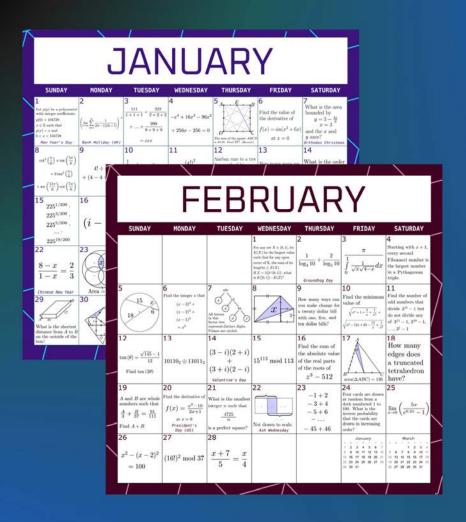

APRIL

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
March W T W T E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31	May 1 0 1 0 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31					1 Let A be the coefficient of x^5 in the Taylor expansion of e^x Find $5! \cdot A$
Find the integer a such that $x^2 - x + a$ is a factor of $x^{13} + x + 90$ Palm Sunday	3 $3^{2023^{2023}}$ $3^{2023^{2023}}$	$\frac{\sqrt[3]{y^{18}}}{y^2} = y^x$ for $x, y \in \mathbb{Z}$	What is the expected number of diamond cards in a random 20 card hand (from a standard deck)? Passover	Find the second derivative of $f(x) = x^{3/2}$ at $x = \frac{1}{64}$	For $w = 2$, $y = 5$, $z = 7$, evaluate $z^2 - y^3 + 5w^2 + 9z$ Good Friday	Find the largest zero of $y^3 - 7y^2 - 10y + 16$
Find the area between the x-axis and $y=rac{3}{2}x-rac{1}{4}x^2$	$10 \\ 1-2+3-4+5 \\ -6+7-8+9- \\ 10+11-12+13 \\ -14+15-16+17 \\ -18+19$	A boat travels 18 miles upstream in 2 bours and (with the same current speed) travels 39 miles downstream in 3 hours. What is the speed of the boat in mph ignoring the current?	Find the distance between the roots of $y^2 - 6y - 27$	$ \begin{array}{l} 13 \\ \sqrt{\frac{\pi}{2}} \\ \int_{0}^{26y \cdot \cos(y^2) dy} \end{array} $	What is the smallest positive integer n such that 126n is a perfect square?	15 120 5√3
How many differently labeled trees can one make on 4 vertices? Orthodox Easter	$ \begin{aligned} &17 f(z) = \\ & \begin{cases} \frac{e^z - 1}{2} & \text{if } z \neq 0 \\ 1 & \text{if } z = 0 \end{cases} \\ & \text{If } g(z) & \text{is the sixteenth differential of } f(z), & \text{what is } 1/g(0)?} \\ & \text{Yom HaShoah} \end{aligned} $	Find the number of non-negative integer solutions (y, z) to $7y + 8z = 1000$	Area = 19	$ \frac{5\pi}{\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}} $	$6^2 - \sum_{n=1}^{5} n$ Eid al-Fitr	What is the maximum number of regions formed by 6 lines in a plane?
$ \begin{array}{c} 23 \\ \frac{11}{3} - \frac{37}{6} - \frac{15}{2} \\ \hline 30 \\ \underline{(3!)!} \\ 4! \end{array} $	How many factors does 78645 have?	$ \sum_{0}^{200\pi} \int_{0}^{1} \frac{1}{\pi} \sin^{2}(t) \cos^{2}(t) dt $	26 Find the number of solutions to $x^2 + y^2 \equiv 0 \mod 7$ where $0 < x < 20$ and $10 < y < 100$ Administrative Professionals' Day (US)	27 Two complementary angles have measure $x+3$ and $2x+6$	Find the number of positive integer pairs (x,y) for which $\frac{x^2+y^2}{x-y}$ is an integer that divides 1995 and $x+y>4$	$ \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) $ $ \cdots $ $ \left(1 - \frac{1}{x^2}\right) = \frac{15}{29} $


JULY

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
June 1	August					$\begin{array}{l} 1 \\ \text{A sequence has} \\ a_n = -\cos\left(2\pi\sqrt{n^2-n}\right) \\ \text{Find} \lim_{n\to\infty} a_n \\ \text{for } n\in\mathbb{Z} \\ \text{Canada Day (CAN)} \end{array}$
Find $x \in \mathbb{N}$ such that $x^3 - 1$ is prime	For the digit x , the five digit number $4x3x5$ is divisible by 9	Twenty coins that are either dimes or quarters total \$2.60. Find the number of quarters. Independence Day (US)	$ \begin{pmatrix} x+2 \\ x \end{pmatrix} = 21 $ $ x > 0 $	$ \sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{\cdots}}}}} $	7 A B D C Parallelogram ABCD has area 56.	8 Find the maximum value of $(\cos(\theta) - \sin(\theta))^{6}$
y is a square that is the product of four consecutive odd integers	At the top of the hour, a bell tower rings a number of times equal to the hour. How many times does it ring from 12:30 to 4:30?	11 Find the multiple root of $x^4 - 19x^3 + 57x^2 + 319x + 242$	Find the minimum perimeter of a quadrilateral whose vertices are on different sides of a square with area 18	Alec runs to a wall 8m north of his starting location, then runs to a spot 4m south and 5m west of his starting location. How long was the second leg of his run?	$\frac{\frac{d^{15}}{dx^{15}}xe^x - \frac{d}{dx}xe^x}{e^x}$	Find the number of ways to roll two six sided dice so that their product is divisible by 6.
$ \begin{array}{r} 16 \\ 25 \cdot 25 \\ -21 \cdot 29 \end{array} $	8^{2023} mod 55	Find the sum of the digits of the largest two-digit prime and the smallest two-digit prime	Find the number of times that $y = \sin(x)$ and $y = \frac{x}{10\pi}$ intersect	Artem, Burian, and Danilo have 47 pens. Artem has 15 more than Burian and 2 fewer than Danilo. How many pens does Artem have?	$\begin{aligned} & \sqrt{\frac{4x-3}{x+4}} \in \mathbb{Q} \\ & x \in \mathbb{N} \end{aligned}$	Pind the largest value of $\frac{a+b}{a-b-1}$ for $a,b\in\mathbb{Z}$ and $1\leq b\leq a\leq 12$
Find x in the sequence: 5,14,x,32,41 30 How many ice blocks can be stacked in a four layer square pyramid?	24 How many ways can Akiko, Bao, Chan, and Deepak stand in a line? 31 How many integers from 1 to 99 are divisible by 5 or 7?	Find the final two digits of 5 ¹⁰⁰	What is the smallest number with three distinct representations as the sum of three distinct primes?	Find the number of divisors of 4900	$ \begin{array}{c} 4 \\ $	$ \frac{1^2 + 2^2 + \ldots + 43^2}{1 + 2 + \ldots + 43} $

SEPTEMBER

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
August 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	October 8 M T W T F B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31				$\left(e^{x}\right)^{x} = xe^{x}$	Find $\phi^2 - \frac{1}{\phi}$ where ϕ is the golden ratio
At a math conference with 30 attendees, 24 speak English, 17 speak French, and 22 speak Chinese. At least how many must speak all three languages?	Find the ratio of the area of ABC to XYZ Labor Day (US/CAN)	$5 \\ 3^{x-1} + 3^{x+1} \\ = 810$	The Cubs scored 2, 5, and 11 runs in the first three of a four game series. How many runs must they score in the final game to average 5 runs for the series?	$ 7 \\ y = 1 + 2 + 3 \\ -4 - 5 + 6 \\ +7 - 8 - 9 \\ x = y $	How many cubes are in a tesseract unfolded into 3D space?	$ (x, y) \text{ are positive integers such that } $ $ x^3 + 8x^2 $ $ -6x + 8 $ $ = y^3 $
34 52 All seven squares have the same dimensions. Grandparent's Day (US)	Find the number of permutations on four objects with exactly 2 cycles	$ \begin{vmatrix} 1 & -2 & 3 \\ 3 & -2 & 1 \\ 2 & -1 & 3 \end{vmatrix} $	$a+b = \sqrt{14}$ $a-b = \sqrt{12}$ $x = 2ab(a^2 + b^2)$	$28_{16} - 32_{8}$	Area = 5 Rosh Hashanah	$\lim_{n \to \infty} \frac{2^n + 3^{n+3} + 4^{n+2}}{2^{n-4} + 3^n + 4^n}$
17 (1+1) ⁽¹⁺¹⁾⁽¹⁺¹⁾ +1	How many 6 inch × 8 inch flyers can be made by cutting a single 2 foot × 3 foot sheet of paper?		Find the constant term of the expansion of $\left(x + \frac{1}{x}\right)^6$	$ \frac{\begin{pmatrix} 20^{101} + 20^{100} \\ + 20^{99} + \dots + 1 \end{pmatrix}}{\begin{pmatrix} 20^{100} + 20^{98} \\ + 20^{96} + \dots + 1 \end{pmatrix}} $	x% of a square is closer to the center than the perimeter. (Round)	$\sum_{n=-\infty}^{\infty} \frac{147}{20(1+n^2)}$ (Round) Fall Equinox
$f(x) = \frac{1}{\ln 2}(2^x - 1)$ $\cdot (2^x - 2)(2^x - 3)$ $\cdot (2^x - 4)(2^x - 5)$ Find $f'(0)$ Yom Kippur	25 $\vec{v} = \langle 11, 1, 17, 8, 10, 7, 1 \rangle$ Find $\ \vec{v}\ $	The area of each square \$5.75. Find the area of the large equilateral triangle. (Round)	27 $x + y + z = 22$ $x - y - z = 32$ $x - y + z = 42$	$\sqrt[3]{98 \cdot 56 \cdot 4}$	29° 103° Sukkot	

Get your daily dose of math with *Mathematics* 2023: Your Daily Epsilon of Math wall calendar.

Each month features a stunning math image and every day poses a new problem. The date is the solution! The challenge lies in figuring out how to arrive at the answer and in possibly discovering more than one method of getting there.

9 781470 471071

Design by Katy Henley