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Preface

We live in a highly connected world, with multiple self-interested agents inter-
acting, leading to myriad opportunities for conflict and cooperation. Understanding
these is the goal of game theory. It finds application in fields such as economics,
business, political science, biology, psychology, sociology, computer science, and en-
gineering. Conversely, ideas from the social sciences (e.g., fairness), from biology
(evolutionary stability), from statistics (adaptive learning), and from computer sci-
ence (complexity of finding equilibria) have greatly enriched game theory. In this
book, we present an introduction to this field. We will see applications from a vari-
ety of disciplines and delve into some of the fascinating mathematics that underlies
game theory.

An overview of the book

Part I: Analyzing games: Strategies and equilibria. We begin in
Chapter 1 with combinatorial games, in which two players take turns mak-
ing moves until a winning position for one of them is reached.

Figure 1. Two people playing Nim.

A classic example of a combinatorial game is Nim. In this game, there are
several piles of chips, and players take turns removing one or more chips from a
single pile. The player who takes the last chip wins. We will describe a winning
strategy for Nim and show that a large class of combinatorial games can be reduced
to it.

Other well-known combinatorial games are Chess, Go, and Hex. The youngest
of these isHex, which was invented by Piet Hein in 1942 and independently by John
Nash in 1947. Hex is played on a rhombus-shaped board tiled with small hexagons
(see Figure 2). Two players, Blue and Yellow, alternate coloring in hexagons in their
assigned color, blue or yellow, one hexagon per turn. Blue wins if she produces
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Figure 2. The board for the game of Hex.

a blue chain crossing between her two sides of the board and Yellow wins if he
produces a yellow chain connecting the other two sides.

We will show that the player who moves first has a winning strategy; finding
this strategy remains an unsolved problem, except when the board is small.
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Figure 3. The board position near the end of the match between Queenbee
and Hexy at the 5th Computer Olympiad. Each hexagon is labeled by the
time at which it was placed on the board. Blue moves next, but Yellow has a
winning strategy. Can you see why?

In an interesting variant of the game, the players, instead of alternating turns,
toss a coin to determine who moves next. In this case, we can describe optimal
strategies for the players. Such random-turn combinatorial games are the
subject of Chapter 9.

In Chapters 2–5, we consider games in which the players simultaneously
select from a set of possible actions. Their selections are then revealed, resulting
in a payoff to each player. For two players, these payoffs are represented using the
matrices A = (aij) and B = (bij). When player I selects action i and player II
selects action j, the payoffs to these players are aij and bij , respectively. Two-
person games where one player’s gain is the other player’s loss, that is, aij +bij = 0
for all i, j, are called zero-sum games. Such games are the topic of Chapter 2.
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We show that every zero-sum game has a value V such that player I can ensure
her expected payoff is at least V (no matter how II plays) and player II can ensure
he pays I at most V (in expectation) no matter how I plays.

For example, in Penalty Kicks, a zero-sum game inspired by soccer, one
player, the kicker, chooses to kick the ball either to the left or to the right of the
other player, the goalie. At the same instant as the kick, the goalie guesses whether
to dive left or right.

Figure 4. The game of Penalty Kicks.

The goalie has a chance of saving the goal if he dives in the same direction as the
kick. The kicker, who we assume is right-footed, has a greater likelihood of success
if she kicks right. The probabilities that the penalty kick scores are displayed in
the table below:

goalie
L R

k
ic
ke
r L 0.5 1

R 1 0.8

For this set of scoring probabilities, the optimal strategy for the kicker is to kick left
with probability 2/7 and kick right with probability 5/7 — then regardless of what
the goalie does, the probability of scoring is 6/7. Similarly, the optimal strategy for
the goalie is to dive left with probability 2/7 and dive right with probability 5/7.

Chapter 3 goes on to analyze a number of interesting zero-sum games on
graphs. For example, we consider a game between a Troll and a Traveler. Each
of them chooses a route (a sequence of roads) from Syracuse to Troy, and then they
simultaneously disclose their routes. Each road has an associated toll. For each
road chosen by both players, the traveler pays the toll to the troll. We find optimal
strategies by developing a connection with electrical networks.

In Chapter 4 we turn to general-sum games. In these games, players no
longer have optimal strategies. Instead, we focus on situations where each player’s
strategy is a best response to the strategies of the opponents: a Nash equilibrium
is an assignment of (possibly randomized) strategies to the players, with the prop-
erty that no player can gain by unilaterally changing his strategy. It turns out that
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every general-sum game has at least one Nash equilibrium. The proof of this fact
requires an important geometric tool, the Brouwer fixed-point theorem, which
is covered in Chapter 5.

Figure 5. Prisoner’s Dilemma: the prisoners considering the possible conse-
quences of confessing or remaining silent.

The most famous general-sum game is the Prisoner’s Dilemma. If one pris-
oner confesses and the other remains silent, then the first goes free and the second
receives a ten-year sentence. They will be sentenced to eight years each if they both
confess and to one year each if they both remain silent. The only equilibrium in
this game is for both to confess, but the game becomes more interesting when it is
repeated, as we discuss in Chapter 6. More generally, in Chapter 6 we consider
games where players alternate moves as in Chapter 1, but the payoffs are general
as in Chapter 4. These are called extensive-form games. Often these games in-
volve imperfect information, where players do not know all actions that have
been taken by their opponents. For instance, in the 1962 Cuban Missile Crisis, the
U.S. did not know whether the U.S.S.R. had installed nuclear missiles in Cuba and
had to decide whether to bomb the missile sites in Cuba without knowing whether
or not they were fitted with nuclear warheads. (The U.S. used a naval blockade
instead.) We also consider games of incomplete information where the players
do not even know exactly what game they are playing. For instance, in poker, the
potential payoffs to a player depend on the cards dealt to his opponents.

One criticism of optimal strategies and equilibria in game theory is that finding
them requires hyperrational players that can analyze complicated strategies. How-
ever, it was observed that populations of termites, spiders, and lizards can arrive
at a Nash equilibrium just via natural selection. The equilibria that arise in such
populations have an additional property called evolutionary stability, which is
discussed in Chapter 7.

In the same chapter, we also introduce correlated equilibria. When two
drivers approach an intersection, there is no good Nash equilibrium. For example,
the convention of yielding to a driver on your right is problematic in a four-way
intersection. A traffic light serves as a correlating device that ensures each driver is
incentivized to follow the indications of the light. Correlated equilibria generalize
this idea.
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In Chapter 8, we compare outcomes in Nash equilibrium to outcomes that
could be achieved by a central planner optimizing a global objective function. For
example, in Prisoner’s Dilemma, the total loss (combined jail time) in the unique
Nash equilibrium is 16 years; the minimum total loss is 2 years (if both stay silent).
Thus, the ratio, known as the price of anarchy of the game, is 8. Another example
compares the average driving time in a road network when the drivers are selfish
(i.e., in a Nash equilibrium) to the average driving time in an optimal routing.

Figure 6. An unstable pair.

Part II: Designing games and mechanisms. So far, we have considered
predefined games, and our goal was to understand the outcomes that we can expect
from rational players. In the second part of the book, we also consider mechanism
design where we start with desired properties of the outcome (e.g., high profit or
fairness) and attempt to design a game (or market or scheme) that incentivizes
players to reach an outcome that meets our goals. Applications of mechanism
design include voting systems, auctions, school choice, environmental regulation,
and organ donation.

For example, suppose that there are n men and n women, where each man has
a preference ordering of the women and vice versa. A matching between them is
stable if there is no unstable pair, i.e., a man and woman who prefer each other
to their partners in the matching. In Chapter 10, we introduce the Gale-Shapley
algorithm for finding a stable matching. A generalization of stable matching is
used by the National Resident Matching Program, which matches about 20,000
new doctors to residency programs at hospitals every year.

Chapter 11 considers the design of mechanisms for fair division. Consider
the problem of dividing a cake with several different toppings among several peo-
ple. Each topping is distributed over some portion of the cake, and each person
prefers some toppings to others. If there are just two people, there is a well-known
mechanism for dividing the cake: One cuts it in two, and the other chooses which
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piece to take. Under this system, each person is at least as happy with what he
receives as he would be with the other person’s share. What if there are three or
more people? We also consider a 2000-year-old problem: how to divide an estate
between several creditors whose claims exceed the value of the estate.

The topic ofChapter 12 is cooperative game theory, in which players form
coalitions in order to maximize their utility. As an example, suppose that three
people have gloves to sell. Two are each selling a single, left-handed glove, while the
third is selling a right-handed one. A wealthy tourist enters the store in dire need of
a pair of gloves. She refuses to deal with the glove-bearers individually, so at least
two of them must form a coalition to sell a left-handed and a right-handed glove to
her. The third player has an advantage because his commodity is in scarcer supply.
Thus, he should receive a higher fraction of the price the tourist pays. However, if
he holds out for too high a fraction of the payment, the other players may agree
between themselves that he must pay both of them in order to obtain a left glove.
A related topic discussed in the chapter is bargaining, where the classical solution
is again due to Nash.

Figure 7. Voting in Florida during the 2000 U.S. presidential election.

In Chapter 13 we turn to social choice: designing mechanisms that aggre-
gate the preferences of a collection of individuals. The most basic example is the
design of voting schemes. We prove Arrow’s Impossibility Theorem, which im-
plies that all voting systems are strategically vulnerable. However, some systems
are better than others. For example, the widely used system of runoff elections is
not even monotone; i.e., transferring votes from one candidate to another might
lead the second candidate to lose an election he would otherwise win. In contrast,
Borda count and approval voting are monotone and more resistant to manipulation.

Chapter 14 studies auctions for a single item. We compare different auction
formats such as first-price (selling the item to the highest bidder at a price equal
to his bid) and second-price (selling the item to the highest bidder at a price
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Figure 8. An auction for a painting.

equal to the second highest bid). In first-price auctions, bidders must bid below
their value if they are to make any profit; in contrast, in a second-price auction, it is
optimal for bidders to simply bid their value. Nevertheless, the Revenue Equiva-
lence Theorem shows that, in equilibrium, if the bidders’ values are independent
and identically distributed, then the expected auctioneer revenue in the first-price
and second-price auctions is the same. We also show how to design optimal (i.e.,
revenue-maximizing) auctions under the assumption that the auctioneer has good
prior information about the bidders’ values for the item he is selling.

Chapters 15 and 16 discuss truthful mechanisms that go beyond the second-
price auction, in particular, the Vickrey-Clarke-Groves (VCG) mechanism for
maximizing social surplus, the total utility of all participants in the mechanism. A
key application is to sponsored search auctions, the auctions that search engines
like Google and Bing run every time you perform a search. In these auctions, the
bidders are companies that wish to place their advertisements in one of the slots
you see when you get the results of your search. In Chapter 16, we also discuss
scoring rules. For instance, how can we incentivize a meteorologist to give the
most accurate prediction he can?

Chapter 17 considers matching markets. A certain housing market has n
homeowners and n potential buyers. Buyer i has a value vij for house j. The goal
is to find an allocation of houses to buyers and corresponding prices that are stable;
i.e., there is no pair of buyer and homeowner that can strike a better deal. A related
problem is allocating rooms to renters in a shared rental house. See Figure 9.

Finally, Chapter 18 concerns adaptive decision making. Suppose that
each day several experts suggest actions for you to take; each possible action has a
reward (or penalty) that varies between days and is revealed only after you choose.
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Figure 9. Three roommates need to decide who will get each room and how
much of the rent each person will pay.

Surprisingly, there is an algorithm that ensures your average reward over many days
(almost) matches that of the best expert. If two players in a repeated zero-sum
game employ such an algorithm, the empirical distribution of play for each of them
will converge to an optimal strategy.

For the reader and instructor

Prerequisites. Readers should have taken basic courses in probability and
linear algebra. Starred sections and subsections are more difficult; some require
familiarity with mathematical analysis that can be acquired, e.g., in [Rud76].

Courses. This book can be used for different kinds of courses. For instance, an
undergraduate game theory course could include Chapter 1 (combinatorial games),
Chapter 2 and most of Chapter 3 on zero-sum games, Chapters 4 and 7 on general-
sum games and different types of equilibria, Chapter 10 (stable matching), parts
of Chapters 11 (fair division), 13 (social choice), and possibly 12 (especially the
Shapley value). Indeed, this book started from lecture notes to such a course that
was given at Berkeley for several years by the second author.

A course for computer science students might skip some of the above chapters
(e.g., combinatorial games) and instead emphasize Chapter 9 on price of anarchy,
Chapters 14–16 on auctions and VCG, and possibly parts of Chapters 17 (matching
markets) and 18 (adaptive decision making). The topic of stable matching (Chapter
10) is a gem that requires no background and could fit in any course. The logical
dependencies between the chapters are shown in Figure 10.

There are solution outlines to some problems in Appendix D. Such solutions
are labeled with an “S” in the text. More difficult problems are labeled with a ∗.
Additional exercises and material can be found at:

http://homes.cs.washington.edu/~karlin/GameTheoryAlive
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Figure 10. Chapter dependencies.

Notes

There are many excellent books on game theory. In particular, in writing this book,
we consulted Ferguson [Fer08], Gintis [Gin00], González-Dı́az et al. [GDGJFJ10], Luce
and Raiffa [LR57], Maschler, Solan, and Zamir [MSZ13], Osborne and Rubinstein [OR94],
Owen [Owe95], the survey book on algorithmic game theory [NRTV07], and the handbooks
of game theory, Volumes 1–4 (see, e.g., [AH92]).

The entries in the payoff matrices for zero-sum games represent the utility of the
players, and throughout the book we assume that the goal of each agent is maximizing
his expected utility. Justifying this assumption is the domain of utility theory, which is
discussed in most game theory books.
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The Penalty Kicks matrix we gave was idealized for simplicity. Actual data on 1,417
penalty kicks from professional games in Europe was collected and analyzed by Palacios-
Huerta [PH03]. The resulting matrix is

goalie
L R

k
ic
k
er L 0.58 0.95

R 0.93 0.70

Here ‘R’ represents the dominant (natural) side for the kicker. Given these probabilities,
the optimal strategy for the kicker is (0.38, 0.62) and the optimal strategy for the goalie
is (0.42, 0.58). The observed frequencies were (0.40, 0.60) for the kicker and (0.423, 0.577)
for the goalie.

The early history of the theory of strategic games from Waldegrave to Borel is dis-
cussed in [DD92].
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