
CHAPTER 1

The Fundamental Theorem of Algebra

Our first excursion into the topology of the plane will be in the proof of the
Fundamental Theorem of Algebra:

Theorem 1.1 (Fundamental Theorem of Algebra). If f(x) = xn+an−1x
n−1+

· · · + a1x + a0 = 0 is a polynomial equation in the unknown x and if the constant
coefficients an−1, . . ., a1, a0 are complex numbers, then there is a complex number
x = α that satisfies the equation: f(α) = 0. (Of course, since the real numbers are
a subset of the complex numbers (the line lies in the plane), these coefficients are
allowed to be real numbers.)

The Greeks solved linear and quadratic equations geometrically. They rejected
solutions that were not real numbers as being of no application or interest. Complex
numbers were first acknowledged as important in the solution of cubic equations.
General solution formulas for the cubic and quartic equations were found only by
great effort and cleverness.

Georg Pólya wrote to me when I was a young Mormon missionary in Austria.
He said that I should solve a hard mathematical problem every week so that I
wouldn’t rust (“Wer rastet, der rostet”). He also gave me a list of books that I
might find in a used bookstore. I learned the following argument from one of them:

Here is a general solution to the cubic equation, f(x) = x3 + ax2 + bx+ c = 0:
We simplify the equation by translation, setting x = z + k. By subsititution, we
find

f(x) = z3 + (3k + a)z2 + (3k2 + 2ak + b)z + (k3 + ak2 + bk + c) = 0.

If we choose k = −a/3, the equation has the form

z3 + pz + q = 0.

Setting z = u+ v and substituting, we find

(u3 + v3 + q) + (3uv + p)(u+ v) = 0.

If we are able to choose u and v so that

u3 + v3 + q = 0 and 3uv + p = 0,

the equation will be satisfied. We can solve this pair of equations for u and v in
the standard way by substitution:

u = −p/3v and, consequently,

(
−p

3v

)3

+ v3 + q = 0.
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2 1. THE FUNDAMENTAL THEOREM OF ALGEBRA

Multiplying by v3,

v6 + qv3 +

(
−p

3

)3

= 0.

Though this equation has degree 6 in the unknown v, it is only quadratic in the
unknown v3, so that by the quadratic formula,

v3 = −q

2
± 1

2

√
q2 + 4

p3

27
= −q

2
±

√(
q

2

)2

+

(
p

3

)3

.

Assuming that we know how to take cube roots, we obtain v, from which we find
u3 = −v3 − q or u = −p/3v, z = u+ v, and x = z − (a/3).

For example, if f(x) = x3 − 15x − 4 (already simplified), we have p = −15,
q = −4, v3 = 2 +

√
4− 125 = 2 + 11i, and u3 = 2 − 11i. But (2 + i)3 = 2 + 11i

and (2 − i)3 = 2 − 11i. The sum of these cube roots is (2 + i) + (2 − i) = 4,
which is a real root of the original equation. The fact that real roots could be
mediated by formulas involving complex numbers was a huge motivating factor for
the acceptance of complex numbers.

We have ignored some of the obvious difficulties: How do we take cube roots?
Further, if we take the three cube roots of v3 and three of u3, we would be able
to put together 9 possibilities for z, and there can only be three solutions to the
original equation. To choose those that are in fact roots, we must satisfy the more
restrictive equation, u = −p/3v. In the example,

−p

3(2 + i)
=

15

6 + 3i
· 6− 3i

6− 3i
=

15 · (6− 3i)

36 + 9
= 2− i.

Mathematicians hoped to find similar solutions for polynomial equations of
higher degree, solutions that only required the arithmetic operations of addition,
subtraction, multiplication, and division together with the extraction of roots. This
hope was dashed by the work of N. H. Abel and E. Galois, who showed that the
four arithmetic operations and extraction of roots were inadequate in general for
expressing the roots of a quintic equation in terms of its coefficients.

I would love to include their proofs here, but Abel’s proof required twenty pages
of work and Galois’s development requires a substantial development of the theory
of fields and finite groups. Instead, we shall only prove the Fundamental Theorem
of Algebra. We first need to review some fundamentals from the arithmetic of
complex numbers.

1.1. Complex Arithmetic

Complex numbers were fully accepted when mathematicians learned to in-
terpret them as the points of the plane, with a + bi represented by the pair
(a, b). Addition is then simply vector addition or parallelogram addition, with
(a+ bi)+ (c+di) = (a+ c)+ (b+d)i corresponding to (a, b)+ (c, d) = (a+ c, b+d).
See Figure 1.

Multiplication also has a beautiful geometric interpretation that is based
on the polar representation of a complex number (see Figure 2) and on the sum
formulas for the sin and cos. We review these trigonometric sum formulas and their
proofs here.

The sum formulas for sin and cos are consequences of a simple projection prin-
ciple, that is essentially the definition of sin and cos. See Figure 3. It is helpful
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a+ bi

c+ di

(a+ c) + (b+ d)i

Figure 1. Addition of complex numbers

(0, 0)

α

r

(r cosα, r sinα) = r(cosα, sinα)

Figure 2. Polar coordinates

to think of the projection principle as determining the effect on lengths when one
length is projected orthogonally onto another.

The projection principle. Consider a right triangle with one of its acute
angles equal to α, and suppose that the length of the hypotenuse is r. Then the
leg adjacent to the angle α has length (cosα) · r, and the leg opposite the angle α
has length (sinα) · r.

To obtain the sum formulas for sin and cos, we apply the projection principle to
the following two diagrams; see Figure 4. Each term of the sum formulas represents
a well-defined geometric segment in the diagrams.
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α
(cosα) · r

r

(sinα) · r

Figure 3. The projection principle

(0, 0) (0, 0)c(α)c(β) c(α)c(β)

α
β

α
β

1 1

c(α) c(α)

s(α)
s(α)

c(α)s(β) c(α)s(β)

s(α)c(β)
s(α)c(β)

s(α)s(β) s(α)s(β)

Figure 4. The addition formulas

We use c and s as shorthand for cos(α + β) and sin(α + β). We use c(α) and
s(α) as shorthand for cos(α) and sin(α), and similarly for cos(β) and sin(β). We
have drawn two right triangles in each of the diagrams, one with angle α, the other
with angle β. We have scaled the triangles so that the larger one has hypotenuse
1 so that the vertex emphasized by the large dot has coordinates (c, s). All of the
other entries are consequences of the projection principle. From the figures, it is
clear that

c = c(α)c(β)− s(α)s(α), or

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β), and similarly

sin(α+ β) = cos(α) sin(β) + sin(α) cos(β).

These are the sum formulas for sin and cos.
Admittedly, the diagrams deal only with positive angles α and β whose sum is

≤ π, but all other angles can readily be reduced to these cases.
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If we add to these two formulas the Pythagorean Theorem,

cos2(α) + sin2(α) = 1,

we have the three basic identities of trigonometry.
If we apply these identities to the multiplication of complex numbers, as ex-

pressed in polar coordinates, we obtain the geometric interpretation of complex
multiplication.

We multiply two complex numbers by applying the standard principles of mul-
tiplication and addition, then set i2 = −1:

r(cosα+i sinα) · s(cosβ + i sin β)
= rs

(
(cosα · cosβ − sinα · sin β) + i(cosα · sinβ + sinα · cosβ)

)
= rs

(
cos(α+ β) + i · sin(α+ β)

)
.

The second equality is a consequence of the addition formulas for sin and cos. In
other words, to multiply, we multiply lengths and add angles.

To raise to the nth power,(
r(cosα+ i · sinα)

)n
= rn

(
cos(nα) + i sin(nα)

)
,

we raise length to the nth power and multiply the angle by n.
Division is just as easy: divide lengths and subtract angles.
Taking the nth root is more sophisticated. Of course, we may take the nth

root of length and divide the angle by n. But the angle of a complex number is not
well-defined, for we can add any multiple of 2π to a given angle without changing
the complex number. When we divide the angle by n, we actually find n possible
angles:

α/n, α/n+ 2π/n, α/n+ 4π/n, . . . , α/n+ (n− 1)2π/n.

In other words, for every nonzero complex number there are exactly n nth roots,
and they are equally spaced on a circle of radius r1/n centered at the origin.

1.2. First Proof of the Fundamental Theorem

We recall the statement of the Fundamental Theorem of Algebra:

Theorem 1.2. Suppose that p(z) is a nonconstant polynomial whose coefficients
are complex numbers. Then there is a complex number z0 such that p(z0) = 0.

I learned the first proof from [7, H. Dörrie]. The first proof is based on three
simple facts:

Lemma 1.3. If c ∈ C and if n > 0 is an integer, then there is a number d such
that dn = c.

Proof of the Lemma. We use the basic fact about multiplication of complex
numbers a and b: Express a and b in polar coordinates, so that a = (|a|, θ(a))pol
and b = (|b|, θ(b))pol. Then a · b = (|a| · |b|, θ(a) + θ(b))pol. It follows immediately
that an = (|a|n, n · θ(a))pol.

Consequently, the nth roots of c = (|c|, θ(c))pol are the complex numbers

(|c|1/n, θ(c)
n

+
i

n
· 2π)pol for i = 0, 1, . . . , n− 1.

�
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Lemma 1.4. If p(z) is a nonconstant complex polynomial, then limz→∞ p(z) =
∞.

Proof. If p(z) = anz
n + an−1

n−1 + · · ·+ a1z + a0, with an �= 0 and |z| > 1, then

|p(z)| ≥ (|z|n · |an| − |z|n−1 · (|an−1|+ · · ·+ |a1|+ |a0|) > M,

provided that

|z| · |an| − (|an−1|+ · · ·+ |a1|+ |a0|) > M/|z|n−1.

�

Corollary 1.5. If p(z) is a complex polynomial, then there is a complex num-
ber z0 so that m = |p(z0)| is the minimum value of |p(z)|.

Proof. Let m = inf{|p(z)| : z ∈ C}. Let z1, z2, . . . denote a sequence of
complex numbers such that m = limn→∞ |p(zn)|. Then the sequence must be
bounded because of the previous lemma. Hence there is a convergent subsequence,
so that we may assume zn → z0 ∈ C. By continuity, |p(z0)| = m. �

Lemma 1.6. If p(z) is a complex polynomial and z0 ∈ C, then there is a complex
polynomial of the form q(Z) = q(z − z0) such that p(z) = q(z − z0).

Proof. The coefficients of q(z−z0) = an(z−z0)
n+· · ·+a0 are easily calculated

by successive divisions (most efficiently implemented as synthetic division):

p(z) = p1(z) · (z − z0) + a0,

p1(z) = p2(z) · (z − z0) + a1,

p2(z) = p3(z) · (z − z0) + a2,

p3(z) = p4(z) · (z − z0) + a3, etc.

Reversing the steps demonstrates the desired equality. For example,

2z3 + 17z2 + 50z + 56 = (2z2 + 11z + 17) · (z + 3) + 5,

2z2 + 11z + 17 = (2z + 5) · (z + 3) + 2,

2z + 5 = (2) · (z + 3)− 1, and

2 = (0) · (z + 3) + 2,

so that

2z3 + 17z2 + 50z + 56 = 2(z + 3)3 − 1(z + 3)2 + 2(z + 3) + 5.

�

First proof of the Fundamental Theorem of Algebra. Suppose that,
to the contrary, the minimum value (Corollary 1.5) of |p(z)| is m = |p(z0)| > 0.
By Lemma 1.6, we may translate the domain so that z0 = 0. Multiplying p(z) by
a nonzero complex constant, we may assume that |p(z0)| = p(0) = 1, so that p(z)
has the form

p(z) = 1 + bkz
k + bk+1z

k+1 + · · ·+ bnz
n,

where bk is the first nonzero coefficient after the constant 1.
The (nonzero) complex number −1/bk has a kth root d (1.3). Let λ denote a

positive number very close to 0. Then bk(λd)
k = −λk so that

|p(λd)| ≤ 1− λk + λk+1 · (|bk+1d
k+1|+ · · ·+ |bndn|).
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If λ is chosen so small that λ(|bk+1d
k+1| + · · · + |bndn|) < 1, we conclude that

|p(λd)| < 1, a contradiction. We conclude that m = 0 so that p(z) has a root. �

1.3. Second Proof

Our second proof is based on the geometrically intuitive idea of deforming or
dragging a closed curve in the plane. The technical term for deforming or dragging
is homotopy. The technical parts of the proof are more involved than our first proof
of the theorem, but the concepts are powerful and allow significant generalization.

Definition 1.7. Maps f, g : X → Y are said to be homotopic if there is a
continuous function F : X × [0, 1] → Y such that, for each x ∈ X, F (x, 0) = f(x)
and F (x, 1) = g(x). The mapping F is called a homotopy from f to g.

The curves in question are the images of circles under the polynomial mapping
p : C → C : z 
→ p(z). Recall that S1 = S

1 denotes the circle of radius 1 in the
complex plane centered at the origin. In complex notation,

S
1 = {eiθ | θ ∈ R} = {eiθ | θ ∈ [0, 2π)}.

Using inner products, we obtain for each positive number r a concentric circle
Sr = r · S1 = {r · z : z ∈ S1} of radius r. We may think of the point S0 = 0 · S1
as a degenerate curve that has been collapsed to a point. The polynomial mapping
p provides a homotopy deforming the image of any one of these circles Sr to the
point p(0) via the definition

Pr : Sr × [0, 1] → C : (x, t) 
→ p((1− t)x).

Note that Pr restricted to Sr × {0} is the same as p restricted to Sr, while Pr

restricted to Sr × {1} is the constant map to p(0).
We also use the fact already noted:

Lemma 1.8. If c ∈ C has polar coordinates c = (|c|, θ(c))pol and if n is a positive
integer, then cn = (|c|n, nθ(c))pol. �

Corollary 1.9. The mapping q : C → C : z 
→ zn, with n > 0 a positive
integer, wraps the circle Sr n times around the circle Ss, where s = rn. �

We are now prepared to give the intuitive outline of our second proof of the
Fundamental Theorem of Algebra. We start with an arbitrary nonconstant poly-
nomial, and, dividing by the leading coefficient, find that we may assume it has
the form p(z) = zn + an−1z

n−1 + · · · + a1z + a0. We assume that, contrary to
the theorem, p(z) is never 0. Then the homotopy Pr : Sr × [0, 1] → C actually
has image in C \ {0}. That is, the curve p : Sr → C \ {0} can be dragged to
a point without hitting the origin. But we shall see that, for r sufficiently large,
the curve q : Sr → C \ {0} of the previous corollary is homotopic in C \ {0} to
p : Sr → C \ {0}. That is, q|Sr can be dragged to p|Sr missing the origin, and
from there, using the polynomial p, can be dragged to the constant map missing
the origin. That is, the curve that maps n times around the origin can be dragged
to a point without going through the origin. This is physically absurd since the
curve q|Sr is most thoroughly hooked about the origin. This completes the intuitive
proof of the theorem.

The difficulty that remains is that of turning these statements into technical
mathematics. The necessary details are supplied by the following two theorems.
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Theorem 1.10. If q(z) = zn and p(z) = zn+an−1z
n−1+ · · ·+a1z+a0 , then,

for all sufficiently large r > 1, the curves q|Sr and p|Sr are homotopic in C \ {0}.

Proof. Define F : Sr×[0, 1] → C by the formula F (s, t) = (1−t)·q(s)+t·p(s).
Then F is definitely a homotopy from q|Sr to p|Sr in C. We need to show that
F (s, t) is never 0, provided that r is big enough:

|F (s, t)| = |(1− t)sn + t(sn + an−1s
n−1 + · · ·+ a1s+ a0)|

≥ rn − rn−1(|an−1|+ · · ·+ |a1|+ |a0|) > 0,

provided that r > (|an−1|+ · · ·+ |a1|+ |a0|). �

Theorem 1.11. The map q|Sr is not homotopic to a constant map in C \ {0}.

Proof. This theorem is the technically complex bit of our second proof of the
Fundamental Theorem of Algebra.

Suppose that, contrary to the theorem, there is a continuous function Q :
Sr × [0, 1] → C \ {0} such that, for each s ∈ Sr, Q(s, 0) = q(s) = sn and Q|Sr ×{1}
is a constant map.

We divide the product Sr×[0.1] into tiny triangles, as, for example, in Figure 5.

Sr × 0

Sr × 1

Figure 5. Dividing a ring into layers of triangles

Since the set Sr × [0, 1] is compact and its image misses 0, there is a positive
distance from the image to the origin. The map Q is uniformly continuous, so that,
if the triangles are small, so are the images of those triangles. We may move the
images of the vertices a tiny bit so that the images of the vertices of each triangle are
vertices of a rectilinear triangle in the plane. We replace each (possibly curvilinear
and singular) image triangle by the corresponding rectilinear triangle spanned by
the new image vertices.

We take care in the adjustment that the following conditions are satisfied. The
vertex images from Sr × {0} are not moved. The image of the entire set Sr × {1}
is still very small. No adjusted triangle hits the origin 0.
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We now pick a ray R from 0 to ∞ in the plane in such a way that it misses all
of the new vertex images and misses the (very small) image of Sr × {1}. We lose
no generality in assuming that R is the positive x-axis.

We complete the proof by counting the number of times various triangle edges
intersect and cross the ray R. We orient the edges of Sr×{0} in the counterclockwise
direction. The image of Sr×{0} intersects R exactly n times, and each time crosses
R from the lower side to the upper side. We assign the crossing number +1 to each
oriented edge that crosses R from the bottom to the top. When we later come
upon oriented edges that cross R from top to bottom, we assign such crossings the
crossing number −1. See Figure 7. If an edge misses R, we assign it number 0.
The sum of crossing numbers for the image of Sr × {0} is n.

We delete triangles one at a time, layer by layer, as indicated by Figure 6. We
first remove the green triangles, then the orange triangles, etc.

Sr × 0

Sr × 1

Figure 6. Peeling away the layers

Each time a triangle is deleted, we obtain a new boundary curve. Either one
oriented boundary edge is replaced by two new oriented boundary edges or two ori-
ented boundary edges are replaced by one new oriented boundary edge. It is easy
to see that the algebraic sum of assigned crossing numbers remains unchanged with
each triangle deletion since the sum obviously remains unchanged on each triangle.
In order to see this, examine Figure 7.

Eventually, one moves through the diagram from the image of Sr ×{0}, which
has algebraic sum n, to the image of Sr × {1}, which has algebraic sum 0, a con-
tradiction since the algebraic sum remains unchanged.

With this contradiction, the proof of the theorem is complete. �

This argument completes our second proof of the Fundamental Theorem of
Algebra.
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Figure 7. Calculating intersection numbers

1.4. Exercises

Abel and Galois proved that there are no formulas like the quadratic formula
for finding the roots of polynomials with real or complex coefficients of degrees
≥ 5. The Fundamental Theorem of Algebra, for which we have just given two
proofs, shows that there are always roots, in fact, if we count possible multiplicity
of roots, exactly as many roots as the degree of the polynomial. The problem
becomes one of finding the roots, or at least approximating the roots to a desired
degree of accuracy. There is a large literature concerning efficient ways of finding
the roots, some of which have been programmed into most pocket calculators. In
the following exercises, we suggest exploring one of the standard methods, namely,
Newton’s method.

1.1. (The equation of the tangent line) Let p(x) be a polynomial with real
coefficients and let xn be some real number. Find the equation of the tangent line
to the graph of p(x) at the point (xn, p(xn)).

Answer: y = p(xn) + p′(xn) · (x− xn).
1.2. Find the point xn+1 at which the tangent line crosses the x-axis.
Answer: xn+1 = xn − p(xn)/p

′(xn).
Newton’s method: Newton notes that if xn is a root of p(x), then xn+1 = xn.

That is, a root of p(x) is a fixed point of the operation xn 
→ xn+1, and when xn is
very close to a root r of p(x), then xn+1 is much closer to r.

1.3. Use Newton’s method to approximate
√
5. (That is, find an approximate

root to the equation x2 − 5 = 0.)
1.4. Apply Newton’s method in an attempt to find a root of the equation

x2 − 2x+ 10 = 0. Why does the method fail?
1.5. Use the quadratic formula to find the two roots of x2 − 2x+ 10.
Newton’s method often works even when there are no real roots. Use the same

iterative formula xn+1 = xn − p(xn)/p
′(xn), but start the process with x0 equal to

some nonreal complex number. This requires the ability to do complex arithmetic.
1.6. Apply Newton’s method to the polynomial x2− 2x+10 but with x0 equal

to the complex number i.
1.7. Construct a computer program to color the plane. Starting with an initial

complex number x0 representing a pixel in the plane, iterate Newton’s process
enough times that the result seems to be getting close to one of the roots of the
polynomial and color the original pixel a color assigned to that root. If the method
doesn’t seem to converge given that initial value, leave that pixel uncolored. Iterate
the process with different initial pixels.



CHAPTER 2

The Brouwer Fixed Point Theorem

As the climax of this chapter, we will prove the Brouwer Fixed Point Theorem.
Our proof will be complete only in dimension 2, but the technique we use is valid in
all dimensions and lacks only a tiny bit of technique to complete, technique that we
will outline in exercises. This theorem is one of the two basic tools used in the proof
of existence of solutions to differential equations, the other being the contraction
mapping principle. A generalized version of the theorem is used in game theory to
prove the existence of optima.

In order to completely understand this chapter, the reader should have a rea-
sonable grasp of limits, continuity, open sets, and closed sets in Euclidean space.

2.1. Statement of the Theorem

First we recall some definitions.

Definition 2.1. The n-dimensional ball Bn in n-dimensional Euclidean space
R

n is the set

B
n = {x = (x1, x2, . . . , xn) ∈ R

n : |x|2 = x2
1 + x2

2 + · · ·+ x2
n ≤ 1}.

The boundary of the n-ball Bn is the (n− 1)-sphere Sn−1, where

S
n−1 = {x = (x1, x2, . . . , xn) ∈ R

n : |x|2 = x2
1 + x2

2 + · · ·+ x2
n = 1}.

Thus the 1-ball is the unit interval of “radius 1” and length 2, the 0-sphere is
a pair of points, the 2-ball is the circular disk of radius 1, and the 1-sphere is the
circle of radius 1. The 3-ball is the solid ball of radius 1 in Euclidean 3-dimensional
space. The 2-sphere is the surface of that ball. Up to homeomorphism (topological
equivalence) there are many realizations of the ball and sphere. Every (finite closed)
interval is homeomorphic to the unit interval. The planar triangle is homeomorphic
to the circle, the planar triangle together with its interior is homeomorphic to the
circular disk of radius 1, etc.

Theorem 2.2 (Brouwer Fixed Point Theorem). If f : Bn → B
n is a continuous

function, then there is at least one point x ∈ Bn such that f(x) = x. Such a point
is called a fixed point of the function f .

Exercise 2.3. Prove the 1-dimensional version of the fixed point theorem: If
f : [0, 1] → [0, 1] is a continuous function, then there is at least one real number
x ∈ [0, 1] such that f(x) = x.

A version of the 1-dimensional theorem was exhibited as a puzzle in a magazine
story, related to me, that apparently appeared many, many years ago: A monk set
out at 6:00 AM to take the trail to a retreat at the top of the mountain, which
he reached early in the afternoon and where he prayed and worshiped through the

11
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night. The next morning he left the mountain top, again at 6:00 AM and returned
down the trail to his monastery at the foot of the mountain. Explain why there was
a time of day and a place on the trail so that the monk was at that place on the
trail at that same time on each of the two days. [The answer to the puzzle given
in the story was “The monk had to meet himself.”]

The proof of the Brouwer Fixed Point Theorem, as well as the proof of many
theorems in topology, relies on the introduction of extra structure to the problem.
We will illustrate the value of additional structure in a series of arguments. The
first will be an elementary puzzle involving the checkerboard. The second will use a
childhood puzzle to motivate the use of the sign of a permutation; this notion will be
important when we treat the mathematical notion of right and left, or orientation
in classifying 2-dimensional surfaces. The third will show how to justify the (?)
obvious (?) fact that a polygonal closed curve in the plane separates the plane
into two pieces, an inside and an outside; this argument will introduce the powerful
topological tool of general position. The idea of general position, together with a
trick called the one-ended arc trick, will be used to prove the famous No Retraction
Theorem. Finally, we will easily deduce the Brouwer Fixed Point Theorem from
the No Retraction Theorem.

2.2. Introducing Extra Structure into a Problem

Often we understand a problem by imposing extra structure. The simplest
extra structure we can impose is that of counting. Many theorems in 2-dimensional
topology are proved by clever yet sophisticated counting arguments or by intro-
ducing extra structure. After considering these two elementary problems in this
subsection, we shall move on to some rather famous graduate level problems that
can be solved by fairly elementary, yet sophisticated, techniques that involve im-
posing extra structure and observing the geometric consequences of that structure.

Sherlock Holmes: How often have I said to you that when you have eliminated
the impossible, whatever remains, however improbable, must be the truth? - The
Sign of Four, Chapter 6.

2.3. Two Elementary Problems

Problem 2.4. I learned about this problem when I was a high school student.
It appeared in a paperback book that I read and reread. I thank that unknown
author and very interesting book. I lost the book many decades ago. Consider a
square 8x8 board of squares. See Figure 1. Remove two corner squares from the
board, diagonally across the board from each other.

Is it possible to tile the remaining squares with dominoes of the shape 1x2
(Figure 2, using those dominoes both vertically and horizontally?

We will give a solution after we describe the second problem.

Problem 2.5. Before the 3-dimensional Rubik’s Cube, there was the 2-dimen-
sional Fifteen Puzzle.

The puzzle consists of fifteen tabbed and slotted plastic tiles set in a plastic
case, with one blank slot (pictured as black) into which adjacent tiles can be slid.
See Figures 3 and 4.
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Figure 1. The uncolored board with two corners deleted

Figure 2. The uncolored domino

The goal was to transform a scrambled arrangement of tiles into the unscram-
bled version. This puzzle was, for a time, the rage — just as the Rubik’s Cube had
its period — and the puzzle is still manufactured and sold as a children’s diversion.
I played with the puzzle at church when I was a child when I was bored with the
sermon. Puzzle enthusiasts began to ask whether all arrangements of tiles could
be realized. In particular, they tried unsuccessfully to transform the standard ar-
rangement into the reverse arrangement. See Figure 5.

Books were written about the puzzle. A museum at the Indiana University,
Bloomington, collects and displays the wonderful artifacts concerning this puzzle.
Why, or why not, can the reverse position be realized?

2.3.1. Solution to the Tiling Problem. First approximation to a solution
for the domino tiling problem. The board with corners deleted has 62 squares,
which is even. The domino has 2 squares, which is even. Thus, any solution would
require exactly 31 = 62/2 dominoes.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 3. The 15 Puzzle

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

Figure 4. Tile slides

Second approximation for the tiling problem. Introduce extra structure to both
the board and to the domino by coloring every other square black. See Figures 6
and 7.

Solution to the tiling problem: Every domino, whether horizontally placed or
vertically placed, will cover one white and one black square. Thus, if the tiling
exists, there must be the same number of black and white squares. But there are
32 black squares and only 30 white squares. Therefore the tiling is impossible.

2.3.2. Solution to the 15 Puzzle. Solution to the 15 puzzle: As a matter
of fact, exactly half of the potential arrangements of tiles can be realized, and the
situation is explained by a simple, but useful, mathematical notion, namely the
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15 14 13 12

11 10 9 8

7 6 5 4

3 2 1

Figure 5. The 15 puzzle with numbers reversed

Figure 6. The colored board with two corners omitted

Figure 7. The colored domino

sign or parity of a permutation — is a permutation even (plus sign) or odd (minus
sign)?

Definition 2.6. Let Sn = {1, 2, . . . , n} denote a finite set with n elements. A
permutation of Sn is a reordering p of the set. Equivalently, a permutation is a
bijection p : Sn → Sn.
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There are standard ways of picturing a permutation p. For example, the 2-row
form

p =

(
1 2 3 4 5 6 7 8
7 2 4 3 1 8 5 6

)
exhibits each i above its image p(i), so that, for example, p(1) = 7 and p(7) = 5.
The disjoint cycle form

(1 7 5)(2)(3 4)(6 8)

indicates that p naturally divides the elements of Sn into circles or cycles :

p : 1 
→ 7 
→ 5 
→ 1,

p : 2 
→ 2,

p : 3 
→ 4 
→ 3,

p : 6 
→ 8 
→ 6.

The cycle (1 7 5) is called a 3-cycle; the cycle (2) is a 1-cycle, and the cycles (3 4)
and (6 8) are 2-cycles. The 1-cycles of a permutation are often omitted in the
disjoint-cycle form. A 2-cycle is also called a transposition.

Each cycle can itself be considered as a permutation (a function), where all
elements of Sn not explicitly mentioned are to be considered as (omitted) 1-cycles.
Since functions are typically composed from right to left, cycles (as functions) can
also be composed, whether they are disjoint or not, to form new permutations. For
example,

(1 3 5 7)(2 5 3) = (2 7 1 3)(5).

Theorem 2.7. Every permutation of Sn can be realized as a product of 2-cycles
(transpositions).

Proof. It suffices to show that a cycle (a1 a2 . . . ak) is a product of 2-cycles,
but

(a1 a2 . . . ak) = (a1 ak)(a1 ak−1) · · · (a1 a3)(a1 a2).
�

Definition 2.8. A permutation is even if it can be expressed as the product
of an even number of 2-cycles. A permutation is odd if it can be expressed as the
product of an odd number of 2-cycles.

Definition 2.9. Suppose that p is a permutation of Sn. Consider the un-
ordered pairs (i, j). We say that (i, j) is inverted by p if p changes the order of
i and j; that is, (i, j) is inverted by p if either (i < j and p(j) < p(i)) or (j < i
and p(i) < p(j)). Let inv(p) denote the number of unordered pairs (i, j) that are
inverted by p.

Here is an example, namely the permutation(
1 2 3 4 5 6 7
5 1 6 3 7 4 2

)
.

If we draw arrows from each integer to its image spot, then the number of inversions
is the number of crossings of these arrows. See Figure 8.

Theorem 2.10. The permutation p is even iff inv(p) is even. The permutation
p is odd iff inv(p) is odd. (Consequently, no permutation is both even and odd.)
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1 2 3 4 5 6 7

5 1 6 3 7 4 2

Figure 8. The inversions of a permutation

Proof. It suffices to show that each 2-cycle changes the number of inversions
by an odd number. We start with the 2-row representation(

1 . . . i (i+ 1) . . . (k − 1) k . . . n
p(1) . . . p(i) p(i+ 1) . . . p(k − 1) p(k) . . . p(n)

)

and compose with the transposition (p(i) p(k)), with i < k. The result, after the
composition is(

1 . . . i (i+ 1) . . . (k − 1) k . . . n
p(1) . . . p(k) p(i+ 1) . . . p(k − 1) p(i) . . . p(n)

)
.

If k = i + 1, so that ai and ak are adjacent before the move, then the only
pair whose status of inversion is affected by the transposition is the pair (i, k): if
this pair is inverted before the transposition, then it is in order after; if it is in
order before the transposition, then it is inverted after. Thus the parity of inv(p)
is changed by this adjacency transposition. If there are � = k − i − 1 elements
between ai and ak, then � adjacency moves can move ai so that it is in position
k−1 adjacent to ak, with � changes in parity. Then ai and ak can be interchanged,
with a change of 1 in parity. Finally, ak can be moved back to position i by another
� adjacency switches, with � changes in parity. The result is 2�+ 1 parity changes,
an odd number of changes. Hence, the original transposition resulted in a change
in the parity of inv(p). �

We are now in the position to show that the reverse position cannot be reached
from the initial position.

We think of the blank slot as a tile labelled 16. We can view each position of
the puzzle as a permutation of the numbers 1 through 16. Each move in the puzzle
is a transposition that interchanges 16 with another tile. Hence, each move changes
the parity of the permutation. The tile 16 begins in a position in the checkerboard
pattern that is dark. Each move takes 16 from a dark position to a light position, or
vice versa. Hence, the position of 16 in the checkerboard pattern indicates whether
the permutation is even or odd: dark position = even permutation; light position
= odd permutation.

In the reverse position, tile 16 is in dark position (Figure 9); hence the permu-
tation, if attainable, must be even. We count the number of inversions. (Compare
with the original position, Figure 10. The number 15 is inverted with fourteen tiles,
the number 14 with 13 tiles, the number 13 with 12 tiles, etc. That is, the number
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15 14 13 12

11 10 9 8

7 6 5 4

3 2 1

Figure 9. The reversed position again

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 10. The initial position again

of inversions is

14 + 13 + 12 + 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1,

which is odd. Thus this position is not attainable.
Exercise. Show that a tile position can be attained iff the parity of the permu-

tation agrees with the parity dictated by the position of tile 16.

2.4. Three Advanced Problems

We give a sequence of applications to geometry, all referring to important prop-
erties of the 2-dimensional plane R2. We are interested in the ways a circle, which
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we denote by S1, can be placed in the plane. For the remainder of this section,
it is necessary to know about continuous functions.

2.4.1. Polygonal Simple Closed Curves in the Plane.

Definition 2.11. A simple closed curve in the plane is the image of a contin-
uous function J : S1 → R

2 from the circle S
1 into the plane R

2, where the function
J is one to one (that is, has no self-intersections).

For the next few theorems, we shall assume that the simple closed curve is
polygonal, that is, formed by a finite sequence of straight line segments. Figure 11
gives two examples, the first very simple, the second rather elaborate.

Example 1
Example 2

u

v

Figure 11. The simple and the complex simple closed curve

For Example 1, the triangle, there is evidently both an inside and an outside
to the curve. This is likewise true for a round circle. It is intuitively obvious that
every convoluted “circle” (simple closed curve) in the plane should have an inside
and an outside, but the proof that it is so becomes complex as we observe Example
2 and ask ourselves whether the points u and v that we have marked are inside the
curve or outside the curve.

Exercise 2.12. Is the point v inside the curve? The point u?

For a polygonal simple closed curve, there are at most two pieces in the com-
plement R2 \ J of J , for, locally, there are only two sides (Figure 12), and, as one
traverses the curve, the local sides near one point are connected to local sides of
surrounding points.

The question is only whether, when we follow those two local sides around
the full length of J , does the black Side 1 come back to connect again with the
Side 1, or does the black Side 1 come back to connect with grey Side 2 to form a
twisted Möbius band. We will give a proof of the following theorem. Although the
theorem seems obvious, the proof is not trivial and the techniques of its proof will
be used to prove the very important No Retraction Theorem and Brouwer Fixed
Point Theorem.
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Side 1

Side 2 J

Figure 12. The two local sides of a polygonal simple closed curve

Theorem 2.13. Each polygonal simple closed curve J in the plane R2 separates
the plane. That is, the complement R2 \ J of J in R2 is not connected. In fact, it
has exactly two pieces (called components), an inside (called the interior) and the
outside (called the exterior).

Remark. The theorem is completely obvious for the triangle, and our proof
will make use of that fact. The proof that we will give is elementary in the sense
that it uses only basic geometric ideas, but the logic involved invokes ideas that,
in fully developed form, are very important in the development of geometric and
algebraic topology. We will try to point out the critical ideas as we go along. End
remark.

Here are a few of the basic ideas:
Idea (1) A triangle T in the plane has both an inside and an outside. Every

time you cross the boundary of the triangle you pass from outside to inside, or from
inside to outside. See Figure 13. If we traverse a polygonal simple closed curve
J that crosses ∂T at every intersection point, then every crossing point where J
crosses into T is followed by a subpath of J in J ∩ T that is terminated by a point
where J crosses the boundary ∂T out of T .

Note the 5 pairs of crossings.

Figure 13. Curve crossing a triangle

The components (pieces) of J ∩ T pair the points of J ∩ ∂T .
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Idea (2) If T1, T2, . . ., Tn are triangles in the plane R2, and if J is a polygonal
simple closed curve in the plane, then J can be translated an arbitrarily small
amount so that it misses each vertex of each Ti and crosses the boundary of each
Ti at each point of J ∩ ∂Ti. This is a very simple case of an exceedingly important
property called general position.

Idea (3) Every finite edge path that has at least one end point has, in fact, two
end points. The only other alternative for the path is that it form a closed path
(initial point = terminal point) with no end points.

Proof (theorem). The proof is called the one-ended arc trick. We will show
that, unless the theorem is true, there is a finite edge path that has only one
endpoint, in contradiction to Idea (3) above. We therefore begin the proof by
assuming the ridiculous fact that the curve J does not separate the plane.

The proof requires that we introduce extra structure in our picture. This struc-
ture will take place in two different copies of the plane. We call the plane that
contains our polygonal simple closed curve J the image plane. The other plane
that we introduce we will call the model plane.

If our curve J contains n vertices, then we shall first construct nmodel triangles
in the model plane and then n corresponding image triangles in the image plane.
See Figures 14 and 15. After we have constructed the image triangles, we will
construct a second polygonal simple closed curve K in the image plane that is
in general position with respect to each of the n image triangles. See Figure 16.
Corresponding to each intersection arc of K with an image triangle, there is a
corresponding arc in the model triangle. It is in this collection of model arcs that
we will discover a one-ended arc, an obvious contradiction. We will conclude that
J must separate the image plane. (I find such an argument completely wild! I love
it.)

We first introduce the triangles in the model plane. If our first polygonal simple
closed curve has n vertices, then we pick n vertices on the unit circle S1 in the model
plane and join them by straight arcs to form a polygonal simple closed curve. We
then add a radius of the circle from each vertex A to the center V of the circle. We
obtain a model array of triangles ABV inside the disk of unit radius. It is in this
model that we will trace certain important paths:

S1

Z

V
A

B

Figure 14. The model disk
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We map this model disk of triangles into the plane in the following way. We
map the outer boundary of the model to our original polygonal simple closed curve,
vertex to vertex, edge to edge. We map the center V of our model to some rather
arbitrary point V ′ in the plane, subject only to the condition that it not be in any
of the lines defined by the edges of J . Then, given any edge e of J with vertices A′

and B′, the points A′, B′ and V ′ are the vertices of a triangle A′B′V ′ in the plane.
The corresponding points A, B, and V of our model bound a triangle ABV in our
model. We map the image triangle A′B′V ′ to the model triangle ABV linearly.

Z ′

V ′

A′

B′

Figure 15. The image of the model disk

While the model triangles intersect only along edges, the image triangles do
intersect along the corresponding common edge but may also fold back over each
other along that edge. For example, the triangles A′B′V ′ and Z ′A′V fold over each
other in the figure.

We have now completed the introduction of triangles into our problem. We
have still one additional structure to add to our picture. This is the addition of a
second polygonal simple closed curve in the image plane.

Since we are assuming that J does not separate the image plane, it does not
separate points just opposite each other across the arc A′B′. We may thus construct
a polygonal simple closed curve K in the image plane that intersects J only at one
point X ′ ∈ A′B′ where it crosses J .

This construction completes the added structure to our problem: n triangles
in the model plane, n triangles in the image plane, and a polygonal simple closed
curve K in the image plane.

2.4.2. The One-sided Arc Trick. We now examine the way K intersects
each of the image triangles. After a slight translation, we may assume thatK misses
all of the image vertices and crosses each triangle edge at each point of intersection
(general position, Idea (2)).

Thus by Idea (1), if K intersects a triangle, it does so in a finite collection
of polygonal arcs, each with its endpoints on the boundary of the triangle. The
corresponding model triangle likewise is crossed by a corresponding finite collection
of polygonal arcs (Figure 17), pushed over from the image triangle by the linear
correspondence between the two triangles.
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A′

Z ′

B′

X ′

J

K

Figure 16. The curve K

A′

V ′

B′

X ′

Image

A

V

B

X

Model

Figure 17. Pull-back arcs in the model disk

The important property of these crossing arcs is the following. Whether adja-
cent triangles in the image plane fold back on each other or not, any intersection
arc from the one triangle that meets the common edge extends into the neighboring
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triangle at that point. If the triangles did not fold on each other, then the arc is
simply an extension into the adjacent triangle. If the triangles did fold on each
other, then the arc enters the common edge in one triangle and folds right back on
top of itself in the adjacent triangle.

As a conseqence, in the model plane the intersection arcs form nonsingular
curves, which can only be finite edge paths or polygonal simple closed curves.

The key observation is this: Look at the intersection path in the model that
begins at the point X. Because X is an endpoint of that path, the path must have
a second endpoint by Idea (3). That endpoint must lie on a triangle edge and that
edge cannot be an interior edge of the model because intersection paths continue at
every interior edge. But no other boundary point is available since X ′ is the only
point at which K hits a boundary edge.

We have discovered a one-ended arc, a contradiction. �

2.4.3. The Brouwer Theorem and the No Retraction Theorem. The
theorem we have just proved is both “obvious” and “uninteresting”—obvious be-
cause we have a hard time imagining that it could be false, and uninteresting
because there is a much more general theorem that does not assume the simple
closed curve is polygonal. Much of the content in a beginning algebraic topology
course was developed in order to prove the general case of this theorem and other
related facts. One generalization is the Riemann Mapping Theorem in the theory
of complex variables. Riemann’s proof had some gaps that required about 50 years
of effort by a cadre of mathematicians to fill. Riemann’s theorem is an analytic gen-
eralization of this theorem. We will return to general versions of this theorem using
the techniques of geometric, set theoretic, and algebraic topology in later chap-
ters. At that point we will prove theorems with famous names: the Jordan Curve
Theorem, the Schoenflies Theorem, the Zippin Characterization of the Sphere, the
R. L. Moore Decomposition Theorem, and others.

But at this point we want to enjoy the beauty of the one-ended arc proof for a
while and use it to prove other results. I remember asking R. H. Bing what he could
possibly do with a certain unresolved problem called the Free Surface Conjecture
if he could resolve it. He said, “Oh, I think that I’d enjoy it for a while.”

Here are a couple of exercises for the reader. The first is rather direct from what
we have just done. The second is a generalization to dimension 3 and requires some
imaginative thought. In particular, it requires that we understand what general
position would mean in dimension 3, and that we understand how two triangular
disks in dimension 3 could be expected to intersect.

Exercise 2.14. Prove that there is no polyhedral Möbius strip in the Euclidean
plane.

Exercise 2.15. Show that every polyhedral 2-dimensional surface S in 3-
dimensional Euclidean space R3 separates R3.

It requires less imagination to prove the 2-dimensional version of the famous
Brouwer Fixed Point Theorem.

Theorem 2.16 (Brouwer Fixed Point Theorem). If D is the unit square disk,
and f : D → D is a continuous function that maps D into itself, then there is at
least one point x ∈ D such that f(x) = x.
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We will deduce the 2-dimensional Brouwer Fixed Point Theorem from the 2-
dimensional version of an equally famous theorem called the No Retraction Theo-
rem. We will prove the No Retraction Theorem by the one-ended arc trick.

Theorem 2.17 (No Retraction Theorem). If Bn is the unit n-dimensional ball
(the ball of radius 1), then it is impossible to find a continuous function f : Bn →
(Sn−1 = ∂Bn) such that, for each x ∈ S

n−1, f(x) = x. Such a map, if it existed,
would be called a retraction.

Proof of the No Retraction Theorem in dimension 2. In place of the
round disk B

2 we use the square disk D to which it is topologically equivalent. As in
our previous proof using the one-ended arc trick, we make the ridiculous assumption
that the theorem is false. Hence there is a continuous function f : D → ∂D such
that, for each x ∈ ∂D, f(x) = x.

Again, we consider two planes: the model plane and the image plane. In the
symbol f : D → ∂D, we view the first D to be in the model plane and the second
D to be in the image plane. As before, we add structure to the model disk D by
subdividing it into very tiny triangles. See Figure 18.

Figure 18. The model triangulated square

We now use the continuous function f to carry the triangles of the square in
the model plane over to tiny triangles in the image plane. If T = ABC is any of the
tiny triangles, with vertices A, B, and C, then the images f(A), f(B), and f(C)
will be three points of ∂D that are very close to one another. We may move them
a tiny bit so that they are still near one another and still near ∂D, yet they are the
vertices of an actual triangle in the image plane. This process does not require that
we move any vertices that were originally in ∂D. In this manner, we modify all
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those image vertices that must be moved. We may replace the original map f with
a new continuous function g : D → R2 that takes each triangle of the model space
linearly to the corresponding triangle of the image space. The new map perhaps
does not take D into ∂D, but it certainly takes D into the complement of the center
of the disk and does not move any point of ∂D.

We now have to add to the structure a path R analogous to the polygonal
simple closed curve K in the separation theorem. For R we take an infinite ray
that begins at the center of D in the image plane and misses every image vertex
under the map g, and passes onward to infinity. Then R either misses an image
triangle g(T ) entirely or else intersects g(T ) precisely in an arc that enters g(T )
through one edge and exits g(T ) through another edge. See Figure 19.

g(A)
g(B)

g(C)

R

Figure 19. The intersection of a ray with a triangle

The intersection arc can be carried back to an intersection arc in the model
triangle T = ABC by the linear correspondence between T and g(T ).

As in the previous proof, we concentrate on the union of the intersection arcs
as viewed in the model disk. As before, this union must be a finite collection of
finite edge paths, each having two endpoints, and a finite collection of polygonal
simple closed curves. As before, we consider that component that contains the
only intersection point of R with ∂D. That component must be an arc with two
endpoints by Idea (3). The second endpoint can only lie on the boundary of D, and
there is no other intersection with ∂D, a contradiction. That is, this component is
a one-ended arc.

As before, we conclude that the theorem is true, that our original assumption
was truly ridiculous. �

Proof of the Brouwer Fixed Point Theorem. Since the round disk E
and the square disk D are topologically equivalent, we may replace D by E in both
the No Retraction Theorem and the Brouwer Fixed Point Theorem. We assume
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that, contrary to the latter, there is a continuous function g : E → E such that, for
each x ∈ E, g(x) �= x. We then define a function f : E → ∂E as follows.

Consider the ray R(x) that begins at g(x) in E and passes through x on its
way to ∞. Define f(x) to be the last point of E in the ray R(x). Then the function
f : E → ∂E is a continuous function that fixes each point of ∂E, in contradiction
to the No Retraction Theorem. �

2.5. Exercises

2.1. Solve Exercise 2.3 on page 11.
2.2. Solve Exercise 2.14 on page 24.
2.3. Solve Exercise 2.15 on page 24.
2.4. Generalize the No Retraction Theorem to dimension 3. Consider the unit

cube. Show how to divide the unit cube into tiny tetrahedra. View these tetrahedra
as lying in the model cube. Show how to carry those tetrahedra to tiny tetrahedra
in the image cube. Determine what the appropriate general position property is for
the intersection of a ray with a tetrahedron. Pull the intersection segments back
into the model cube. Show that you obtain a one-ended arc.

2.5. Contemplate what would have to be done to prove a No Retraction Theo-
rem in every dimension. Think how you would deduce a generalized Brouwer Fixed
Point Theorem in that dimension.

The Brouwer Fixed Point Theorem does not suggest a method for finding a
fixed point. If the map f : B2 → B2 is a contraction mapping, a particularly nice
property that we will now explain, then it is an easy matter to approximate a fixed
point. (Contraction mappings defined on other suitable spaces are one of the main
tools used to find solutions to differential equations.)

Definition 2.18. A map f : B2 → B2 is a contraction mapping if there is
a number 0 < λ < 1 such that, for each two points x, y ∈ B2, the distances
d(f(x), f(y)) from f(x) to f(y) and d(x, y) from x to y satisfy the inequality

d(f(x), f(y)) ≤ λ · d(x, y).
In the following exercise you will need to use one of the fundamental properties

of a compact metric space: Every Cauchy sequence converges. (Recall that a
sequence x1, x2, . . . is a Cauchy sequence if, for each ε > 0, there is an integer N
such that n,m ≥ N implies d(xn, xm) < ε.)

2.6. Prove that, if f : B2 → B2 is a contraction mapping, then f has a unique
fixed point x0. If x1 ∈ B

2 and if xn+1 = f(xn) for each n ≥ 1, then the sequence
x1, x2, . . . is a Cauchy sequence converging to x0.

2.7. Show that a tile position can be attained iff the parity of the permutation
agrees with the parity dictated by the position of tile 16.

2.8. Consider puzzles like the 15 puzzle, but with dimensions m × n. Which
configurations can be realized by such a puzzle?

2.9. Suppose that J is a polygonal simple closed curve in the plane bounding
a disk D. Show that D can be divided into triangles using only the vertices of J as
vertices of the triangles used.

2.10. By induction on the number of triangles used in the previous exercise,
show that D is homeomorphic to a single triangle T . (That is, you must prove the
existence of a continuous bijection f : D → T .)


