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Introduction It is said that an interpreter ‒ a person who translates from one language to 
another ‒ does not exchange words for words, but rather exchanges meaning for 
meaning. As mathematicians, a large part of our job is to explain things to others. 
We may use words and symbols to do this, but our job is not primarily to convey 
words and symbols; like an interpreter’s, it is to convey meaning. 

There are many ways to communicate meaning. As the great mathematician 
William Thurston said, “Mathematics is an art of human understanding. Math-
ematical concepts are abstract, so it ends up that there are many different ways 
that they can sit in our brains. A given mathematical concept might be primarily 
a symbolic equation, a picture, a rhythmic pattern, a short movie ‒ or best of all, 
an integrated combination of several different representations.”

The purpose of this book, then, is to help you find a good representation of the 
mathematical concept you wish to illustrate. This book does three things:

• Showcases the great variety of materials for illustrating mathematics,

• Gives voice to people’s stories about illustrating their mathematics,
so that we can learn from their experience, and

• Shows the variety of ways that different people use the same materials
in very different ways.

In addition, it will introduce you to many of the amazing people who spent time at 
the Institute for Computational and Experimental Research Mathematics (ICERM) 
in fall 2019 for the Illustrating Mathematics program, in an attempt to capture 
some of the creative and generous spirit that flowed through our days there.

Diana Davis
May 1, 2020
Bures-sur-Yvette, France
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Illustrating Mathematics semester program participants, ICERM, Fall 2019.
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Drawings
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The adage that a picture is worth a thousand words is certainly 
true in mathematics, in which one carefully chosen figure can 
eliminate the need for many lines of exposition. For most of 
us, our most frequent way of illustrating mathematics is by 
hand – on chalkboards, scrap paper, paper napkins or, increas-
ingly, whiteboards and electronic tablets. 
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Images reprinted by permission from Springer Nature: Geometriae Dedicata, 106, 
Bundles, handcuffs, and local freedom, Autumn Kent, 2004,  
https://www.springer.com/journal/10711/.

Autumn Kent

University of Wisconsin

pen drawings

These drawings are from my first solo paper, “Bundles, handcuffs, and local 
freedom.” They illustrate the existence of a knot in the 3-sphere whose 
complement is hyperbolic, that admits a fibration over the circle, and whose 
group contains a subgroup that is locally free (finitely generated subgroups 
are free) and not free. This answered a question from James Anderson: 
He had observed that if such a thing could not exist, then there would be 
counterexamples to Thurston’s Virtual Fibration Conjecture (which we now 
know to be true due to the remarkable work of Ian Agol and Dani Wise).

The fundamental group of the 2-complex X (A) contains a subgroup that is 
locally free and not free. The way to construct the knots is to find a fibered 
knot in the complement of X so that X’s group injects into the knot’s. The 
complement of X is the handlebody (B). The knot is inside the handlebody 
(C). The knot is built by taking a square knot (which is fibered), cabling 
(which is again fibered), and then “plumbing.” Plumbing is the process of 
gluing a twisted band along a square in a fiber (D). The rest of the figures 
are part of the proof that the knot is hyperbolic, and that you can perform 
surgeries to get closed hyperbolic fibered manifolds with groups having 
locally free non-free subgroups.

One year while I was in graduate school, Bob Gompf was teaching a course 
in 4-manifolds that I had lost the thread of. I didn’t want to be rude, so I 
kept attending. So there I was in class, doodling and thinking about Ander-
son’s question. I knew that connect sums, cabling, and plumbing preserved 
fibering. I sketched the complement of X and saw the square knot there. I 
cabled it for fun. I wanted the result to be hyperbolic, so I needed to do 
something else. So I plumbed a little band on to get rid of the essential 
torus that was ruining hyperbolicity, and I left class with a theorem. It took 
a while to prove that the examples were hyperbolic, but I had found them. 
Getting lost in a lecture isn’t always bad!

I drew the pictures by hand since I didn’t know how to do it any other way!
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Paper & 
FIBER ARTS
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Paper is by far the most abundant resource in most mathemati-
cians’ offices, and it is our most readily available tool for creating 
mathematical illustrations. Most of us created the Platonic 
solids out of paper at some point in our early education, and 
have created numerous other models throughout our math-
ematical careers. For creating objects that people will handle 
and manipulate, and especially for those that require some 
stretch, sewn or knitted fabrics may work better than paper.
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The Fabric of Spacetime is an installation serving as an interactive model 
of a young universe, combining crochet and electronics to create a dynamic 
and luminescent experience. The main physical component is a large, hand-
crocheted hyperbolic manifold, where the number of stitches in each row 
increased at an exponential rate. In this way, the circumference grows expo-
nentially faster than the length, introducing negative curvature and resulting 
in the many folds. This technique was pioneered in 1997 by Daina Taimina, 
a mathematician at Cornell. The curvature is analogous to the geometry of 
a very young universe (much less than one second old), where the spatial 
dimensions grew exponentially with respect to the time dimension, intro-
ducing curvature in the geometry of spacetime itself.

Sewed into the fabric model are 264 individually programmable neopixel 
LEDs, forming a spiral pattern around the inside, and mounted throughout 
the room are six servo motors, each connected by fishing wire to a fold in 
the crocheted model. There is also a PIR motion sensor directed toward the 
underbelly of the piece. All of these are wired to an Arduino MEGA micro-
controller.

While undisturbed, the servos pull the model open and closed in a regular 
breathing motion, shifting to red while opening and to blue while closing. 
This is in homage to the cosmic red shift and blue shift of the universe: since 
red has the longest wavelength of the visible spectrum, things moving away 
from us at relativistic velocities gain a slight red tint in color, and, since blue 
has the shortest wavelenth, things moving towards us gain a slight blue tint. 
In this way, the color shift of the piece represents the actual shift that would 
be visible in an expanding and contracting universe. When the viewer walks 
under the piece, they trigger chaotic motion and lights.

I (Gabriel) find crochet to be a very flexible medium, both literally and 
figuratively, and I am fascinated at the way it can create various geometries 
and symmetry patterns, and also how easy it is to combine with electronics. 
Using crochet, I really tangibly felt the intensity of exponential growth. To 
create hyperbolic crochet, you add stitches in such a way that the circumfer-
ence of the crocheted piece grows exponentially. In practice, this means the 
workflow really starts to slow down. This piece took hundreds of hours of 
crochet and weighs 10 pounds. The circumference of the piece at the widest 
part is over 80 feet (all hidden in the folds).

Gabriel Dorfsman-
Hopkins & Meghan 
Maynard

ICERM; Independent artist

crocheted yarn and LEDs
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Video and  
virtual reality
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People like to say that hyperbolic space is cold, dark and 
lonely, but what would it really be like to wander around in 
hyperbolic 3-space? As soon as computers had the requisite 
capabilities, mathematicians were making videos to commu-
nicate what mathematical objects would look like in real 
life, and to visualize what it would be like to move through 
different geometries. Now that processors are much faster and 
computers have excellent graphic capabilities, it is possible 
not only to make a video, but to make an interactive experi-
ence in which people can direct their own movement through 
these spaces in real time, in virtual reality. 
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Software download and information: https://imaginary.org/program/knotportal
Thurston’s original video, “Knots to Narnia” :  

https://www.youtube.com/watch?v=IKSrBt2kFD4

Moritz L. Sümmermann

University of Cologne

virtual reality

In his video “Knots to Narnia,” William Thurston uses large wire knots to 
demonstrate his concept of knots as portals, where he actually steps through 
the knot to move back and forth between, in his conception, Earth and 
Narnia (see previous page). Virtual reality gives us the ability to bring to 
life this experience of actually stepping into other worlds and seeing, not just 
imagining, what it looks like on the other side.

These pictures show the six-fold branched covering of order two of the trefoil 
knot, generating the dihedral group of symmetries of the triangle. The three 
outer loops of the knot correspond to reflections, and the inner region corre-
sponds to the rotation by 120°.

To create this virtual reality experience, I had to learn a lot about cyclic 
branched covers of knots, as I had to construct them in the software imple-
mentation. This led me to discover a construction from Poul Heegaard’s 
dissertation from 1898 that could be implemented to simulate these portals 
in virtual reality. It consists of gluing a cone to the knot, which serves as the 
branch cut along which the different worlds are glued together.

At first, I thought about implementing portals as surfaces somehow spanned 
by the knot. The most obvious choice was to try Seifert surfaces, but this 
turned out to be a dead end. The next attempt was not to construct the 
branched covering, but only to simulate it through the knot projection on the 
screen. This approach used a variant of Reidemeister moves to keep track of 
the worlds the regions led to, but it turned out to be quite complicated and 
unstable at the crossings. Luckily, I then found the reference to Heegaard’s 
construction in John Stillwell’s Classical Topology and Combinatorial Group 
Theory, and I was able to create the virtual reality world.

It was a challenge to reduce the computational load of the software, which 
has to compute which world to show for each pixel of both screens in the 
head-mounted display. I was able to achieve this by using shaders to offload 
much of the calculations onto the graphics processing unit, thanks to some 
tips from Roice Nelson. The main computational load is now the rendering 
of the worlds. I wanted to create worlds that are interesting to look at, but 
not so interesting that they take away the focus from the knot itself.
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mechanical 
Constructions & 
other materials
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Linkages, tensegrities, and other mathematical constructions 
are plenty interesting to study in theory, but it’s far better to 
construct them, hold them in your hands, and see how they 
move. As you will see, you can make an illustrative mathemat-
ical object out of just about anything.
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This is a hyperboloid, cut from a brick.

This item was the result of a project with Nick Bruscia and Dan Vrana from 
University at Buffalo and OMAX corporation, who make the water jet. The 
challenge was simply to explore what was possible with a five-axis water jet. 
As the cutting “tool” is a straight (well, spiraling) jet of water, ruled surfaces 
are the natural thing to start experimenting with.

A surface is ruled if, for every point on the surface, there is a line through 
that point that is completely contained in the surface. A hyperboloid is a 
ruled surface, so to cut it out we need the jet of water to follow the ruling 
lines. This object therefore starts as an illustration of an application of 
geometry: how to control and think about the forms that can be made by 
controlling the form of a general tool.

It also presents a compelling version of a classic mathematical object. The 
surprising material (brick) draws you in, with the question of how it could 
be made. Even knowing the tool used might not help, as the curved surface 
seems impossible to make with such a straight tool. This leads directly to an 
understanding of the behavior of ruled surfaces and the hyperboloid.

Edmund Harriss

University of Arkansas

Waterjet-cut brick




