
2  Fifty Ways to Beat a Virus (Part 1)
  In 2020, the world for the first time in a century confronted 

a global pandemic that would claim millions of lives. While 
students were sent home and campuses closed, many math-
ematicians found an opportunity to join the fight against 
COVID-19. Even simple differential equation models can teach 
us important lessons about the exponential growth of a new 
epidemic and the importance of threshold behavior. Using 
more elaborate (and realistic) models, two mathematical 
modeling groups, in Texas and Illinois, had a profound and 
positive effect on the management of the epidemic by local and 
state authorities during the first waves.

18  Fifty Ways to Beat a Virus (Part 2)
  Continuing the previous chapter, Part 2 discusses the problems 

confronted by mathematicians and epidemiologists in the later 
part of 2020 and in early 2021. How could universities re-open 
safely? How does the uncontrolled spread of an epidemic in 
prisons affect the surrounding community, and what can be 
done about it? And the biggest question: could vaccination 
bring the epidemic under control? Even though the coronavirus 
kept throwing surprises at us, mathematicians did a surpris-
ingly good job of developing strategies, giving realistic answers 
and highlighting the main reasons for uncertainty.

30  Fifty Ways to Beat a Virus (Part 3)
  Another important front in the battle against COVID-19 was 

to understand how the infection progresses within the human 
body. Why do some people have life-threatening symptoms, 
while others have none at all? An online group called the 
“Immune Gals” highlighted the delayed release of interferon 
as a characteristic marker of severe cases. Another mathema-
tician used the tools of graph theory to identify parts of the 
viral RNA that are especially vulnerable to attack by drugs or 
gene therapy. And a third group adapted a machine-learning 
language model to detect escape variants of coronavirus. In 
effect, they taught the computer to “speak virus.”

46  Descartes’ Homework
  A homework problem assigned in 1643 by René Descartes to 

his star pupil, Princess Elizabeth of Bohemia, backfired when 
Descartes himself couldn’t solve it. But he redeemed himself 
by solving a special case that still fascinates geometers and 
number theorists. Descartes’ theorem and its generalizations 
have revealed startling symmetries in infinite foams (called 
Apollonian packings) that are created by squeezing circles as 
tightly as possible into the spaces created by other circles. New 
Apollonian and Apollonian-like patterns continue to be discov-
ered in the plane, in 3-space, and in higher dimensions all the 
way up to dimension 20.
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64  Square Pegs and Squiggly Holes
  A century-old “folklore problem” in topology asks whether 

any continuous loop in the plane that does not cross itself 
must contain four points that form a perfect square. This 
is known as the Square Peg Conjecture. Recently, a team of 
two geometers proved something even better: if the curve 
is smooth (i.e., it has no corners or cusps) then it contains 
rectangles of all conceivable shapes, and also quadrilaterals 
of any shape that will fit snugly in a circle. Their proof inge-
niously weaves together 2000-year-old theorems of Euclidean 
geometry with less than 20-year-old theorems of symplectic 
geometry.

78  Dancing on the Edge of the Impossible
  The ultimate dream of many number theorists would be an 

algorithm that inputs a polynomial equation and outputs all 
the rational solutions to that equation. For equations with 
integer coefficients in one variable, it’s easy. For equations 
with nine or more variables, it’s impossible. But equations in 
two variables are right on the edge. Faltings’ theorem, proved 
in 1983, guarantees (for most such equations) that there are 
only finitely many solutions… but it doesn’t say whether 
there are four or four million. Number theorists are now 
inching closer to an “effective” Faltings theorem that would 
tell them when they can stop looking for more solutions.

94  A Climate for Math
  Unprecedented heat waves. Orange skies. Ten-thousand-year 

floods. When the weather gets weirder than ever before, 
whom are you going to call? A climatologist, sure. But you 
might want to talk with a mathematician, too. This chapter 
explains how mathematical techniques like extreme value 
analysis, differential equations, changepoint analysis, and 
machine learning can give us some idea of what has happened 
already and what will happen next in climate change.

112  Much Ado About Zero
  What is the friendliest research community in mathematics? 

You could make a good case for zero-forcing. This mash-up 
of linear algebra and graph theory has been in existence for 
less than 20 years, but has attracted a large following, with 
a sizeable proportion of young mathematicians and people 
from diverse academic and social backgrounds. Zero-forcing 
is a way to turn hard problems about eigenvalues of matrices 
into easy games played on graphs (i.e., dot-and-line networks). 
Or vice versa, it’s a way to turn simple graph games into chal-
lenging math problems. Applications to quantum control and 
electrical and civil engineering are the icing on the cake.
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