
Preface

These lectures concentrate on some basic facts and ideas of the modern
theory of linear elliptic and parabolic partial differential equations (PDEs)
in Sobolev spaces. We hope to show that this theory is based on some
general and extremely powerful ideas and some simple computations. The
main objects of study are the Cauchy problem for parabolic equations and
the first boundary-value problem for elliptic equations, with some guide-
lines concerning other boundary-value problems such as the Neumann or
oblique derivative problems or problems involving higher order elliptic op-
erators acting on the boundary. The presentation has been chosen in such
a way that after having followed the book the reader should acquire a good
understanding of a wide variety of results and techniques.

These lecture notes appeared as the result of a two-quarter or a one-
semester graduate course I gave at Moscow State University and the School
of Mathematics, University of Minnesota, over a number of years and differ
significantly from previous drafts. This book also includes some parts of
the initial draft and as a whole is most appropriate for a two-quarter or a
one-year course. Naturally, one cannot expect that in such a short course
all important issues of the theory of elliptic and parabolic equations can be
covered. Actually, even the area of second-order elliptic partial differential
equations is so wide that one cannot imagine a book, let alone a textbook, of
reasonable size covering all bases. Restricting further only to the theory of
solvability in the Sobolev function spaces and linear equations still does not
make the task realistic. Because of that we will only be concerned with some
basic facts and ideas of the modern theory of linear elliptic and parabolic
equations in Sobolev spaces. We refer the interested reader to the books [7],
[9], and [15], which are classical texts and reference books in elliptic and
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parabolic PDEs, and the literature therein for additional information on the
subject.

I have been educated as a probabilist who in his early stages of research
came across the necessity of using some PDE results and realized, with some
deep disappointment mixed with astonishment, that at that time there were
no simple introductory books about the modern theory available to a wide
audience. The situation is slightly better now, forty-five years later, but yet
by now, as has been pointed out above, the theory became so wide that it
is impossible to have just one simple introductory book available to a wide
audience. Indeed, one does have several introductory books in different areas
of the theory including the book I wrote on Hölder space theory (see [12])
and the current textbook on Sobolev space theory.

As with almost any graduate textbook, this one is written for myself
and my graduate students who, as I think, should know at least that much
of the theory in order to be able to work on problems related to my own
interests. That is why the choice of these “basic facts and ideas” and the
exposition is by no means exhaustive but rather reflects the author’s taste
and, in part, his view on what he should have known to be able to work in
some areas of mathematics such as the theory of random diffusion processes.
I also hope that the contents of the book will be useful to other graduate
students and scientists in mathematics, physics, and engineering interested
in the theory of partial differential equations.

Comments on the structure of the book

We start with the L2 theory of elliptic second-order equations in the
whole space, first developing it for the Laplacian on the basis of the Fourier
transform. Then we go to the L2 theory for equations with variable coeffi-
cients by using partitions of unity, the method of “freezing the coefficients”,
the method of a priori estimates, and the method of continuity. This is done
in Chapter 1.

In Chapter 2 we deal with the L2 theory of second-order parabolic equa-
tions along similar lines. As far as parabolic equations are concerned, in
these notes we only concentrate on equations in the whole space and the
Cauchy problem.

After that, in Chapter 3, we present some tools from real analysis, help-
ing to pass from L2 theory to Lp theory with p �= 2.

In Chapter 4 we derive basic Lp estimates first for parabolic and then
for elliptic equations. The estimates for the elliptic case turn out to follow
immediately from the estimates for parabolic equations. On the other hand,
for elliptic equations such estimates can be derived directly and we outline
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how to do this in Section 4.1 and in a few exercises (see Exercises 1.1.5,
1.3.23, and 4.3.2 and the proof of Theorem 4.3.7).

Chapter 5 is devoted to the Lp theory of elliptic and parabolic equations
with continuous coefficients in the whole space. Chapter 6 deals with the
same issues but for equations with VMO coefficients, which is quite a new
development (only about 16 years old; compare it with the fundamental
papers [1] of 1959–64).

Chapter 7 is the last one where we systematically consider parabolic
equations. There the solvability of parabolic equations with VMO coefficients
is proved in Sobolev spaces with mixed norms. Again as in Chapter 2,
everything is done only for the equations in the whole space or for the
Cauchy problem for equations whose coefficients are only measurable in the
time variable. We return to this problem only briefly in Section 13.5 for
equations with coefficients independent of time.

Starting from Chapter 8, we only concentrate on elliptic equations in

Rd = {x = (x1, ..., xd) : xi ∈ (−∞,∞)}

or in domains Ω ⊂ Rd. It is worth noticing, however, that almost everything
proved for the elliptic equations in Chapter 8 is easily shown to have a
natural version valid for parabolic equations in R × Ω. Also the Cauchy
problem in (0,∞) × Ω can be treated very similarly to what is done in
Section 5.2. We do not show how to do that. Here we again run into
choosing between what basic facts your graduate students should know and
what are other very interesting topics in PDEs. Anyway, the interested
reader can find further information about parabolic equations in [14], [15],
and [18].

The reader can consult the table of contents as to what issues are inves-
tigated in the remaining chapters. We will only give a few more comments.

Chapters 12 and 13 can be studied almost independently of all previous
with the exception of Chapter 3. There are many reasons to include their
contents in a textbook, although it could be that this is the first time this
is done. I wanted my graduate students to be exposed to equations in the
function spaces of Bessel potentials since the modern theory of stochastic
partial differential equations is using them quite extensively.

Some important topics are scattered throughout the book, the most
notable are:

• Equations in divergence form; see Sections 4.4, 8.2, and 13.6.

• Boundary-value problems involving boundary differential operators;
see Exercises 1.1.11 and 13.3.15 and Sections 9.3 and 12.3.
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• Elliptic equations with measurable coefficients in two dimensions in-
cluding the Neumann problem; see Exercises 1.4.7, 1.4.8, 1.4.9, 1.6.7,
8.2.6, 8.2.11, 11.5.5, and 11.6.5.

These notes are designed as a textbook and contain about 271 exercises,
a few of which (almost all of the 63 exercises marked with an *) are used in
the main text. These are the simplest ones. However, many other exercises
are quite difficult, despite the fact that their solutions are almost always
short. Therefore, the reader should not feel upset if he/she cannot do them
even after a good deal of thinking. Perhaps, hints for them should have been
provided right after each exercise. We do give the hints to the exercises but
only at the end of each chapter just to give the readers an opportunity to
test themselves.

Some exercises which are not used in the main text are put in the main
text where the reader has enough knowledge to solve them and thus learn
more. Some other exercises less directly connected with the text are collected
in optional subsections.

The theorems, lemmas, remarks, and such which are part of the main
units of the text are numbered serially in a single system that proceeds by
section. Exercise 1.7.6 is the sixth numbered unit in the seventh section
in the first chapter. In the course of Chapter 1, this exercise is referred
to as Exercise 7.6, and in the course of the seventh section of chapter 1
it is referred to as Exercise 6. Similarly and independently of these units
formulas are numbered and cross-referenced.

Basic notation

A complete reference list of notation can be found in the index at the end
of the book. We always use the summation convention and allow constants
denoted by N , usually without indices, to vary from one appearance to
another even in the same proof. If we write N = N(...), this means that N
depends only on what is inside the parentheses. Usually, in the parentheses
we list the objects that are fixed. In this situation one says that the constant
N is under control . By domains we mean general open sets. On some
occasions, we allow ourselves to use different symbols for the same objects,
for example,

uxi =
∂u

∂xi
= Diu, ux = gradu = ∇u, uxx = (uxixj ) .

Any d-tuple α = (α1, ..., αd) of integers αk ∈ {0, 1, 2...} is called a multi-
index. For a multi-index α, k, j ∈ {1, ..., d}, and ξ = (ξ1, ..., ξd) ∈ Rd we
denote

Dkju = DjDku = uxkxj , |α| = α1 + ... + αd,



Preface xv

Dα = Dα1
1 · ... · Dαd

d , ξα = (ξ1)α1 · ... · (ξd)αd .

We also use the notation Du = ux for the gradient of u, D2u = uxx for the
matrix of second-order derivatives of u, and Dnu for the set of all nth order
derivatives of u. These Dnu(x) for each x can be considered as elements
of a Euclidean space of appropriate dimension. By |Dnu(x)| we mean any
fixed norm of Dnu(x) in this space.

In the case of parabolic equations we work with

Rd+1 = {(t, x) : t ∈ R, x ∈ Rd}.

For functions u(t, x) given on subdomains of Rd+1 we use the above notation
only for the derivatives in x and denote

∂tu =
∂u

∂t
= ut, ∂tDku = utxk = uxkt,

and so on.
If Ω is a domain in Rd and p ∈ [1,∞], by Lp(Ω) we mean the set of all

Lebesgue measurable complex-valued functions f for which

‖f‖Lp(Ω) :=
( ∫

Ω
|f(x)|p dx

)1/p
< ∞

with the standard extension of this formula if p = ∞. We also define

Lp = Lp(Rd).

One knows that Lp(Ω) is a Banach space. In the cases when f and g are
measurable functions defined in the same domain D ⊂ Rd, we write “f = g
in D” to mean that f equals g almost everywhere in D with respect to
Lebesgue measure.

By C∞
0 (Ω) we mean the set of all infinitely differentiable functions on

Ω with compact support (contained) in Ω. By the support of a function we
mean the closure of the set where the function is different from zero. We
call a subset of Rd compact if it is closed and bounded. Of course, saying
“compact support” is the same as saying “bounded support” and we keep
“compact” just to remind us that we are talking about closed sets. We set

C∞
0 = C∞

0 (Rd).
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For k ∈ {0, 1, 2, ...}, by Ck(Ω) we denote the set of all k times continu-
ously differentiable functions on Ω with finite norm

‖u‖Ck(Ω) =
∑
|α|≤k

‖Dαu‖C(Ω),

where

‖u‖C(Ω) = sup
x∈Ω

|u(x)|.

As usual, C(Ω) = C0(Ω) and we drop Ω in Ck(Ω) and Lp(Ω) if Ω = Rd.
The subset of Ck consisting of functions on Rd with compact support is
denoted Ck

0 . In particular, C0 is the set of continuous functions with compact
support.

By Ck(Ω̄) we denote the subset of Ck(Ω) consisting of all functions u
such that u and Dαu extend to functions continuous in Ω̄ (the closure of Ω)
whenever |α| ≤ k. For these extensions we keep the same notation u and
Dαu, respectively.

If Ω is an unbounded domain, by Ck
0 (Ω̄) we mean the subset of Ck(Ω̄)

consisting of functions vanishing for |x| sufficiently large. Mainly, the nota-
tion Ck

0 (Ω̄) will be used for Ω = Rd and Ω = Rd
+, where

Rd
+ = {(x1, x′) : x1 > 0, x′ = (x2, ..., xd) ∈ Rd−1}.

Generally, speaking about functions on Rd, we mean Lebesgue measur-
able functions.

To the instructor

We begin with an L2 theory of second-order elliptic equations of the
type

aij(x)uxixj (x) + bi(x)uxi(x) + c(x)u(x) = f(x), x ∈ Rd,

where the coefficients are assumed to be bounded and the matrix a = (aij)
symmetric and uniformly positive definite. If the matrix a is uniformly
continuous and c is sufficiently large negative, we show that the equation is
solvable for f ∈ L2. Much later in Section 11.6 on the basis of Lp theory,
the restriction on c is replaced with c ≤ −δ, where δ > 0 is any constant.

Then the general scheme set out in Chapter 1 is repeated several times
in the succeeding text in various settings without going into all the minor
details each time.

Chapter 3 contains all the tools from real analysis that we use. Here is
a major difference between these notes and one of the previous drafts. At
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some stage, I was presenting the Lp theory on the basis of the Calderón-
Zygmund and Marzinkiewicz theorems interpolating between p = 1 and
p = 2. The present course is based on using the Fefferman-Stein theorem
on sharp functions. One could use this theorem along with Stampacchia’s
interpolation theorem (and Marzinkiewicz’s interpolation theorem) to inter-
polate between p = 2 and p = ∞, which is done in some texts and in one
of the drafts of these lectures. However, there is a shorter way to achieve
the goal. The point is that it is possible to obtain pointwise estimates of
the sharp function u�

xx of the second-order derivatives uxx of the unknown
solution u through the maximal function of the right-hand side of the equa-
tion. This fact has actually been very well known for quite a long time and
allows one to get the Lp estimates of uxx for p > 2 just by referring to the
Fefferman-Stein and Hardy-Littlewood maximal function theorems.

A disadvantage of this approach is that the students are not exposed
to such very powerful and beautiful tools as the Calderón-Zygmund, Stam-
pacchia, and Marzinkiewicz theorems. On the other hand, there are two
advantages. First, the Fefferman-Stein theorem is much more elementary
than the Calderón-Zygmund theorem (see Chapter 3). Second, the approach
based on the pointwise estimates allows us to prove existence theorems for
equations with VMO coefficients with almost the same effort as in the case
of equations with continuous coefficients.

Despite the fact that, as has been mentioned before, the Lp theory for
elliptic equations can be developed independently of the theory of parabolic
equations, in the main text we prefer to derive elliptic estimates from par-
abolic ones for the following reasons. In the first place, we want the reader
to have some insight into the theory of parabolic equations. Secondly, to
estimate the L2 oscillation of uxx over the unit ball B1 centered at the origin
for a C∞

0 function u, through the maximal function of ∆u we split f := ∆u
into two parts: f = h + g where h ∈ C∞

0 and h = f in the ball of radius 2
centered at the origin. Then we define v and w as solutions of the equations
∆v = h and ∆w = g. The trouble is that to find appropriate v and w is
not so easy. Say, if d = 1 and we want the equations ∆v = h and ∆w = g
to be satisfied in the whole space, quite often v and v will be unbounded.
In the parabolic case this difficulty does not appear because we can find v
and w as solutions of the Cauchy problem with zero initial condition, when
the initial condition is given for t lying outside the domain where we are
estimating the L2 oscillation of the solution.

One more point worth noting is that one can have a short course on
elliptic equations, and after going through Chapter 1, go directly to Chapters
8–10 if one is only interested in the case p = 2. If d = 2, one can also include
Chapter 11. Adding to this list Chapter 3 and Section 4.1 would allow the
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reader to follow all the material in full generality apart from what concerns
parabolic equations and equations with VMO coefficients. In this case one
also has to follow the proof of Lemma 6.3.8 in order to get control on the
Lp norm of solutions. Finally, doing Exercise 4.3.2 allows one to include the
results of Chapter 6 related to the elliptic equations with VMO coefficients.

If one wants to give a course containing both Hölder space and Sobolev
space theories, then one can start with part of the present notes, use the
possibility of obtaining basic C2+α estimates by doing Exercises 4.3.2, 4.3.3,
and 10.1.8, and then continue lecturing on Hölder space theory following
one’s favorite texts. By the way, this switch to Hölder space theory can be
done right after Chapter 1 if only elliptic equations are to be treated. For
parabolic equations this switch is possible after going through Chapters 1
and 2 and doing Exercises 4.3.5, 4.3.6, 10.1.9, and 10.1.10.
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