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Putting Two and Two Together





CHAPTER 1

Cordial math

One of the trickiest topics in school mathematics is fractions. Why can’t they
just behave like familiar, friendly whole numbers? But your Maths Masters are
here to help, and we’ve discovered a wonderful new way to add fractions. Here’s
an example:

4

7
+

5

6
=

9

13
.

Much easier. And for those who would like to apply the method more generally,
the formula is

a

c
+

b

d
=

a+ b

c+ d
.

At this stage you may be suspicious. So, ok, we’ll confess: this excellent method
for addition is not really our invention. This method of “adding” fractions has been
discovered and rediscovered by schoolchildren for centuries. Of course, there’s at
least one problem with the method: it usually gives the wrong answer.

So, we’ll all still have to add fractions in the traditional manner, with those
annoying common denominators. However, the weird addition above does turn out
to have some very remarkable properties.

Here’s an interesting experiment, perfect for a sunny spring day. (So, you may
have to leave Victoria.) Buy some concentrated raspberry cordial and mix yourself
a glass of cordial and water. Of course the more cordial you add, the redder the
liquid. We’ll now consider two different mixes, in equal-sized glasses:

First Glass: 4 parts cordial and 7 parts water.

Second Glass: 5 parts cordial and 6 parts water.

Now create a third mix by combining the contents of the two glasses:

Third Glass: 4 + 5 parts cordial and 7 + 6 parts of water.
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4 1. CORDIAL MATH

So, the proportions of cordial and water in the third glass are exactly given by
the result our weird fraction sum. Intriguing.

Now, since 5/6 is greater than 4/7, the second glass will be redder than the
first. What about the third glass? Since we’ve just combined the contents of the
first two glasses, the third glass will be in between, redder than the first but not as
red as the second. That means we have a cordial-powered proof that

4

7
<

9

13
<

5

6
.

Very neat.
The strange sum we’ve been considering is called a mediant, the name reflecting

the in between property that we’ve just observed. Of course it’s misleading to use
a plus sign, and so our weird operation should be represented in some other way.
Most commonly the symbol ⊕ is used. Then, for example,

4

7
⊕ 5

6
=

9

13
.

However, there is something very strange about the mediant. To illustrate, first
note that 5/6 obviously equals 10/12. However, if we calculate the mediant with
10/12 in place of 5/6 we find that

4

7
⊕ 10

12
=

14

19
.

The two fractions 9/13 and 14/19 are definitely not equal. So, the mediant cannot
be operating on the actual fractions, the numbers. Rather, the mediant is an
operation on particular representations of fractions.

The mediant is definitely a peculiar creature, but it is still of genuine use.
Our cordial mixing above is one illustration, but there are much more impressive
applications.

Start with any positive whole number: we’ll choose 6 to illustrate. Now write
down, in order from smallest to largest, all the fractions with denominators at most
6; the fractions should be in lowest form, and we’ll include 0/1 and 1/1 at the
beginning and end. So, starting with 6, our list of fractions is

0

1
,
1

6
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
5

6
,
1

1
.
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Lists constructed in this way are called Farey sequences. These sequences have
an amazing property: any fraction in a Farey sequence is the mediant of the frac-
tions on either side. So for example, in our list above 3/5 = 1/2 ⊕ 2/3. That is
very strange, and very, very cool.

It turns out that Farey sequences are much more than just weird fun. The Rie-
mann hypothesis is perhaps the most famous and most important unsolved problem
in mathematics (and is worth $1,000,000).1 And, the Riemann hypothesis can be
expressed as a question about Farey sequences.2

Amazing. And all that from a glass or two of cordial.

Puzzles to ponder

Can you find an example where the mediant of two “fractions”, a/b and c/d, is
equal to the sum of the two fractions? That is, your task is to find an example
where

a

c
+

b

d
=

a+ b

c+ d
.

Suppose now that a, b, c and d are all positive. Can you prove our cordial theorem?
That is, assuming a/b < c/d, your job is to prove algebraically that

a

c
<

a+ b

c+ d
<

b

d
.

1The Riemann Hypothesis is a “Millennium Prize Problem”, with the Clay Mathematics
Institute offering $1,000,000 for its solution. Burkard has a Mathologer video that explains some
of the underlying mathematics.

2S. Kanemitsu and M. Yoshimoto, Farey sequences and the Riemann hypothesis, Acta Arith-
metica, 75, 363–378, 1996.





CHAPTER 2

Uncovering base motives

Once upon a time, many years ago, there was a review of the school mathemat-
ics curriculum. In those days it was believed that mathematicians could contribute
some insight. The good mathematicians were pleased to assist, and the result was
a brilliant curriculum. The teachers and students were delighted, and everybody
learned mathematics happily ever after.

Well, not quite. Our tale is of the “New Math” movement, from the 1960s.
The New Math did include a significant involvement of mathematicians, and the
proposals were indeed mathematically sophisticated, but overall the results were
farcical. It is perhaps the reason why mathematicians to this day reside in peda-
gogical purgatory.

A brilliant encapsulation of what went wrong is provided by Tom Lehrer’s
famous and funny song, New Math. Lehrer invites his audience to subtract 173
from 342. Having barely coped with that, Lehrer then declares that the subtraction
should actually be done in base eight, chirpily singing that the 4 is in the “eights
place”, the 1 is in the “sixty-fours place”, and so on. Lehrer’s lesson is hilarious,
full of New Math jargon, and all of it self-evidently pointless.

Arithmetic in anything but base ten has now disappeared entirely from the
curriculum, and we bid good riddance to the nonsense lampooned by Lehrer. But
why were these bases ever taught at all? Have we lost anything by their removal?
Indeed, we have: the bases have been thrown out with the bathwater.

One purpose of using different bases is simply to have fun, to play with numbers.
True, writing π in other bases may not appeal to everyone. We, however, enjoyed
the exercise when trying to determine our ideal number plate.1 But, apart from
the games, an important message has been lost.

1In 2010, we wrote a column about wanting a customer car license plate, reading π in some
suitable base.
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8 2. UNCOVERING BASE MOTIVES

Numbers are abstract. They are ideal, mental objects, difficult to discern and
difficult to discuss. Because of this it is very easy, for example, to confuse the
numeral “8”, the symbol, with the number for which the symbol stands. Sadly,
many current textbooks are riddled with such confusion.

Writing a number in different bases can be an attempt to distinguish the number
from the symbols representing that number. Admittedly, the attempt may be so
abstruse that the message is lost, and then we sing along with Tom Lehrer. However,
given the current infestation of calculators, it is now common to view decimal
representations as the be-all and end-all, to regard these decimals themselves as
the numbers. They are not numbers, and they are usually not even insightful
representations of numbers: this message is more important than ever.

That’s all very general, so what about particular bases? The ancient inventor
of our number system chose base ten simply because humans have ten fingers.
In certain contexts, however, there are other natural bases. The clear example
is base two, where all numbers are built up from 0 and 1. The on-or-off nature
of base two arithmetic makes it perfect for the logic underlying computers, and
for many related areas of mathematics. Indeed, given the technology fetishism of
our curriculum masters, the absence of base two in the Australian curriculum is
particularly puzzling.

Other bases have uses as well, and we’ll end with a truly beautiful illustration.
We have written before about irrational numbers,2 and we remarked then that
when numbers such as

√
2 are declared irrational it is usually with no hint of how

we know them to be irrational. Well, now we will ponder that.
Recall that

√
2 being irrational means that it could not be written as a fraction,√

2 = A/B with A and B whole numbers. If we square both sides of this equation,
and multiply to get rid of the denominator, we then have the equation

A2 = 2B2 .

So, what we are claiming is that this equation is impossible, that no positive whole
numbers A and B will solve it. But how can we possibly rule out all of the infinitely
many choices for A and B? Here comes the magic: we shall imagine that the
numbers A and B are written in base three.

A number written in base three will have a ones place, a threes place, a nines
place and so on. So, for example, we would normally write the number fifteen as 15,
but in base three it would be written as 120: this amounts to (1×9)+(2×3)+(0×1).

2See Chapters 33 and 53 of our first book of math columns, A Dingo Ate My Math Book,
American Mathematical Society, 2017.
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We can perform arithmetic in base three just as in base ten. For example, the
base ten equation 2× 2 = 4 would be written 2× 2 = 11 in base three. And, here
is the working for a harder one, the number 120 multiplied by itself:

Of course you could convert 120 to base ten form (i.e. 15), and then calculate
as usual, but the point is you don’t need to: all the familiar methods of arithmetic
apply just as well in base three, and in any base.

Now, for what follows, you only need to know one special fact about base three
arithmetic:

Ignoring final zeroes, any squared number written in base three always ends in a 1.

For instance, reviewing our examples above, 1 × 1 = 1, and 2 × 2 = 11 and
120× 120 = 22100. Why this is always so, why there is always a 1 at the end, may
not be so obvious, although it is not that difficult to show. But hopefully the claim
we’re making is clear.

Now, with that fact in mind, look again at our A,B equation for
√
2. Written

in base three, we now know that the A2 will end in a 1 (ignoring zeroes). However,
B2 will also end in a 1, and that means 2B2 will end in a 2. But if A2 and 2B2

end in different digits then they cannot possibly be equal. That is, the equation
A2 = 2B2 is impossible to solve with positive whole numbers. And that means

√
2

cannot be written as a fraction. We have proved that
√
2 is irrational.

This amazingly simple proof is due to mathematician Robert Gauntt, who was
a freshman at Purdue at the time.3 Tom Lehrer is himself a mathematician, and
we are sure that even the sceptical Lehrer would be captivated by this beautiful
application of base arithmetic.

Puzzles to ponder

What is our alien up above doing?

Why does any squared number end in a 1 when written in base three?

Can you find another base, which proves that
√
3 is irrational?

3The irrationality of
√
2, American Mathematical Monthly, 63, 247, 1956.





CHAPTER 3

Sneaky square dance

It is pleasing to know that there are parts of the world where everyone loves
squares. What a paradise it must be, a country where people are forever marching
in perfect square formation.

Well, maybe not. Geometric marching is probably not as much fun when its
main purpose is to please a Glorious Leader. Still, those marching squares are
impressive. And, given the unfortunate folk will be marching anyway, we have a
great idea for a very mathematical flourish.

Our plan is to have two identical squares of marchers, each square performing
the usual stunning steps. Then, the grand finale will consist of the squares being
merged into one big (Red) square.

+ =

It’d definitely be a showstopper but first there are details to sort out. The
interlacing of the squares will be tricky, requiring planning, practice and fancy
footwork.

We also have to decide the size of squares to use, which would need to consist
of a suitable number of marchers. For example, beginning with two tiny 2 × 2
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12 3. SNEAKY SQUARE DANCE

squares wouldn’t work: that would give us eight marchers in total, one short of the
number required to rearrange into a 3 × 3 square. Similarly, beginning with two
3×3 squares of marchers would mean we have eighteen marchers, too many to form
a 4× 4 square and insufficient for a 5× 5 square.

Hmmm. This will take some time to figure out, but we should be able to do it.
We’ll try 4 × 4, then 5 × 5 and so on, and eventually we should have in hand the
smallest squares that work.

For now, let’s leave that calculation and just assume we’ve determined the
smallest squares that can be merged. Then, imagining we have sufficient marchers
to occupy those squares, we can plan the marching steps.

Let’s begin with an empty red quadrangle of just the right size to accommodate
all our marchers. Then, a stylish approach would be to have the two identical
squares of marchers enter the quadrangle from opposite sides.

At this stage the two little white squares are unoccupied and the blue squares
are overlapping. It would be crowded in the middle dark blue square, but that’s
not a problem: we can simply arrange for half of the marchers to stand on the
shoulders of the others.

Finally, we’ll have the marchers leap off their comrades’ shoulders and into
the two empty white squares, a spectacular finish to our merging of the two blue
squares into the Red square. Ta da!

But wait a minute. If, as planned, we have precisely the correct number of
leaping marchers to fill the two little white squares then this can be represented by
the following picture.

+ =

Uh oh. We assumed that we began with the very smallest squares that could
be merged to make a larger square. Yet, somehow we created even smaller squares
that would work. How can that be?
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Simply, it cannot be. Sure, there is nothing wrong with our marching plan.
However, for our smallest possible squares to result in even smaller squares is a
plain logical impossibility. The unavoidable conclusion is that no squares can be
merged in the way we had originally contemplated.

Well, bum. So much for our plans to impress our Glorious Leader with a
great marching finale. However, perhaps he’ll be impressed by some intriguing
mathematics that emerges from our failed attempt.

What we have outlined above is a proof by contradiction. We began by assuming
that certain squares were possible, and that assumption led to a contradiction, a
logical impossibility. This contradiction proves that our original assumption was
wrong, and that no such squares can exist.

We can now reconsider this conclusion in terms of numbers rather than squares.
Consider again the two hypothetical blue squares. Say each square contains B×B
marchers and that the larger red square into which they can supposedly merge has
R×R marchers. We have proved this is impossible, and that means that there are
no positive whole numbers B and R that solve the equation

2B2 = R2 .

Rearranging, it follows that there is no fraction R/B that solves the equation(
R

B

)2

= 2 .

So, there is no fraction whose square is 2, which is exactly the same as saying
√
2 is

not a fraction. That is, our marching ponderings have proved that
√
2 is irrational.

Now that is pretty cool. It is one thing to punch
√
2 into a calculator and to

stare at a few unilluminating decimals; it is another to know that
√
2 can never be

written as a fraction.
We’ve written about

√
2 before, when discussing the clever principle behind

the dimensions of A-sized paper.1 On another occasion we used base arithmetic to
give a different proof that

√
2 is irrational.2

There are a number of proofs that
√
2 is irrational, but the marching band

proof above is possibly our favorite.3 It has been popularized by the great John
Conway, who attributed it to mathematician Stanley Tennenbaum.4

And will the Glorious Leader be impressed with Tennenbaum’s proof? We
don’t know. But, if he isn’t, and perhaps anyway, it may be time to start looking
for a new Glorious Leader.

Puzzle to ponder

Can you come up with a similar marching proof that
√
3 is irrational?

1See Chapter 33 of A Dingo Ate My Math Book.
2See the previous Chapter.
3One of your Maths Masters leans towards the proof in the previous Chapter.
4J. Conway and J. Shipman, Extreme Proofs I: The Irrationality of

√
2, Mathematical In-

telligencer, 35, 2–7, 2013. We also generalized Tennenbaum’s argument in Marching in Squares,
College Mathematics Journal, 49, 181–186, 2018.





CHAPTER 4

A very strange set of blocks

10
2 3 4 5 6 7 8 9

Your Maths Masters have been lecturing at universities for about three hun-
dred years, and for the last two hundred years we have been engaged fulltime in
popularizing mathematics. Something like that. Anyway, we have worked long and
hard on many projects, but all our efforts have been guided by one fundamental
goal: to convince as many people as possible that 0.999 · · · = 1.

We look forward to the day when we can visit a school, ask the students what
the infinite decimal 0.999 · · · is, and have them all shout back “One!” On that day
we can happily retire. It is not likely to be soon.

Infinity is a very tricky concept, which has been bamboozling mathematicians
for millennia. In fact it was only in the 19th century that infinite constructions,
including 0.999 · · · , were completely understood.

We have another infinity puzzler in store, so won’t revisit 0.999 · · · = 1 today.1

We will pause, however, to note that an infinite decimal is in fact an infinite sum.
Our friend 0.999 · · · , for example, is the infinite sum

9/10 + 9/100 + 9/1000 + · · · .

A similar and possibly more familiar infinite sum is

1/2 + 1/4 + 1/8 + · · · .

This sum also totals exactly to 1.

1See Chapter 48 of A Dingo Ate Our Math Book, and the puzzle for this Chapter.
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16 4. A VERY STRANGE SET OF BLOCKS

A sum where each number is a fixed multiple of the previous number is known
as a geometric series. That is true for both the sums above: at each stage we’re
multiplying by 1/10 to create our old friend 0.999 · · · , and by 1/2 in the second
sum.

The nice thing about a geometric series is that, just as for the above examples,
the total can be worked out exactly. However, it will come as no surprise that
infinite sums other than geometric series can be much trickier.

Consider the following sum, known as the harmonic series:

1 + 1/2 + 1/3 + 1/4 + · · · .
What can we say about it? Well, even though we’re adding progressively smaller
numbers, the total is very large. Notice that 1/3 > 1/4, and so

1/2 + (1/3 + 1/4) > 1/2 + (1/4 + 1/4) = 1/2 + 1/2 .

Not so large yet. But now have a look at this.

As pictured, the next four (blue) fractions also sum to at least 1/2, as do the
next eight (green) fractions, and so on, forever. So, since we’re adding 1/2 over and
over forever, the only possibility is that the harmonic series totals to infinity. We
told you it was large.

OK, now onto another sum, the quadratic series:

1/1 + 1/4 + 1/9 + 1/16 + · · · .
This time the denominators are squares, and so the sum is smaller. But how small?

Imagine infinitely many squares, the first with side length 1, the second with
side length 1/2, then 1/3, and so on. The areas of these squares are 1 × 1, 1/2 ×
1/2, 1/3× 1/3 · · · . It follows that the sum of the areas of all the squares is exactly
the quadratic series.
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However, as the picture below illustrates, the initial 1×1 square is large enough
to accommodate all the subsequent squares.

That means that the total sum of the areas is at most twice that of the first
square. So, the quadratic series totals to less than 2: definitely finite.

We now want to consider a very puzzling toy, suitable for a budding baby maths
master. The toy we have in mind is an infinite set of blocks: the first block has
dimensions 1× 1× 1, the second is 1× 1/2× 1/2, the third 1× 1/3× 1/3, and so
on. Let’s consider how we could make these blocks.

From the familiar “length times width times height”, we can calculate the
volume of each block. It is then straightforward to calculate that the sum of the
volumes of all the blocks is exactly our quadratic series. That means the total
volume of the blocks is less than two: it’d take a lot of work to make them, but
we’d only require a finite amount of wood.

But, what if we wanted to paint the blocks? Just considering the red sides on
top, the first has area 1, the second area 1/2, the third 1/3 and so on. That means
the sum of the red areas is exactly the harmonic series, and so must infinite.
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Hmm. These are truly strange blocks: it would take a finite amount of wood to
make them, but the infinite surface area means it would require an infinite amount
of paint to paint them.

But what if we just hollowed out the blocks? It would only require a finite
amount of paint to fill them: wouldn’t that effectively paint that same infinite
area? It’s all very strange!

One final matter: we have yet to say what the quadratic series actually totals
to. Believe it or not, we have the exact, astonishing answer:

1

1
+

1

4
+

1

9
+ · · · = π2

6
.

How on Earth did π get in there? In fact, the quadratic series is the start-
ing point for many fascinating stories, on π, and prime numbers, and the famed
Riemann Hypothesis.

We’d love to write on that sum one day.2 But, first, there is some homework
to be done: a little matter of 0.999 · · · = 1.

Puzzle to ponder

Can you prove that 1/2 + 1/4 + 1/8 + · · · = 1? (Chapter 24 provides a hint.)

2Burkard has some Mathologer videos devoted to the sum and to the Riemann Hypothesis.



CHAPTER 5

Parabolic production line

One of your Maths Masters is blessed to have a very young maths mistress to
assist him with his work. Regular readers of this column will not be surprised that
little Eva’s favorite word is “cat”. She loves cats. Amusingly, though, it seems that
everything is a cat. Eva greets all animals (including her parents) with a loud and
confident cry of “Cat!”

Eva’s omni-catting is oddly familiar. It is reminiscent of many high school
math classes, where any curvy graph is as likely as not to be greeted with confident
cries of “Parabola!”

The parabola-spotting is significantly less amusing, but of course it is not the
students’ fault. The textbooks overflow with parabolas and quadratic equations,
including the most absurdly contrived applications: what to make of a shop display-
ing x2 + 2x− 48 types of cheese?1 Moreover, students are introduced to few other
curves, which are seldom distinguished in a meaningful or memorable manner.

It is all sad and silly. And needless. There are genuine, beautiful applications
of parabolas which are rarely if ever discussed. Yes, eventually a few lucky stu-
dents briefly study projectile motion (and seemingly more briefly when the senior
Australian Curriculum kicks in), but that’s about it.

Physics students still see such applications, in the form of parabolic mirrors and
lenses. These are welcome mainstays of science museums such as Scienceworks,2

particularly as very impressive parabolic whispering walls.
Wouldn’t it be refreshing for students to know how these displays work, beyond

parroting “focal point” as if reciting jargon explains anything? Wouldn’t it be
worthwhile for students to know what a focal point is, and the mathematics to
explain it? We live in (not overly much) hope.

1We’re not making this up.
2Melbourne’s not very good hands-on science museum, which we’ve had cause to mention a

few times. See Chapter 40, and Chapters 63 and 64 of A Dingo Ate My Math Book.
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20 5. PARABOLIC PRODUCTION LINE

One day we’ll give focal points a go.3 Today, however, we’ll demonstrate a
simpler and very cool feature of parabolas.

Last year, one of your Maths Masters visited the Mathematikum in Giessen,
Germany. This is a seriously amazing mathematics museum, featuring many im-
pressive exhibits, including a parabolic whispering wall. One exhibit was based
upon a parabola drawn on a white wall:

What appear as black dots on the parabola are cylinders protruding from the
wall. The numbers on the coordinate axes indicate that the parabola is the arche-
typal y = x2, with the cylinders placed at points with whole number coordinates,
(1, 1), (2, 4) and so on.

The purpose of the exhibit is to demonstrate how to graphically multiply two
numbers. To find 3× 4, for example, the visitor is instructed to tie a rope between
the cylinders at distances 3 and 4 to the left and right of the vertical axis. This
rope is represented by the sloping red line.

Then, the spot where the rope crosses the vertical (y) axis indicates the product
of the two numbers. So, in the above example we conclude that 3 × 4 = 12. Very
nice.

It is a surprising and clever demonstration, but why does it work? It is not
hard to understand when the two numbers are the same, amounting to squaring
a single number: in this case the rope will be horizontal and at just the correct
height. This is illustrated by the green line, indicating the product 2× 2 = 4.

3See Chapter 64 of A Dingo Ate My Math Book.
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If the numbers A and B to be multiplied are unequal there is more work to be
done. A natural approach is to begin by obtaining the equation of the straight red
line. However, it is simpler to just draw in horizontal and vertical lines, creating a
big red triangle:

Then, we notice that the smaller triangle inside is similar, that is, it’s the
same shape. It is then straightforward to use this similarity to obtain an equation,
indicating where the red line crosses the vertical axis. We’ll leave the details to the
triangle aficionados.
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What about negative numbers? The Mathematikum exhibit only demonstrated
the multiplication of positive numbers, but the same construction works just as well
in general. Above, for example, we have calculated 2× (−5) = −10.

This graphical multiplying is very pretty, and it also has a very pretty conse-
quence: it can locate for us all the prime numbers. Or, which amounts to the same
thing, it can locate all the numbers that are not prime.

Consider all possible multiplications of two whole numbers greater than one,
and draw the straight lines for each of these multiplications. Then, every possible
product will be indicated by a line running through the vertical axis. The only
numbers left untouched will be 1 and the prime numbers. It is a striking, pictorial
variation of the famous sieve of Eratosthenes.

It’s all very nice stuff and we could write plenty more, but that’s probably
enough parabolic fun for one day. After all, there’s serious schoolwork to get done:
somewhere out there, there is a cheese shop that desperately needs factorizing.

Puzzle to ponder

Use the pictured similar triangles to prove that the parabolic trick for multiplying
really works.



CHAPTER 6

The magic of the imaginary

One of our favorite mathematical writers is John Stillwell, formerly at our
home of Monash University, and perhaps our favorite among John’s many excellent
books is Yearning for the Impossible.1 In this book John describes the manner in
which mathematicians fantasize about the “impossible”, and how they make these
fantasies real. More bluntly put, John tells the story of mathematics as an extended
history of cheating.

Probably the most notorious example of mathematical cheating is the intro-
duction of imaginary numbers. The name hardly inspires confidence, and the al-
ternative designation of “complex numbers” is not much better.

What are imaginary numbers? The common and unsatisfying answer is that
they are, for example, square roots of negative numbers,

√
−1 and

√
−2 and so

forth. The eminently reasonable complaint is that a number multiplied by itself
cannot be negative, and so these weird roots simply don’t make sense. The cheater’s
rejoinder is that he doesn’t care whether or not such numbers exist; he’s just going
to cheat and pretend that they do.

The cheater’s approach is to avoid asking what imaginary numbers are, or
where we might find them, and instead focus upon what they do. That may seem
intellectually dishonest but the approach is very common.

Let’s step back and consider an everyday square root, an apparently harmless
fellow such as

√
5. Even here it is very difficult to say what the number actually

is. Sure, we can write
√
5 = 2.36067 · · · , or whatever. However, writing out a few

decimals followed by some dots is doing no more than giving the illusion of precision
and understanding. It is extraordinarily difficult, however, to make sense of infinite
decimals. Indeed, even apparently simple repeating decimals, such as 0.99999 · · · ,
can be very tricky.2

1A K Peters, 2006.
2See Chapter 4.
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Nonetheless, if we cannot say precisely what
√
5 is, we still know exactly how it

works. The whole point of “root” is that it’s the reverse process of “squaring”. So,
for example

√
4 = 2 because 2 × 2 = 4. Similarly, for our troublesome

√
5 fellow,

the one thing we can be sure of is
√
5×

√
5 = 5 .

Well, in for a penny, in for a pound. We may well not believe that
√
−2 exists.

If however, we shut out our protesting brain and just pretend that it does, that
there is something meaningful there, then the one equation we will accept is

√
−2×

√
−2 = −2 .

That’s all good fun but it also appears to be tautological. Is there anything
substantial to be gained? Amazingly, there is.

To illustrate, consider the following sequence of numbers:

1, 1, 2, 3, 5, 8, 13, 21, · · · .
These are the megafamous Fibonacci numbers. They’re not actually due to Fi-
bonacci although, as we’ve discussed elsewhere, there are other good reasons to
honor him.3 So, we begin with 1 and 1, then 2 = 1 + 1, 3 = 1 + 2, and so on, each
Fibonacci number being the sum of the two previous ones.

That’s all well and good, but what if we want the 1000th Fibonacci number?
Sure, we can churn the numbers out one by one: the 9th Fibonacci number is 34,
the 10th is 55, and on and on. We’ll eventually get there. But what we want is
a formula that will simply provide us with the answer immediately. That’s where
the magic begins.

Fibonacci wrote down his famous sequence in 1202. The magic formula, now
known as Binet’s formula, came over 500 years later. Discovered by French mathe-
matician Abraham de Moivre,4 Binet’s formula gives the 1000th Fibonacci number
as (

1+
√
5

2

)1000

−
(

1−
√
5

2

)1000

√
5

.

It is hard to exaggerate the amazingness of Binet’s formula. Clearly the Fi-
bonacci numbers will all be whole numbers. Nonetheless, Binet’s formula enters
the world of irrational numbers and then exits again. All we need use, and all we
can use, is that

√
5×

√
5 = 5, and all the irrational roots magically cancel out.

(As an interesting side point, notice the golden ratio (1 +
√
5)/2 appearing in

Binet’s formula. It is pleasing to see the golden ratio taking time away from the
tawdry business of selling cars to perform an honest day’s mathematical work.5)

We can perform exactly the same magic with imaginary numbers. To illustrate,
let’s consider another sequence:

1,−1,−5,−7, 1, 23, 43, · · · .

3We wrote a column based upon Keith Devlin’s excellent book, The Man of Numbers. Devlin
focusses on the importance of Fibonacci’s work to the rebirth of mathematics in Europe.

4Binet’s formula is one of the many examples of a formula or theorem being named after
someone other than the discoverer. See Chapter 58.

5See Chapter 59 of A Dingo Ate My Math Book. In this chapter we hammered the use of
the golden ratio as a sales gimmick.
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Known for historical reasons as the Marty numbers,6 they are deservedly much less
famous than Fibonacci’s sequence. They are constructed, however, in a very similar
manner.

For the Marty numbers, we begin with 1 and −1. Then, any subsequent Marty
number is twice the previous number minus three times the one before that. So,
the third Marty number is (2×−1)− (3× 1) = −5. The 8th Marty number would
be (2× 43)− (3× 23) = 17, and so on.

And now the question: what if we want the 1000th Marty number? Here it is:

(1 +
√
−2)1000 + (1−

√
−2)1000

2
.

And, see where we’ve ended up. Whereas the Fibonacci numbers required us to con-
sider the irrational, the Marty numbers have led us all the way into the imaginary
world. Once again, all the roots magically cancel out, giving an ordinary every-
day whole number, and to accomplish this all we need is to apply the equation√
−2×

√
−2 = −2.

Not that the Marty numbers are particularly interesting; it is only your Maths
Masters and a few of their mates who have ever bothered with them. But the
Marty numbers enable a simple and historically faithful demonstration of how to
cheat with imaginary numbers, how to extract a real, workable answer from these
weird, semi-real creatures.

The practice of employing imaginary numbers to solve problems about everyday
numbers has a proud and puzzling history. It began in the 1500s, when Scipione
del Ferro and other Italian mathematicians discovered a formula for the solutions
to cubic equations, the higher degree counterpart to quadratic equations. Their
formula always worked, but sometimes in a perplexing manner: even if the solutions
of a polynomial were everyday numbers, the formula might express these solutions
in terms of imaginary numbers; just as happened with the Marty numbers. Del
Ferro and his colleagues had no idea what these imaginary numbers were or why
they were necessary. They just knew that they worked.

Cheating with imaginary numbers continued for centuries. The finest math-
ematicians, including the great Leonhard Euler, became masters at manipulating
imaginary numbers without ever knowing what these numbers were or whether they
existed. There is a sense in which Euler’s formula, the gem of imaginary numbers,
was never properly understood by Euler.7

Finally, in 1799 the Norwegian mathematician Caspar Wessell explained it all.
Wessell provided a convincing explanation of what imaginary numbers actually are,
making them as tangible, as “real”, as everyday numbers. (They are arguably even

more real: it was another 50 years before “harmless” irrationals such as
√
5 were

satisfactorily explained.)
So, did the cheating end? Yes and no. By the end of 19th century mathe-

maticians were much clearer on the rules of the game. It was no longer permitted
to blithely concoct new numbers without a solid sense of what these new numbers
were. Nonetheless, new numbers and whole new mathematical worlds were, and
are, still being concocted.

6Patent pending.
7Euler’s formula states that eπi + 1 = 0, where i stands for

√
−1 and e is not “Euler’s

number”: see the next Chapter.
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Mathematicians continue to just make things up, just as they always have.
There is a famous quote by mathematician Leopold Kronecker:

God made the integers; all else is the work of Man.

Indeed, Kronecker doesn’t go far enough. Nobel prize winning physicist Percy
William Bridgman responded to Kronecker’s quotation:

Nature does not count nor do integers occur in nature. Man made them all,
integers and all the rest.

Bridgman was correct. All mathematics is cheating. It’s all a fiction.

Puzzle to ponder

Write φ = 1+
√
5

2 for the golden ratio, and write μ = 1 +
√
−2 for the (just now

coined) Marty ratio. Prove that

φ2 = φ+ 1

and
μ2 = 2μ− 3 .

(These equations imply that the sequences 1, φ, φ2, φ3, · · · and 1, μ, μ2, μ3, · · · fol-
low, respectively, the same pattern as the Fibonacci sequence and the Marty se-
quence. That, in turn, is the key to proving Binet’s formula and (the just now
coined) Marty’s formula.)



CHAPTER 7

There’s no e in Euler

Recently, while admiring Melbourne’s gorgeous display of overhead wires,1 we
had cause to mention the number e. We also remarked that common references
to e as “Euler’s number” were inaccurate. (And, no, that’s not the great Swiss
mathematician pictured above). Some of our readers queried that claim. We’ll now
reply, taking the opportunity to tell a small part of the story of e.

Though extremely important, e is not the most inviting of numbers. Unlike
π, the number cannot be illustrated or motivated or explained by very simple
geometry: we cannot simply point to a circle or similar and exclaim “Look, there’s
e!”

This difficulty of e is exemplified in the Victorian curriculum. The curriculum
exhibits no concern for what e is, or why it is what it is. It also appears that the
forthcoming Australian curriculum is inclined to do little more. Although e requires
some effort, however, it is not nearly as difficult a number as is suggested by this
dereliction of duty.

The historical origins of e are clouded by the mists of time, but it seems likely
that the number first arose as the result of financial considerations. It is still the
easiest way to get a grasp of the number.

To begin, imagine we come across a very generous bank, Bank Simple, offering
100% annual interest. (Yes, this is a fantasy.) So, if we invested $1 then after a
year our dollar would have doubled to $2.

1See Chapter 34.
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That is a very good offer, but then we find a second bank, Bank Compound,
with a different scheme: they will give us 50% interest every six months. Would we
prefer to invest with Bank Compound? Definitely.

After six months at Bank Compound, we will have 50% on top of our original
$1, amounting to $1.50; in effect, we’ve multiplied by 1.5. Then, after the next six
months, we will have earned an additional 50% of that $1.50: we again multiply by
1.5, to arrive at the year’s total of $2.25.

This is illustrating the familiar and important notion of compound interest. The
point is that calculating smaller interest at correspondingly smaller time intervals
means that we are obtaining interest on our interest, resulting in a greater overall
return on our investment. What does this have to do with e? We’re getting there.

Imagine we’ve found a third bank, Bank Super Compound, which returns 25%
interest every three months. We would then obtain a 25% increase in our invest-
ment, compounded four times over the year. So, starting again with our faithful
$1, at the end of the year we would have (1 + 1/4)4 = $2.44.

We can keep going. We locate Bank Super Duper Compound, which calculates
the interest every month, contributing an extra 1/12 on top of our investment on
each occasion. The result is, at the end of the year our $1 would have grown to
(1 + 1/12)12 = $2.61.

Finally, we come across Bank Infinity, which goes the whole hog. This last bank
divides the year into a zillion nanoseconds and then calculates the appropriately
tiny amount of interest at each nanosecond. The result is, at the end of the year our
$1 will have returned $(1+ 1/zillion)zillion. (To be precise, Bank Infinity calculates
the limit of this quantity as the number of time intervals goes beyond a zillion and
tends to infinity).

What is the amount returned by Bank infinity, what is this final number? It
is the number we now denote by e. It is the result of compounding interest to the
theoretical limit, what is known as continuously compounded interest. For those
who love decimals, or calculating their interest really precisely, the expansion of
this special number begins

2.7182818284590452353602874713526624977572470936999 · · · .

Do those final 9s indicate that the number is actually a terminating decimal?
No: we’ve simply been cheeky in choosing where to stop. As is π, our new special
number is irrational.

But what does any of this have to do with Leonhard Euler? Nothing.
The earliest known appearance of the number is an indirect reference in a 1618

work, probably by the English mathematician William Oughtred: it is Oughtred’s
portrait that we have included above. Our new number was then used throughout
the 17th Century. Around 1690, the great German mathematician Gottfried Leibniz
explicitly denoted this number by the letter b. That was seventeen years before
Euler’s birth, in 1707.

There is a second part to the story, however, which does involve Euler. Though
we have indicated how Oughtred’s number naturally arises as a financial concept,
this only begins to explain the central, critical role that the number plays in calculus.
This was demonstrated by Sir Isaac Newton and the other great 17th Century
mathematicians.
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This work on calculus was then carried to brilliant extremes by, among others,
Leonhard Euler. And, along the way, Euler chose to denote Oughtred’s number by
the letter e, a labeling that has endured. There is absolutely no evidence, however,
that Euler chose the letter e to refer to himself, or for any particular reason other
than that the letter was relatively unencumbered by uses in other contexts.

Now, exactly how does e claim such a central role in calculus? And how, if
at all, does e capture the notion of exponential growth? This is yet another issue
ducked by our curricula. The question is simply handballed to the universities,
which then typically drop the ball. Someday we’ll get to that, too.2

Puzzle to ponder

Show that any compounding bank like the ones above will return at least $2 by the
end of the first year. That is, show that the quantity (1+ 1/N)N is always at least
2. (Since Bank Infinity is the “limit” of what these banks offer, this also proves
e � 2. See the puzzle solution for a quick discussion on how to similarly go about
proving e � 3.)

2Burkard’s Mathologer YouTube channel has a video devoted to everything about e.





CHAPTER 8

What’s the best way to lace your shoes?

Recently, we (possibly) figured out a shortest tour of Victoria.1 Today we’ll
take you on some different tours, much closer to home.

When you lace and tie one of your shoes, the shoelace takes a tour of the eyelets.
Two of the most popular such tours are the crisscross and zigzag lacings. However,
there are many other possible lacings.

Which among these tours give the best lacing? To answer this we must first
decide what we mean by “best”. The simplest notion to capture mathematically is
“best = shortest”. So we’ll begin by considering the lengths of lacings.

It is quite obvious that the lacing on the left is the shortest, while also being
close to useless. We can preclude such short but silly lacings by requiring that

1See Chapter 44 of A Dingo Ate My Math Book where we used the idea of a trip around
Victoria to discuss the traveling salesman problem.
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each eyelet actually contributes to pulling the two sides of the shoe together. This
amounts to having one or both segments that end in the eyelet connecting to an
eyelet on the other side of the shoe. This is the case for all but the first lacing
pictured above.

It turns out that, no matter the dimensions of the shoe and no matter the
number of eyelets, the shortest useful lacing will always be the bowtie. Moreover,
the lacings shown above are always in that order, from shortest to longest.

These are actually very surprising statements. For example, for a shoe with six
pairs of eyelets there are 3,758,400 different useful lacings to compare. For God’s
Shoes, with 100 pairs of eyelets, the number of different useful lacings has grown
astronomically, to:

18609042680740081966219159618202966147674648634776613609422844999556517
44439776524407967069878507881476622415958837227535961285224560640376326
00625910253777564367173849849651318613992974488058381689718183963494277
31395000391555199195008915051014033339502366067550230464677872323986936
37653340332284043277107200000000000000000000000000000000000000000000000

In most familiar lacings there are no vertical segments at all, with every segment
connecting opposite sides of the shoe, which makes these very useful lacings. Among
all such lacings, the crisscross is always the shortest possible, and the devil lacing
shown on the right is the longest possible.

There is an alternative notion of “best lacing”, which is perhaps more natural.
We can view a lacing as a pulley system, pulling the two sides of a shoe together.
We can then compare the strength of different lacings. Here there is no clear winner:
depending upon the dimensions of the shoe, either the crisscross or the zigzag is the
strongest. For dimensions close to those of real shoes – although who cares about
those? – these two lacings are about equally strong.

So it turns out that the very popular crisscross scores well in terms of both
length and strength. In addition, it is easy to remember, symmetric and pretty. It
is fair to conclude that crisscross is indeed the best way to lace your shoes.

Finally, we should mention that the world’s two leading shoelace experts reside
in Melbourne: your writer here, Maths Master Burkard, who did the math for
an article in the journal Nature in 2002;2 and Ian Fieggen, who knows absolutely
everything there is to know about shoelaces. You must check out Ian’s amazing
website.3

Puzzle to ponder

Count the number of useful and very useful lacings with 2× 3 eyelets.

2Nature, 420, 476. And, the real shoe fanatics can check Burkard’s The Shoelace Book,
American Mathematical Society, 2006.

3At the time of writing, Ian’s website is still active.



CHAPTER 9

Ringing the changes

Do you like your math in exotic locations? Then why not join the band of bell
ringers at Melbourne’s St. Paul’s Cathedral for the ringing of the changes. What
does bell ringing have to do with math? A lot! We’ll explain.

St. Paul’s – the church opposite Federation Square – has twelve main bells,
tuned in the key of C# major. The smallest bell, no. 1, rings the highest note, with
the largest bell, no. 12, ringing the lowest. Changes can be rung using any number
of bells. So, let’s simplify things, and just use bells 1, 2, 3, and 4.

A change is what mathematicians call a permutation, the ringing of each of the
four bells exactly once. For example, 3214 refers to the change of ringing bell 3,
then bell 2, then bell 1, and finally bell 4. Then, ringing the changes means to ring
a sequence of changes, whilst obeying three mathematical rules:

• First, the sequence starts and ends with the change 1234;
• Second, except for the start and end, no change is repeated;
• Third. from one change to the next, any bell can move by at most one
position in its order of ringing. For example, this third rule says that the
change 3214 cannot be followed by 2134, since bell 3 would have shifted
by two spots.

One possible sequence of changes, known as Plain Bob, goes like this:

Here we first move down the first column, then the second and finally the third.
Have a close look and you can see the third rule in action – from one change to the
next a bell will either stay in the same position or swap its place with a neighboring
bell. In the diagram, these swaps are indicated by crosses between the two changes.

Here are a few facts to set things into perspective. To ring one change takes
between 1.5 to 2.5 seconds, the time it takes a bell to complete a natural swing.
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When bell ringers go wild, they will ring sequences of changes consisting of more
than 5000 changes, which translates into several hours of amusement for the neigh-
bors. When ringing the changes, tradition dictates that bell ringers are not allowed
any memory aids such as sheet music, nor can they be relieved by another bell
ringer (for example, to relieve themselves). So, this means that a bell ringer has to
effectively recite a sequence of several thousand numbers, one every two seconds,
and to translate this sequence into perfect bell ringing. It takes a bell ringer several
months to master ringing a bell by themselves, and years before they can dream of
performing this kind of marathon bell ringing as a member of a team.

When ringing bells, one of the grand aims is to ring a sequence that includes
every possible change. In the case of four bells such a sequence must be (1×2×3×
4) + 1 = 25 changes long, and Plain Bob is such an example. The general formula
for n bells tells us that (1× 2× 3× · · · × n) + 1 changes are required.

Mathematicians have only recently proved that, no matter how many bells we
want to ring, it is always possible to compose a complete ringing sequence.1 Here is
a table that shows you the numbers of changes we’re talking about, and how long
it would take if you rang at a rate of two seconds per change.

To ring a complete sequence on eight bells is the most that seems humanly
possible. In recorded history, such a sequence has been rung on church tower
bells only once. This took place at the Loughborough Bell Foundry in the U.K.,
beginning at 6.52 a.m. on 27 July 1963 and ending at 12.50 a.m. 28th July after
17 hours 58 minutes of continuous ringing. (Did they really not go to the toilet for
18 hours?!) Of course, to actually do this is ridiculously hard, both physically and
mentally. So how do they do it? One mental trick is to make up sequences that
are as easy as possible to remember. If you have a close look at Plain Bob, you can
see that each column is generated from the change at the top by a simple knitting
pattern of swaps. Then, at the end of the first and second columns, you swap the

1Arthur T. White, Ringing the changes II, Ars Combin, 20 A, 65–75, 1985.
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last two bells and in this way link the three columns together. Based on this simple
algorithm, it is very easy to reconstruct the whole sequence from scratch. Try it!

Permutations and collections of permutations play very important roles in many
branches of mathematics. In particular, group theory, the branch of mathematics
concerned with symmetries, is full of permutations. The earliest examples of group
theory structures and techniques in action are the highly structured bell-ringing
sequences that were developed in the early 17th century. For example, the first
column of our Plain Bob sequence captures the eight symmetries of the square.
The subdivision of Plain Bob into three columns is something that mathematicians
also get excited about.

But why on Earth did anybody dream up this convoluted mathematical way of
ringing the bells, instead of just playing tunes? And, how did they get away with
doing so for centuries? After all, lots of people do complain about the noise, and
together with the bell tower itself the bells do form a musical instrument that you
could in theory play tunes on by striking the bells with hammers.

The problem is that if you want to ring the bells by swinging them, which
sounds a lot more impressive, and carries a lot further, ringing tunes is not an
option. Why? The reason is that we are talking about very large bells, up to 1.5
tons in the case of St Paul’s. Once set in motion it is very hard for a bell ringer
to vary the interval at which such a monster bell will ring. This is the mechanical
constraint that explains the third rule of bell ringing, and motivated bell ringers to
invent mathematically perfect bell ringing.

Originally, change ringing was a competitive sport, with bands of ringers of
footy player physique and mindset, competing against each other on a regular basis.
Often at odds with the church itself, the exercise, as it is traditionally called, had as
much do with shouting each other drinks according to very intricate penalty system
for mess-ups, as it did with ringing the bells.2 Bell ringing has come a long way and
mellowed a bit since its bloodsport origins.3 However, if you are interested in math,
beer and serious mind games, you must visit one of six bell towers in Melbourne
where bell ringing is still practised.

Puzzle to ponder

List all complete ringing sequences for three bells.

2In Australia, buying a friend an alcoholic drink is referred to as shouting.
3For more information, look up the Australian and New Zealand Association of Bellringers.


