z �→ z + 1.

Theorem 1.2. The group SL2(Z) is generated by S and T .

Proof. See e.g. [Ser73, §VII.1]. �

In SAGE we compute the group SL2(Z) and its generators as follows:
sage: G = SL(2,ZZ); G
Modular Group SL(2,Z)
sage: S, T = G.gens()
sage: S
[ 0 -1]
[ 1 0]
sage: T
[1 1]
[0 1]

Definition 1.3 (Holomorphic and Meromorphic). Let R be an open subset
of C. A function f : R → C is holomorphic if f is complex differentiable at
every point z ∈ R, i.e., for each z ∈ R the limit

f ′(z) = lim
h→0

f(z + h) − f(z)
h

exists, where h may approach 0 along any path. A function f : R → C∪{∞}
is meromorphic if it is holomorphic except (possibly) at a discrete set S of
points in R, and at each α ∈ S there is a positive integer n such that
(z − α)nf(z) is holomorphic at α.

The function f(z) = ez is a holomorphic function on C; in contrast,
1/(z − i) is meromorphic on C but not holomorphic since it has a pole at i.
The function e−1/z is not even meromorphic on C.
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Modular forms are holomorphic functions on h that transform in a par-
ticular way under a certain subgroup of SL2(Z). Before defining general
modular forms, we define modular forms of level 1.

1.2. Modular Forms of Level 1

Definition 1.4 (Weakly Modular Function). A weakly modular function of
weight k ∈ Z is a meromorphic function f on h such that for all γ =

(
a b
c d

)
∈

SL2(Z) and all z ∈ h we have

(1.2.1) f(z) = (cz + d)−kf(γ(z)).

The constant functions are weakly modular of weight 0. There are no
nonzero weakly modular functions of odd weight (see Exercise 1.4), and it
is not obvious that there are any weakly modular functions of even weight
k ≥ 2 (but there are, as we will see!). The product of two weakly modular
functions of weights k1 and k2 is a weakly modular function of weight k1+k2

(see Exercise 1.3).
When k is even, (1.2.1) has a possibly more conceptual interpretation;

namely (1.2.1) is the same as

f(γ(z))(d(γ(z)))k/2 = f(z)(dz)k/2.

Thus (1.2.1) simply says that the weight k “differential form” f(z)(dz)k/2 is
fixed under the action of every element of SL2(Z).

By Theorem 1.2, the group SL2(Z) is generated by the matrices S and
T of (1.1.2), so to show that a meromorphic function f on h is a weakly
modular function, all we have to do is show that for all z ∈ h we have

(1.2.2) f(z + 1) = f(z) and f(−1/z) = zkf(z).

Suppose f is a weakly modular function of weight k. A Fourier expansion
of f , if it exists, is a representation of f as f(z) =

∑∞
n=m ane2πinz, for all

z ∈ h. Let q = q(z) = e2πiz, which we view as a holomorphic function on
C. Let D′ be the open unit disk with the origin removed, and note that
q defines a map h → D′. By (1.2.2) we have f(z + 1) = f(z), so there is
a function F : D′ → C such that F (q(z)) = f(z). This function F is a
complex-valued function on D′, but it may or may not be well behaved at 0.

Suppose that F is well behaved at 0, in the sense that for some m ∈ Z

and all q in a neighborhood of 0 we have the equality

(1.2.3) F (q) =
∞∑

n=m

anqn.
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If this is the case, we say that f is meromorphic at ∞. If, moreover, m ≥ 0,
we say that f is holomorphic at ∞. We also call (1.2.3) the q-expansion of f
about ∞.

Definition 1.5 (Modular Function). A modular function of weight k is a
weakly modular function of weight k that is meromorphic at ∞.

Definition 1.6 (Modular Form). A modular form of weight k (and level 1)
is a modular function of weight k that is holomorphic on h and at ∞.

If f is a modular form, then there are numbers an such that for all z ∈ h,

(1.2.4) f(z) =
∞∑

n=0

anqn.

Proposition 1.7. The above series converges for all z ∈ h.

Proof. The function f(q) is holomorphic on D, so its Taylor series converges
absolutely in D. �

Since e2πiz → 0 as z → i∞, we set f(∞) = a0.

Definition 1.8 (Cusp Form). A cusp form of weight k (and level 1) is a
modular form of weight k such that f(∞) = 0, i.e., a0 = 0.

Let C[[q]] be the ring of all formal power series in q. If k = 2, then
dq = 2πiqdz, so dz = 1

2πi
dq
q . If f(q) is a cusp form of weight 2, then

2πif(z)dz = f(q)
dq

q
=

f(q)
q

dq ∈ C[[q]]dq.

Thus the differential 2πif(z)dz is holomorphic at ∞, since q is a local pa-
rameter at ∞.

1.3. Modular Forms of Any Level

In this section we define spaces of modular forms of arbitrary level.

Definition 1.9 (Congruence Subgroup). A congruence subgroup of SL2(Z)
is any subgroup of SL2(Z) that contains

Γ(N) = Ker(SL2(Z) → SL2(Z/NZ))

for some positive integer N . The smallest such N is the level of Γ.

The most important congruence subgroups in this book are

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
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and

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

where ∗ means any element. Both groups have level N (see Exercise 1.6).
Let k be an integer. Define the weight k right action of GL2(Q) on the

set of all functions f : h → C as follows. If γ =
(

a b
c d

)
∈ GL2(Q), let

(1.3.1) (f [γ]k)(z) = det(γ)k−1(cz + d)−kf(γ(z)).

Proposition 1.10. Formula (1.3.1) defines a right action of GL2(Z) on the
set of all functions f : h → C; in particular,

f [γ1γ2]k = (f [γ1]k)[γ2]k .

Proof. See Exercise 1.7. �

Definition 1.11 (Weakly Modular Function). A weakly modular function of
weight k for a congruence subgroup Γ is a meromorphic function f : h → C

such that f [γ]k = f for all γ ∈ Γ.

A central object in the theory of modular forms is the set of cusps

P1(Q) = Q ∪ {∞}.
An element γ =

(
a b
c d

)
∈ SL2(Z) acts on P1(Q) by

γ(z) =

{
az+b
cz+d if z 	= ∞,
a
c if z = ∞.

Also, note that if the denominator c or cz + d is 0 above, then

γ(z) = ∞ ∈ P1(Q).

The set of cusps for a congruence subgroup Γ is the set C(Γ) of Γ-orbits
of P1(Q). (We will often identify elements of C(Γ) with a representative
element from the orbit.) For example, the lemma below asserts that if
Γ = SL2(Z), then there is exactly one orbit, so C(SL2(Z)) = {[∞]}.

Lemma 1.12. For any cusps α, β ∈ P1(Q) there exists γ ∈ SL2(Z) such
that γ(α) = β.

Proof. This is Exercise 1.8. �

Proposition 1.13. For any congruence subgroup Γ, the set C(Γ) of cusps
is finite.

Proof. This is Exercise 1.9. �
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See [DS05, §3.8] and Algorithm 8.12 below for more discussion of cusps
and results relevant to their enumeration.

In order to define modular forms for general congruence subgroups, we
next explain what it means for a function to be holomorphic on the extended
upper half plane

h
∗ = h ∪ P1(Q).

See [Shi94, §1.3–1.5] for a detailed description of the correct topology
to consider on h∗. In particular, a basis of neighborhoods for α ∈ Q is given
by the sets {α}∪D, where D is an open disc in h that is tangent to the real
line at α.

Recall from Section 1.2 that a weakly modular function f on SL2(Z) is
holomorphic at ∞ if its q-expansion is of the form

∑∞
n=0 anqn.

In order to make sense of holomorphicity of a weakly modular function f
for an arbitrary congruence subgroup Γ at any α ∈ Q, we first prove a lemma.

Lemma 1.14. If f : h → C is a weakly modular function of weight k for
a congruence subgroup Γ and if δ ∈ SL2(Z), then f [δ]k is a weakly modular
function for δ−1Γδ.

Proof. If s = δ−1γδ ∈ δ−1Γδ, then

(f [δ]k)[s]k = f [δs]k = f [δδ−1γδ]k = f [γδ]k = f [δ]k .

�

Fix a weakly modular function f of weight k for a congruence subgroup
Γ, and suppose α ∈ Q. In Section 1.2 we constructed the q-expansion of

f by using that f(z) = f(z + 1), which held since T =
(

1 1
0 1

)
∈ SL2(Z).

There are congruence subgroups Γ such that T 	∈ Γ. Moreover, even if we
are interested only in modular forms for Γ1(N), where we have T ∈ Γ1(N)
for all N , we will still have to consider q-expansions at infinity for modular
forms on groups δ−1Γ1(N)δ, and these need not contain T . Fortunately,
TN =

(
1 N
0 1

)
∈ Γ(N), so a congruence subgroup of level N contains TN .

Thus we have f(z + H) = f(H) for some positive integer H, e.g., H = N
always works, but there may be a smaller choice of H. The minimal choice of
H > 0 such that

(
1 H
0 1

)
∈ δ−1Γδ, where δ(∞) = α, is called the width of the

cusp α relative to the group Γ (see Section 1.4.1). When f is meromorphic
at infinity, we obtain a Fourier expansion

(1.3.2) f(z) =
∞∑

n=m

anqn/H
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in powers of the function q1/H = e2πiz/H . We say that f is holomorphic at
∞ if in (1.3.2) we have m ≥ 0.

What about the other cusps α ∈ P1(Q)? By Lemma 1.12 there is a
γ ∈ SL2(Z) such that γ(∞) = α. We declare f to be holomorphic at the
cusp α if the weakly modular function f [γ]k is holomorphic at ∞.

Definition 1.15 (Modular Form). A modular form of integer weight k for
a congruence subgroup Γ is a weakly modular function f : h → C that is
holomorphic on h∗. We let Mk(Γ) denote the space of weight k modular
forms of weight k for Γ.

Proposition 1.16. If a weakly modular function f is holomorphic at a set
of representative elements for C(Γ), then it is holomorphic at every element
of P1(Q).

Proof. Let c1, . . . , cn ∈ P1(Q) be representatives for the set of cusps for
Γ. If α ∈ P1(Q), then there is γ ∈ Γ such that α = γ(ci) for some i. By
hypothesis f is holomorphic at ci, so if δ ∈ SL2(Z) is such that δ(∞) = ci,
then f [δ]k is holomorphic at ∞. Since f is a weakly modular function for Γ,

(1.3.3) f [δ]k = (f [γ]k)[δ]k = f [γδ]k .

But γ(δ(∞)) = γ(ci) = α, so (1.3.3) implies that f is holomorphic at α. �

1.4. Remarks on Congruence Subgroups

Recall that a congruence subgroup is a subgroup of SL2(Z) that contains
Γ(N) for some N . Any congruence subgroup has finite index in SL2(Z),
since Γ(N) does. What about the converse: is every finite index subgroup
of SL2(Z) a congruence subgroup? This is the congruence subgroup problem.
One can ask about the congruence subgroup problem with SL2(Z) replaced
by many similar groups. If p is a prime, then one can prove that every finite
index subgroup of SL2(Z[1/p]) is a congruence subgroup (i.e., contains the
kernel of reduction modulo some integer coprime to p), and for any n > 2, all
finite index subgroups of SLn(Z) are congruence subgroups (see [Hum80]).
However, there are numerous finite index subgroups of SL2(Z) that are not
congruence subgroups. The paper [Hsu96] contains an algorithm to decide
if certain finite index subgroups are congruence subgroups and gives an
example of a subgroup of index 12 that is not a congruence subgroup.

One can consider modular forms even for noncongruence subgroups. See,
e.g., [Tho89] and the papers it references for work on this topic. We will not
consider such modular forms further in this book. Note that modular sym-
bols (which we define later in this book) are computable for noncongruence
subgroups.
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Finding coset representatives for Γ0(N), Γ1(N) and Γ(N) in SL2(Z) is
straightforward and will be discussed at length later in this book. To make
the problem more explicit, note that you can quotient out by Γ(N) first.
Then the question amounts to finding coset representatives for a subgroup
of SL2(Z/NZ) (and lifting), which is reasonably straightforward.

Given coset representatives for a finite index subgroup G of SL2(Z), we
can compute generators for G as follows. Let R be a set of coset represen-
tatives for G. Let σ, τ ∈ SL2(Z) be the matrices denoted by S and T in
(1.1.2). Define maps s, t : R → G as follows. If r ∈ R, then there exists a
unique αr ∈ R such that Grσ = Gαr. Let s(r) = rσα−1

r . Likewise, there is
a unique βr such that Grτ = Gβr and we let t(r) = rτβ−1

r . Note that s(r)
and t(r) are in G for all r. Then G is generated by s(R) ∪ t(R).

Proposition 1.17. The above procedure computes generators for G.

Proof. Without loss of generality, assume that I = ( 1 0
0 1 ) represents the

coset of G. Let g be an element of G. Since σ and τ generate SL2(Z), it is
possible to write g as a product of powers of σ and τ . There is a procedure,
which we explain below with an example in order to avoid cumbersome
notation, which writes g as a product of elements of s(R) ∪ t(R) times a
right coset representative r ∈ R. For example, if

g = στ2στ,

then g = Iστ2στ = s(I)yτ2στ for some y ∈ R. Continuing,

s(I)yτ2στ = s(I)(yτ)τστ = s(I)(t(y)z)τστ

for some z ∈ R. Again,

s(I)(t(y)z)τστ = s(I)t(y)(zτ)στ = · · · .

The procedure illustrated above (with an example) makes sense for arbitrary
g and, after carrying it out, writes g as a product of elements of s(R)∪ t(R)
times a right coset representative r ∈ R. But g ∈ G and I is the right coset
representative for G, so this right coset representative must be I. �

Remark 1.18. We could also apply the proof of Proposition 1.17 to write
any element of G in terms of the given generators. Moreover, we could use
it to write any element γ ∈ SL2(Z) in the form gr, where g ∈ G and r ∈ R,
so we can decide whether or not γ ∈ G.

1.4.1. Computing Widths of Cusps. Let Γ be a congruence subgroup
of level N . Suppose α ∈ C(Γ) is a cusp, and choose γ ∈ SL2(Z) such that
γ(∞) = α. Recall that the minimal h such that

(
1 h
0 1

)
∈ γ−1Γγ is called

the width of the cusp α for the group Γ. In this section we discuss how to
compute h.
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Algorithm 1.19 (Width of Cusp). Given a congruence subgroup Γ of level
N and a cusp α for Γ, this algorithm computes the width h of α. We assume
that Γ is given by congruence conditions, e.g., Γ = Γ0(N) or Γ1(N).

(1) [Find γ] Use the extended Euclidean algorithm to find γ ∈ SL2(Z)
such that γ(∞) = α, as follows. If α = ∞, set γ = 1; otherwise,
write α = a/b, find c, d such that ad − bc = 1, and set γ =

(
a b
c d

)
.

(2) [Compute Conjugate Matrix] Compute the following element of
Mat2(Z[x]):

δ(x) = γ

(
1 x
0 1

)
γ−1.

Note that the entries of δ(x) are constant or linear in x.
(3) [Solve] The congruence conditions that define Γ give rise to four

linear congruence conditions on x. Use techniques from elementary
number theory (or enumeration) to find the smallest simultaneous
positive solution h to these four equations.

Example 1.20. (1) Suppose α = 0 and Γ = Γ0(N) or Γ1(N). Then
γ =

(
0 −1
1 0

)
has the property that γ(∞) = α. Next, the congruence

condition is

δ(x) = γ

(
1 x
0 1

)
γ−1 =

(
1 0
x 1

)
≡

(
1 ∗
0 1

)
(mod N).

Thus the smallest positive solution is h = N , so the width of 0
is N .

(2) Suppose N = pq where p, q are distinct primes, and let α = 1/p.
Then γ =

(
1 0
p 1

)
sends ∞ to α. The congruence condition for Γ0(pq)

is

δ(x) = γ

(
1 x
0 1

)
γ−1 =

(
1 − px x
−p2x px + 1

)
≡

(
∗ ∗
0 ∗

)
(mod pq).

Since p2x ≡ 0 (mod pq), we see that x = q is the smallest solution.
Thus 1/p has width q, and symmetrically 1/q has width p.

Remark 1.21. For Γ0(N), once we enforce that the bottom left entry is 0
(mod N) and use that the determinant is 1, the coprimality from the other
two congruences is automatic. So there is one congruence to solve in the
Γ0(N) case. There are two congruences in the Γ1(N) case.

1.5. Applications of Modular Forms

The above definition of modular forms might leave the impression that mod-
ular forms occupy an obscure corner of complex analysis. This is not the
case! Modular forms are highly geometric, arithmetic, and topological ob-
jects that are of extreme interest all over mathematics:
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(1) Fermat’s last theorem: Wiles’ proof [Wil95] of Fermat’s last
theorem uses modular forms extensively. The work of Wiles et al.
on modularity also massively extends computational methods for
elliptic curves over Q, because many elliptic curve algorithms, e.g.,
for computing L-functions, modular degrees, Heegner points, etc.,
require that the elliptic curve be modular.

(2) Diophantine equations: Wiles’ proof of Fermat’s last theorem
has made available a wide array of new techniques for solving cer-
tain diophantine equations. Such work relies crucially on having
access to tables or software for computing modular forms. See,
e.g., [Dar97, Mer99, Che05, SC03]. (Wiles did not need a com-
puter, because the relevant spaces of modular forms that arise in
his proof have dimension 0!) Also, according to Siksek (personal
communication) the paper [BMS06] would “have been entirely im-
possible to write without [the algorithms described in this book].”

(3) Congruent number problem: This ancient open problem is to
determine which integers are the area of a right triangle with ra-
tional side lengths. There is a potential solution that uses modular
forms (of weight 3/2) extensively (the solution is conditional on
truth of the Birch and Swinnerton-Dyer conjecture, which is not
yet known). See [Kob84].

(4) Topology: Topological modular forms are a major area of current
research.

(5) Construction of Ramanujan graphs: Modular forms can be
used to construct almost optimal expander graphs, which play a
role in communications network theory.

(6) Cryptography and Coding Theory: Point counting on elliptic
curves over finite fields is crucial to the construction of elliptic curve
cryptosystems, and modular forms are relevant to efficient algo-
rithms for point counting (see [Elk98]). Algebraic curves that are
associated to modular forms are useful in constructing and studying
certain error-correcting codes (see [Ebe02]).

(7) The Birch and Swinnerton-Dyer conjecture: This central
open problem in arithmetic geometry relates arithmetic proper-
ties of elliptic curves (and abelian varieties) to special values of
L-functions. Most deep results toward this conjecture use modu-
lar forms extensively (e.g., work of Kolyvagin, Gross-Zagier, and
Kato). Also, modular forms are used to compute and prove results
about special values of these L-functions. See [Wil00].
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(8) Serre’s Conjecture on modularity of Galois representation:
Let GQ = Gal(Q/Q) be the Galois group of an algebraic closure
of Q. Serre conjectured and many people have (nearly!) proved
that every continuous homomorphism ρ : GQ → GL2(Fq), where
Fq is a finite field and det(ρ(complex conjugation)) = −1, “arises”
from a modular form. More precisely, for almost all primes p the
coefficients ap of a modular (eigen-)form

∑
anqn are congruent to

the traces of elements ρ(Frobp), where Frobp are certain special
elements of GQ called Frobenius elements. See [RS01] and [DS05,
Ch. 9].

(9) Generating functions for partitions: The generating functions
for various kinds of partitions of an integer can often be related to
modular forms. Deep theorems about modular forms then translate
into results about partitions. See work of Ramanujan, Gordon,
Andres, and Ahlgren and Ono (e.g., [AO01]).

(10) Lattices: If L ⊂ Rn is an even unimodular lattice (the basis matrix
has determinant ±1 and λ · λ ∈ 2Z for all λ ∈ L), then the theta
series

θL(q) =
∑
λ∈L

qλ·λ

is a modular form of weight n/2. The coefficient of qm is the num-
ber of lattice vectors with squared length m. Theorems and com-
putational methods for modular forms translate into theorems and
computational methods for lattices. For example, the 290 theorem
of M. Bharghava and J. Hanke is a theorem about lattices, which
asserts that an integer-valued quadratic form represents all posi-
tive integers if and only if it represents the integers up to 290; it
is proved by doing many calculations with modular forms (both
theoretical and with a computer).

1.6. Exercises

1.1 Suppose γ =
(

a b
c d

)
∈ GL2(R) has positive determinant. Prove that

if z ∈ C is a complex number with positive imaginary part, then
the imaginary part of γ(z) = (az + b)/(cz + d) is also positive.

1.2 Prove that every rational function (quotient of two polynomials) is
a meromorphic function on C.

1.3 Suppose f and g are weakly modular functions for a congruence
subgroup Γ with f 	= 0.
(a) Prove that the product fg is a weakly modular function for Γ.
(b) Prove that 1/f is a weakly modular function for Γ.
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(c) If f and g are modular functions, show that fg is a modular
function for Γ.

(d) If f and g are modular forms, show that fg is a modular form
for Γ.

1.4 Suppose f is a weakly modular function of odd weight k and level
Γ0(N) for some N . Show that f = 0.

1.5 Prove that SL2(Z) = Γ0(1) = Γ1(1) = Γ(1).
1.6 (a) Prove that Γ1(N) is a group.

(b) Prove that Γ1(N) has finite index in SL2(Z) (Hint: It contains
the kernel of the homomorphism SL2(Z) → SL2(Z/NZ).)

(c) Prove that Γ0(N) has finite index in SL2(Z).
(d) Prove that Γ0(N) and Γ1(N) have level N .

1.7 Let k be an integer, and for any function f : h∗ → C and γ =(
a b
c d

)
∈ GL2(Q), set f [γ]k(z) = det(γ)k−1 · (cz + d)−k · f(γ(z)).

Prove that if γ1, γ2 ∈ GL2(Z), then for all z ∈ h∗ we have

f [γ1γ2]k(z) = ((f [γ1]k)[γ2]k)(z).

1.8 Prove that for any α, β ∈ P1(Q), there exists γ ∈ SL2(Z) such that
γ(α) = β.

1.9 Prove Proposition 1.13, which asserts that the set of cusps C(Γ),
for any congruence subgroup Γ, is finite.

1.10 Use Algorithm 1.19 to give an example of a group Γ and cusp α
with width 2.


